/[lmdze]/trunk/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/phylmd/cv_driver.f revision 97 by guez, Fri Apr 25 14:58:31 2014 UTC trunk/Sources/phylmd/cv_driver.f revision 182 by guez, Wed Mar 16 11:11:27 2016 UTC
# Line 4  module cv_driver_m Line 4  module cv_driver_m
4    
5  contains  contains
6    
7    SUBROUTINE cv_driver(len, nd, t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, &    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, &
8         fq1, fu1, fv1, precip1, VPrecip1, cbmf1, sig1, w01, icb1, inb1, delt, &         fq1, fu1, fv1, precip1, VPrecip1, cbmf1, sig1, w01, icb1, inb1, delt, &
9         Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1)         Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1)
10    
# Line 14  contains Line 14  contains
14    
15      ! Several modules corresponding to different physical processes      ! Several modules corresponding to different physical processes
16    
     ! Several versions of convect may be used:  
     ! - iflag_con = 3: version lmd  
     ! - iflag_con = 4: version 4.3b  
   
     use clesphys2, only: iflag_con  
17      use cv3_compress_m, only: cv3_compress      use cv3_compress_m, only: cv3_compress
18        use cv3_feed_m, only: cv3_feed
19      use cv3_mixing_m, only: cv3_mixing      use cv3_mixing_m, only: cv3_mixing
20      use cv3_param_m, only: cv3_param      use cv3_param_m, only: cv3_param
21      use cv3_prelim_m, only: cv3_prelim      use cv3_prelim_m, only: cv3_prelim
# Line 27  contains Line 23  contains
23      use cv3_uncompress_m, only: cv3_uncompress      use cv3_uncompress_m, only: cv3_uncompress
24      use cv3_unsat_m, only: cv3_unsat      use cv3_unsat_m, only: cv3_unsat
25      use cv3_yield_m, only: cv3_yield      use cv3_yield_m, only: cv3_yield
     use cv_uncompress_m, only: cv_uncompress  
26      USE dimphy, ONLY: klev, klon      USE dimphy, ONLY: klev, klon
27    
28      integer, intent(in):: len ! first dimension      real, intent(in):: t1(klon, klev) ! temperature
29      integer, intent(in):: nd ! vertical dimension      real, intent(in):: q1(klon, klev) ! specific hum
30      real, intent(in):: t1(len, nd) ! temperature      real, intent(in):: qs1(klon, klev) ! sat specific hum
31      real q1(len, nd) !           Input        specific hum      real, intent(in):: u1(klon, klev) ! u-wind
32      real qs1(len, nd)      real, intent(in):: v1(klon, klev) ! v-wind
33      !      qs1           Real           Input        sat specific hum      real, intent(in):: p1(klon, klev) ! full level pressure
34      real, intent(in):: u1(len, nd)      real, intent(in):: ph1(klon, klev + 1) ! half level pressure
35      !      u1            Real           Input        u-wind      integer, intent(out):: iflag1(klon) ! flag for Emanuel conditions
36      real, intent(in):: v1(len, nd)      real, intent(out):: ft1(klon, klev) ! temp tend
37      !      v1            Real           Input        v-wind      real, intent(out):: fq1(klon, klev) ! spec hum tend
38      real p1(len, nd)      real, intent(out):: fu1(klon, klev) ! u-wind tend
39      !      p1            Real           Input        full level pressure      real, intent(out):: fv1(klon, klev) ! v-wind tend
40      real ph1(len, nd + 1)      real, intent(out):: precip1(klon) ! precipitation
41      !      ph1           Real           Input        half level pressure  
42      integer iflag1(len)      real, intent(out):: VPrecip1(klon, klev + 1)
43      !      iflag1        Integer        Output       flag for Emanuel conditions      ! vertical profile of precipitation
44      real ft1(len, nd)  
45      !      ft1           Real           Output       temp tend      real, intent(inout):: cbmf1(klon) ! cloud base mass flux
     real fq1(len, nd)  
     !      fq1           Real           Output       spec hum tend  
     real fu1(len, nd)  
     !      fu1           Real           Output       u-wind tend  
     real fv1(len, nd)  
     !      fv1           Real           Output       v-wind tend  
     real precip1(len)  
     !      precip1       Real           Output       precipitation  
     real VPrecip1(len, nd+1)  
     !      VPrecip1      Real           Output       vertical profile of precipitations  
     real cbmf1(len)  
     !      cbmf1         Real           Output       cloud base mass flux  
46      real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft      real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft
47    
48      real, intent(inout):: w01(klon, klev)      real, intent(inout):: w01(klon, klev)
49      ! vertical velocity within adiabatic updraft      ! vertical velocity within adiabatic updraft
50    
51      integer icb1(klon)      integer, intent(out):: icb1(klon)
52      integer inb1(klon)      integer, intent(inout):: inb1(klon)
53      real, intent(in):: delt      real, intent(in):: delt ! time step
54      !      delt          Real           Input        time step      real Ma1(klon, klev)
55      real Ma1(len, nd)      ! Ma1 Real Output mass flux adiabatic updraft
56      !      Ma1           Real           Output       mass flux adiabatic updraft  
57      real, intent(out):: upwd1(len, nd) ! total upward mass flux (adiab+mixed)      real, intent(out):: upwd1(klon, klev)
58      real, intent(out):: dnwd1(len, nd) ! saturated downward mass flux (mixed)      ! total upward mass flux (adiab + mixed)
59      real, intent(out):: dnwd01(len, nd) ! unsaturated downward mass flux  
60        real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
61      real qcondc1(len, nd)     ! cld      real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux
62      !      qcondc1       Real           Output       in-cld mixing ratio of condensed water  
63      real wd1(len)            ! gust      real qcondc1(klon, klev) ! cld
64      !      wd1           Real           Output       downdraft velocity scale for sfc fluxes      ! qcondc1 Real Output in-cld mixing ratio of condensed water
65      real cape1(len)      real wd1(klon) ! gust
66      !      cape1         Real           Output       CAPE      ! wd1 Real Output downdraft velocity scale for sfc fluxes
67        real cape1(klon)
68      real da1(len, nd), phi1(len, nd, nd), mp1(len, nd)      ! cape1 Real Output CAPE
69    
70      !-------------------------------------------------------------------      real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)
71      ! --- ARGUMENTS      real, intent(inout):: mp1(klon, klev)
72      !-------------------------------------------------------------------  
73      ! --- On input:      ! ARGUMENTS
74    
75      !  t:   Array of absolute temperature (K) of dimension ND, with first      ! On input:
76      !       index corresponding to lowest model level. Note that this array  
77      !       will be altered by the subroutine if dry convective adjustment      ! t: Array of absolute temperature (K) of dimension KLEV, with first
78      !       occurs and if IPBL is not equal to 0.      ! index corresponding to lowest model level. Note that this array
79        ! will be altered by the subroutine if dry convective adjustment
80      !  q:   Array of specific humidity (gm/gm) of dimension ND, with first      ! occurs and if IPBL is not equal to 0.
81      !       index corresponding to lowest model level. Must be defined  
82      !       at same grid levels as T. Note that this array will be altered      ! q: Array of specific humidity (gm/gm) of dimension KLEV, with first
83      !       if dry convective adjustment occurs and if IPBL is not equal to 0.      ! index corresponding to lowest model level. Must be defined
84        ! at same grid levels as T. Note that this array will be altered
85      !  qs:  Array of saturation specific humidity of dimension ND, with first      ! if dry convective adjustment occurs and if IPBL is not equal to 0.
86      !       index corresponding to lowest model level. Must be defined  
87      !       at same grid levels as T. Note that this array will be altered      ! qs: Array of saturation specific humidity of dimension KLEV, with first
88      !       if dry convective adjustment occurs and if IPBL is not equal to 0.      ! index corresponding to lowest model level. Must be defined
89        ! at same grid levels as T. Note that this array will be altered
90      !  u:   Array of zonal wind velocity (m/s) of dimension ND, witth first      ! if dry convective adjustment occurs and if IPBL is not equal to 0.
91      !       index corresponding with the lowest model level. Defined at  
92      !       same levels as T. Note that this array will be altered if      ! u: Array of zonal wind velocity (m/s) of dimension KLEV, witth first
93      !       dry convective adjustment occurs and if IPBL is not equal to 0.      ! index corresponding with the lowest model level. Defined at
94        ! same levels as T. Note that this array will be altered if
95      !  v:   Same as u but for meridional velocity.      ! dry convective adjustment occurs and if IPBL is not equal to 0.
96    
97      !  p:   Array of pressure (mb) of dimension ND, with first      ! v: Same as u but for meridional velocity.
98      !       index corresponding to lowest model level. Must be defined  
99      !       at same grid levels as T.      ! p: Array of pressure (mb) of dimension KLEV, with first
100        ! index corresponding to lowest model level. Must be defined
101      !  ph:  Array of pressure (mb) of dimension ND+1, with first index      ! at same grid levels as T.
102      !       corresponding to lowest level. These pressures are defined at  
103      !       levels intermediate between those of P, T, Q and QS. The first      ! ph: Array of pressure (mb) of dimension KLEV + 1, with first index
104      !       value of PH should be greater than (i.e. at a lower level than)      ! corresponding to lowest level. These pressures are defined at
105      !       the first value of the array P.      ! levels intermediate between those of P, T, Q and QS. The first
106        ! value of PH should be greater than (i.e. at a lower level than)
107      !  nl:  The maximum number of levels to which convection can penetrate, plus 1.      ! the first value of the array P.
108      !       NL MUST be less than or equal to ND-1.  
109        ! nl: The maximum number of levels to which convection can penetrate, plus 1
110      !  delt: The model time step (sec) between calls to CONVECT      ! NL MUST be less than or equal to KLEV-1.
111    
112      !----------------------------------------------------------------------------      ! delt: The model time step (sec) between calls to CONVECT
113      ! ---   On Output:  
114        ! On Output:
115      !  iflag: An output integer whose value denotes the following:  
116      !       VALUE   INTERPRETATION      ! iflag: An output integer whose value denotes the following:
117      !       -----   --------------      ! VALUE INTERPRETATION
118      !         0     Moist convection occurs.      ! ----- --------------
119      !         1     Moist convection occurs, but a CFL condition      ! 0 Moist convection occurs.
120      !               on the subsidence warming is violated. This      ! 1 Moist convection occurs, but a CFL condition
121      !               does not cause the scheme to terminate.      ! on the subsidence warming is violated. This
122      !         2     Moist convection, but no precip because ep(inb) lt 0.0001      ! does not cause the scheme to terminate.
123      !         3     No moist convection because new cbmf is 0 and old cbmf is 0.      ! 2 Moist convection, but no precip because ep(inb) lt 0.0001
124      !         4     No moist convection; atmosphere is not      ! 3 No moist convection because new cbmf is 0 and old cbmf is 0.
125      !               unstable      ! 4 No moist convection; atmosphere is not
126      !         6     No moist convection because ihmin le minorig.      ! unstable
127      !         7     No moist convection because unreasonable      ! 6 No moist convection because ihmin le minorig.
128      !               parcel level temperature or specific humidity.      ! 7 No moist convection because unreasonable
129      !         8     No moist convection: lifted condensation      ! parcel level temperature or specific humidity.
130      !               level is above the 200 mb level.      ! 8 No moist convection: lifted condensation
131      !         9     No moist convection: cloud base is higher      ! level is above the 200 mb level.
132      !               then the level NL-1.      ! 9 No moist convection: cloud base is higher
133        ! then the level NL-1.
134      !  ft:   Array of temperature tendency (K/s) of dimension ND, defined at same  
135      !        grid levels as T, Q, QS and P.      ! ft: Array of temperature tendency (K/s) of dimension KLEV, defined at same
136        ! grid levels as T, Q, QS and P.
137      !  fq:   Array of specific humidity tendencies ((gm/gm)/s) of dimension ND,  
138      !        defined at same grid levels as T, Q, QS and P.      ! fq: Array of specific humidity tendencies ((gm/gm)/s) of dimension KLEV,
139        ! defined at same grid levels as T, Q, QS and P.
140      !  fu:   Array of forcing of zonal velocity (m/s^2) of dimension ND,  
141      !        defined at same grid levels as T.      ! fu: Array of forcing of zonal velocity (m/s^2) of dimension KLEV,
142        ! defined at same grid levels as T.
143      !  fv:   Same as FU, but for forcing of meridional velocity.  
144        ! fv: Same as FU, but for forcing of meridional velocity.
145      !  precip: Scalar convective precipitation rate (mm/day).  
146        ! precip: Scalar convective precipitation rate (mm/day).
147      !  VPrecip: Vertical profile of convective precipitation (kg/m2/s).  
148        ! VPrecip: Vertical profile of convective precipitation (kg/m2/s).
149      !  wd:   A convective downdraft velocity scale. For use in surface  
150      !        flux parameterizations. See convect.ps file for details.      ! wd: A convective downdraft velocity scale. For use in surface
151        ! flux parameterizations. See convect.ps file for details.
152      !  tprime: A convective downdraft temperature perturbation scale (K).  
153      !          For use in surface flux parameterizations. See convect.ps      ! tprime: A convective downdraft temperature perturbation scale (K).
154      !          file for details.      ! For use in surface flux parameterizations. See convect.ps
155        ! file for details.
156      !  qprime: A convective downdraft specific humidity  
157      !          perturbation scale (gm/gm).      ! qprime: A convective downdraft specific humidity
158      !          For use in surface flux parameterizations. See convect.ps      ! perturbation scale (gm/gm).
159      !          file for details.      ! For use in surface flux parameterizations. See convect.ps
160        ! file for details.
161      !  cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST  
162      !        BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT      ! cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST
163      !        ITS NEXT CALL. That is, the value of CBMF must be "remembered"      ! BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT
164      !        by the calling program between calls to CONVECT.      ! ITS NEXT CALL. That is, the value of CBMF must be "remembered"
165        ! by the calling program between calls to CONVECT.
166    
167      !  det:   Array of detrainment mass flux of dimension ND.      ! det: Array of detrainment mass flux of dimension KLEV.
   
     !-------------------------------------------------------------------  
168    
169      !  Local arrays      ! Local arrays
170    
171      real da(len, nd), phi(len, nd, nd), mp(len, nd)      real da(klon, klev), phi(klon, klev, klev), mp(klon, klev)
172    
173      integer i, k, il      integer i, k, il
174      integer icbmax      integer icbmax
# Line 215  contains Line 197  contains
197    
198      ! (local) compressed fields:      ! (local) compressed fields:
199    
200      integer nloc      integer idcum(klon)
201      parameter (nloc = klon) ! pour l'instant      integer iflag(klon), nk(klon), icb(klon)
202        integer nent(klon, klev)
203        integer icbs(klon)
204        integer inb(klon), inbis(klon)
205    
206        real plcl(klon), tnk(klon), qnk(klon), gznk(klon)
207        real t(klon, klev), q(klon, klev), qs(klon, klev)
208        real u(klon, klev), v(klon, klev)
209        real gz(klon, klev), h(klon, klev), lv(klon, klev), cpn(klon, klev)
210        real p(klon, klev), ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
211        real clw(klon, klev)
212        real dph(klon, klev)
213        real pbase(klon), buoybase(klon), th(klon, klev)
214        real tvp(klon, klev)
215        real sig(klon, klev), w0(klon, klev)
216        real hp(klon, klev), ep(klon, klev), sigp(klon, klev)
217        real frac(klon), buoy(klon, klev)
218        real cape(klon)
219        real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
220        real uent(klon, klev, klev), vent(klon, klev, klev)
221        real ments(klon, klev, klev), qents(klon, klev, klev)
222        real sij(klon, klev, klev), elij(klon, klev, klev)
223        real qp(klon, klev), up(klon, klev), vp(klon, klev)
224        real wt(klon, klev), water(klon, klev), evap(klon, klev)
225        real b(klon, klev), ft(klon, klev), fq(klon, klev)
226        real fu(klon, klev), fv(klon, klev)
227        real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)
228        real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
229        real tps(klon, klev), qprime(klon), tprime(klon)
230        real precip(klon)
231        real VPrecip(klon, klev + 1)
232        real qcondc(klon, klev) ! cld
233        real wd(klon) ! gust
234    
     integer idcum(nloc)  
     integer iflag(nloc), nk(nloc), icb(nloc)  
     integer nent(nloc, klev)  
     integer icbs(nloc)  
     integer inb(nloc), inbis(nloc)  
   
     real cbmf(nloc), plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc)  
     real t(nloc, klev), q(nloc, klev), qs(nloc, klev)  
     real u(nloc, klev), v(nloc, klev)  
     real gz(nloc, klev), h(nloc, klev), lv(nloc, klev), cpn(nloc, klev)  
     real p(nloc, klev), ph(nloc, klev+1), tv(nloc, klev), tp(nloc, klev)  
     real clw(nloc, klev)  
     real dph(nloc, klev)  
     real pbase(nloc), buoybase(nloc), th(nloc, klev)  
     real tvp(nloc, klev)  
     real sig(nloc, klev), w0(nloc, klev)  
     real hp(nloc, klev), ep(nloc, klev), sigp(nloc, klev)  
     real frac(nloc), buoy(nloc, klev)  
     real cape(nloc)  
     real m(nloc, klev), ment(nloc, klev, klev), qent(nloc, klev, klev)  
     real uent(nloc, klev, klev), vent(nloc, klev, klev)  
     real ments(nloc, klev, klev), qents(nloc, klev, klev)  
     real sij(nloc, klev, klev), elij(nloc, klev, klev)  
     real qp(nloc, klev), up(nloc, klev), vp(nloc, klev)  
     real wt(nloc, klev), water(nloc, klev), evap(nloc, klev)  
     real b(nloc, klev), ft(nloc, klev), fq(nloc, klev)  
     real fu(nloc, klev), fv(nloc, klev)  
     real upwd(nloc, klev), dnwd(nloc, klev), dnwd0(nloc, klev)  
     real Ma(nloc, klev), mike(nloc, klev), tls(nloc, klev)  
     real tps(nloc, klev), qprime(nloc), tprime(nloc)  
     real precip(nloc)  
     real VPrecip(nloc, klev+1)  
     real qcondc(nloc, klev)  ! cld  
     real wd(nloc)           ! gust  
   
     !-------------------------------------------------------------------  
     ! --- SET CONSTANTS AND PARAMETERS  
235      !-------------------------------------------------------------------      !-------------------------------------------------------------------
236    
237      ! -- set simulation flags:      ! SET CONSTANTS AND PARAMETERS
238      !   (common cvflag)  
239        ! set simulation flags:
240        ! (common cvflag)
241    
242      CALL cv_flag      CALL cv_flag
243    
244      ! -- set thermodynamical constants:      ! set thermodynamical constants:
245      !     (common cvthermo)      ! (common cvthermo)
246    
247      CALL cv_thermo      CALL cv_thermo
248    
249      ! -- set convect parameters      ! set convect parameters
250    
251        ! includes microphysical parameters and parameters that
252        ! control the rate of approach to quasi-equilibrium)
253        ! (common cvparam)
254    
255        CALL cv3_param(klev, delt)
256    
257      !     includes microphysical parameters and parameters that      ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
     !     control the rate of approach to quasi-equilibrium)  
     !     (common cvparam)  
   
     if (iflag_con.eq.3) then  
        CALL cv3_param(nd, delt)  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_param(nd)  
     endif  
   
     !---------------------------------------------------------------------  
     ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS  
     !---------------------------------------------------------------------  
258    
259      do k = 1, nd      do k = 1, klev
260         do  i = 1, len         do i = 1, klon
261            ft1(i, k) = 0.0            ft1(i, k) = 0.0
262            fq1(i, k) = 0.0            fq1(i, k) = 0.0
263            fu1(i, k) = 0.0            fu1(i, k) = 0.0
# Line 296  contains Line 267  contains
267            clw1(i, k) = 0.0            clw1(i, k) = 0.0
268            !ym            !ym
269            clw(i, k) = 0.0            clw(i, k) = 0.0
270            gz1(i, k)  =  0.            gz1(i, k) = 0.
271            VPrecip1(i, k) = 0.            VPrecip1(i, k) = 0.
272            Ma1(i, k) = 0.0            Ma1(i, k) = 0.0
273            upwd1(i, k) = 0.0            upwd1(i, k) = 0.0
# Line 306  contains Line 277  contains
277         end do         end do
278      end do      end do
279    
280      do  i = 1, len      do i = 1, klon
281         precip1(i) = 0.0         precip1(i) = 0.0
282         iflag1(i) = 0         iflag1(i) = 0
283         wd1(i) = 0.0         wd1(i) = 0.0
284         cape1(i) = 0.0         cape1(i) = 0.0
285         VPrecip1(i, nd+1) = 0.0         VPrecip1(i, klev + 1) = 0.0
286      end do      end do
287    
288      if (iflag_con.eq.3) then      do il = 1, klon
289         do il = 1, len         sig1(il, klev) = sig1(il, klev) + 1.
290            sig1(il, nd) = sig1(il, nd) + 1.         sig1(il, klev) = min(sig1(il, klev), 12.1)
291            sig1(il, nd)  =  min(sig1(il, nd), 12.1)      enddo
        enddo  
     endif  
   
     !--------------------------------------------------------------------  
     ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY  
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_prelim(len, nd, nd + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, &  
             h1, hm1, th1)  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_prelim(len, nd, nd + 1, t1, q1, p1, ph1 &  
             , lv1, cpn1, tv1, gz1, h1, hm1)  
     endif  
   
     !--------------------------------------------------------------------  
     ! --- CONVECTIVE FEED  
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_feed(len, nd, t1, q1, qs1, p1, ph1, hm1, gz1            &  
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_feed(len, nd, t1, q1, qs1, p1, hm1, gz1 &  
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1)  
     endif  
   
     !--------------------------------------------------------------------  
     ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part  
     ! (up through ICB for convect4, up through ICB+1 for convect3)  
     !     Calculates the lifted parcel virtual temperature at nk, the  
     !     actual temperature, and the adiabatic liquid water content.  
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_undilute1(len, nd, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1   &  
             , tp1, tvp1, clw1, icbs1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_undilute1(len, nd, t1, q1, qs1, gz1, p1, nk1, icb1, icbmax &  
             , tp1, tvp1, clw1)  
     endif  
292    
293      !-------------------------------------------------------------------      ! CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY
294      ! --- TRIGGERING  
295      !-------------------------------------------------------------------      CALL cv3_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &
296             gz1, h1, hm1, th1)
297    
298        ! CONVECTIVE FEED
299    
300        CALL cv3_feed(klon, klev, t1, q1, qs1, p1, ph1, gz1, nk1, icb1, &
301             icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! klev->na
302    
303      if (iflag_con.eq.3) then      ! UNDILUTE (ADIABATIC) UPDRAFT / 1st part
304         CALL cv3_trigger(len, nd, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &      ! (up through ICB for convect4, up through ICB + 1 for convect3)
305              buoybase1, iflag1, sig1, w01) ! nd->na      ! Calculates the lifted parcel virtual temperature at nk, the
306      endif      ! actual temperature, and the adiabatic liquid water content.
   
     if (iflag_con.eq.4) then  
        CALL cv_trigger(len, nd, icb1, cbmf1, tv1, tvp1, iflag1)  
     endif  
307    
308      ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY      CALL cv3_undilute1(klon, klev, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, &
309             tp1, tvp1, clw1, icbs1) ! klev->na
310    
311        ! TRIGGERING
312    
313        CALL cv3_trigger(klon, klev, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &
314             buoybase1, iflag1, sig1, w01) ! klev->na
315    
316        ! Moist convective adjustment is necessary
317    
318      ncum = 0      ncum = 0
319      do  i = 1, len      do i = 1, klon
320         if(iflag1(i).eq.0)then         if (iflag1(i) == 0) then
321            ncum = ncum+1            ncum = ncum + 1
322            idcum(ncum) = i            idcum(ncum) = i
323         endif         endif
324      end do      end do
325    
326      !       print*, 'klon, ncum = ', len, ncum      IF (ncum > 0) THEN
327           ! COMPRESS THE FIELDS
328           ! (-> vectorization over convective gridpoints)
329    
330      IF (ncum.gt.0) THEN         CALL cv3_compress(klon, klon, ncum, klev, iflag1, nk1, icb1, icbs1, &
331                plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, &
332                v1, gz1, th1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, &
333                sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, &
334                buoybase, t, q, qs, u, v, gz, th, h, lv, cpn, p, ph, tv, tp, &
335                tvp, clw, sig, w0)
336    
337         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^         ! UNDILUTE (ADIABATIC) UPDRAFT / second part :
338         ! --- COMPRESS THE FIELDS         ! FIND THE REST OF THE LIFTED PARCEL TEMPERATURES
339         !        (-> vectorization over convective gridpoints)         ! &
340         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^         ! COMPUTE THE PRECIPITATION EFFICIENCIES AND THE
341           ! FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD
342         if (iflag_con.eq.3) then         ! &
343            CALL cv3_compress(len, nloc, ncum, nd, iflag1, nk1, icb1, icbs1, &         ! FIND THE LEVEL OF NEUTRAL BUOYANCY
                plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, &  
                v1, gz1, th1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, &  
                sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, &  
                buoybase, t, q, qs, u, v, gz, th, h, lv, cpn, p, ph, tv, tp, &  
                tvp, clw, sig, w0)  
        endif  
344    
345         if (iflag_con.eq.4) then         CALL cv3_undilute2(klon, ncum, klev, icb, icbs, nk, tnk, qnk, gznk, &
346            CALL cv_compress( len, nloc, ncum, nd &              t, qs, gz, p, h, tv, lv, pbase, buoybase, plcl, inb, tp, &
347                 , iflag1, nk1, icb1 &              tvp, clw, hp, ep, sigp, buoy) !na->klev
                , cbmf1, plcl1, tnk1, qnk1, gznk1 &  
                , t1, q1, qs1, u1, v1, gz1 &  
                , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1 &  
                , iflag, nk, icb &  
                , cbmf, plcl, tnk, qnk, gznk &  
                , t, q, qs, u, v, gz, h, lv, cpn, p, ph, tv, tp, tvp, clw  &  
                , dph )  
        endif  
348    
349         !-------------------------------------------------------------------         ! CLOSURE
        ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :  
        ! ---   FIND THE REST OF THE LIFTED PARCEL TEMPERATURES  
        ! ---   &  
        ! ---   COMPUTE THE PRECIPITATION EFFICIENCIES AND THE  
        ! ---   FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD  
        ! ---   &  
        ! ---   FIND THE LEVEL OF NEUTRAL BUOYANCY  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_undilute2(nloc, ncum, nd, icb, icbs, nk         &  
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, h, tv, lv, pbase, buoybase, plcl &  
                , inb, tp, tvp, clw, hp, ep, sigp, buoy) !na->nd  
        endif  
350    
351         if (iflag_con.eq.4) then         CALL cv3_closure(klon, ncum, klev, icb, inb, pbase, p, ph, tv, &
352            CALL cv_undilute2(nloc, ncum, nd, icb, nk &              buoy, sig, w0, cape, m) ! na->klev
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, dph, h, tv, lv &  
                , inb, inbis, tp, tvp, clw, hp, ep, sigp, frac)  
        endif  
353    
354         !-------------------------------------------------------------------         ! MIXING
        ! --- CLOSURE  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_closure(nloc, ncum, nd, icb, inb               &  
                , pbase, p, ph, tv, buoy &  
                , sig, w0, cape, m) ! na->nd  
        endif  
355    
356         if (iflag_con.eq.4) then         CALL cv3_mixing(klon, ncum, klev, klev, icb, nk, inb, t, q, qs, u, &
357            CALL cv_closure(nloc, ncum, nd, nk, icb &              v, h, lv, hp, ep, clw, m, sig, ment, qent, uent, vent, nent, &
358                 , tv, tvp, p, ph, dph, plcl, cpn &              sij, elij, ments, qents)
                , iflag, cbmf)  
        endif  
359    
360         !-------------------------------------------------------------------         ! UNSATURATED (PRECIPITATING) DOWNDRAFTS
        ! --- MIXING  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_mixing(nloc, ncum, nd, nd, icb, nk, inb, ph, t, q, &  
                qs, u, v, h, lv, qnk, hp, tv, tvp, ep, clw, m, sig, ment, &  
                qent, uent, vent, nent, sij, elij, ments, qents)  
        endif  
361    
362         if (iflag_con.eq.4) then         CALL cv3_unsat(klon, ncum, klev, klev, icb, inb, t, q, qs, gz, u, &
363            CALL cv_mixing(nloc, ncum, nd, icb, nk, inb, inbis &              v, p, ph, th, tv, lv, cpn, ep, sigp, clw, m, ment, elij, delt, &
364                 , ph, t, q, qs, u, v, h, lv, qnk &              plcl, mp, qp, up, vp, wt, water, evap, b)! na->klev
                , hp, tv, tvp, ep, clw, cbmf &  
                , m, ment, qent, uent, vent, nent, sij, elij)  
        endif  
365    
366         !-------------------------------------------------------------------         ! YIELD
367         ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS         ! (tendencies, precipitation, variables of interface with other
368         !-------------------------------------------------------------------         ! processes, etc)
   
        if (iflag_con.eq.3) then  
           CALL cv3_unsat(nloc, ncum, nd, nd, icb, inb     &  
                , t, q, qs, gz, u, v, p, ph &  
                , th, tv, lv, cpn, ep, sigp, clw &  
                , m, ment, elij, delt, plcl &  
                , mp, qp, up, vp, wt, water, evap, b)! na->nd  
        endif  
369    
370         if (iflag_con.eq.4) then         CALL cv3_yield(klon, ncum, klev, klev, icb, inb, delt, t, q, u, v, &
371            CALL cv_unsat(nloc, ncum, nd, inb, t, q, qs, gz, u, v, p, ph &              gz, p, ph, h, hp, lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp, &
372                 , h, lv, ep, sigp, clw, m, ment, elij &              wt, water, evap, b, ment, qent, uent, vent, nent, elij, sig, &
373                 , iflag, mp, qp, up, vp, wt, water, evap)              tv, tvp, iflag, precip, VPrecip, ft, fq, fu, fv, upwd, dnwd, &
374         endif              dnwd0, ma, mike, tls, tps, qcondc, wd)! na->klev
375    
376         !-------------------------------------------------------------------         ! passive tracers
        ! --- YIELD  
        !     (tendencies, precipitation, variables of interface with other  
        !      processes, etc)  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_yield(nloc, ncum, nd, nd             &  
                , icb, inb, delt &  
                , t, q, u, v, gz, p, ph, h, hp, lv, cpn, th &  
                , ep, clw, m, tp, mp, qp, up, vp &  
                , wt, water, evap, b &  
                , ment, qent, uent, vent, nent, elij, sig &  
                , tv, tvp &  
                , iflag, precip, VPrecip, ft, fq, fu, fv &  
                , upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc, wd)! na->nd  
        endif  
377    
378         if (iflag_con.eq.4) then         CALL cv3_tracer(klon, ncum, klev, ment, sij, da, phi)
           CALL cv_yield(nloc, ncum, nd, nk, icb, inb, delt &  
                , t, q, u, v, gz, p, ph, h, hp, lv, cpn &  
                , ep, clw, frac, m, mp, qp, up, vp &  
                , wt, water, evap &  
                , ment, qent, uent, vent, nent, elij &  
                , tv, tvp &  
                , iflag, wd, qprime, tprime &  
                , precip, cbmf, ft, fq, fu, fv, Ma, qcondc)  
        endif  
379    
380         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^         ! UNCOMPRESS THE FIELDS
        ! --- passive tracers  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
        if (iflag_con.eq.3) then  
           CALL cv3_tracer(nloc, len, ncum, nd, nd, &  
                ment, sij, da, phi)  
        endif  
381    
382         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^         ! set iflag1 = 42 for non convective points
383         ! --- UNCOMPRESS THE FIELDS         do i = 1, klon
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! set iflag1  = 42 for non convective points  
        do  i = 1, len  
384            iflag1(i) = 42            iflag1(i) = 42
385         end do         end do
386    
387         if (iflag_con.eq.3) then         CALL cv3_uncompress(idcum(:ncum), iflag, precip, VPrecip, sig, w0, &
388            CALL cv3_uncompress(nloc, len, ncum, nd, idcum &              ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, wd, cape, &
389                 , iflag &              da, phi, mp, iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, &
390                 , precip, VPrecip, sig, w0 &              fu1, fv1, inb1, Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, &
391                 , ft, fq, fu, fv &              cape1, da1, phi1, mp1)
                , inb  &  
                , Ma, upwd, dnwd, dnwd0, qcondc, wd, cape &  
                , da, phi, mp &  
                , iflag1 &  
                , precip1, VPrecip1, sig1, w01 &  
                , ft1, fq1, fu1, fv1 &  
                , inb1 &  
                , Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1  &  
                , da1, phi1, mp1)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_uncompress(nloc, len, ncum, nd, idcum &  
                , iflag &  
                , precip, cbmf &  
                , ft, fq, fu, fv &  
                , Ma, qcondc             &  
                , iflag1 &  
                , precip1, cbmf1 &  
                , ft1, fq1, fu1, fv1 &  
                , Ma1, qcondc1 )  
        endif  
392      ENDIF ! ncum>0      ENDIF ! ncum>0
393    
394    end SUBROUTINE cv_driver    end SUBROUTINE cv_driver

Legend:
Removed from v.97  
changed lines
  Added in v.182

  ViewVC Help
Powered by ViewVC 1.1.21