--- trunk/libf/phylmd/concvl.f90 2008/08/05 13:31:32 17 +++ trunk/phylmd/concvl.f 2014/08/29 13:00:05 103 @@ -1,179 +1,134 @@ -SUBROUTINE concvl(iflag_con, dtime, paprs, pplay, t, q, u, v, tra,& - ntra, work1, work2, d_t, d_q, d_u, d_v, d_tra, rain, snow, kbas,& - ktop, upwd, dnwd, dnwdbis, ma, cape, tvp, iflag, pbase, bbase,& - dtvpdt1, dtvpdq1, dplcldt, dplcldr, qcondc, wd, pmflxr, pmflxs,& - da, phi, mp) - - ! From phylmd/concvl.F, v 1.3 2005/04/15 12:36:17 - ! Auteur(s): Z.X. Li (LMD/CNRS) date: 19930818 - ! Objet: schema de convection de Emanuel (1991) interface - - USE dimens_m - USE dimphy - USE yomcst - USE yoethf - USE fcttre +module concvl_m IMPLICIT NONE - ! Arguments: - ! dtime--input-R-pas d'integration (s) - ! s-------input-R-la valeur "s" pour chaque couche - ! sigs----input-R-la valeur "sigma" de chaque couche - ! sig-----input-R-la valeur de "sigma" pour chaque niveau - ! psolpa--input-R-la pression au sol (en Pa) - ! pskapa--input-R-exponentiel kappa de psolpa - ! h-------input-R-enthalpie potentielle (Cp*T/P**kappa) - ! q-------input-R-vapeur d'eau (en kg/kg) - - ! work*: input et output: deux variables de travail, - ! on peut les mettre a 0 au debut - ! ALE-----input-R-energie disponible pour soulevement - - ! d_h-----output-R-increment de l'enthalpie potentielle (h) - ! d_q-----output-R-increment de la vapeur d'eau - ! rain----output-R-la pluie (mm/s) - ! snow----output-R-la neige (mm/s) - ! upwd----output-R-saturated updraft mass flux (kg/m**2/s) - ! dnwd----output-R-saturated downdraft mass flux (kg/m**2/s) - ! dnwd0---output-R-unsaturated downdraft mass flux (kg/m**2/s) - ! Cape----output-R-CAPE (J/kg) - ! Tvp-----output-R-Temperature virtuelle d'une parcelle soulevee - ! adiabatiquement a partir du niveau 1 (K) - ! deltapb-output-R-distance entre LCL et base de la colonne (<0 ; - ! Pa) - ! Ice_flag-input-L-TRUE->prise en compte de la thermodynamique de - ! la glace - - INTEGER ntrac - PARAMETER (ntrac=nqmx-2) - - INTEGER, INTENT (IN) :: iflag_con - - REAL, INTENT (IN) :: dtime - REAL, INTENT (IN) :: paprs(klon, klev+1) - REAL, INTENT (IN) :: pplay(klon, klev) - REAL t(klon, klev), q(klon, klev), u(klon, klev), v(klon, klev) - REAL, INTENT (IN):: tra(klon, klev, ntrac) - INTEGER ntra - REAL work1(klon, klev), work2(klon, klev) - REAL pmflxr(klon, klev+1), pmflxs(klon, klev+1) - - REAL d_t(klon, klev), d_q(klon, klev), d_u(klon, klev), d_v(klon,& - klev) - REAL d_tra(klon, klev, ntrac) - REAL rain(klon), snow(klon) - - INTEGER kbas(klon), ktop(klon) - REAL em_ph(klon, klev+1), em_p(klon, klev) - REAL upwd(klon, klev), dnwd(klon, klev), dnwdbis(klon, klev) - REAL ma(klon, klev), cape(klon), tvp(klon, klev) - REAL da(klon, klev), phi(klon, klev, klev), mp(klon, klev) - INTEGER iflag(klon) - REAL pbase(klon), bbase(klon) - REAL dtvpdt1(klon, klev), dtvpdq1(klon, klev) - REAL dplcldt(klon), dplcldr(klon) - REAL qcondc(klon, klev) - REAL wd(klon) - - REAL zx_t, zdelta, zx_qs, zcor - - INTEGER i, k, itra - REAL qs(klon, klev) - REAL cbmf(klon) - SAVE cbmf - INTEGER ifrst - SAVE ifrst - DATA ifrst/0/ - - !----------------------------------------------------------------- - - snow(:) = 0 - - IF (ifrst==0) THEN - ifrst = 1 - DO i = 1, klon - cbmf(i) = 0. - END DO - END IF - - DO k = 1, klev + 1 - DO i = 1, klon - em_ph(i, k) = paprs(i, k)/100.0 - pmflxs(i, k) = 0. - END DO - END DO - - DO k = 1, klev - DO i = 1, klon - em_p(i, k) = pplay(i, k)/100.0 - END DO - END DO - - - IF (iflag_con==4) THEN - DO k = 1, klev - DO i = 1, klon - zx_t = t(i, k) - zdelta = max(0., sign(1., rtt-zx_t)) - zx_qs = min(0.5, r2es*foeew(zx_t, zdelta)/em_p(i, k)/100.0) - zcor = 1./(1.-retv*zx_qs) - qs(i, k) = zx_qs*zcor - END DO - END DO - ELSE - ! iflag_con=3 (modif de puristes qui fait la diffce pour la - ! convergence numerique) - DO k = 1, klev - DO i = 1, klon - zx_t = t(i, k) - zdelta = max(0., sign(1., rtt-zx_t)) - zx_qs = r2es*foeew(zx_t, zdelta)/em_p(i, k)/100.0 - zx_qs = min(0.5, zx_qs) - zcor = 1./(1.-retv*zx_qs) - zx_qs = zx_qs*zcor - qs(i, k) = zx_qs - END DO - END DO - END IF - - ! Main driver for convection: - ! iflag_con = 3 -> equivalent to convect3 - ! iflag_con = 4 -> equivalent to convect1/2 - - CALL cv_driver(klon, klev, klev+1, ntra, iflag_con, t, q, qs, u, v,& - tra, em_p, em_ph, iflag, d_t, d_q, d_u, d_v, d_tra, rain,& - pmflxr, cbmf, work1, work2, kbas, ktop, dtime, ma, upwd, dnwd,& - dnwdbis, qcondc, wd, cape, da, phi, mp) - - DO i = 1, klon - rain(i) = rain(i)/86400. - END DO - - DO k = 1, klev - DO i = 1, klon - d_t(i, k) = dtime*d_t(i, k) - d_q(i, k) = dtime*d_q(i, k) - d_u(i, k) = dtime*d_u(i, k) - d_v(i, k) = dtime*d_v(i, k) - END DO - END DO - DO itra = 1, ntra - DO k = 1, klev - DO i = 1, klon - d_tra(i, k, itra) = dtime*d_tra(i, k, itra) - END DO - END DO - END DO - ! les traceurs ne sont pas mis dans cette version de convect4: - IF (iflag_con==4) THEN - DO itra = 1, ntra - DO k = 1, klev - DO i = 1, klon - d_tra(i, k, itra) = 0. - END DO - END DO - END DO - END IF +contains -END SUBROUTINE concvl + SUBROUTINE concvl(dtime, paprs, play, t, q, u, v, sig1, w01, d_t, d_q, d_u, & + d_v, rain, snow, kbas, ktop, upwd, dnwd, dnwd0, ma, cape, iflag, & + qcondc, wd, pmflxr, pmflxs, da, phi, mp) + + ! From phylmd/concvl.F, version 1.3 2005/04/15 12:36:17 + ! Author: Z. X. Li (LMD/CNRS) + ! Date: 1993 August 18 + ! Objet : schéma de convection d'Emanuel (1991), interface + ! (driver commun aux versions 3 et 4) + + use clesphys2, only: iflag_con + use cv_driver_m, only: cv_driver + USE dimens_m, ONLY: nqmx + USE dimphy, ONLY: klev, klon + USE fcttre, ONLY: foeew + USE suphec_m, ONLY: retv, rtt + USE yoethf_m, ONLY: r2es + + REAL, INTENT (IN):: dtime ! pas d'integration (s) + REAL, INTENT (IN):: paprs(klon, klev+1) + REAL, INTENT (IN):: play(klon, klev) + REAL, intent(in):: t(klon, klev) + real, intent(in):: q(klon, klev) ! vapeur d'eau (en kg/kg) + real, INTENT (IN):: u(klon, klev), v(klon, klev) + REAL, intent(inout):: sig1(klon, klev), w01(klon, klev) + REAL, intent(out):: d_t(klon, klev) + REAL, intent(out):: d_q(klon, klev) ! increment de la vapeur d'eau + REAL, intent(out):: d_u(klon, klev), d_v(klon, klev) + REAL, intent(out):: rain(klon) ! pluie (mm/s) + REAL, intent(out):: snow(klon) ! neige (mm/s) + INTEGER kbas(klon), ktop(klon) + + REAL, intent(out):: upwd(klon, klev) + ! saturated updraft mass flux (kg/m**2/s) + + real, intent(out):: dnwd(klon, klev) + ! saturated downdraft mass flux (kg/m**2/s) + + real, intent(out):: dnwd0(klon, klev) + ! unsaturated downdraft mass flux (kg/m**2/s) + + REAL ma(klon, klev), cape(klon) + ! Cape----output-R-CAPE (J/kg) + + INTEGER iflag(klon) + REAL qcondc(klon, klev) + REAL wd(klon) + REAL pmflxr(klon, klev+1), pmflxs(klon, klev+1) + REAL, intent(inout):: da(klon, klev), phi(klon, klev, klev), mp(klon, klev) + + ! Local: + + REAL em_ph(klon, klev+1), em_p(klon, klev) + REAL zx_t, zx_qs, zcor + INTEGER i, k + REAL qs(klon, klev) + REAL, save:: cbmf(klon) + INTEGER:: ifrst = 0 + + !----------------------------------------------------------------- + + snow = 0 + + IF (ifrst==0) THEN + ifrst = 1 + DO i = 1, klon + cbmf(i) = 0. + END DO + END IF + + DO k = 1, klev + 1 + DO i = 1, klon + em_ph(i, k) = paprs(i, k)/100.0 + pmflxs(i, k) = 0. + END DO + END DO + + DO k = 1, klev + DO i = 1, klon + em_p(i, k) = play(i, k)/100.0 + END DO + END DO + + + IF (iflag_con==4) THEN + DO k = 1, klev + DO i = 1, klon + zx_t = t(i, k) + zx_qs = min(0.5, r2es*foeew(zx_t, rtt >= zx_t)/em_p(i, k)/100.0) + zcor = 1./(1.-retv*zx_qs) + qs(i, k) = zx_qs*zcor + END DO + END DO + ELSE + ! iflag_con=3 (modif de puristes qui fait la diffce pour la + ! convergence numerique) + DO k = 1, klev + DO i = 1, klon + zx_t = t(i, k) + zx_qs = r2es*foeew(zx_t, rtt >= zx_t)/em_p(i, k)/100.0 + zx_qs = min(0.5, zx_qs) + zcor = 1./(1.-retv*zx_qs) + zx_qs = zx_qs*zcor + qs(i, k) = zx_qs + END DO + END DO + END IF + + CALL cv_driver(t, q, qs, u, v, em_p, em_ph, iflag, d_t, d_q, & + d_u, d_v, rain, pmflxr, cbmf, sig1, w01, kbas, ktop, dtime, ma, & + upwd, dnwd, dnwd0, qcondc, wd, cape, da, phi, mp) + + DO i = 1, klon + rain(i) = rain(i)/86400. + END DO + + DO k = 1, klev + DO i = 1, klon + d_t(i, k) = dtime*d_t(i, k) + d_q(i, k) = dtime*d_q(i, k) + d_u(i, k) = dtime*d_u(i, k) + d_v(i, k) = dtime*d_v(i, k) + END DO + END DO + + END SUBROUTINE concvl + +end module concvl_m