/[lmdze]/trunk/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/cv_driver.f90 revision 62 by guez, Thu Jul 26 14:37:37 2012 UTC trunk/Sources/phylmd/cv_driver.f revision 189 by guez, Tue Mar 29 15:20:23 2016 UTC
# Line 4  module cv_driver_m Line 4  module cv_driver_m
4    
5  contains  contains
6    
7    SUBROUTINE cv_driver(len, nd, ndp1, ntra, iflag_con, t1, q1, qs1, u1, v1, &    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, fq1, fu1, &
8         tra1, p1, ph1, iflag1, ft1, fq1, fu1, fv1, ftra1, precip1, VPrecip1, &         fv1, precip1, VPrecip1, sig1, w01, icb1, inb1, delt, Ma1, upwd1, dnwd1, &
9         cbmf1, sig1, w01, icb1, inb1, delt, Ma1, upwd1, dnwd1, dnwd01, &         dnwd01, qcondc1, cape1, da1, phi1, mp1)
10         qcondc1, wd1, cape1, da1, phi1, mp1)  
11        ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
12        ! Main driver for convection
13        ! Author: S. Bony, March 2002
14    
15        ! Several modules corresponding to different physical processes
16    
17        use cv30_closure_m, only: cv30_closure
18        use cv30_compress_m, only: cv30_compress
19        use cv30_feed_m, only: cv30_feed
20        use cv30_mixing_m, only: cv30_mixing
21        use cv30_param_m, only: cv30_param, nl
22        use cv30_prelim_m, only: cv30_prelim
23        use cv30_tracer_m, only: cv30_tracer
24        use cv30_trigger_m, only: cv30_trigger
25        use cv30_uncompress_m, only: cv30_uncompress
26        use cv30_undilute2_m, only: cv30_undilute2
27        use cv30_unsat_m, only: cv30_unsat
28        use cv30_yield_m, only: cv30_yield
29        USE dimphy, ONLY: klev, klon
30    
31      ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3 2005/04/15 12:36:17      real, intent(in):: t1(klon, klev) ! temperature (K)
32        real, intent(in):: q1(klon, klev) ! specific humidity
33        real, intent(in):: qs1(klon, klev) ! saturation specific humidity
34    
35      USE dimphy, ONLY: klev, klon      real, intent(in):: u1(klon, klev), v1(klon, klev)
36        ! zonal wind and meridional velocity (m/s)
37    
38      ! PARAMETERS:      real, intent(in):: p1(klon, klev) ! full level pressure (hPa)
     !      Name            Type         Usage            Description  
     !   ----------      ----------     -------  ----------------------------  
   
     !      len           Integer        Input        first (i) dimension  
     !      nd            Integer        Input        vertical (k) dimension  
     !      ndp1          Integer        Input        nd + 1  
     !      ntra          Integer        Input        number of tracors  
     !      iflag_con     Integer        Input        version of convect (3/4)  
     !      t1            Real           Input        temperature  
     !      q1            Real           Input        specific hum  
     !      qs1           Real           Input        sat specific hum  
     !      u1            Real           Input        u-wind  
     !      v1            Real           Input        v-wind  
     !      tra1          Real           Input        tracors  
     !      p1            Real           Input        full level pressure  
     !      ph1           Real           Input        half level pressure  
     !      iflag1        Integer        Output       flag for Emanuel conditions  
     !      ft1           Real           Output       temp tend  
     !      fq1           Real           Output       spec hum tend  
     !      fu1           Real           Output       u-wind tend  
     !      fv1           Real           Output       v-wind tend  
     !      ftra1         Real           Output       tracor tend  
     !      precip1       Real           Output       precipitation  
     !      VPrecip1      Real           Output       vertical profile of precipitations  
     !      cbmf1         Real           Output       cloud base mass flux  
     !      sig1          Real           In/Out       section adiabatic updraft  
     !      w01           Real           In/Out       vertical velocity within adiab updraft  
     !      delt          Real           Input        time step  
     !      Ma1           Real           Output       mass flux adiabatic updraft  
     !      qcondc1       Real           Output       in-cld mixing ratio of condensed water  
     !      wd1           Real           Output       downdraft velocity scale for sfc fluxes  
     !      cape1         Real           Output       CAPE  
   
     ! S. Bony, Mar 2002:  
     !     * Several modules corresponding to different physical processes  
     !     * Several versions of convect may be used:  
     !        - iflag_con=3: version lmd  (previously named convect3)  
     !        - iflag_con=4: version 4.3b (vect. version, previously convect1/2)  
     !   + tard:    - iflag_con=5: version lmd with ice (previously named convectg)  
     ! S. Bony, Oct 2002:  
     !     * Vectorization of convect3 (ie version lmd)  
   
     integer len  
     integer nd  
     integer ndp1  
     integer noff  
     integer, intent(in):: iflag_con  
     integer ntra  
     real, intent(in):: t1(len, nd)  
     real q1(len, nd)  
     real qs1(len, nd)  
     real u1(len, nd)  
     real v1(len, nd)  
     real p1(len, nd)  
     real ph1(len, ndp1)  
     integer iflag1(len)  
     real ft1(len, nd)  
     real fq1(len, nd)  
     real fu1(len, nd)  
     real fv1(len, nd)  
     real precip1(len)  
     real cbmf1(len)  
     real VPrecip1(len, nd+1)  
     real Ma1(len, nd)  
     real, intent(out):: upwd1(len, nd) ! total upward mass flux (adiab+mixed)  
     real, intent(out):: dnwd1(len, nd) ! saturated downward mass flux (mixed)  
     real, intent(out):: dnwd01(len, nd) ! unsaturated downward mass flux  
   
     real qcondc1(len, nd)     ! cld  
     real wd1(len)            ! gust  
     real cape1(len)  
   
     real da1(len, nd), phi1(len, nd, nd), mp1(len, nd)  
     real da(len, nd), phi(len, nd, nd), mp(len, nd)  
     real, intent(in):: tra1(len, nd, ntra)  
     real ftra1(len, nd, ntra)  
39    
40      real, intent(in):: delt      real, intent(in):: ph1(klon, klev + 1)
41        ! Half level pressure (hPa). These pressures are defined at levels
42        ! intermediate between those of P1, T1, Q1 and QS1. The first
43        ! value of PH should be greater than (i.e. at a lower level than)
44        ! the first value of the array P1.
45    
46      !-------------------------------------------------------------------      integer, intent(out):: iflag1(klon)
47      ! --- ARGUMENTS      ! Flag for Emanuel conditions.
     !-------------------------------------------------------------------  
     ! --- On input:  
48    
49      !  t:   Array of absolute temperature (K) of dimension ND, with first      ! 0: Moist convection occurs.
     !       index corresponding to lowest model level. Note that this array  
     !       will be altered by the subroutine if dry convective adjustment  
     !       occurs and if IPBL is not equal to 0.  
   
     !  q:   Array of specific humidity (gm/gm) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  qs:  Array of saturation specific humidity of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  u:   Array of zonal wind velocity (m/s) of dimension ND, witth first  
     !       index corresponding with the lowest model level. Defined at  
     !       same levels as T. Note that this array will be altered if  
     !       dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  v:   Same as u but for meridional velocity.  
   
     !  tra: Array of passive tracer mixing ratio, of dimensions (ND, NTRA),  
     !       where NTRA is the number of different tracers. If no  
     !       convective tracer transport is needed, define a dummy  
     !       input array of dimension (ND, 1). Tracers are defined at  
     !       same vertical levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  p:   Array of pressure (mb) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T.  
   
     !  ph:  Array of pressure (mb) of dimension ND+1, with first index  
     !       corresponding to lowest level. These pressures are defined at  
     !       levels intermediate between those of P, T, Q and QS. The first  
     !       value of PH should be greater than (i.e. at a lower level than)  
     !       the first value of the array P.  
   
     !  nl:  The maximum number of levels to which convection can penetrate, plus 1.  
     !       NL MUST be less than or equal to ND-1.  
   
     !  delt: The model time step (sec) between calls to CONVECT  
   
     !----------------------------------------------------------------------------  
     ! ---   On Output:  
   
     !  iflag: An output integer whose value denotes the following:  
     !       VALUE   INTERPRETATION  
     !       -----   --------------  
     !         0     Moist convection occurs.  
     !         1     Moist convection occurs, but a CFL condition  
     !               on the subsidence warming is violated. This  
     !               does not cause the scheme to terminate.  
     !         2     Moist convection, but no precip because ep(inb) lt 0.0001  
     !         3     No moist convection because new cbmf is 0 and old cbmf is 0.  
     !         4     No moist convection; atmosphere is not  
     !               unstable  
     !         6     No moist convection because ihmin le minorig.  
     !         7     No moist convection because unreasonable  
     !               parcel level temperature or specific humidity.  
     !         8     No moist convection: lifted condensation  
     !               level is above the 200 mb level.  
     !         9     No moist convection: cloud base is higher  
     !               then the level NL-1.  
   
     !  ft:   Array of temperature tendency (K/s) of dimension ND, defined at same  
     !        grid levels as T, Q, QS and P.  
   
     !  fq:   Array of specific humidity tendencies ((gm/gm)/s) of dimension ND,  
     !        defined at same grid levels as T, Q, QS and P.  
   
     !  fu:   Array of forcing of zonal velocity (m/s^2) of dimension ND,  
     !        defined at same grid levels as T.  
   
     !  fv:   Same as FU, but for forcing of meridional velocity.  
   
     !  ftra: Array of forcing of tracer content, in tracer mixing ratio per  
     !        second, defined at same levels as T. Dimensioned (ND, NTRA).  
   
     !  precip: Scalar convective precipitation rate (mm/day).  
   
     !  VPrecip: Vertical profile of convective precipitation (kg/m2/s).  
   
     !  wd:   A convective downdraft velocity scale. For use in surface  
     !        flux parameterizations. See convect.ps file for details.  
   
     !  tprime: A convective downdraft temperature perturbation scale (K).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  qprime: A convective downdraft specific humidity  
     !          perturbation scale (gm/gm).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST  
     !        BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT  
     !        ITS NEXT CALL. That is, the value of CBMF must be "remembered"  
     !        by the calling program between calls to CONVECT.  
50    
51      !  det:   Array of detrainment mass flux of dimension ND.      ! 1: Moist convection occurs, but a CFL condition on the
52        ! subsidence warming is violated. This does not cause the scheme
53        ! to terminate.
54    
55      !-------------------------------------------------------------------      ! 2: Moist convection, but no precipitation because ep(inb) < 1e-4
56    
57        ! 3: No moist convection because new cbmf is 0 and old cbmf is 0.
58    
59        ! 4: No moist convection; atmosphere is not unstable
60    
61        ! 6: No moist convection because ihmin le minorig.
62    
63        ! 7: No moist convection because unreasonable parcel level
64        ! temperature or specific humidity.
65    
66        ! 8: No moist convection: lifted condensation level is above the
67        ! 200 mb level.
68    
69        ! 9: No moist convection: cloud base is higher then the level NL-1.
70    
71        real, intent(out):: ft1(klon, klev) ! temperature tendency (K/s)
72        real, intent(out):: fq1(klon, klev) ! specific humidity tendency (s-1)
73    
74        real, intent(out):: fu1(klon, klev), fv1(klon, klev)
75        ! forcing (tendency) of zonal and meridional velocity (m/s^2)
76    
77        real, intent(out):: precip1(klon) ! convective precipitation rate (mm/day)
78    
79        real, intent(out):: VPrecip1(klon, klev + 1)
80        ! vertical profile of convective precipitation (kg/m2/s)
81    
82        real, intent(inout):: sig1(klon, klev) ! section of adiabatic updraft
83    
84        real, intent(inout):: w01(klon, klev)
85        ! vertical velocity within adiabatic updraft
86    
87        integer, intent(out):: icb1(klon)
88        integer, intent(inout):: inb1(klon)
89        real, intent(in):: delt ! the model time step (sec) between calls
90    
91      !  Local arrays      real, intent(out):: Ma1(klon, klev) ! mass flux of adiabatic updraft
92    
93      integer i, k, n, il, j      real, intent(out):: upwd1(klon, klev)
94        ! total upward mass flux (adiabatic + mixed)
95    
96        real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
97        real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux
98    
99        real, intent(out):: qcondc1(klon, klev)
100        ! in-cloud mixing ratio of condensed water
101    
102        real, intent(out):: cape1(klon)
103        real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)
104        real, intent(inout):: mp1(klon, klev)
105    
106        ! Local:
107    
108        real da(klon, klev), phi(klon, klev, klev), mp(klon, klev)
109        integer i, k, il
110      integer icbmax      integer icbmax
111      integer nk1(klon)      integer nk1(klon)
     integer icb1(klon)  
     integer inb1(klon)  
112      integer icbs1(klon)      integer icbs1(klon)
   
113      real plcl1(klon)      real plcl1(klon)
114      real tnk1(klon)      real tnk1(klon)
115      real qnk1(klon)      real qnk1(klon)
116      real gznk1(klon)      real gznk1(klon)
     real pnk1(klon)  
     real qsnk1(klon)  
117      real pbase1(klon)      real pbase1(klon)
118      real buoybase1(klon)      real buoybase1(klon)
   
119      real lv1(klon, klev)      real lv1(klon, klev)
120      real cpn1(klon, klev)      real cpn1(klon, klev)
121      real tv1(klon, klev)      real tv1(klon, klev)
# Line 230  contains Line 125  contains
125      real tp1(klon, klev)      real tp1(klon, klev)
126      real tvp1(klon, klev)      real tvp1(klon, klev)
127      real clw1(klon, klev)      real clw1(klon, klev)
     real sig1(klon, klev)  
     real w01(klon, klev)  
128      real th1(klon, klev)      real th1(klon, klev)
   
129      integer ncum      integer ncum
130    
131      ! (local) compressed fields:      ! Compressed fields:
132        integer idcum(klon)
133      integer nloc      integer iflag(klon), nk(klon), icb(klon)
134      parameter (nloc=klon) ! pour l'instant      integer nent(klon, klev)
135        integer icbs(klon)
136        integer inb(klon)
137        real plcl(klon), tnk(klon), qnk(klon), gznk(klon)
138        real t(klon, klev), q(klon, klev), qs(klon, klev)
139        real u(klon, klev), v(klon, klev)
140        real gz(klon, klev), h(klon, klev), lv(klon, klev), cpn(klon, klev)
141        real p(klon, klev), ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
142        real clw(klon, klev)
143        real pbase(klon), buoybase(klon), th(klon, klev)
144        real tvp(klon, klev)
145        real sig(klon, klev), w0(klon, klev)
146        real hp(klon, klev), ep(klon, klev), sigp(klon, klev)
147        real buoy(klon, klev)
148        real cape(klon)
149        real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
150        real uent(klon, klev, klev), vent(klon, klev, klev)
151        real ments(klon, klev, klev), qents(klon, klev, klev)
152        real sij(klon, klev, klev), elij(klon, klev, klev)
153        real qp(klon, klev), up(klon, klev), vp(klon, klev)
154        real wt(klon, klev), water(klon, klev), evap(klon, klev)
155        real, allocatable:: b(:, :) ! (ncum, nl - 1)
156        real ft(klon, klev), fq(klon, klev)
157        real fu(klon, klev), fv(klon, klev)
158        real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)
159        real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
160        real tps(klon, klev)
161        real precip(klon)
162        real VPrecip(klon, klev + 1)
163        real qcondc(klon, klev) ! cld
164    
     integer idcum(nloc)  
     integer iflag(nloc), nk(nloc), icb(nloc)  
     integer nent(nloc, klev)  
     integer icbs(nloc)  
     integer inb(nloc), inbis(nloc)  
   
     real cbmf(nloc), plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc)  
     real t(nloc, klev), q(nloc, klev), qs(nloc, klev)  
     real u(nloc, klev), v(nloc, klev)  
     real gz(nloc, klev), h(nloc, klev), lv(nloc, klev), cpn(nloc, klev)  
     real p(nloc, klev), ph(nloc, klev+1), tv(nloc, klev), tp(nloc, klev)  
     real clw(nloc, klev)  
     real dph(nloc, klev)  
     real pbase(nloc), buoybase(nloc), th(nloc, klev)  
     real tvp(nloc, klev)  
     real sig(nloc, klev), w0(nloc, klev)  
     real hp(nloc, klev), ep(nloc, klev), sigp(nloc, klev)  
     real frac(nloc), buoy(nloc, klev)  
     real cape(nloc)  
     real m(nloc, klev), ment(nloc, klev, klev), qent(nloc, klev, klev)  
     real uent(nloc, klev, klev), vent(nloc, klev, klev)  
     real ments(nloc, klev, klev), qents(nloc, klev, klev)  
     real sij(nloc, klev, klev), elij(nloc, klev, klev)  
     real qp(nloc, klev), up(nloc, klev), vp(nloc, klev)  
     real wt(nloc, klev), water(nloc, klev), evap(nloc, klev)  
     real b(nloc, klev), ft(nloc, klev), fq(nloc, klev)  
     real fu(nloc, klev), fv(nloc, klev)  
     real upwd(nloc, klev), dnwd(nloc, klev), dnwd0(nloc, klev)  
     real Ma(nloc, klev), mike(nloc, klev), tls(nloc, klev)  
     real tps(nloc, klev), qprime(nloc), tprime(nloc)  
     real precip(nloc)  
     real VPrecip(nloc, klev+1)  
     real tra(nloc, klev, ntra), trap(nloc, klev, ntra)  
     real ftra(nloc, klev, ntra), traent(nloc, klev, klev, ntra)  
     real qcondc(nloc, klev)  ! cld  
     real wd(nloc)           ! gust  
   
     !-------------------------------------------------------------------  
     ! --- SET CONSTANTS AND PARAMETERS  
165      !-------------------------------------------------------------------      !-------------------------------------------------------------------
166    
167      ! -- set simulation flags:      ! SET CONSTANTS AND PARAMETERS
     !   (common cvflag)  
   
     CALL cv_flag  
168    
169      ! -- set thermodynamical constants:      ! set thermodynamical constants:
170      !     (common cvthermo)      ! (common cvthermo)
171        CALL cv_thermo
172      CALL cv_thermo(iflag_con)  
173        ! set convect parameters
174      ! -- set convect parameters      ! includes microphysical parameters and parameters that
175        ! control the rate of approach to quasi-equilibrium)
176      !     includes microphysical parameters and parameters that      ! (common cvparam)
177      !     control the rate of approach to quasi-equilibrium)      CALL cv30_param(delt)
178      !     (common cvparam)  
179        ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
180      if (iflag_con.eq.3) then  
181         CALL cv3_param(nd, delt)      do k = 1, klev
182      endif         do i = 1, klon
183              ft1(i, k) = 0.
184      if (iflag_con.eq.4) then            fq1(i, k) = 0.
185         CALL cv_param(nd)            fu1(i, k) = 0.
186      endif            fv1(i, k) = 0.
187              tvp1(i, k) = 0.
188      !---------------------------------------------------------------------            tp1(i, k) = 0.
189      ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS            clw1(i, k) = 0.
190      !---------------------------------------------------------------------            clw(i, k) = 0.
   
     do k=1, nd  
        do  i=1, len  
           ft1(i, k)=0.0  
           fq1(i, k)=0.0  
           fu1(i, k)=0.0  
           fv1(i, k)=0.0  
           tvp1(i, k)=0.0  
           tp1(i, k)=0.0  
           clw1(i, k)=0.0  
           !ym  
           clw(i, k)=0.0  
191            gz1(i, k) = 0.            gz1(i, k) = 0.
192            VPrecip1(i, k) = 0.            VPrecip1(i, k) = 0.
193            Ma1(i, k)=0.0            Ma1(i, k) = 0.
194            upwd1(i, k)=0.0            upwd1(i, k) = 0.
195            dnwd1(i, k)=0.0            dnwd1(i, k) = 0.
196            dnwd01(i, k)=0.0            dnwd01(i, k) = 0.
197            qcondc1(i, k)=0.0            qcondc1(i, k) = 0.
198         end do         end do
199      end do      end do
200    
201      do  j=1, ntra      do i = 1, klon
202         do  k=1, nd         precip1(i) = 0.
203            do  i=1, len         iflag1(i) = 0
204               ftra1(i, k, j)=0.0         cape1(i) = 0.
205            end do         VPrecip1(i, klev + 1) = 0.
        end do  
206      end do      end do
207    
208      do  i=1, len      do il = 1, klon
209         precip1(i)=0.0         sig1(il, klev) = sig1(il, klev) + 1.
210         iflag1(i)=0         sig1(il, klev) = min(sig1(il, klev), 12.1)
211         wd1(i)=0.0      enddo
212         cape1(i)=0.0  
213         VPrecip1(i, nd+1)=0.0      ! CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY
214      end do      CALL cv30_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &
215             gz1, h1, hm1, th1)
216      if (iflag_con.eq.3) then  
217         do il=1, len      ! CONVECTIVE FEED
218            sig1(il, nd)=sig1(il, nd)+1.      CALL cv30_feed(klon, klev, t1, q1, qs1, p1, ph1, gz1, nk1, icb1, &
219            sig1(il, nd)=amin1(sig1(il, nd), 12.1)           icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! klev->na
220         enddo  
221      endif      CALL cv30_undilute1(klon, klev, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, &
222             tp1, tvp1, clw1, icbs1) ! klev->na
223      !--------------------------------------------------------------------  
224      ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY      ! TRIGGERING
225      !--------------------------------------------------------------------      CALL cv30_trigger(klon, klev, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &
226             buoybase1, iflag1, sig1, w01) ! klev->na
227      if (iflag_con.eq.3) then  
228         CALL cv3_prelim(len, nd, ndp1, t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, &      ! Moist convective adjustment is necessary
229              h1, hm1, th1)! nd->na  
230      endif      ncum = 0
231        do i = 1, klon
232      if (iflag_con.eq.4) then         if (iflag1(i) == 0) then
233         CALL cv_prelim(len, nd, ndp1, t1, q1, p1, ph1 &            ncum = ncum + 1
234              , lv1, cpn1, tv1, gz1, h1, hm1)            idcum(ncum) = i
     endif  
   
     !--------------------------------------------------------------------  
     ! --- CONVECTIVE FEED  
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_feed(len, nd, t1, q1, qs1, p1, ph1, hm1, gz1            &  
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_feed(len, nd, t1, q1, qs1, p1, hm1, gz1 &  
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1)  
     endif  
   
     !--------------------------------------------------------------------  
     ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part  
     ! (up through ICB for convect4, up through ICB+1 for convect3)  
     !     Calculates the lifted parcel virtual temperature at nk, the  
     !     actual temperature, and the adiabatic liquid water content.  
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_undilute1(len, nd, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1   &  
             , tp1, tvp1, clw1, icbs1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_undilute1(len, nd, t1, q1, qs1, gz1, p1, nk1, icb1, icbmax &  
             , tp1, tvp1, clw1)  
     endif  
   
     !-------------------------------------------------------------------  
     ! --- TRIGGERING  
     !-------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_trigger(len, nd, icb1, plcl1, p1, th1, tv1, tvp1       &  
             , pbase1, buoybase1, iflag1, sig1, w01) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_trigger(len, nd, icb1, cbmf1, tv1, tvp1, iflag1)  
     endif  
   
     !=====================================================================  
     ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY  
     !=====================================================================  
   
     ncum=0  
     do  i=1, len  
        if(iflag1(i).eq.0)then  
           ncum=ncum+1  
           idcum(ncum)=i  
235         endif         endif
236      end do      end do
237    
238      !       print*, 'klon, ncum = ', len, ncum      IF (ncum > 0) THEN
239           allocate(b(ncum, nl - 1))
240      IF (ncum.gt.0) THEN         CALL cv30_compress(ncum, iflag1, nk1, icb1, icbs1, plcl1, tnk1, qnk1, &
241                gznk1, pbase1, buoybase1, t1, q1, qs1, u1, v1, gz1, th1, h1, lv1, &
242         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^              cpn1, p1, ph1, tv1, tp1, tvp1, clw1, sig1, w01, iflag, nk, icb, &
243         ! --- COMPRESS THE FIELDS              icbs, plcl, tnk, qnk, gznk, pbase, buoybase, t, q, qs, u, v, gz, &
244         !        (-> vectorization over convective gridpoints)              th, h, lv, cpn, p, ph, tv, tp, tvp, clw, sig, w0)
245         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^         CALL cv30_undilute2(ncum, icb, icbs, nk, tnk, qnk, gznk, t, qs, gz, p, &
246                h, tv, lv, pbase, buoybase, plcl, inb(:ncum), tp, tvp, clw, hp, &
247         if (iflag_con.eq.3) then              ep, sigp, buoy)
248            CALL cv3_compress( len, nloc, ncum, nd, ntra &  
249                 , iflag1, nk1, icb1, icbs1 &         ! CLOSURE
250                 , plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1 &         CALL cv30_closure(klon, ncum, klev, icb, inb, pbase, p, ph, tv, &
251                 , t1, q1, qs1, u1, v1, gz1, th1 &              buoy, sig, w0, cape, m) ! na->klev
252                 , tra1 &  
253                 , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1  &         ! MIXING
254                 , sig1, w01 &         CALL cv30_mixing(klon, ncum, klev, klev, icb, nk, inb, t, q, qs, u, &
255                 , iflag, nk, icb, icbs &              v, h, lv, hp, ep, clw, m, sig, ment, qent, uent, vent, nent, &
256                 , plcl, tnk, qnk, gznk, pbase, buoybase &              sij, elij, ments, qents)
257                 , t, q, qs, u, v, gz, th &  
258                 , tra &         ! Unsaturated (precipitating) downdrafts
259                 , h, lv, cpn, p, ph, tv, tp, tvp, clw  &         CALL cv30_unsat(icb(:ncum), inb(:ncum), t, q, qs, gz, u, v, p, ph, th, &
260                 , sig, w0  )              tv, lv, cpn, ep, sigp, clw, m, ment, elij, delt, plcl, mp, &
261         endif              qp(:ncum, :nl), up(:ncum, :nl), vp(:ncum, :nl), wt, water, evap, b)
262    
263         if (iflag_con.eq.4) then         ! Yield (tendencies, precipitation, variables of interface with
264            CALL cv_compress( len, nloc, ncum, nd &         ! other processes, etc)
265                 , iflag1, nk1, icb1 &         CALL cv30_yield(icb(:ncum), inb(:ncum), delt, t, q, u, v, gz, p, ph, &
266                 , cbmf1, plcl1, tnk1, qnk1, gznk1 &              h, hp, lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp, wt, &
267                 , t1, q1, qs1, u1, v1, gz1 &              water(:ncum, :nl), evap(:ncum, :nl), b, ment, qent, uent, vent, &
268                 , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1 &              nent, elij, sig, tv, tvp, iflag, precip, VPrecip, ft, fq, fu, fv, &
269                 , iflag, nk, icb &              upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc)
270                 , cbmf, plcl, tnk, qnk, gznk &  
271                 , t, q, qs, u, v, gz, h, lv, cpn, p, ph, tv, tp, tvp, clw  &         CALL cv30_tracer(klon, ncum, klev, ment, sij, da, phi)
272                 , dph )  
273         endif         ! UNCOMPRESS THE FIELDS
274           iflag1 = 42 ! for non convective points
275         !-------------------------------------------------------------------         CALL cv30_uncompress(idcum(:ncum), iflag, precip, VPrecip, sig, w0, &
276         ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :              ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, cape, &
277         ! ---   FIND THE REST OF THE LIFTED PARCEL TEMPERATURES              da, phi, mp, iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, &
278         ! ---   &              fu1, fv1, inb1, Ma1, upwd1, dnwd1, dnwd01, qcondc1, cape1, da1, &
279         ! ---   COMPUTE THE PRECIPITATION EFFICIENCIES AND THE              phi1, mp1)
280         ! ---   FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD      ENDIF
        ! ---   &  
        ! ---   FIND THE LEVEL OF NEUTRAL BUOYANCY  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_undilute2(nloc, ncum, nd, icb, icbs, nk         &  
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, h, tv, lv, pbase, buoybase, plcl &  
                , inb, tp, tvp, clw, hp, ep, sigp, buoy) !na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_undilute2(nloc, ncum, nd, icb, nk &  
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, dph, h, tv, lv &  
                , inb, inbis, tp, tvp, clw, hp, ep, sigp, frac)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- CLOSURE  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_closure(nloc, ncum, nd, icb, inb               &  
                , pbase, p, ph, tv, buoy &  
                , sig, w0, cape, m) ! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_closure(nloc, ncum, nd, nk, icb &  
                , tv, tvp, p, ph, dph, plcl, cpn &  
                , iflag, cbmf)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- MIXING  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_mixing(nloc, ncum, nd, nd, ntra, icb, nk, inb     &  
                , ph, t, q, qs, u, v, tra, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, m, sig &  
                , ment, qent, uent, vent, nent, sij, elij, ments, qents, traent)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_mixing(nloc, ncum, nd, icb, nk, inb, inbis &  
                , ph, t, q, qs, u, v, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, cbmf &  
                , m, ment, qent, uent, vent, nent, sij, elij)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_unsat(nloc, ncum, nd, nd, ntra, icb, inb     &  
                , t, q, qs, gz, u, v, tra, p, ph &  
                , th, tv, lv, cpn, ep, sigp, clw &  
                , m, ment, elij, delt, plcl &  
                , mp, qp, up, vp, trap, wt, water, evap, b)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_unsat(nloc, ncum, nd, inb, t, q, qs, gz, u, v, p, ph &  
                , h, lv, ep, sigp, clw, m, ment, elij &  
                , iflag, mp, qp, up, vp, wt, water, evap)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- YIELD  
        !     (tendencies, precipitation, variables of interface with other  
        !      processes, etc)  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_yield(nloc, ncum, nd, nd, ntra             &  
                , icb, inb, delt &  
                , t, q, u, v, tra, gz, p, ph, h, hp, lv, cpn, th &  
                , ep, clw, m, tp, mp, qp, up, vp, trap &  
                , wt, water, evap, b &  
                , ment, qent, uent, vent, nent, elij, traent, sig &  
                , tv, tvp &  
                , iflag, precip, VPrecip, ft, fq, fu, fv, ftra &  
                , upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc, wd)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_yield(nloc, ncum, nd, nk, icb, inb, delt &  
                , t, q, u, v, gz, p, ph, h, hp, lv, cpn &  
                , ep, clw, frac, m, mp, qp, up, vp &  
                , wt, water, evap &  
                , ment, qent, uent, vent, nent, elij &  
                , tv, tvp &  
                , iflag, wd, qprime, tprime &  
                , precip, cbmf, ft, fq, fu, fv, Ma, qcondc)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- passive tracers  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
        if (iflag_con.eq.3) then  
           CALL cv3_tracer(nloc, len, ncum, nd, nd, &  
                ment, sij, da, phi)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- UNCOMPRESS THE FIELDS  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! set iflag1 =42 for non convective points  
        do  i=1, len  
           iflag1(i)=42  
        end do  
   
        if (iflag_con.eq.3) then  
           CALL cv3_uncompress(nloc, len, ncum, nd, ntra, idcum &  
                , iflag &  
                , precip, VPrecip, sig, w0 &  
                , ft, fq, fu, fv, ftra &  
                , inb  &  
                , Ma, upwd, dnwd, dnwd0, qcondc, wd, cape &  
                , da, phi, mp &  
                , iflag1 &  
                , precip1, VPrecip1, sig1, w01 &  
                , ft1, fq1, fu1, fv1, ftra1 &  
                , inb1 &  
                , Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1  &  
                , da1, phi1, mp1)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_uncompress(nloc, len, ncum, nd, idcum &  
                , iflag &  
                , precip, cbmf &  
                , ft, fq, fu, fv &  
                , Ma, qcondc             &  
                , iflag1 &  
                , precip1, cbmf1 &  
                , ft1, fq1, fu1, fv1 &  
                , Ma1, qcondc1 )  
        endif  
     ENDIF ! ncum>0  
281    
282    end SUBROUTINE cv_driver    end SUBROUTINE cv_driver
283    

Legend:
Removed from v.62  
changed lines
  Added in v.189

  ViewVC Help
Powered by ViewVC 1.1.21