/[lmdze]/trunk/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 181 by guez, Tue Mar 15 17:51:30 2016 UTC revision 192 by guez, Thu May 12 13:00:07 2016 UTC
# Line 4  module cv_driver_m Line 4  module cv_driver_m
4    
5  contains  contains
6    
7    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, &    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, fq1, fu1, &
8         fq1, fu1, fv1, precip1, VPrecip1, cbmf1, sig1, w01, icb1, inb1, delt, &         fv1, precip1, VPrecip1, sig1, w01, icb1, inb1, delt, Ma1, upwd1, dnwd1, &
9         Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1)         dnwd01, qcondc1, cape1, da1, phi1, mp1)
10    
11      ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17      ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
12      ! Main driver for convection      ! Main driver for convection
# Line 14  contains Line 14  contains
14    
15      ! Several modules corresponding to different physical processes      ! Several modules corresponding to different physical processes
16    
17      use cv3_compress_m, only: cv3_compress      use cv30_closure_m, only: cv30_closure
18      use cv3_feed_m, only: cv3_feed      use cv30_compress_m, only: cv30_compress
19      use cv3_mixing_m, only: cv3_mixing      use cv30_feed_m, only: cv30_feed
20      use cv3_param_m, only: cv3_param      use cv30_mixing_m, only: cv30_mixing
21      use cv3_prelim_m, only: cv3_prelim      use cv30_param_m, only: cv30_param, nl
22      use cv3_tracer_m, only: cv3_tracer      use cv30_prelim_m, only: cv30_prelim
23      use cv3_uncompress_m, only: cv3_uncompress      use cv30_tracer_m, only: cv30_tracer
24      use cv3_unsat_m, only: cv3_unsat      use cv30_trigger_m, only: cv30_trigger
25      use cv3_yield_m, only: cv3_yield      use cv30_uncompress_m, only: cv30_uncompress
26        use cv30_undilute2_m, only: cv30_undilute2
27        use cv30_unsat_m, only: cv30_unsat
28        use cv30_yield_m, only: cv30_yield
29        use cv_thermo_m, only: cv_thermo
30      USE dimphy, ONLY: klev, klon      USE dimphy, ONLY: klev, klon
31    
32      real, intent(in):: t1(klon, klev) ! temperature      real, intent(in):: t1(klon, klev) ! temperature (K)
33      real, intent(in):: q1(klon, klev) ! specific hum      real, intent(in):: q1(klon, klev) ! specific humidity
34      real, intent(in):: qs1(klon, klev) ! sat specific hum      real, intent(in):: qs1(klon, klev) ! saturation specific humidity
35      real, intent(in):: u1(klon, klev) ! u-wind  
36      real, intent(in):: v1(klon, klev) ! v-wind      real, intent(in):: u1(klon, klev), v1(klon, klev)
37      real, intent(in):: p1(klon, klev) ! full level pressure      ! zonal wind and meridional velocity (m/s)
38      real, intent(in):: ph1(klon, klev + 1) ! half level pressure  
39      integer, intent(out):: iflag1(klon) ! flag for Emanuel conditions      real, intent(in):: p1(klon, klev) ! full level pressure (hPa)
40      real, intent(out):: ft1(klon, klev) ! temp tend  
41      real, intent(out):: fq1(klon, klev) ! spec hum tend      real, intent(in):: ph1(klon, klev + 1)
42      real, intent(out):: fu1(klon, klev) ! u-wind tend      ! Half level pressure (hPa). These pressures are defined at levels
43      real, intent(out):: fv1(klon, klev) ! v-wind tend      ! intermediate between those of P1, T1, Q1 and QS1. The first
44      real, intent(out):: precip1(klon) ! precipitation      ! value of PH should be greater than (i.e. at a lower level than)
45        ! the first value of the array P1.
     real, intent(out):: VPrecip1(klon, klev + 1)  
     ! vertical profile of precipitation  
   
     real, intent(inout):: cbmf1(klon) ! cloud base mass flux  
     real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft  
   
     real, intent(inout):: w01(klon, klev)  
     ! vertical velocity within adiabatic updraft  
   
     integer, intent(out):: icb1(klon)  
     integer, intent(inout):: inb1(klon)  
     real, intent(in):: delt ! time step  
     real Ma1(klon, klev)  
     ! Ma1 Real Output mass flux adiabatic updraft  
46    
47      real, intent(out):: upwd1(klon, klev)      integer, intent(out):: iflag1(klon)
48      ! total upward mass flux (adiab + mixed)      ! Flag for Emanuel conditions.
49    
50      real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)      ! 0: Moist convection occurs.
     real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux  
51    
52      real qcondc1(klon, klev) ! cld      ! 1: Moist convection occurs, but a CFL condition on the
53      ! qcondc1 Real Output in-cld mixing ratio of condensed water      ! subsidence warming is violated. This does not cause the scheme
54      real wd1(klon) ! gust      ! to terminate.
     ! wd1 Real Output downdraft velocity scale for sfc fluxes  
     real cape1(klon)  
     ! cape1 Real Output CAPE  
55    
56      real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)      ! 2: Moist convection, but no precipitation because ep(inb) < 1e-4
     real, intent(inout):: mp1(klon, klev)  
57    
58      ! ARGUMENTS      ! 3: No moist convection because new cbmf is 0 and old cbmf is 0.
59    
60      ! On input:      ! 4: No moist convection; atmosphere is not unstable
61    
62      ! t: Array of absolute temperature (K) of dimension KLEV, with first      ! 6: No moist convection because ihmin le minorig.
     ! index corresponding to lowest model level. Note that this array  
     ! will be altered by the subroutine if dry convective adjustment  
     ! occurs and if IPBL is not equal to 0.  
   
     ! q: Array of specific humidity (gm/gm) of dimension KLEV, with first  
     ! index corresponding to lowest model level. Must be defined  
     ! at same grid levels as T. Note that this array will be altered  
     ! if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     ! qs: Array of saturation specific humidity of dimension KLEV, with first  
     ! index corresponding to lowest model level. Must be defined  
     ! at same grid levels as T. Note that this array will be altered  
     ! if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     ! u: Array of zonal wind velocity (m/s) of dimension KLEV, witth first  
     ! index corresponding with the lowest model level. Defined at  
     ! same levels as T. Note that this array will be altered if  
     ! dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     ! v: Same as u but for meridional velocity.  
   
     ! p: Array of pressure (mb) of dimension KLEV, with first  
     ! index corresponding to lowest model level. Must be defined  
     ! at same grid levels as T.  
   
     ! ph: Array of pressure (mb) of dimension KLEV + 1, with first index  
     ! corresponding to lowest level. These pressures are defined at  
     ! levels intermediate between those of P, T, Q and QS. The first  
     ! value of PH should be greater than (i.e. at a lower level than)  
     ! the first value of the array P.  
63    
64      ! nl: The maximum number of levels to which convection can penetrate, plus 1      ! 7: No moist convection because unreasonable parcel level
65      ! NL MUST be less than or equal to KLEV-1.      ! temperature or specific humidity.
66    
67      ! delt: The model time step (sec) between calls to CONVECT      ! 8: No moist convection: lifted condensation level is above the
68        ! 200 mb level.
69    
70      ! On Output:      ! 9: No moist convection: cloud base is higher then the level NL-1.
71    
72      ! iflag: An output integer whose value denotes the following:      real, intent(out):: ft1(klon, klev) ! temperature tendency (K/s)
73      ! VALUE INTERPRETATION      real, intent(out):: fq1(klon, klev) ! specific humidity tendency (s-1)
     ! ----- --------------  
     ! 0 Moist convection occurs.  
     ! 1 Moist convection occurs, but a CFL condition  
     ! on the subsidence warming is violated. This  
     ! does not cause the scheme to terminate.  
     ! 2 Moist convection, but no precip because ep(inb) lt 0.0001  
     ! 3 No moist convection because new cbmf is 0 and old cbmf is 0.  
     ! 4 No moist convection; atmosphere is not  
     ! unstable  
     ! 6 No moist convection because ihmin le minorig.  
     ! 7 No moist convection because unreasonable  
     ! parcel level temperature or specific humidity.  
     ! 8 No moist convection: lifted condensation  
     ! level is above the 200 mb level.  
     ! 9 No moist convection: cloud base is higher  
     ! then the level NL-1.  
74    
75      ! ft: Array of temperature tendency (K/s) of dimension KLEV, defined at same      real, intent(out):: fu1(klon, klev), fv1(klon, klev)
76      ! grid levels as T, Q, QS and P.      ! forcing (tendency) of zonal and meridional velocity (m/s^2)
77    
78      ! fq: Array of specific humidity tendencies ((gm/gm)/s) of dimension KLEV,      real, intent(out):: precip1(klon) ! convective precipitation rate (mm/day)
     ! defined at same grid levels as T, Q, QS and P.  
79    
80      ! fu: Array of forcing of zonal velocity (m/s^2) of dimension KLEV,      real, intent(out):: VPrecip1(klon, klev + 1)
81      ! defined at same grid levels as T.      ! vertical profile of convective precipitation (kg/m2/s)
82    
83      ! fv: Same as FU, but for forcing of meridional velocity.      real, intent(inout):: sig1(klon, klev) ! section of adiabatic updraft
84    
85      ! precip: Scalar convective precipitation rate (mm/day).      real, intent(inout):: w01(klon, klev)
86        ! vertical velocity within adiabatic updraft
87    
88      ! VPrecip: Vertical profile of convective precipitation (kg/m2/s).      integer, intent(out):: icb1(klon)
89        integer, intent(inout):: inb1(klon)
90        real, intent(in):: delt ! the model time step (sec) between calls
91    
92      ! wd: A convective downdraft velocity scale. For use in surface      real, intent(out):: Ma1(klon, klev) ! mass flux of adiabatic updraft
     ! flux parameterizations. See convect.ps file for details.  
93    
94      ! tprime: A convective downdraft temperature perturbation scale (K).      real, intent(out):: upwd1(klon, klev)
95      ! For use in surface flux parameterizations. See convect.ps      ! total upward mass flux (adiabatic + mixed)
     ! file for details.  
96    
97      ! qprime: A convective downdraft specific humidity      real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
98      ! perturbation scale (gm/gm).      real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux
     ! For use in surface flux parameterizations. See convect.ps  
     ! file for details.  
99    
100      ! cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST      real, intent(out):: qcondc1(klon, klev)
101      ! BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT      ! in-cloud mixing ratio of condensed water
     ! ITS NEXT CALL. That is, the value of CBMF must be "remembered"  
     ! by the calling program between calls to CONVECT.  
102    
103      ! det: Array of detrainment mass flux of dimension KLEV.      real, intent(out):: cape1(klon)
104        real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)
105        real, intent(inout):: mp1(klon, klev)
106    
107      ! Local arrays      ! Local:
108    
109      real da(klon, klev), phi(klon, klev, klev), mp(klon, klev)      real da(klon, klev), phi(klon, klev, klev), mp(klon, klev)
   
110      integer i, k, il      integer i, k, il
111      integer icbmax      integer icbmax
112      integer nk1(klon)      integer nk1(klon)
113      integer icbs1(klon)      integer icbs1(klon)
   
114      real plcl1(klon)      real plcl1(klon)
115      real tnk1(klon)      real tnk1(klon)
116      real qnk1(klon)      real qnk1(klon)
117      real gznk1(klon)      real gznk1(klon)
118      real pbase1(klon)      real pbase1(klon)
119      real buoybase1(klon)      real buoybase1(klon)
   
120      real lv1(klon, klev)      real lv1(klon, klev)
121      real cpn1(klon, klev)      real cpn1(klon, klev)
122      real tv1(klon, klev)      real tv1(klon, klev)
# Line 192  contains Line 127  contains
127      real tvp1(klon, klev)      real tvp1(klon, klev)
128      real clw1(klon, klev)      real clw1(klon, klev)
129      real th1(klon, klev)      real th1(klon, klev)
   
130      integer ncum      integer ncum
131    
132      ! (local) compressed fields:      ! Compressed fields:
   
133      integer idcum(klon)      integer idcum(klon)
134      integer iflag(klon), nk(klon), icb(klon)      integer iflag(klon), nk(klon), icb(klon)
135      integer nent(klon, klev)      integer nent(klon, klev)
136      integer icbs(klon)      integer icbs(klon)
137      integer inb(klon), inbis(klon)      integer inb(klon)
138        real plcl(klon), tnk(klon), qnk(klon), gznk(klon)
     real cbmf(klon), plcl(klon), tnk(klon), qnk(klon), gznk(klon)  
139      real t(klon, klev), q(klon, klev), qs(klon, klev)      real t(klon, klev), q(klon, klev), qs(klon, klev)
140      real u(klon, klev), v(klon, klev)      real u(klon, klev), v(klon, klev)
141      real gz(klon, klev), h(klon, klev), lv(klon, klev), cpn(klon, klev)      real gz(klon, klev), h(klon, klev), lv(klon, klev), cpn(klon, klev)
142      real p(klon, klev), ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)      real p(klon, klev), ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
143      real clw(klon, klev)      real clw(klon, klev)
     real dph(klon, klev)  
144      real pbase(klon), buoybase(klon), th(klon, klev)      real pbase(klon), buoybase(klon), th(klon, klev)
145      real tvp(klon, klev)      real tvp(klon, klev)
146      real sig(klon, klev), w0(klon, klev)      real sig(klon, klev), w0(klon, klev)
147      real hp(klon, klev), ep(klon, klev), sigp(klon, klev)      real hp(klon, klev), ep(klon, klev), sigp(klon, klev)
148      real frac(klon), buoy(klon, klev)      real buoy(klon, klev)
149      real cape(klon)      real cape(klon)
150      real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)      real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
151      real uent(klon, klev, klev), vent(klon, klev, klev)      real uent(klon, klev, klev), vent(klon, klev, klev)
# Line 222  contains Line 153  contains
153      real sij(klon, klev, klev), elij(klon, klev, klev)      real sij(klon, klev, klev), elij(klon, klev, klev)
154      real qp(klon, klev), up(klon, klev), vp(klon, klev)      real qp(klon, klev), up(klon, klev), vp(klon, klev)
155      real wt(klon, klev), water(klon, klev), evap(klon, klev)      real wt(klon, klev), water(klon, klev), evap(klon, klev)
156      real b(klon, klev), ft(klon, klev), fq(klon, klev)      real, allocatable:: b(:, :) ! (ncum, nl - 1)
157        real ft(klon, klev), fq(klon, klev)
158      real fu(klon, klev), fv(klon, klev)      real fu(klon, klev), fv(klon, klev)
159      real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)      real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)
160      real Ma(klon, klev), mike(klon, klev), tls(klon, klev)      real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
161      real tps(klon, klev), qprime(klon), tprime(klon)      real tps(klon, klev)
162      real precip(klon)      real precip(klon)
163      real VPrecip(klon, klev + 1)      real VPrecip(klon, klev + 1)
164      real qcondc(klon, klev) ! cld      real qcondc(klon, klev) ! cld
     real wd(klon) ! gust  
165    
166      !-------------------------------------------------------------------      !-------------------------------------------------------------------
167    
168      ! SET CONSTANTS AND PARAMETERS      ! SET CONSTANTS AND PARAMETERS
169    
     ! set simulation flags:  
     ! (common cvflag)  
   
     CALL cv_flag  
   
170      ! set thermodynamical constants:      ! set thermodynamical constants:
     ! (common cvthermo)  
   
171      CALL cv_thermo      CALL cv_thermo
172    
173      ! set convect parameters      ! set convect parameters
   
174      ! includes microphysical parameters and parameters that      ! includes microphysical parameters and parameters that
175      ! control the rate of approach to quasi-equilibrium)      ! control the rate of approach to quasi-equilibrium)
176      ! (common cvparam)      ! (common cvparam)
177        CALL cv30_param(delt)
     CALL cv3_param(klev, delt)  
178    
179      ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS      ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
180    
181      do k = 1, klev      do k = 1, klev
182         do i = 1, klon         do i = 1, klon
183            ft1(i, k) = 0.0            ft1(i, k) = 0.
184            fq1(i, k) = 0.0            fq1(i, k) = 0.
185            fu1(i, k) = 0.0            fu1(i, k) = 0.
186            fv1(i, k) = 0.0            fv1(i, k) = 0.
187            tvp1(i, k) = 0.0            tvp1(i, k) = 0.
188            tp1(i, k) = 0.0            tp1(i, k) = 0.
189            clw1(i, k) = 0.0            clw1(i, k) = 0.
190            !ym            clw(i, k) = 0.
           clw(i, k) = 0.0  
191            gz1(i, k) = 0.            gz1(i, k) = 0.
192            VPrecip1(i, k) = 0.            VPrecip1(i, k) = 0.
193            Ma1(i, k) = 0.0            Ma1(i, k) = 0.
194            upwd1(i, k) = 0.0            upwd1(i, k) = 0.
195            dnwd1(i, k) = 0.0            dnwd1(i, k) = 0.
196            dnwd01(i, k) = 0.0            dnwd01(i, k) = 0.
197            qcondc1(i, k) = 0.0            qcondc1(i, k) = 0.
198         end do         end do
199      end do      end do
200    
201      do i = 1, klon      do i = 1, klon
202         precip1(i) = 0.0         precip1(i) = 0.
203         iflag1(i) = 0         iflag1(i) = 0
204         wd1(i) = 0.0         cape1(i) = 0.
205         cape1(i) = 0.0         VPrecip1(i, klev + 1) = 0.
        VPrecip1(i, klev + 1) = 0.0  
206      end do      end do
207    
208      do il = 1, klon      do il = 1, klon
# Line 291  contains Line 211  contains
211      enddo      enddo
212    
213      ! CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY      ! CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY
214        CALL cv30_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &
     CALL cv3_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &  
215           gz1, h1, hm1, th1)           gz1, h1, hm1, th1)
216    
217      ! CONVECTIVE FEED      ! CONVECTIVE FEED
218        CALL cv30_feed(klon, klev, t1, q1, qs1, p1, ph1, gz1, nk1, icb1, &
     CALL cv3_feed(klon, klev, t1, q1, qs1, p1, ph1, gz1, nk1, icb1, &  
219           icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! klev->na           icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! klev->na
220    
221      ! UNDILUTE (ADIABATIC) UPDRAFT / 1st part      CALL cv30_undilute1(klon, klev, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, &
     ! (up through ICB for convect4, up through ICB + 1 for convect3)  
     ! Calculates the lifted parcel virtual temperature at nk, the  
     ! actual temperature, and the adiabatic liquid water content.  
   
     CALL cv3_undilute1(klon, klev, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, &  
222           tp1, tvp1, clw1, icbs1) ! klev->na           tp1, tvp1, clw1, icbs1) ! klev->na
223    
224      ! TRIGGERING      ! TRIGGERING
225        CALL cv30_trigger(klon, klev, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &
     CALL cv3_trigger(klon, klev, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &  
226           buoybase1, iflag1, sig1, w01) ! klev->na           buoybase1, iflag1, sig1, w01) ! klev->na
227    
228      ! Moist convective adjustment is necessary      ! Moist convective adjustment is necessary
# Line 324  contains Line 236  contains
236      end do      end do
237    
238      IF (ncum > 0) THEN      IF (ncum > 0) THEN
239         ! COMPRESS THE FIELDS         allocate(b(ncum, nl - 1))
240         ! (-> vectorization over convective gridpoints)         CALL cv30_compress(ncum, iflag1, nk1, icb1, icbs1, plcl1, tnk1, qnk1, &
241                gznk1, pbase1, buoybase1, t1, q1, qs1, u1, v1, gz1, th1, h1, lv1, &
242         CALL cv3_compress(klon, klon, ncum, klev, iflag1, nk1, icb1, icbs1, &              cpn1, p1, ph1, tv1, tp1, tvp1, clw1, sig1, w01, iflag, nk, icb, &
243              plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, &              icbs, plcl, tnk, qnk, gznk, pbase, buoybase, t, q, qs, u, v, gz, &
244              v1, gz1, th1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, &              th, h, lv, cpn, p, ph, tv, tp, tvp, clw, sig, w0)
245              sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, &         CALL cv30_undilute2(ncum, icb, icbs, nk, tnk, qnk, gznk, t, qs, gz, p, &
246              buoybase, t, q, qs, u, v, gz, th, h, lv, cpn, p, ph, tv, tp, &              h, tv, lv, pbase, buoybase, plcl, inb(:ncum), tp, tvp, clw, hp, &
247              tvp, clw, sig, w0)              ep, sigp, buoy)
   
        ! UNDILUTE (ADIABATIC) UPDRAFT / second part :  
        ! FIND THE REST OF THE LIFTED PARCEL TEMPERATURES  
        ! &  
        ! COMPUTE THE PRECIPITATION EFFICIENCIES AND THE  
        ! FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD  
        ! &  
        ! FIND THE LEVEL OF NEUTRAL BUOYANCY  
   
        CALL cv3_undilute2(klon, ncum, klev, icb, icbs, nk, tnk, qnk, gznk, &  
             t, qs, gz, p, h, tv, lv, pbase, buoybase, plcl, inb, tp, &  
             tvp, clw, hp, ep, sigp, buoy) !na->klev  
248    
249         ! CLOSURE         ! CLOSURE
250           CALL cv30_closure(klon, ncum, klev, icb, inb, pbase, p, ph, tv, &
        CALL cv3_closure(klon, ncum, klev, icb, inb, pbase, p, ph, tv, &  
251              buoy, sig, w0, cape, m) ! na->klev              buoy, sig, w0, cape, m) ! na->klev
252    
253         ! MIXING         ! MIXING
254           CALL cv30_mixing(klon, ncum, klev, klev, icb, nk, inb, t, q, qs, u, &
        CALL cv3_mixing(klon, ncum, klev, klev, icb, nk, inb, t, q, qs, u, &  
255              v, h, lv, hp, ep, clw, m, sig, ment, qent, uent, vent, nent, &              v, h, lv, hp, ep, clw, m, sig, ment, qent, uent, vent, nent, &
256              sij, elij, ments, qents)              sij, elij, ments, qents)
257    
258         ! UNSATURATED (PRECIPITATING) DOWNDRAFTS         ! Unsaturated (precipitating) downdrafts
259           CALL cv30_unsat(icb(:ncum), inb(:ncum), t, q, qs, gz, u, v, p, ph, th, &
260         CALL cv3_unsat(klon, ncum, klev, klev, icb, inb, t, q, qs, gz, u, &              tv, lv, cpn, ep(:ncum, :), sigp(:ncum, :), clw(:ncum, :), &
261              v, p, ph, th, tv, lv, cpn, ep, sigp, clw, m, ment, elij, delt, &              m(:ncum, :), ment(:ncum, :, :), elij(:ncum, :, :), delt, plcl, &
262              plcl, mp, qp, up, vp, wt, water, evap, b)! na->klev              mp, qp(:ncum, :nl), up(:ncum, :nl), vp(:ncum, :nl), wt, water, &
263                evap, b)
264         ! YIELD  
265         ! (tendencies, precipitation, variables of interface with other         ! Yield (tendencies, precipitation, variables of interface with
266         ! processes, etc)         ! other processes, etc)
267           CALL cv30_yield(icb(:ncum), inb(:ncum), delt, t, q, u, v, gz, p, ph, &
268                h, hp, lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp, wt, &
269                water(:ncum, :nl), evap(:ncum, :nl), b, ment, qent, uent, vent, &
270                nent, elij, sig, tv, tvp, iflag, precip, VPrecip, ft, fq, fu, fv, &
271                upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc)
272    
273         CALL cv3_yield(klon, ncum, klev, klev, icb, inb, delt, t, q, u, v, &         CALL cv30_tracer(klon, ncum, klev, ment, sij, da, phi)
             gz, p, ph, h, hp, lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp, &  
             wt, water, evap, b, ment, qent, uent, vent, nent, elij, sig, &  
             tv, tvp, iflag, precip, VPrecip, ft, fq, fu, fv, upwd, dnwd, &  
             dnwd0, ma, mike, tls, tps, qcondc, wd)! na->klev  
   
        ! passive tracers  
   
        CALL cv3_tracer(klon, ncum, klev, ment, sij, da, phi)  
274    
275         ! UNCOMPRESS THE FIELDS         ! UNCOMPRESS THE FIELDS
276           iflag1 = 42 ! for non convective points
277         ! set iflag1 = 42 for non convective points         CALL cv30_uncompress(idcum(:ncum), iflag, precip, VPrecip, sig, w0, &
278         do i = 1, klon              ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, cape, &
           iflag1(i) = 42  
        end do  
   
        CALL cv3_uncompress(idcum(:ncum), iflag, precip, VPrecip, sig, w0, &  
             ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, wd, cape, &  
279              da, phi, mp, iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, &              da, phi, mp, iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, &
280              fu1, fv1, inb1, Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, &              fu1, fv1, inb1, Ma1, upwd1, dnwd1, dnwd01, qcondc1, cape1, da1, &
281              cape1, da1, phi1, mp1)              phi1, mp1)
282      ENDIF ! ncum>0      ENDIF
283    
284    end SUBROUTINE cv_driver    end SUBROUTINE cv_driver
285    

Legend:
Removed from v.181  
changed lines
  Added in v.192

  ViewVC Help
Powered by ViewVC 1.1.21