/[lmdze]/trunk/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/cv_driver.f90 revision 52 by guez, Fri Sep 23 12:28:01 2011 UTC trunk/Sources/phylmd/cv_driver.f revision 201 by guez, Mon Jun 6 17:42:15 2016 UTC
# Line 4  module cv_driver_m Line 4  module cv_driver_m
4    
5  contains  contains
6    
7    SUBROUTINE cv_driver(len, nd, ndp1, ntra, iflag_con, t1, q1, qs1, u1, v1, &    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, fq1, fu1, &
8         tra1, p1, ph1, iflag1, ft1, fq1, fu1, fv1, ftra1, precip1, VPrecip1, &         fv1, precip1, VPrecip1, sig1, w01, icb1, inb1, Ma1, upwd1, dnwd1, &
9         cbmf1, sig1, w01, icb1, inb1, delt, Ma1, upwd1, dnwd1, dnwd01, &         dnwd01, qcondc1, cape1, da1, phi1, mp1)
        qcondc1, wd1, cape1, da1, phi1, mp1)  
   
     ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3 2005/04/15 12:36:17  
   
     use dimens_m  
     use dimphy  
     !  
     ! PARAMETERS:  
     !      Name            Type         Usage            Description  
     !   ----------      ----------     -------  ----------------------------  
     !  
     !      len           Integer        Input        first (i) dimension  
     !      nd            Integer        Input        vertical (k) dimension  
     !      ndp1          Integer        Input        nd + 1  
     !      ntra          Integer        Input        number of tracors  
     !      iflag_con     Integer        Input        version of convect (3/4)  
     !      t1            Real           Input        temperature  
     !      q1            Real           Input        specific hum  
     !      qs1           Real           Input        sat specific hum  
     !      u1            Real           Input        u-wind  
     !      v1            Real           Input        v-wind  
     !      tra1          Real           Input        tracors  
     !      p1            Real           Input        full level pressure  
     !      ph1           Real           Input        half level pressure  
     !      iflag1        Integer        Output       flag for Emanuel conditions  
     !      ft1           Real           Output       temp tend  
     !      fq1           Real           Output       spec hum tend  
     !      fu1           Real           Output       u-wind tend  
     !      fv1           Real           Output       v-wind tend  
     !      ftra1         Real           Output       tracor tend  
     !      precip1       Real           Output       precipitation  
     !      VPrecip1      Real           Output       vertical profile of precipitations  
     !      cbmf1         Real           Output       cloud base mass flux  
     !      sig1          Real           In/Out       section adiabatic updraft  
     !      w01           Real           In/Out       vertical velocity within adiab updraft  
     !      delt          Real           Input        time step  
     !      Ma1           Real           Output       mass flux adiabatic updraft  
     !      upwd1         Real           Output       total upward mass flux (adiab+mixed)  
     !      dnwd1         Real           Output       saturated downward mass flux (mixed)  
     !      dnwd01        Real           Output       unsaturated downward mass flux  
     !      qcondc1       Real           Output       in-cld mixing ratio of condensed water  
     !      wd1           Real           Output       downdraft velocity scale for sfc fluxes  
     !      cape1         Real           Output       CAPE  
     !  
     ! S. Bony, Mar 2002:  
     !     * Several modules corresponding to different physical processes  
     !     * Several versions of convect may be used:  
     !        - iflag_con=3: version lmd  (previously named convect3)  
     !        - iflag_con=4: version 4.3b (vect. version, previously convect1/2)  
     !   + tard:    - iflag_con=5: version lmd with ice (previously named convectg)  
     ! S. Bony, Oct 2002:  
     !     * Vectorization of convect3 (ie version lmd)  
     !  
     !..............................END PROLOGUE.............................  
     !  
     !  
   
     integer len  
     integer nd  
     integer ndp1  
     integer noff  
     integer, intent(in):: iflag_con  
     integer ntra  
     real, intent(in):: t1(len, nd)  
     real q1(len, nd)  
     real qs1(len, nd)  
     real u1(len, nd)  
     real v1(len, nd)  
     real p1(len, nd)  
     real ph1(len, ndp1)  
     integer iflag1(len)  
     real ft1(len, nd)  
     real fq1(len, nd)  
     real fu1(len, nd)  
     real fv1(len, nd)  
     real precip1(len)  
     real cbmf1(len)  
     real VPrecip1(len, nd+1)  
     real Ma1(len, nd)  
     real upwd1(len, nd)  
     real dnwd1(len, nd)  
     real dnwd01(len, nd)  
   
     real qcondc1(len, nd)     ! cld  
     real wd1(len)            ! gust  
     real cape1(len)  
   
     real da1(len, nd), phi1(len, nd, nd), mp1(len, nd)  
     real da(len, nd), phi(len, nd, nd), mp(len, nd)  
     real, intent(in):: tra1(len, nd, ntra)  
     real ftra1(len, nd, ntra)  
10    
11      real, intent(in):: delt      ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
12        ! Main driver for convection
13        ! Author: S. Bony, March 2002
14    
15      !-------------------------------------------------------------------      ! Several modules corresponding to different physical processes
16      ! --- ARGUMENTS  
17      !-------------------------------------------------------------------      use comconst, only: dtphys
18      ! --- On input:      use cv30_closure_m, only: cv30_closure
19      !      use cv30_compress_m, only: cv30_compress
20      !  t:   Array of absolute temperature (K) of dimension ND, with first      use cv30_feed_m, only: cv30_feed
21      !       index corresponding to lowest model level. Note that this array      use cv30_mixing_m, only: cv30_mixing
22      !       will be altered by the subroutine if dry convective adjustment      use cv30_param_m, only: cv30_param, nl
23      !       occurs and if IPBL is not equal to 0.      use cv30_prelim_m, only: cv30_prelim
24      !      use cv30_tracer_m, only: cv30_tracer
25      !  q:   Array of specific humidity (gm/gm) of dimension ND, with first      use cv30_trigger_m, only: cv30_trigger
26      !       index corresponding to lowest model level. Must be defined      use cv30_uncompress_m, only: cv30_uncompress
27      !       at same grid levels as T. Note that this array will be altered      use cv30_undilute1_m, only: cv30_undilute1
28      !       if dry convective adjustment occurs and if IPBL is not equal to 0.      use cv30_undilute2_m, only: cv30_undilute2
29      !      use cv30_unsat_m, only: cv30_unsat
30      !  qs:  Array of saturation specific humidity of dimension ND, with first      use cv30_yield_m, only: cv30_yield
31      !       index corresponding to lowest model level. Must be defined      USE dimphy, ONLY: klev, klon
32      !       at same grid levels as T. Note that this array will be altered  
33      !       if dry convective adjustment occurs and if IPBL is not equal to 0.      real, intent(in):: t1(klon, klev) ! temperature, in K
34      !      real, intent(in):: q1(klon, klev) ! specific humidity
35      !  u:   Array of zonal wind velocity (m/s) of dimension ND, witth first      real, intent(in):: qs1(klon, klev) ! saturation specific humidity
36      !       index corresponding with the lowest model level. Defined at  
37      !       same levels as T. Note that this array will be altered if      real, intent(in):: u1(klon, klev), v1(klon, klev)
38      !       dry convective adjustment occurs and if IPBL is not equal to 0.      ! zonal wind and meridional velocity (m/s)
39      !  
40      !  v:   Same as u but for meridional velocity.      real, intent(in):: p1(klon, klev) ! full level pressure, in hPa
41      !  
42      !  tra: Array of passive tracer mixing ratio, of dimensions (ND, NTRA),      real, intent(in):: ph1(klon, klev + 1)
43      !       where NTRA is the number of different tracers. If no      ! Half level pressure, in hPa. These pressures are defined at levels
44      !       convective tracer transport is needed, define a dummy      ! intermediate between those of P1, T1, Q1 and QS1. The first
45      !       input array of dimension (ND, 1). Tracers are defined at      ! value of PH should be greater than (i.e. at a lower level than)
46      !       same vertical levels as T. Note that this array will be altered      ! the first value of the array P1.
47      !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
48      !      integer, intent(out):: iflag1(:) ! (klon)
49      !  p:   Array of pressure (mb) of dimension ND, with first      ! Flag for Emanuel conditions.
50      !       index corresponding to lowest model level. Must be defined  
51      !       at same grid levels as T.      ! 0: Moist convection occurs.
52      !  
53      !  ph:  Array of pressure (mb) of dimension ND+1, with first index      ! 1: Moist convection occurs, but a CFL condition on the
54      !       corresponding to lowest level. These pressures are defined at      ! subsidence warming is violated. This does not cause the scheme
55      !       levels intermediate between those of P, T, Q and QS. The first      ! to terminate.
56      !       value of PH should be greater than (i.e. at a lower level than)  
57      !       the first value of the array P.      ! 2: Moist convection, but no precipitation because ep(inb) < 1e-4
58      !  
59      !  nl:  The maximum number of levels to which convection can penetrate, plus 1.      ! 3: No moist convection because new cbmf is 0 and old cbmf is 0.
60      !       NL MUST be less than or equal to ND-1.  
61      !      ! 4: No moist convection; atmosphere is not unstable.
62      !  delt: The model time step (sec) between calls to CONVECT  
63      !      ! 6: No moist convection because ihmin <= minorig.
64      !----------------------------------------------------------------------------  
65      ! ---   On Output:      ! 7: No moist convection because unreasonable parcel level
66      !      ! temperature or specific humidity.
67      !  iflag: An output integer whose value denotes the following:  
68      !       VALUE   INTERPRETATION      ! 8: No moist convection: lifted condensation level is above the
69      !       -----   --------------      ! 200 mbar level.
70      !         0     Moist convection occurs.  
71      !         1     Moist convection occurs, but a CFL condition      ! 9: No moist convection: cloud base is higher than the level NL-1.
72      !               on the subsidence warming is violated. This  
73      !               does not cause the scheme to terminate.      real, intent(out):: ft1(klon, klev) ! temperature tendency (K/s)
74      !         2     Moist convection, but no precip because ep(inb) lt 0.0001      real, intent(out):: fq1(klon, klev) ! specific humidity tendency (s-1)
75      !         3     No moist convection because new cbmf is 0 and old cbmf is 0.  
76      !         4     No moist convection; atmosphere is not      real, intent(out):: fu1(klon, klev), fv1(klon, klev)
77      !               unstable      ! forcing (tendency) of zonal and meridional velocity (m/s^2)
78      !         6     No moist convection because ihmin le minorig.  
79      !         7     No moist convection because unreasonable      real, intent(out):: precip1(klon) ! convective precipitation rate (mm/day)
80      !               parcel level temperature or specific humidity.  
81      !         8     No moist convection: lifted condensation      real, intent(out):: VPrecip1(klon, klev + 1)
82      !               level is above the 200 mb level.      ! vertical profile of convective precipitation (kg/m2/s)
83      !         9     No moist convection: cloud base is higher  
84      !               then the level NL-1.      real, intent(inout):: sig1(klon, klev) ! section of adiabatic updraft
85      !  
86      !  ft:   Array of temperature tendency (K/s) of dimension ND, defined at same      real, intent(inout):: w01(klon, klev)
87      !        grid levels as T, Q, QS and P.      ! vertical velocity within adiabatic updraft
88      !  
89      !  fq:   Array of specific humidity tendencies ((gm/gm)/s) of dimension ND,      integer, intent(out):: icb1(klon)
90      !        defined at same grid levels as T, Q, QS and P.      integer, intent(inout):: inb1(klon)
91      !      real, intent(out):: Ma1(klon, klev) ! mass flux of adiabatic updraft
     !  fu:   Array of forcing of zonal velocity (m/s^2) of dimension ND,  
     !        defined at same grid levels as T.  
     !  
     !  fv:   Same as FU, but for forcing of meridional velocity.  
     !  
     !  ftra: Array of forcing of tracer content, in tracer mixing ratio per  
     !        second, defined at same levels as T. Dimensioned (ND, NTRA).  
     !  
     !  precip: Scalar convective precipitation rate (mm/day).  
     !  
     !  VPrecip: Vertical profile of convective precipitation (kg/m2/s).  
     !  
     !  wd:   A convective downdraft velocity scale. For use in surface  
     !        flux parameterizations. See convect.ps file for details.  
     !  
     !  tprime: A convective downdraft temperature perturbation scale (K).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
     !  
     !  qprime: A convective downdraft specific humidity  
     !          perturbation scale (gm/gm).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
     !  
     !  cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST  
     !        BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT  
     !        ITS NEXT CALL. That is, the value of CBMF must be "remembered"  
     !        by the calling program between calls to CONVECT.  
     !  
     !  det:   Array of detrainment mass flux of dimension ND.  
     !  
     !-------------------------------------------------------------------  
     !  
     !  Local arrays  
     !  
   
     integer i, k, n, il, j  
     integer icbmax  
     integer nk1(klon)  
     integer icb1(klon)  
     integer inb1(klon)  
     integer icbs1(klon)  
92    
93        real, intent(out):: upwd1(klon, klev)
94        ! total upward mass flux (adiabatic + mixed)
95    
96        real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
97        real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux
98    
99        real, intent(out):: qcondc1(klon, klev)
100        ! in-cloud mixing ratio of condensed water
101    
102        real, intent(out):: cape1(klon)
103        real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)
104        real, intent(inout):: mp1(klon, klev)
105    
106        ! Local:
107    
108        real da(klon, klev), phi(klon, klev, klev)
109        real, allocatable:: mp(:, :) ! (ncum, nl)
110        integer i, k, il
111        integer icbs1(klon)
112      real plcl1(klon)      real plcl1(klon)
113      real tnk1(klon)      real tnk1(klon)
114      real qnk1(klon)      real qnk1(klon)
115      real gznk1(klon)      real gznk1(klon)
     real pnk1(klon)  
     real qsnk1(klon)  
116      real pbase1(klon)      real pbase1(klon)
117      real buoybase1(klon)      real buoybase1(klon)
118    
119      real lv1(klon, klev)      real lv1(klon, nl)
120      real cpn1(klon, klev)      ! specific latent heat of vaporization of water, in J kg-1
121    
122        real cpn1(klon, nl)
123        ! specific heat capacity at constant pressure of humid air, in J K-1 kg-1
124    
125      real tv1(klon, klev)      real tv1(klon, klev)
126      real gz1(klon, klev)      real gz1(klon, klev)
127      real hm1(klon, klev)      real hm1(klon, klev)
# Line 239  contains Line 129  contains
129      real tp1(klon, klev)      real tp1(klon, klev)
130      real tvp1(klon, klev)      real tvp1(klon, klev)
131      real clw1(klon, klev)      real clw1(klon, klev)
132      real sig1(klon, klev)      real th1(klon, nl) ! potential temperature, in K
     real w01(klon, klev)  
     real th1(klon, klev)  
     !  
133      integer ncum      integer ncum
     !  
     ! (local) compressed fields:  
     !  
     integer nloc  
     parameter (nloc=klon) ! pour l'instant  
   
     integer idcum(nloc)  
     integer iflag(nloc), nk(nloc), icb(nloc)  
     integer nent(nloc, klev)  
     integer icbs(nloc)  
     integer inb(nloc), inbis(nloc)  
   
     real cbmf(nloc), plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc)  
     real t(nloc, klev), q(nloc, klev), qs(nloc, klev)  
     real u(nloc, klev), v(nloc, klev)  
     real gz(nloc, klev), h(nloc, klev), lv(nloc, klev), cpn(nloc, klev)  
     real p(nloc, klev), ph(nloc, klev+1), tv(nloc, klev), tp(nloc, klev)  
     real clw(nloc, klev)  
     real dph(nloc, klev)  
     real pbase(nloc), buoybase(nloc), th(nloc, klev)  
     real tvp(nloc, klev)  
     real sig(nloc, klev), w0(nloc, klev)  
     real hp(nloc, klev), ep(nloc, klev), sigp(nloc, klev)  
     real frac(nloc), buoy(nloc, klev)  
     real cape(nloc)  
     real m(nloc, klev), ment(nloc, klev, klev), qent(nloc, klev, klev)  
     real uent(nloc, klev, klev), vent(nloc, klev, klev)  
     real ments(nloc, klev, klev), qents(nloc, klev, klev)  
     real sij(nloc, klev, klev), elij(nloc, klev, klev)  
     real qp(nloc, klev), up(nloc, klev), vp(nloc, klev)  
     real wt(nloc, klev), water(nloc, klev), evap(nloc, klev)  
     real b(nloc, klev), ft(nloc, klev), fq(nloc, klev)  
     real fu(nloc, klev), fv(nloc, klev)  
     real upwd(nloc, klev), dnwd(nloc, klev), dnwd0(nloc, klev)  
     real Ma(nloc, klev), mike(nloc, klev), tls(nloc, klev)  
     real tps(nloc, klev), qprime(nloc), tprime(nloc)  
     real precip(nloc)  
     real VPrecip(nloc, klev+1)  
     real tra(nloc, klev, ntra), trap(nloc, klev, ntra)  
     real ftra(nloc, klev, ntra), traent(nloc, klev, klev, ntra)  
     real qcondc(nloc, klev)  ! cld  
     real wd(nloc)           ! gust  
134    
135      !-------------------------------------------------------------------      ! Compressed fields:
136      ! --- SET CONSTANTS AND PARAMETERS      integer, allocatable:: idcum(:), iflag(:) ! (ncum)
137      !-------------------------------------------------------------------      integer, allocatable:: icb(:) ! (ncum)
138        integer nent(klon, klev)
139        integer icbs(klon)
140    
141        integer, allocatable:: inb(:) ! (ncum)
142        ! first model level above the level of neutral buoyancy of the
143        ! parcel (1 <= inb <= nl - 1)
144    
145        real, allocatable:: plcl(:) ! (ncum)
146        real tnk(klon), qnk(klon), gznk(klon)
147        real t(klon, klev), q(klon, klev), qs(klon, klev)
148        real u(klon, klev), v(klon, klev)
149        real gz(klon, klev), h(klon, klev)
150    
151        real, allocatable:: lv(:, :) ! (ncum, nl)
152        ! specific latent heat of vaporization of water, in J kg-1
153    
154        real, allocatable:: cpn(:, :) ! (ncum, nl)
155        ! specific heat capacity at constant pressure of humid air, in J K-1 kg-1
156    
157        real p(klon, klev) ! pressure at full level, in hPa
158        real ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
159        real clw(klon, klev)
160        real pbase(klon), buoybase(klon)
161        real, allocatable:: th(:, :) ! (ncum, nl)
162        real tvp(klon, klev)
163        real sig(klon, klev), w0(klon, klev)
164        real hp(klon, klev), ep(klon, klev)
165        real buoy(klon, klev)
166        real cape(klon)
167        real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
168        real uent(klon, klev, klev), vent(klon, klev, klev)
169        real ments(klon, klev, klev), qents(klon, klev, klev)
170        real sij(klon, klev, klev), elij(klon, klev, klev)
171        real qp(klon, klev), up(klon, klev), vp(klon, klev)
172        real wt(klon, klev), water(klon, klev)
173        real, allocatable:: evap(:, :) ! (ncum, nl)
174        real, allocatable:: b(:, :) ! (ncum, nl - 1)
175        real ft(klon, klev), fq(klon, klev)
176        real fu(klon, klev), fv(klon, klev)
177        real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)
178        real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
179        real tps(klon, klev)
180        real precip(klon)
181        real VPrecip(klon, klev + 1)
182        real qcondc(klon, klev) ! cld
183    
184      ! -- set simulation flags:      !-------------------------------------------------------------------
     !   (common cvflag)  
185    
186      CALL cv_flag      ! SET CONSTANTS AND PARAMETERS
187        CALL cv30_param
188    
189      ! -- set thermodynamical constants:      ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
     !     (common cvthermo)  
190    
191      CALL cv_thermo(iflag_con)      do k = 1, klev
192           do i = 1, klon
193      ! -- set convect parameters            ft1(i, k) = 0.
194      !            fq1(i, k) = 0.
195      !     includes microphysical parameters and parameters that            fu1(i, k) = 0.
196      !     control the rate of approach to quasi-equilibrium)            fv1(i, k) = 0.
197      !     (common cvparam)            tvp1(i, k) = 0.
198              tp1(i, k) = 0.
199      if (iflag_con.eq.3) then            clw1(i, k) = 0.
200         CALL cv3_param(nd, delt)            clw(i, k) = 0.
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_param(nd)  
     endif  
   
     !---------------------------------------------------------------------  
     ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS  
     !---------------------------------------------------------------------  
   
     do k=1, nd  
        do  i=1, len  
           ft1(i, k)=0.0  
           fq1(i, k)=0.0  
           fu1(i, k)=0.0  
           fv1(i, k)=0.0  
           tvp1(i, k)=0.0  
           tp1(i, k)=0.0  
           clw1(i, k)=0.0  
           !ym  
           clw(i, k)=0.0  
201            gz1(i, k) = 0.            gz1(i, k) = 0.
202            VPrecip1(i, k) = 0.            VPrecip1(i, k) = 0.
203            Ma1(i, k)=0.0            Ma1(i, k) = 0.
204            upwd1(i, k)=0.0            upwd1(i, k) = 0.
205            dnwd1(i, k)=0.0            dnwd1(i, k) = 0.
206            dnwd01(i, k)=0.0            dnwd01(i, k) = 0.
207            qcondc1(i, k)=0.0            qcondc1(i, k) = 0.
208         end do         end do
209      end do      end do
210    
211      do  j=1, ntra      precip1 = 0.
212         do  k=1, nd      cape1 = 0.
213            do  i=1, len      VPrecip1(:, klev + 1) = 0.
214               ftra1(i, k, j)=0.0  
215            end do      do il = 1, klon
216         end do         sig1(il, klev) = sig1(il, klev) + 1.
217      end do         sig1(il, klev) = min(sig1(il, klev), 12.1)
218        enddo
219      do  i=1, len  
220         precip1(i)=0.0      CALL cv30_prelim(t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, h1, hm1, th1)
221         iflag1(i)=0      CALL cv30_feed(t1, q1, qs1, p1, ph1, gz1, icb1, iflag1, tnk1, qnk1, &
222         wd1(i)=0.0           gznk1, plcl1)
223         cape1(i)=0.0      CALL cv30_undilute1(t1, q1, qs1, gz1, plcl1, p1, icb1, tp1, tvp1, clw1, &
224         VPrecip1(i, nd+1)=0.0           icbs1)
225      end do      CALL cv30_trigger(icb1, plcl1, p1, th1, tv1, tvp1, pbase1, buoybase1, &
226             iflag1, sig1, w01)
227      if (iflag_con.eq.3) then  
228         do il=1, len      ncum = count(iflag1 == 0)
229            sig1(il, nd)=sig1(il, nd)+1.  
230            sig1(il, nd)=amin1(sig1(il, nd), 12.1)      IF (ncum > 0) THEN
231         enddo         ! Moist convective adjustment is necessary
232      endif         allocate(idcum(ncum), plcl(ncum), inb(ncum))
233           allocate(b(ncum, nl - 1), evap(ncum, nl), icb(ncum), iflag(ncum))
234      !--------------------------------------------------------------------         allocate(th(ncum, nl), lv(ncum, nl), cpn(ncum, nl), mp(ncum, nl))
235      ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY         idcum = pack((/(i, i = 1, klon)/), iflag1 == 0)
236      !--------------------------------------------------------------------         CALL cv30_compress(idcum, iflag1, icb1, icbs1, plcl1, tnk1, qnk1, &
237                gznk1, pbase1, buoybase1, t1, q1, qs1, u1, v1, gz1, th1, h1, lv1, &
238      if (iflag_con.eq.3) then              cpn1, p1, ph1, tv1, tp1, tvp1, clw1, sig1, w01, icb, icbs, plcl, &
239         CALL cv3_prelim(len, nd, ndp1, t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, &              tnk, qnk, gznk, pbase, buoybase, t, q, qs, u, v, gz, th, h, lv, &
240              h1, hm1, th1)! nd->na              cpn, p, ph, tv, tp, tvp, clw, sig, w0)
241      endif         CALL cv30_undilute2(icb, icbs(:ncum), tnk, qnk, gznk, t, qs, gz, p, h, &
242                tv, lv, pbase(:ncum), buoybase(:ncum), plcl, inb, tp, tvp, &
243      if (iflag_con.eq.4) then              clw, hp, ep, buoy)
244         CALL cv_prelim(len, nd, ndp1, t1, q1, p1, ph1 &         CALL cv30_closure(icb, inb, pbase, p, ph(:ncum, :), tv, buoy, &
245              , lv1, cpn1, tv1, gz1, h1, hm1)              sig, w0, cape, m)
246      endif         CALL cv30_mixing(icb, inb, t, q, qs, u, v, h, lv, &
247                hp, ep, clw, m, sig, ment, qent, uent, vent, nent, sij, elij, &
248      !--------------------------------------------------------------------              ments, qents)
249      ! --- CONVECTIVE FEED         CALL cv30_unsat(icb, inb, t(:ncum, :nl), q(:ncum, :nl), &
250      !--------------------------------------------------------------------              qs(:ncum, :nl), gz, u(:ncum, :nl), v(:ncum, :nl), p, &
251                ph(:ncum, :), th(:ncum, :nl - 1), tv, lv, cpn, ep(:ncum, :), &
252      if (iflag_con.eq.3) then              clw(:ncum, :), m(:ncum, :), ment(:ncum, :, :), elij(:ncum, :, :), &
253         CALL cv3_feed(len, nd, t1, q1, qs1, p1, ph1, hm1, gz1            &              dtphys, plcl, mp, qp(:ncum, :nl), up(:ncum, :nl), vp(:ncum, :nl), &
254              , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! nd->na              wt(:ncum, :nl), water(:ncum, :nl), evap, b)
255      endif         CALL cv30_yield(icb, inb, dtphys, t, q, u, v, gz, p, ph, h, hp, &
256                lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp(:ncum, 2:nl), &
257      if (iflag_con.eq.4) then              wt(:ncum, :nl - 1), water(:ncum, :nl), evap, b, ment, qent, uent, &
258         CALL cv_feed(len, nd, t1, q1, qs1, p1, hm1, gz1 &              vent, nent, elij, sig, tv, tvp, iflag, precip, VPrecip, ft, fq, &
259              , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1)              fu, fv, upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc)
260      endif         CALL cv30_tracer(klon, ncum, klev, ment, sij, da, phi)
261           CALL cv30_uncompress(idcum, iflag, precip, VPrecip, sig, w0, ft, fq, &
262      !--------------------------------------------------------------------              fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, cape, da, phi, mp, &
263      ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part              iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, fu1, fv1, inb1, &
264      ! (up through ICB for convect4, up through ICB+1 for convect3)              Ma1, upwd1, dnwd1, dnwd01, qcondc1, cape1, da1, phi1, mp1)
265      !     Calculates the lifted parcel virtual temperature at nk, the      ENDIF
     !     actual temperature, and the adiabatic liquid water content.  
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_undilute1(len, nd, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1   &  
             , tp1, tvp1, clw1, icbs1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_undilute1(len, nd, t1, q1, qs1, gz1, p1, nk1, icb1, icbmax &  
             , tp1, tvp1, clw1)  
     endif  
   
     !-------------------------------------------------------------------  
     ! --- TRIGGERING  
     !-------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_trigger(len, nd, icb1, plcl1, p1, th1, tv1, tvp1       &  
             , pbase1, buoybase1, iflag1, sig1, w01) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_trigger(len, nd, icb1, cbmf1, tv1, tvp1, iflag1)  
     endif  
   
     !=====================================================================  
     ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY  
     !=====================================================================  
   
     ncum=0  
     do  i=1, len  
        if(iflag1(i).eq.0)then  
           ncum=ncum+1  
           idcum(ncum)=i  
        endif  
     end do  
   
     !       print*, 'klon, ncum = ', len, ncum  
   
     IF (ncum.gt.0) THEN  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- COMPRESS THE FIELDS  
        !        (-> vectorization over convective gridpoints)  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
        if (iflag_con.eq.3) then  
           CALL cv3_compress( len, nloc, ncum, nd, ntra &  
                , iflag1, nk1, icb1, icbs1 &  
                , plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1 &  
                , t1, q1, qs1, u1, v1, gz1, th1 &  
                , tra1 &  
                , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1  &  
                , sig1, w01 &  
                , iflag, nk, icb, icbs &  
                , plcl, tnk, qnk, gznk, pbase, buoybase &  
                , t, q, qs, u, v, gz, th &  
                , tra &  
                , h, lv, cpn, p, ph, tv, tp, tvp, clw  &  
                , sig, w0  )  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_compress( len, nloc, ncum, nd &  
                , iflag1, nk1, icb1 &  
                , cbmf1, plcl1, tnk1, qnk1, gznk1 &  
                , t1, q1, qs1, u1, v1, gz1 &  
                , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1 &  
                , iflag, nk, icb &  
                , cbmf, plcl, tnk, qnk, gznk &  
                , t, q, qs, u, v, gz, h, lv, cpn, p, ph, tv, tp, tvp, clw  &  
                , dph )  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :  
        ! ---   FIND THE REST OF THE LIFTED PARCEL TEMPERATURES  
        ! ---   &  
        ! ---   COMPUTE THE PRECIPITATION EFFICIENCIES AND THE  
        ! ---   FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD  
        ! ---   &  
        ! ---   FIND THE LEVEL OF NEUTRAL BUOYANCY  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_undilute2(nloc, ncum, nd, icb, icbs, nk         &  
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, h, tv, lv, pbase, buoybase, plcl &  
                , inb, tp, tvp, clw, hp, ep, sigp, buoy) !na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_undilute2(nloc, ncum, nd, icb, nk &  
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, dph, h, tv, lv &  
                , inb, inbis, tp, tvp, clw, hp, ep, sigp, frac)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- CLOSURE  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_closure(nloc, ncum, nd, icb, inb               &  
                , pbase, p, ph, tv, buoy &  
                , sig, w0, cape, m) ! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_closure(nloc, ncum, nd, nk, icb &  
                , tv, tvp, p, ph, dph, plcl, cpn &  
                , iflag, cbmf)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- MIXING  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_mixing(nloc, ncum, nd, nd, ntra, icb, nk, inb     &  
                , ph, t, q, qs, u, v, tra, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, m, sig &  
                , ment, qent, uent, vent, nent, sij, elij, ments, qents, traent)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_mixing(nloc, ncum, nd, icb, nk, inb, inbis &  
                , ph, t, q, qs, u, v, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, cbmf &  
                , m, ment, qent, uent, vent, nent, sij, elij)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_unsat(nloc, ncum, nd, nd, ntra, icb, inb     &  
                , t, q, qs, gz, u, v, tra, p, ph &  
                , th, tv, lv, cpn, ep, sigp, clw &  
                , m, ment, elij, delt, plcl &  
                , mp, qp, up, vp, trap, wt, water, evap, b)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_unsat(nloc, ncum, nd, inb, t, q, qs, gz, u, v, p, ph &  
                , h, lv, ep, sigp, clw, m, ment, elij &  
                , iflag, mp, qp, up, vp, wt, water, evap)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- YIELD  
        !     (tendencies, precipitation, variables of interface with other  
        !      processes, etc)  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_yield(nloc, ncum, nd, nd, ntra             &  
                , icb, inb, delt &  
                , t, q, u, v, tra, gz, p, ph, h, hp, lv, cpn, th &  
                , ep, clw, m, tp, mp, qp, up, vp, trap &  
                , wt, water, evap, b &  
                , ment, qent, uent, vent, nent, elij, traent, sig &  
                , tv, tvp &  
                , iflag, precip, VPrecip, ft, fq, fu, fv, ftra &  
                , upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc, wd)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_yield(nloc, ncum, nd, nk, icb, inb, delt &  
                , t, q, u, v, gz, p, ph, h, hp, lv, cpn &  
                , ep, clw, frac, m, mp, qp, up, vp &  
                , wt, water, evap &  
                , ment, qent, uent, vent, nent, elij &  
                , tv, tvp &  
                , iflag, wd, qprime, tprime &  
                , precip, cbmf, ft, fq, fu, fv, Ma, qcondc)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- passive tracers  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
        if (iflag_con.eq.3) then  
           CALL cv3_tracer(nloc, len, ncum, nd, nd, &  
                ment, sij, da, phi)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- UNCOMPRESS THE FIELDS  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! set iflag1 =42 for non convective points  
        do  i=1, len  
           iflag1(i)=42  
        end do  
        !  
        if (iflag_con.eq.3) then  
           CALL cv3_uncompress(nloc, len, ncum, nd, ntra, idcum &  
                , iflag &  
                , precip, VPrecip, sig, w0 &  
                , ft, fq, fu, fv, ftra &  
                , inb  &  
                , Ma, upwd, dnwd, dnwd0, qcondc, wd, cape &  
                , da, phi, mp &  
                , iflag1 &  
                , precip1, VPrecip1, sig1, w01 &  
                , ft1, fq1, fu1, fv1, ftra1 &  
                , inb1 &  
                , Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1  &  
                , da1, phi1, mp1)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_uncompress(nloc, len, ncum, nd, idcum &  
                , iflag &  
                , precip, cbmf &  
                , ft, fq, fu, fv &  
                , Ma, qcondc             &  
                , iflag1 &  
                , precip1, cbmf1 &  
                , ft1, fq1, fu1, fv1 &  
                , Ma1, qcondc1 )  
        endif  
     ENDIF ! ncum>0  
266    
267    end SUBROUTINE cv_driver    end SUBROUTINE cv_driver
268    

Legend:
Removed from v.52  
changed lines
  Added in v.201

  ViewVC Help
Powered by ViewVC 1.1.21