/[lmdze]/trunk/phylmd/cv_driver.f90
ViewVC logotype

Diff of /trunk/phylmd/cv_driver.f90

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/phylmd/cv_driver.f revision 82 by guez, Wed Mar 5 14:57:53 2014 UTC trunk/Sources/phylmd/cv_driver.f revision 190 by guez, Thu Apr 14 15:15:56 2016 UTC
# Line 4  module cv_driver_m Line 4  module cv_driver_m
4    
5  contains  contains
6    
7    SUBROUTINE cv_driver(len, nd, ndp1, ntra, t1, q1, qs1, u1, v1, tra1, p1, &    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, fq1, fu1, &
8         ph1, iflag1, ft1, fq1, fu1, fv1, ftra1, precip1, VPrecip1, cbmf1, &         fv1, precip1, VPrecip1, sig1, w01, icb1, inb1, delt, Ma1, upwd1, dnwd1, &
9         sig1, w01, icb1, inb1, delt, Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, &         dnwd01, qcondc1, cape1, da1, phi1, mp1)
        cape1, da1, phi1, mp1)  
   
     ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3 2005/04/15 12:36:17  
10    
11        ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
12      ! Main driver for convection      ! Main driver for convection
13        ! Author: S. Bony, March 2002
     ! S. Bony, Mar 2002:  
14    
15      ! Several modules corresponding to different physical processes      ! Several modules corresponding to different physical processes
16    
17      ! Several versions of convect may be used:      use cv30_closure_m, only: cv30_closure
18      ! - iflag_con=3: version lmd  (previously named convect3)      use cv30_compress_m, only: cv30_compress
19      ! - iflag_con=4: version 4.3b (vect. version, previously convect1/2)      use cv30_feed_m, only: cv30_feed
20        use cv30_mixing_m, only: cv30_mixing
21        use cv30_param_m, only: cv30_param, nl
22        use cv30_prelim_m, only: cv30_prelim
23        use cv30_tracer_m, only: cv30_tracer
24        use cv30_trigger_m, only: cv30_trigger
25        use cv30_uncompress_m, only: cv30_uncompress
26        use cv30_undilute2_m, only: cv30_undilute2
27        use cv30_unsat_m, only: cv30_unsat
28        use cv30_yield_m, only: cv30_yield
29        use cv_thermo_m, only: cv_thermo
30        USE dimphy, ONLY: klev, klon
31    
32      ! Plus tard :      real, intent(in):: t1(klon, klev) ! temperature (K)
33      ! - iflag_con=5: version lmd with ice (previously named convectg)      real, intent(in):: q1(klon, klev) ! specific humidity
34        real, intent(in):: qs1(klon, klev) ! saturation specific humidity
35    
36      ! S. Bony, Oct 2002:      real, intent(in):: u1(klon, klev), v1(klon, klev)
37      ! Vectorization of convect3 (ie version lmd)      ! zonal wind and meridional velocity (m/s)
38    
39      use clesphys2, only: iflag_con      real, intent(in):: p1(klon, klev) ! full level pressure (hPa)
40      use cv3_param_m, only: cv3_param  
41      USE dimphy, ONLY: klev, klon      real, intent(in):: ph1(klon, klev + 1)
42        ! Half level pressure (hPa). These pressures are defined at levels
43        ! intermediate between those of P1, T1, Q1 and QS1. The first
44        ! value of PH should be greater than (i.e. at a lower level than)
45        ! the first value of the array P1.
46    
47        integer, intent(out):: iflag1(klon)
48        ! Flag for Emanuel conditions.
49    
50        ! 0: Moist convection occurs.
51    
52        ! 1: Moist convection occurs, but a CFL condition on the
53        ! subsidence warming is violated. This does not cause the scheme
54        ! to terminate.
55    
56        ! 2: Moist convection, but no precipitation because ep(inb) < 1e-4
57    
58        ! 3: No moist convection because new cbmf is 0 and old cbmf is 0.
59    
60        ! 4: No moist convection; atmosphere is not unstable
61    
62        ! 6: No moist convection because ihmin le minorig.
63    
64        ! 7: No moist convection because unreasonable parcel level
65        ! temperature or specific humidity.
66    
67        ! 8: No moist convection: lifted condensation level is above the
68        ! 200 mb level.
69    
70        ! 9: No moist convection: cloud base is higher then the level NL-1.
71    
72        real, intent(out):: ft1(klon, klev) ! temperature tendency (K/s)
73        real, intent(out):: fq1(klon, klev) ! specific humidity tendency (s-1)
74    
75        real, intent(out):: fu1(klon, klev), fv1(klon, klev)
76        ! forcing (tendency) of zonal and meridional velocity (m/s^2)
77    
78        real, intent(out):: precip1(klon) ! convective precipitation rate (mm/day)
79    
80      ! PARAMETERS:      real, intent(out):: VPrecip1(klon, klev + 1)
81      !      Name            Type         Usage            Description      ! vertical profile of convective precipitation (kg/m2/s)
82      !   ----------      ----------     -------  ----------------------------  
83        real, intent(inout):: sig1(klon, klev) ! section of adiabatic updraft
     !      len           Integer        Input        first (i) dimension  
     !      nd            Integer        Input        vertical (k) dimension  
     !      ndp1          Integer        Input        nd + 1  
     !      ntra          Integer        Input        number of tracors  
     !      t1            Real           Input        temperature  
     !      q1            Real           Input        specific hum  
     !      qs1           Real           Input        sat specific hum  
     !      u1            Real           Input        u-wind  
     !      v1            Real           Input        v-wind  
     !      tra1          Real           Input        tracors  
     !      p1            Real           Input        full level pressure  
     !      ph1           Real           Input        half level pressure  
     !      iflag1        Integer        Output       flag for Emanuel conditions  
     !      ft1           Real           Output       temp tend  
     !      fq1           Real           Output       spec hum tend  
     !      fu1           Real           Output       u-wind tend  
     !      fv1           Real           Output       v-wind tend  
     !      ftra1         Real           Output       tracor tend  
     !      precip1       Real           Output       precipitation  
     !      VPrecip1      Real           Output       vertical profile of precipitations  
     !      cbmf1         Real           Output       cloud base mass flux  
     !      delt          Real           Input        time step  
     !      Ma1           Real           Output       mass flux adiabatic updraft  
     !      qcondc1       Real           Output       in-cld mixing ratio of condensed water  
     !      wd1           Real           Output       downdraft velocity scale for sfc fluxes  
     !      cape1         Real           Output       CAPE  
   
     integer len  
     integer nd  
     integer ndp1  
     integer, intent(in):: ntra  
     real, intent(in):: t1(len, nd)  
     real q1(len, nd)  
     real qs1(len, nd)  
     real u1(len, nd)  
     real v1(len, nd)  
     real, intent(in):: tra1(len, nd, ntra)  
     real p1(len, nd)  
     real ph1(len, ndp1)  
     integer iflag1(len)  
     real ft1(len, nd)  
     real fq1(len, nd)  
     real fu1(len, nd)  
     real fv1(len, nd)  
     real ftra1(len, nd, ntra)  
     real precip1(len)  
     real VPrecip1(len, nd+1)  
     real cbmf1(len)  
     real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft  
84    
85      real, intent(inout):: w01(klon, klev)      real, intent(inout):: w01(klon, klev)
86      ! vertical velocity within adiabatic updraft      ! vertical velocity within adiabatic updraft
87    
88      integer icb1(klon)      integer, intent(out):: icb1(klon)
89      integer inb1(klon)      integer, intent(inout):: inb1(klon)
90      real, intent(in):: delt      real, intent(in):: delt ! the model time step (sec) between calls
     real Ma1(len, nd)  
     real, intent(out):: upwd1(len, nd) ! total upward mass flux (adiab+mixed)  
     real, intent(out):: dnwd1(len, nd) ! saturated downward mass flux (mixed)  
     real, intent(out):: dnwd01(len, nd) ! unsaturated downward mass flux  
   
     real qcondc1(len, nd)     ! cld  
     real wd1(len)            ! gust  
     real cape1(len)  
91    
92      real da1(len, nd), phi1(len, nd, nd), mp1(len, nd)      real, intent(out):: Ma1(klon, klev) ! mass flux of adiabatic updraft
93    
94      !-------------------------------------------------------------------      real, intent(out):: upwd1(klon, klev)
95      ! --- ARGUMENTS      ! total upward mass flux (adiabatic + mixed)
     !-------------------------------------------------------------------  
     ! --- On input:  
96    
97      !  t:   Array of absolute temperature (K) of dimension ND, with first      real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
98      !       index corresponding to lowest model level. Note that this array      real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux
     !       will be altered by the subroutine if dry convective adjustment  
     !       occurs and if IPBL is not equal to 0.  
   
     !  q:   Array of specific humidity (gm/gm) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  qs:  Array of saturation specific humidity of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  u:   Array of zonal wind velocity (m/s) of dimension ND, witth first  
     !       index corresponding with the lowest model level. Defined at  
     !       same levels as T. Note that this array will be altered if  
     !       dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  v:   Same as u but for meridional velocity.  
   
     !  tra: Array of passive tracer mixing ratio, of dimensions (ND, NTRA),  
     !       where NTRA is the number of different tracers. If no  
     !       convective tracer transport is needed, define a dummy  
     !       input array of dimension (ND, 1). Tracers are defined at  
     !       same vertical levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  p:   Array of pressure (mb) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T.  
   
     !  ph:  Array of pressure (mb) of dimension ND+1, with first index  
     !       corresponding to lowest level. These pressures are defined at  
     !       levels intermediate between those of P, T, Q and QS. The first  
     !       value of PH should be greater than (i.e. at a lower level than)  
     !       the first value of the array P.  
   
     !  nl:  The maximum number of levels to which convection can penetrate, plus 1.  
     !       NL MUST be less than or equal to ND-1.  
   
     !  delt: The model time step (sec) between calls to CONVECT  
   
     !----------------------------------------------------------------------------  
     ! ---   On Output:  
   
     !  iflag: An output integer whose value denotes the following:  
     !       VALUE   INTERPRETATION  
     !       -----   --------------  
     !         0     Moist convection occurs.  
     !         1     Moist convection occurs, but a CFL condition  
     !               on the subsidence warming is violated. This  
     !               does not cause the scheme to terminate.  
     !         2     Moist convection, but no precip because ep(inb) lt 0.0001  
     !         3     No moist convection because new cbmf is 0 and old cbmf is 0.  
     !         4     No moist convection; atmosphere is not  
     !               unstable  
     !         6     No moist convection because ihmin le minorig.  
     !         7     No moist convection because unreasonable  
     !               parcel level temperature or specific humidity.  
     !         8     No moist convection: lifted condensation  
     !               level is above the 200 mb level.  
     !         9     No moist convection: cloud base is higher  
     !               then the level NL-1.  
   
     !  ft:   Array of temperature tendency (K/s) of dimension ND, defined at same  
     !        grid levels as T, Q, QS and P.  
   
     !  fq:   Array of specific humidity tendencies ((gm/gm)/s) of dimension ND,  
     !        defined at same grid levels as T, Q, QS and P.  
   
     !  fu:   Array of forcing of zonal velocity (m/s^2) of dimension ND,  
     !        defined at same grid levels as T.  
   
     !  fv:   Same as FU, but for forcing of meridional velocity.  
   
     !  ftra: Array of forcing of tracer content, in tracer mixing ratio per  
     !        second, defined at same levels as T. Dimensioned (ND, NTRA).  
   
     !  precip: Scalar convective precipitation rate (mm/day).  
   
     !  VPrecip: Vertical profile of convective precipitation (kg/m2/s).  
   
     !  wd:   A convective downdraft velocity scale. For use in surface  
     !        flux parameterizations. See convect.ps file for details.  
   
     !  tprime: A convective downdraft temperature perturbation scale (K).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  qprime: A convective downdraft specific humidity  
     !          perturbation scale (gm/gm).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST  
     !        BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT  
     !        ITS NEXT CALL. That is, the value of CBMF must be "remembered"  
     !        by the calling program between calls to CONVECT.  
99    
100      !  det:   Array of detrainment mass flux of dimension ND.      real, intent(out):: qcondc1(klon, klev)
101        ! in-cloud mixing ratio of condensed water
     !-------------------------------------------------------------------  
102    
103      !  Local arrays      real, intent(out):: cape1(klon)
104        real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)
105        real, intent(inout):: mp1(klon, klev)
106    
107      integer noff      ! Local:
     real da(len, nd), phi(len, nd, nd), mp(len, nd)  
108    
109      integer i, k, n, il, j      real da(klon, klev), phi(klon, klev, klev), mp(klon, klev)
110        integer i, k, il
111      integer icbmax      integer icbmax
112      integer nk1(klon)      integer nk1(klon)
113      integer icbs1(klon)      integer icbs1(klon)
   
114      real plcl1(klon)      real plcl1(klon)
115      real tnk1(klon)      real tnk1(klon)
116      real qnk1(klon)      real qnk1(klon)
117      real gznk1(klon)      real gznk1(klon)
     real pnk1(klon)  
     real qsnk1(klon)  
118      real pbase1(klon)      real pbase1(klon)
119      real buoybase1(klon)      real buoybase1(klon)
   
120      real lv1(klon, klev)      real lv1(klon, klev)
121      real cpn1(klon, klev)      real cpn1(klon, klev)
122      real tv1(klon, klev)      real tv1(klon, klev)
# Line 241  contains Line 127  contains
127      real tvp1(klon, klev)      real tvp1(klon, klev)
128      real clw1(klon, klev)      real clw1(klon, klev)
129      real th1(klon, klev)      real th1(klon, klev)
   
130      integer ncum      integer ncum
131    
132      ! (local) compressed fields:      ! Compressed fields:
133        integer idcum(klon)
134      integer nloc      integer iflag(klon), nk(klon), icb(klon)
135      parameter (nloc=klon) ! pour l'instant      integer nent(klon, klev)
136        integer icbs(klon)
137        integer inb(klon)
138        real plcl(klon), tnk(klon), qnk(klon), gznk(klon)
139        real t(klon, klev), q(klon, klev), qs(klon, klev)
140        real u(klon, klev), v(klon, klev)
141        real gz(klon, klev), h(klon, klev), lv(klon, klev), cpn(klon, klev)
142        real p(klon, klev), ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
143        real clw(klon, klev)
144        real pbase(klon), buoybase(klon), th(klon, klev)
145        real tvp(klon, klev)
146        real sig(klon, klev), w0(klon, klev)
147        real hp(klon, klev), ep(klon, klev), sigp(klon, klev)
148        real buoy(klon, klev)
149        real cape(klon)
150        real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
151        real uent(klon, klev, klev), vent(klon, klev, klev)
152        real ments(klon, klev, klev), qents(klon, klev, klev)
153        real sij(klon, klev, klev), elij(klon, klev, klev)
154        real qp(klon, klev), up(klon, klev), vp(klon, klev)
155        real wt(klon, klev), water(klon, klev), evap(klon, klev)
156        real, allocatable:: b(:, :) ! (ncum, nl - 1)
157        real ft(klon, klev), fq(klon, klev)
158        real fu(klon, klev), fv(klon, klev)
159        real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)
160        real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
161        real tps(klon, klev)
162        real precip(klon)
163        real VPrecip(klon, klev + 1)
164        real qcondc(klon, klev) ! cld
165    
     integer idcum(nloc)  
     integer iflag(nloc), nk(nloc), icb(nloc)  
     integer nent(nloc, klev)  
     integer icbs(nloc)  
     integer inb(nloc), inbis(nloc)  
   
     real cbmf(nloc), plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc)  
     real t(nloc, klev), q(nloc, klev), qs(nloc, klev)  
     real u(nloc, klev), v(nloc, klev)  
     real gz(nloc, klev), h(nloc, klev), lv(nloc, klev), cpn(nloc, klev)  
     real p(nloc, klev), ph(nloc, klev+1), tv(nloc, klev), tp(nloc, klev)  
     real clw(nloc, klev)  
     real dph(nloc, klev)  
     real pbase(nloc), buoybase(nloc), th(nloc, klev)  
     real tvp(nloc, klev)  
     real sig(nloc, klev), w0(nloc, klev)  
     real hp(nloc, klev), ep(nloc, klev), sigp(nloc, klev)  
     real frac(nloc), buoy(nloc, klev)  
     real cape(nloc)  
     real m(nloc, klev), ment(nloc, klev, klev), qent(nloc, klev, klev)  
     real uent(nloc, klev, klev), vent(nloc, klev, klev)  
     real ments(nloc, klev, klev), qents(nloc, klev, klev)  
     real sij(nloc, klev, klev), elij(nloc, klev, klev)  
     real qp(nloc, klev), up(nloc, klev), vp(nloc, klev)  
     real wt(nloc, klev), water(nloc, klev), evap(nloc, klev)  
     real b(nloc, klev), ft(nloc, klev), fq(nloc, klev)  
     real fu(nloc, klev), fv(nloc, klev)  
     real upwd(nloc, klev), dnwd(nloc, klev), dnwd0(nloc, klev)  
     real Ma(nloc, klev), mike(nloc, klev), tls(nloc, klev)  
     real tps(nloc, klev), qprime(nloc), tprime(nloc)  
     real precip(nloc)  
     real VPrecip(nloc, klev+1)  
     real tra(nloc, klev, ntra), trap(nloc, klev, ntra)  
     real ftra(nloc, klev, ntra), traent(nloc, klev, klev, ntra)  
     real qcondc(nloc, klev)  ! cld  
     real wd(nloc)           ! gust  
   
     !-------------------------------------------------------------------  
     ! --- SET CONSTANTS AND PARAMETERS  
166      !-------------------------------------------------------------------      !-------------------------------------------------------------------
167    
168      ! -- set simulation flags:      ! SET CONSTANTS AND PARAMETERS
     !   (common cvflag)  
   
     CALL cv_flag  
   
     ! -- set thermodynamical constants:  
     !     (common cvthermo)  
169    
170        ! set thermodynamical constants:
171      CALL cv_thermo      CALL cv_thermo
172    
173      ! -- set convect parameters      ! set convect parameters
174        ! includes microphysical parameters and parameters that
175      !     includes microphysical parameters and parameters that      ! control the rate of approach to quasi-equilibrium)
176      !     control the rate of approach to quasi-equilibrium)      ! (common cvparam)
177      !     (common cvparam)      CALL cv30_param(delt)
178    
179      if (iflag_con.eq.3) then      ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
180         CALL cv3_param(nd, delt)  
181      endif      do k = 1, klev
182           do i = 1, klon
183      if (iflag_con.eq.4) then            ft1(i, k) = 0.
184         CALL cv_param(nd)            fq1(i, k) = 0.
185      endif            fu1(i, k) = 0.
186              fv1(i, k) = 0.
187      !---------------------------------------------------------------------            tvp1(i, k) = 0.
188      ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS            tp1(i, k) = 0.
189      !---------------------------------------------------------------------            clw1(i, k) = 0.
190              clw(i, k) = 0.
     do k=1, nd  
        do  i=1, len  
           ft1(i, k)=0.0  
           fq1(i, k)=0.0  
           fu1(i, k)=0.0  
           fv1(i, k)=0.0  
           tvp1(i, k)=0.0  
           tp1(i, k)=0.0  
           clw1(i, k)=0.0  
           !ym  
           clw(i, k)=0.0  
191            gz1(i, k) = 0.            gz1(i, k) = 0.
192            VPrecip1(i, k) = 0.            VPrecip1(i, k) = 0.
193            Ma1(i, k)=0.0            Ma1(i, k) = 0.
194            upwd1(i, k)=0.0            upwd1(i, k) = 0.
195            dnwd1(i, k)=0.0            dnwd1(i, k) = 0.
196            dnwd01(i, k)=0.0            dnwd01(i, k) = 0.
197            qcondc1(i, k)=0.0            qcondc1(i, k) = 0.
198         end do         end do
199      end do      end do
200    
201      do  j=1, ntra      do i = 1, klon
202         do  k=1, nd         precip1(i) = 0.
203            do  i=1, len         iflag1(i) = 0
204               ftra1(i, k, j)=0.0         cape1(i) = 0.
205            end do         VPrecip1(i, klev + 1) = 0.
        end do  
     end do  
   
     do  i=1, len  
        precip1(i)=0.0  
        iflag1(i)=0  
        wd1(i)=0.0  
        cape1(i)=0.0  
        VPrecip1(i, nd+1)=0.0  
206      end do      end do
207    
208      if (iflag_con.eq.3) then      do il = 1, klon
209         do il=1, len         sig1(il, klev) = sig1(il, klev) + 1.
210            sig1(il, nd)=sig1(il, nd) + 1.         sig1(il, klev) = min(sig1(il, klev), 12.1)
211            sig1(il, nd) = min(sig1(il, nd), 12.1)      enddo
212         enddo  
213      endif      ! CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY
214        CALL cv30_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &
215      !--------------------------------------------------------------------           gz1, h1, hm1, th1)
216      ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY  
217      !--------------------------------------------------------------------      ! CONVECTIVE FEED
218        CALL cv30_feed(klon, klev, t1, q1, qs1, p1, ph1, gz1, nk1, icb1, &
219      if (iflag_con.eq.3) then           icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! klev->na
220         CALL cv3_prelim(len, nd, ndp1, t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, &  
221              h1, hm1, th1)! nd->na      CALL cv30_undilute1(klon, klev, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, &
222      endif           tp1, tvp1, clw1, icbs1) ! klev->na
223    
224      if (iflag_con.eq.4) then      ! TRIGGERING
225         CALL cv_prelim(len, nd, ndp1, t1, q1, p1, ph1 &      CALL cv30_trigger(klon, klev, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &
226              , lv1, cpn1, tv1, gz1, h1, hm1)           buoybase1, iflag1, sig1, w01) ! klev->na
227      endif  
228        ! Moist convective adjustment is necessary
229      !--------------------------------------------------------------------  
230      ! --- CONVECTIVE FEED      ncum = 0
231      !--------------------------------------------------------------------      do i = 1, klon
232           if (iflag1(i) == 0) then
233      if (iflag_con.eq.3) then            ncum = ncum + 1
234         CALL cv3_feed(len, nd, t1, q1, qs1, p1, ph1, hm1, gz1            &            idcum(ncum) = i
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_feed(len, nd, t1, q1, qs1, p1, hm1, gz1 &  
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1)  
     endif  
   
     !--------------------------------------------------------------------  
     ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part  
     ! (up through ICB for convect4, up through ICB+1 for convect3)  
     !     Calculates the lifted parcel virtual temperature at nk, the  
     !     actual temperature, and the adiabatic liquid water content.  
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_undilute1(len, nd, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1   &  
             , tp1, tvp1, clw1, icbs1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_undilute1(len, nd, t1, q1, qs1, gz1, p1, nk1, icb1, icbmax &  
             , tp1, tvp1, clw1)  
     endif  
   
     !-------------------------------------------------------------------  
     ! --- TRIGGERING  
     !-------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_trigger(len, nd, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &  
             buoybase1, iflag1, sig1, w01) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_trigger(len, nd, icb1, cbmf1, tv1, tvp1, iflag1)  
     endif  
   
     !=====================================================================  
     ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY  
     !=====================================================================  
   
     ncum=0  
     do  i=1, len  
        if(iflag1(i).eq.0)then  
           ncum=ncum+1  
           idcum(ncum)=i  
235         endif         endif
236      end do      end do
237    
238      !       print*, 'klon, ncum = ', len, ncum      IF (ncum > 0) THEN
239           allocate(b(ncum, nl - 1))
240      IF (ncum.gt.0) THEN         CALL cv30_compress(ncum, iflag1, nk1, icb1, icbs1, plcl1, tnk1, qnk1, &
241                gznk1, pbase1, buoybase1, t1, q1, qs1, u1, v1, gz1, th1, h1, lv1, &
242         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^              cpn1, p1, ph1, tv1, tp1, tvp1, clw1, sig1, w01, iflag, nk, icb, &
243         ! --- COMPRESS THE FIELDS              icbs, plcl, tnk, qnk, gznk, pbase, buoybase, t, q, qs, u, v, gz, &
244         !        (-> vectorization over convective gridpoints)              th, h, lv, cpn, p, ph, tv, tp, tvp, clw, sig, w0)
245         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^         CALL cv30_undilute2(ncum, icb, icbs, nk, tnk, qnk, gznk, t, qs, gz, p, &
246                h, tv, lv, pbase, buoybase, plcl, inb(:ncum), tp, tvp, clw, hp, &
247         if (iflag_con.eq.3) then              ep, sigp, buoy)
248            CALL cv3_compress(len, nloc, ncum, nd, ntra, iflag1, nk1, icb1, &  
249                 icbs1, plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, &         ! CLOSURE
250                 qs1, u1, v1, gz1, th1, tra1, h1, lv1, cpn1, p1, ph1, tv1, tp1, &         CALL cv30_closure(klon, ncum, klev, icb, inb, pbase, p, ph, tv, &
251                 tvp1, clw1, sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, &              buoy, sig, w0, cape, m) ! na->klev
252                 gznk, pbase, buoybase, t, q, qs, u, v, gz, th, tra, h, lv, &  
253                 cpn, p, ph, tv, tp, tvp, clw, sig, w0)         ! MIXING
254         endif         CALL cv30_mixing(klon, ncum, klev, klev, icb, nk, inb, t, q, qs, u, &
255                v, h, lv, hp, ep, clw, m, sig, ment, qent, uent, vent, nent, &
256         if (iflag_con.eq.4) then              sij, elij, ments, qents)
257            CALL cv_compress( len, nloc, ncum, nd &  
258                 , iflag1, nk1, icb1 &         ! Unsaturated (precipitating) downdrafts
259                 , cbmf1, plcl1, tnk1, qnk1, gznk1 &         CALL cv30_unsat(icb(:ncum), inb(:ncum), t, q, qs, gz, u, v, p, ph, th, &
260                 , t1, q1, qs1, u1, v1, gz1 &              tv, lv, cpn, ep, sigp, clw, m, ment, elij, delt, plcl, mp, &
261                 , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1 &              qp(:ncum, :nl), up(:ncum, :nl), vp(:ncum, :nl), wt, water, evap, b)
262                 , iflag, nk, icb &  
263                 , cbmf, plcl, tnk, qnk, gznk &         ! Yield (tendencies, precipitation, variables of interface with
264                 , t, q, qs, u, v, gz, h, lv, cpn, p, ph, tv, tp, tvp, clw  &         ! other processes, etc)
265                 , dph )         CALL cv30_yield(icb(:ncum), inb(:ncum), delt, t, q, u, v, gz, p, ph, &
266         endif              h, hp, lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp, wt, &
267                water(:ncum, :nl), evap(:ncum, :nl), b, ment, qent, uent, vent, &
268         !-------------------------------------------------------------------              nent, elij, sig, tv, tvp, iflag, precip, VPrecip, ft, fq, fu, fv, &
269         ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :              upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc)
270         ! ---   FIND THE REST OF THE LIFTED PARCEL TEMPERATURES  
271         ! ---   &         CALL cv30_tracer(klon, ncum, klev, ment, sij, da, phi)
272         ! ---   COMPUTE THE PRECIPITATION EFFICIENCIES AND THE  
273         ! ---   FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD         ! UNCOMPRESS THE FIELDS
274         ! ---   &         iflag1 = 42 ! for non convective points
275         ! ---   FIND THE LEVEL OF NEUTRAL BUOYANCY         CALL cv30_uncompress(idcum(:ncum), iflag, precip, VPrecip, sig, w0, &
276         !-------------------------------------------------------------------              ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, cape, &
277                da, phi, mp, iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, &
278         if (iflag_con.eq.3) then              fu1, fv1, inb1, Ma1, upwd1, dnwd1, dnwd01, qcondc1, cape1, da1, &
279            CALL cv3_undilute2(nloc, ncum, nd, icb, icbs, nk         &              phi1, mp1)
280                 , tnk, qnk, gznk, t, q, qs, gz &      ENDIF
                , p, h, tv, lv, pbase, buoybase, plcl &  
                , inb, tp, tvp, clw, hp, ep, sigp, buoy) !na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_undilute2(nloc, ncum, nd, icb, nk &  
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, dph, h, tv, lv &  
                , inb, inbis, tp, tvp, clw, hp, ep, sigp, frac)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- CLOSURE  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_closure(nloc, ncum, nd, icb, inb               &  
                , pbase, p, ph, tv, buoy &  
                , sig, w0, cape, m) ! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_closure(nloc, ncum, nd, nk, icb &  
                , tv, tvp, p, ph, dph, plcl, cpn &  
                , iflag, cbmf)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- MIXING  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_mixing(nloc, ncum, nd, nd, ntra, icb, nk, inb     &  
                , ph, t, q, qs, u, v, tra, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, m, sig &  
                , ment, qent, uent, vent, nent, sij, elij, ments, qents, traent)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_mixing(nloc, ncum, nd, icb, nk, inb, inbis &  
                , ph, t, q, qs, u, v, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, cbmf &  
                , m, ment, qent, uent, vent, nent, sij, elij)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_unsat(nloc, ncum, nd, nd, ntra, icb, inb     &  
                , t, q, qs, gz, u, v, tra, p, ph &  
                , th, tv, lv, cpn, ep, sigp, clw &  
                , m, ment, elij, delt, plcl &  
                , mp, qp, up, vp, trap, wt, water, evap, b)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_unsat(nloc, ncum, nd, inb, t, q, qs, gz, u, v, p, ph &  
                , h, lv, ep, sigp, clw, m, ment, elij &  
                , iflag, mp, qp, up, vp, wt, water, evap)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- YIELD  
        !     (tendencies, precipitation, variables of interface with other  
        !      processes, etc)  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_yield(nloc, ncum, nd, nd, ntra             &  
                , icb, inb, delt &  
                , t, q, u, v, tra, gz, p, ph, h, hp, lv, cpn, th &  
                , ep, clw, m, tp, mp, qp, up, vp, trap &  
                , wt, water, evap, b &  
                , ment, qent, uent, vent, nent, elij, traent, sig &  
                , tv, tvp &  
                , iflag, precip, VPrecip, ft, fq, fu, fv, ftra &  
                , upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc, wd)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_yield(nloc, ncum, nd, nk, icb, inb, delt &  
                , t, q, u, v, gz, p, ph, h, hp, lv, cpn &  
                , ep, clw, frac, m, mp, qp, up, vp &  
                , wt, water, evap &  
                , ment, qent, uent, vent, nent, elij &  
                , tv, tvp &  
                , iflag, wd, qprime, tprime &  
                , precip, cbmf, ft, fq, fu, fv, Ma, qcondc)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- passive tracers  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
        if (iflag_con.eq.3) then  
           CALL cv3_tracer(nloc, len, ncum, nd, nd, &  
                ment, sij, da, phi)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- UNCOMPRESS THE FIELDS  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! set iflag1 =42 for non convective points  
        do  i=1, len  
           iflag1(i)=42  
        end do  
   
        if (iflag_con.eq.3) then  
           CALL cv3_uncompress(nloc, len, ncum, nd, ntra, idcum &  
                , iflag &  
                , precip, VPrecip, sig, w0 &  
                , ft, fq, fu, fv, ftra &  
                , inb  &  
                , Ma, upwd, dnwd, dnwd0, qcondc, wd, cape &  
                , da, phi, mp &  
                , iflag1 &  
                , precip1, VPrecip1, sig1, w01 &  
                , ft1, fq1, fu1, fv1, ftra1 &  
                , inb1 &  
                , Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1  &  
                , da1, phi1, mp1)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_uncompress(nloc, len, ncum, nd, idcum &  
                , iflag &  
                , precip, cbmf &  
                , ft, fq, fu, fv &  
                , Ma, qcondc             &  
                , iflag1 &  
                , precip1, cbmf1 &  
                , ft1, fq1, fu1, fv1 &  
                , Ma1, qcondc1 )  
        endif  
     ENDIF ! ncum>0  
281    
282    end SUBROUTINE cv_driver    end SUBROUTINE cv_driver
283    

Legend:
Removed from v.82  
changed lines
  Added in v.190

  ViewVC Help
Powered by ViewVC 1.1.21