/[lmdze]/trunk/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/phylmd/cv_driver.f revision 97 by guez, Fri Apr 25 14:58:31 2014 UTC trunk/Sources/phylmd/cv_driver.f revision 192 by guez, Thu May 12 13:00:07 2016 UTC
# Line 4  module cv_driver_m Line 4  module cv_driver_m
4    
5  contains  contains
6    
7    SUBROUTINE cv_driver(len, nd, t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, &    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, fq1, fu1, &
8         fq1, fu1, fv1, precip1, VPrecip1, cbmf1, sig1, w01, icb1, inb1, delt, &         fv1, precip1, VPrecip1, sig1, w01, icb1, inb1, delt, Ma1, upwd1, dnwd1, &
9         Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1)         dnwd01, qcondc1, cape1, da1, phi1, mp1)
10    
11      ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17      ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
12      ! Main driver for convection      ! Main driver for convection
# Line 14  contains Line 14  contains
14    
15      ! Several modules corresponding to different physical processes      ! Several modules corresponding to different physical processes
16    
17      ! Several versions of convect may be used:      use cv30_closure_m, only: cv30_closure
18      ! - iflag_con = 3: version lmd      use cv30_compress_m, only: cv30_compress
19      ! - iflag_con = 4: version 4.3b      use cv30_feed_m, only: cv30_feed
20        use cv30_mixing_m, only: cv30_mixing
21      use clesphys2, only: iflag_con      use cv30_param_m, only: cv30_param, nl
22      use cv3_compress_m, only: cv3_compress      use cv30_prelim_m, only: cv30_prelim
23      use cv3_mixing_m, only: cv3_mixing      use cv30_tracer_m, only: cv30_tracer
24      use cv3_param_m, only: cv3_param      use cv30_trigger_m, only: cv30_trigger
25      use cv3_prelim_m, only: cv3_prelim      use cv30_uncompress_m, only: cv30_uncompress
26      use cv3_tracer_m, only: cv3_tracer      use cv30_undilute2_m, only: cv30_undilute2
27      use cv3_uncompress_m, only: cv3_uncompress      use cv30_unsat_m, only: cv30_unsat
28      use cv3_unsat_m, only: cv3_unsat      use cv30_yield_m, only: cv30_yield
29      use cv3_yield_m, only: cv3_yield      use cv_thermo_m, only: cv_thermo
     use cv_uncompress_m, only: cv_uncompress  
30      USE dimphy, ONLY: klev, klon      USE dimphy, ONLY: klev, klon
31    
32      integer, intent(in):: len ! first dimension      real, intent(in):: t1(klon, klev) ! temperature (K)
33      integer, intent(in):: nd ! vertical dimension      real, intent(in):: q1(klon, klev) ! specific humidity
34      real, intent(in):: t1(len, nd) ! temperature      real, intent(in):: qs1(klon, klev) ! saturation specific humidity
35      real q1(len, nd) !           Input        specific hum  
36      real qs1(len, nd)      real, intent(in):: u1(klon, klev), v1(klon, klev)
37      !      qs1           Real           Input        sat specific hum      ! zonal wind and meridional velocity (m/s)
38      real, intent(in):: u1(len, nd)  
39      !      u1            Real           Input        u-wind      real, intent(in):: p1(klon, klev) ! full level pressure (hPa)
40      real, intent(in):: v1(len, nd)  
41      !      v1            Real           Input        v-wind      real, intent(in):: ph1(klon, klev + 1)
42      real p1(len, nd)      ! Half level pressure (hPa). These pressures are defined at levels
43      !      p1            Real           Input        full level pressure      ! intermediate between those of P1, T1, Q1 and QS1. The first
44      real ph1(len, nd + 1)      ! value of PH should be greater than (i.e. at a lower level than)
45      !      ph1           Real           Input        half level pressure      ! the first value of the array P1.
46      integer iflag1(len)  
47      !      iflag1        Integer        Output       flag for Emanuel conditions      integer, intent(out):: iflag1(klon)
48      real ft1(len, nd)      ! Flag for Emanuel conditions.
49      !      ft1           Real           Output       temp tend  
50      real fq1(len, nd)      ! 0: Moist convection occurs.
51      !      fq1           Real           Output       spec hum tend  
52      real fu1(len, nd)      ! 1: Moist convection occurs, but a CFL condition on the
53      !      fu1           Real           Output       u-wind tend      ! subsidence warming is violated. This does not cause the scheme
54      real fv1(len, nd)      ! to terminate.
55      !      fv1           Real           Output       v-wind tend  
56      real precip1(len)      ! 2: Moist convection, but no precipitation because ep(inb) < 1e-4
57      !      precip1       Real           Output       precipitation  
58      real VPrecip1(len, nd+1)      ! 3: No moist convection because new cbmf is 0 and old cbmf is 0.
59      !      VPrecip1      Real           Output       vertical profile of precipitations  
60      real cbmf1(len)      ! 4: No moist convection; atmosphere is not unstable
61      !      cbmf1         Real           Output       cloud base mass flux  
62      real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft      ! 6: No moist convection because ihmin le minorig.
63    
64        ! 7: No moist convection because unreasonable parcel level
65        ! temperature or specific humidity.
66    
67        ! 8: No moist convection: lifted condensation level is above the
68        ! 200 mb level.
69    
70        ! 9: No moist convection: cloud base is higher then the level NL-1.
71    
72        real, intent(out):: ft1(klon, klev) ! temperature tendency (K/s)
73        real, intent(out):: fq1(klon, klev) ! specific humidity tendency (s-1)
74    
75        real, intent(out):: fu1(klon, klev), fv1(klon, klev)
76        ! forcing (tendency) of zonal and meridional velocity (m/s^2)
77    
78        real, intent(out):: precip1(klon) ! convective precipitation rate (mm/day)
79    
80        real, intent(out):: VPrecip1(klon, klev + 1)
81        ! vertical profile of convective precipitation (kg/m2/s)
82    
83        real, intent(inout):: sig1(klon, klev) ! section of adiabatic updraft
84    
85      real, intent(inout):: w01(klon, klev)      real, intent(inout):: w01(klon, klev)
86      ! vertical velocity within adiabatic updraft      ! vertical velocity within adiabatic updraft
87    
88      integer icb1(klon)      integer, intent(out):: icb1(klon)
89      integer inb1(klon)      integer, intent(inout):: inb1(klon)
90      real, intent(in):: delt      real, intent(in):: delt ! the model time step (sec) between calls
     !      delt          Real           Input        time step  
     real Ma1(len, nd)  
     !      Ma1           Real           Output       mass flux adiabatic updraft  
     real, intent(out):: upwd1(len, nd) ! total upward mass flux (adiab+mixed)  
     real, intent(out):: dnwd1(len, nd) ! saturated downward mass flux (mixed)  
     real, intent(out):: dnwd01(len, nd) ! unsaturated downward mass flux  
   
     real qcondc1(len, nd)     ! cld  
     !      qcondc1       Real           Output       in-cld mixing ratio of condensed water  
     real wd1(len)            ! gust  
     !      wd1           Real           Output       downdraft velocity scale for sfc fluxes  
     real cape1(len)  
     !      cape1         Real           Output       CAPE  
91    
92      real da1(len, nd), phi1(len, nd, nd), mp1(len, nd)      real, intent(out):: Ma1(klon, klev) ! mass flux of adiabatic updraft
93    
94      !-------------------------------------------------------------------      real, intent(out):: upwd1(klon, klev)
95      ! --- ARGUMENTS      ! total upward mass flux (adiabatic + mixed)
     !-------------------------------------------------------------------  
     ! --- On input:  
96    
97      !  t:   Array of absolute temperature (K) of dimension ND, with first      real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
98      !       index corresponding to lowest model level. Note that this array      real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux
     !       will be altered by the subroutine if dry convective adjustment  
     !       occurs and if IPBL is not equal to 0.  
   
     !  q:   Array of specific humidity (gm/gm) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  qs:  Array of saturation specific humidity of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  u:   Array of zonal wind velocity (m/s) of dimension ND, witth first  
     !       index corresponding with the lowest model level. Defined at  
     !       same levels as T. Note that this array will be altered if  
     !       dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  v:   Same as u but for meridional velocity.  
   
     !  p:   Array of pressure (mb) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T.  
   
     !  ph:  Array of pressure (mb) of dimension ND+1, with first index  
     !       corresponding to lowest level. These pressures are defined at  
     !       levels intermediate between those of P, T, Q and QS. The first  
     !       value of PH should be greater than (i.e. at a lower level than)  
     !       the first value of the array P.  
   
     !  nl:  The maximum number of levels to which convection can penetrate, plus 1.  
     !       NL MUST be less than or equal to ND-1.  
   
     !  delt: The model time step (sec) between calls to CONVECT  
   
     !----------------------------------------------------------------------------  
     ! ---   On Output:  
   
     !  iflag: An output integer whose value denotes the following:  
     !       VALUE   INTERPRETATION  
     !       -----   --------------  
     !         0     Moist convection occurs.  
     !         1     Moist convection occurs, but a CFL condition  
     !               on the subsidence warming is violated. This  
     !               does not cause the scheme to terminate.  
     !         2     Moist convection, but no precip because ep(inb) lt 0.0001  
     !         3     No moist convection because new cbmf is 0 and old cbmf is 0.  
     !         4     No moist convection; atmosphere is not  
     !               unstable  
     !         6     No moist convection because ihmin le minorig.  
     !         7     No moist convection because unreasonable  
     !               parcel level temperature or specific humidity.  
     !         8     No moist convection: lifted condensation  
     !               level is above the 200 mb level.  
     !         9     No moist convection: cloud base is higher  
     !               then the level NL-1.  
   
     !  ft:   Array of temperature tendency (K/s) of dimension ND, defined at same  
     !        grid levels as T, Q, QS and P.  
   
     !  fq:   Array of specific humidity tendencies ((gm/gm)/s) of dimension ND,  
     !        defined at same grid levels as T, Q, QS and P.  
   
     !  fu:   Array of forcing of zonal velocity (m/s^2) of dimension ND,  
     !        defined at same grid levels as T.  
   
     !  fv:   Same as FU, but for forcing of meridional velocity.  
   
     !  precip: Scalar convective precipitation rate (mm/day).  
   
     !  VPrecip: Vertical profile of convective precipitation (kg/m2/s).  
   
     !  wd:   A convective downdraft velocity scale. For use in surface  
     !        flux parameterizations. See convect.ps file for details.  
   
     !  tprime: A convective downdraft temperature perturbation scale (K).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  qprime: A convective downdraft specific humidity  
     !          perturbation scale (gm/gm).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST  
     !        BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT  
     !        ITS NEXT CALL. That is, the value of CBMF must be "remembered"  
     !        by the calling program between calls to CONVECT.  
99    
100      !  det:   Array of detrainment mass flux of dimension ND.      real, intent(out):: qcondc1(klon, klev)
101        ! in-cloud mixing ratio of condensed water
     !-------------------------------------------------------------------  
102    
103      !  Local arrays      real, intent(out):: cape1(klon)
104        real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)
105        real, intent(inout):: mp1(klon, klev)
106    
107      real da(len, nd), phi(len, nd, nd), mp(len, nd)      ! Local:
108    
109        real da(klon, klev), phi(klon, klev, klev), mp(klon, klev)
110      integer i, k, il      integer i, k, il
111      integer icbmax      integer icbmax
112      integer nk1(klon)      integer nk1(klon)
113      integer icbs1(klon)      integer icbs1(klon)
   
114      real plcl1(klon)      real plcl1(klon)
115      real tnk1(klon)      real tnk1(klon)
116      real qnk1(klon)      real qnk1(klon)
117      real gznk1(klon)      real gznk1(klon)
118      real pbase1(klon)      real pbase1(klon)
119      real buoybase1(klon)      real buoybase1(klon)
   
120      real lv1(klon, klev)      real lv1(klon, klev)
121      real cpn1(klon, klev)      real cpn1(klon, klev)
122      real tv1(klon, klev)      real tv1(klon, klev)
# Line 210  contains Line 127  contains
127      real tvp1(klon, klev)      real tvp1(klon, klev)
128      real clw1(klon, klev)      real clw1(klon, klev)
129      real th1(klon, klev)      real th1(klon, klev)
   
130      integer ncum      integer ncum
131    
132      ! (local) compressed fields:      ! Compressed fields:
133        integer idcum(klon)
134      integer nloc      integer iflag(klon), nk(klon), icb(klon)
135      parameter (nloc = klon) ! pour l'instant      integer nent(klon, klev)
136        integer icbs(klon)
137        integer inb(klon)
138        real plcl(klon), tnk(klon), qnk(klon), gznk(klon)
139        real t(klon, klev), q(klon, klev), qs(klon, klev)
140        real u(klon, klev), v(klon, klev)
141        real gz(klon, klev), h(klon, klev), lv(klon, klev), cpn(klon, klev)
142        real p(klon, klev), ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
143        real clw(klon, klev)
144        real pbase(klon), buoybase(klon), th(klon, klev)
145        real tvp(klon, klev)
146        real sig(klon, klev), w0(klon, klev)
147        real hp(klon, klev), ep(klon, klev), sigp(klon, klev)
148        real buoy(klon, klev)
149        real cape(klon)
150        real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
151        real uent(klon, klev, klev), vent(klon, klev, klev)
152        real ments(klon, klev, klev), qents(klon, klev, klev)
153        real sij(klon, klev, klev), elij(klon, klev, klev)
154        real qp(klon, klev), up(klon, klev), vp(klon, klev)
155        real wt(klon, klev), water(klon, klev), evap(klon, klev)
156        real, allocatable:: b(:, :) ! (ncum, nl - 1)
157        real ft(klon, klev), fq(klon, klev)
158        real fu(klon, klev), fv(klon, klev)
159        real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)
160        real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
161        real tps(klon, klev)
162        real precip(klon)
163        real VPrecip(klon, klev + 1)
164        real qcondc(klon, klev) ! cld
165    
     integer idcum(nloc)  
     integer iflag(nloc), nk(nloc), icb(nloc)  
     integer nent(nloc, klev)  
     integer icbs(nloc)  
     integer inb(nloc), inbis(nloc)  
   
     real cbmf(nloc), plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc)  
     real t(nloc, klev), q(nloc, klev), qs(nloc, klev)  
     real u(nloc, klev), v(nloc, klev)  
     real gz(nloc, klev), h(nloc, klev), lv(nloc, klev), cpn(nloc, klev)  
     real p(nloc, klev), ph(nloc, klev+1), tv(nloc, klev), tp(nloc, klev)  
     real clw(nloc, klev)  
     real dph(nloc, klev)  
     real pbase(nloc), buoybase(nloc), th(nloc, klev)  
     real tvp(nloc, klev)  
     real sig(nloc, klev), w0(nloc, klev)  
     real hp(nloc, klev), ep(nloc, klev), sigp(nloc, klev)  
     real frac(nloc), buoy(nloc, klev)  
     real cape(nloc)  
     real m(nloc, klev), ment(nloc, klev, klev), qent(nloc, klev, klev)  
     real uent(nloc, klev, klev), vent(nloc, klev, klev)  
     real ments(nloc, klev, klev), qents(nloc, klev, klev)  
     real sij(nloc, klev, klev), elij(nloc, klev, klev)  
     real qp(nloc, klev), up(nloc, klev), vp(nloc, klev)  
     real wt(nloc, klev), water(nloc, klev), evap(nloc, klev)  
     real b(nloc, klev), ft(nloc, klev), fq(nloc, klev)  
     real fu(nloc, klev), fv(nloc, klev)  
     real upwd(nloc, klev), dnwd(nloc, klev), dnwd0(nloc, klev)  
     real Ma(nloc, klev), mike(nloc, klev), tls(nloc, klev)  
     real tps(nloc, klev), qprime(nloc), tprime(nloc)  
     real precip(nloc)  
     real VPrecip(nloc, klev+1)  
     real qcondc(nloc, klev)  ! cld  
     real wd(nloc)           ! gust  
   
     !-------------------------------------------------------------------  
     ! --- SET CONSTANTS AND PARAMETERS  
166      !-------------------------------------------------------------------      !-------------------------------------------------------------------
167    
168      ! -- set simulation flags:      ! SET CONSTANTS AND PARAMETERS
     !   (common cvflag)  
   
     CALL cv_flag  
   
     ! -- set thermodynamical constants:  
     !     (common cvthermo)  
169    
170        ! set thermodynamical constants:
171      CALL cv_thermo      CALL cv_thermo
172    
173      ! -- set convect parameters      ! set convect parameters
174        ! includes microphysical parameters and parameters that
175      !     includes microphysical parameters and parameters that      ! control the rate of approach to quasi-equilibrium)
176      !     control the rate of approach to quasi-equilibrium)      ! (common cvparam)
177      !     (common cvparam)      CALL cv30_param(delt)
178    
179      if (iflag_con.eq.3) then      ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
180         CALL cv3_param(nd, delt)  
181      endif      do k = 1, klev
182           do i = 1, klon
183      if (iflag_con.eq.4) then            ft1(i, k) = 0.
184         CALL cv_param(nd)            fq1(i, k) = 0.
185      endif            fu1(i, k) = 0.
186              fv1(i, k) = 0.
187      !---------------------------------------------------------------------            tvp1(i, k) = 0.
188      ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS            tp1(i, k) = 0.
189      !---------------------------------------------------------------------            clw1(i, k) = 0.
190              clw(i, k) = 0.
191      do k = 1, nd            gz1(i, k) = 0.
        do  i = 1, len  
           ft1(i, k) = 0.0  
           fq1(i, k) = 0.0  
           fu1(i, k) = 0.0  
           fv1(i, k) = 0.0  
           tvp1(i, k) = 0.0  
           tp1(i, k) = 0.0  
           clw1(i, k) = 0.0  
           !ym  
           clw(i, k) = 0.0  
           gz1(i, k)  =  0.  
192            VPrecip1(i, k) = 0.            VPrecip1(i, k) = 0.
193            Ma1(i, k) = 0.0            Ma1(i, k) = 0.
194            upwd1(i, k) = 0.0            upwd1(i, k) = 0.
195            dnwd1(i, k) = 0.0            dnwd1(i, k) = 0.
196            dnwd01(i, k) = 0.0            dnwd01(i, k) = 0.
197            qcondc1(i, k) = 0.0            qcondc1(i, k) = 0.
198         end do         end do
199      end do      end do
200    
201      do  i = 1, len      do i = 1, klon
202         precip1(i) = 0.0         precip1(i) = 0.
203         iflag1(i) = 0         iflag1(i) = 0
204         wd1(i) = 0.0         cape1(i) = 0.
205         cape1(i) = 0.0         VPrecip1(i, klev + 1) = 0.
        VPrecip1(i, nd+1) = 0.0  
206      end do      end do
207    
208      if (iflag_con.eq.3) then      do il = 1, klon
209         do il = 1, len         sig1(il, klev) = sig1(il, klev) + 1.
210            sig1(il, nd) = sig1(il, nd) + 1.         sig1(il, klev) = min(sig1(il, klev), 12.1)
211            sig1(il, nd)  =  min(sig1(il, nd), 12.1)      enddo
212         enddo  
213      endif      ! CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY
214        CALL cv30_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &
215      !--------------------------------------------------------------------           gz1, h1, hm1, th1)
216      ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY  
217      !--------------------------------------------------------------------      ! CONVECTIVE FEED
218        CALL cv30_feed(klon, klev, t1, q1, qs1, p1, ph1, gz1, nk1, icb1, &
219      if (iflag_con.eq.3) then           icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! klev->na
220         CALL cv3_prelim(len, nd, nd + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, &  
221              h1, hm1, th1)      CALL cv30_undilute1(klon, klev, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, &
222      endif           tp1, tvp1, clw1, icbs1) ! klev->na
223    
224      if (iflag_con.eq.4) then      ! TRIGGERING
225         CALL cv_prelim(len, nd, nd + 1, t1, q1, p1, ph1 &      CALL cv30_trigger(klon, klev, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &
226              , lv1, cpn1, tv1, gz1, h1, hm1)           buoybase1, iflag1, sig1, w01) ! klev->na
     endif  
   
     !--------------------------------------------------------------------  
     ! --- CONVECTIVE FEED  
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_feed(len, nd, t1, q1, qs1, p1, ph1, hm1, gz1            &  
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_feed(len, nd, t1, q1, qs1, p1, hm1, gz1 &  
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1)  
     endif  
   
     !--------------------------------------------------------------------  
     ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part  
     ! (up through ICB for convect4, up through ICB+1 for convect3)  
     !     Calculates the lifted parcel virtual temperature at nk, the  
     !     actual temperature, and the adiabatic liquid water content.  
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_undilute1(len, nd, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1   &  
             , tp1, tvp1, clw1, icbs1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_undilute1(len, nd, t1, q1, qs1, gz1, p1, nk1, icb1, icbmax &  
             , tp1, tvp1, clw1)  
     endif  
   
     !-------------------------------------------------------------------  
     ! --- TRIGGERING  
     !-------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_trigger(len, nd, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &  
             buoybase1, iflag1, sig1, w01) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_trigger(len, nd, icb1, cbmf1, tv1, tvp1, iflag1)  
     endif  
227    
228      ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY      ! Moist convective adjustment is necessary
229    
230      ncum = 0      ncum = 0
231      do  i = 1, len      do i = 1, klon
232         if(iflag1(i).eq.0)then         if (iflag1(i) == 0) then
233            ncum = ncum+1            ncum = ncum + 1
234            idcum(ncum) = i            idcum(ncum) = i
235         endif         endif
236      end do      end do
237    
238      !       print*, 'klon, ncum = ', len, ncum      IF (ncum > 0) THEN
239           allocate(b(ncum, nl - 1))
240      IF (ncum.gt.0) THEN         CALL cv30_compress(ncum, iflag1, nk1, icb1, icbs1, plcl1, tnk1, qnk1, &
241                gznk1, pbase1, buoybase1, t1, q1, qs1, u1, v1, gz1, th1, h1, lv1, &
242         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^              cpn1, p1, ph1, tv1, tp1, tvp1, clw1, sig1, w01, iflag, nk, icb, &
243         ! --- COMPRESS THE FIELDS              icbs, plcl, tnk, qnk, gznk, pbase, buoybase, t, q, qs, u, v, gz, &
244         !        (-> vectorization over convective gridpoints)              th, h, lv, cpn, p, ph, tv, tp, tvp, clw, sig, w0)
245         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^         CALL cv30_undilute2(ncum, icb, icbs, nk, tnk, qnk, gznk, t, qs, gz, p, &
246                h, tv, lv, pbase, buoybase, plcl, inb(:ncum), tp, tvp, clw, hp, &
247         if (iflag_con.eq.3) then              ep, sigp, buoy)
248            CALL cv3_compress(len, nloc, ncum, nd, iflag1, nk1, icb1, icbs1, &  
249                 plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, &         ! CLOSURE
250                 v1, gz1, th1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, &         CALL cv30_closure(klon, ncum, klev, icb, inb, pbase, p, ph, tv, &
251                 sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, &              buoy, sig, w0, cape, m) ! na->klev
252                 buoybase, t, q, qs, u, v, gz, th, h, lv, cpn, p, ph, tv, tp, &  
253                 tvp, clw, sig, w0)         ! MIXING
254         endif         CALL cv30_mixing(klon, ncum, klev, klev, icb, nk, inb, t, q, qs, u, &
255                v, h, lv, hp, ep, clw, m, sig, ment, qent, uent, vent, nent, &
256         if (iflag_con.eq.4) then              sij, elij, ments, qents)
257            CALL cv_compress( len, nloc, ncum, nd &  
258                 , iflag1, nk1, icb1 &         ! Unsaturated (precipitating) downdrafts
259                 , cbmf1, plcl1, tnk1, qnk1, gznk1 &         CALL cv30_unsat(icb(:ncum), inb(:ncum), t, q, qs, gz, u, v, p, ph, th, &
260                 , t1, q1, qs1, u1, v1, gz1 &              tv, lv, cpn, ep(:ncum, :), sigp(:ncum, :), clw(:ncum, :), &
261                 , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1 &              m(:ncum, :), ment(:ncum, :, :), elij(:ncum, :, :), delt, plcl, &
262                 , iflag, nk, icb &              mp, qp(:ncum, :nl), up(:ncum, :nl), vp(:ncum, :nl), wt, water, &
263                 , cbmf, plcl, tnk, qnk, gznk &              evap, b)
264                 , t, q, qs, u, v, gz, h, lv, cpn, p, ph, tv, tp, tvp, clw  &  
265                 , dph )         ! Yield (tendencies, precipitation, variables of interface with
266         endif         ! other processes, etc)
267           CALL cv30_yield(icb(:ncum), inb(:ncum), delt, t, q, u, v, gz, p, ph, &
268         !-------------------------------------------------------------------              h, hp, lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp, wt, &
269         ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :              water(:ncum, :nl), evap(:ncum, :nl), b, ment, qent, uent, vent, &
270         ! ---   FIND THE REST OF THE LIFTED PARCEL TEMPERATURES              nent, elij, sig, tv, tvp, iflag, precip, VPrecip, ft, fq, fu, fv, &
271         ! ---   &              upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc)
272         ! ---   COMPUTE THE PRECIPITATION EFFICIENCIES AND THE  
273         ! ---   FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD         CALL cv30_tracer(klon, ncum, klev, ment, sij, da, phi)
274         ! ---   &  
275         ! ---   FIND THE LEVEL OF NEUTRAL BUOYANCY         ! UNCOMPRESS THE FIELDS
276         !-------------------------------------------------------------------         iflag1 = 42 ! for non convective points
277           CALL cv30_uncompress(idcum(:ncum), iflag, precip, VPrecip, sig, w0, &
278         if (iflag_con.eq.3) then              ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, cape, &
279            CALL cv3_undilute2(nloc, ncum, nd, icb, icbs, nk         &              da, phi, mp, iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, &
280                 , tnk, qnk, gznk, t, q, qs, gz &              fu1, fv1, inb1, Ma1, upwd1, dnwd1, dnwd01, qcondc1, cape1, da1, &
281                 , p, h, tv, lv, pbase, buoybase, plcl &              phi1, mp1)
282                 , inb, tp, tvp, clw, hp, ep, sigp, buoy) !na->nd      ENDIF
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_undilute2(nloc, ncum, nd, icb, nk &  
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, dph, h, tv, lv &  
                , inb, inbis, tp, tvp, clw, hp, ep, sigp, frac)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- CLOSURE  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_closure(nloc, ncum, nd, icb, inb               &  
                , pbase, p, ph, tv, buoy &  
                , sig, w0, cape, m) ! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_closure(nloc, ncum, nd, nk, icb &  
                , tv, tvp, p, ph, dph, plcl, cpn &  
                , iflag, cbmf)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- MIXING  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_mixing(nloc, ncum, nd, nd, icb, nk, inb, ph, t, q, &  
                qs, u, v, h, lv, qnk, hp, tv, tvp, ep, clw, m, sig, ment, &  
                qent, uent, vent, nent, sij, elij, ments, qents)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_mixing(nloc, ncum, nd, icb, nk, inb, inbis &  
                , ph, t, q, qs, u, v, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, cbmf &  
                , m, ment, qent, uent, vent, nent, sij, elij)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_unsat(nloc, ncum, nd, nd, icb, inb     &  
                , t, q, qs, gz, u, v, p, ph &  
                , th, tv, lv, cpn, ep, sigp, clw &  
                , m, ment, elij, delt, plcl &  
                , mp, qp, up, vp, wt, water, evap, b)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_unsat(nloc, ncum, nd, inb, t, q, qs, gz, u, v, p, ph &  
                , h, lv, ep, sigp, clw, m, ment, elij &  
                , iflag, mp, qp, up, vp, wt, water, evap)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- YIELD  
        !     (tendencies, precipitation, variables of interface with other  
        !      processes, etc)  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_yield(nloc, ncum, nd, nd             &  
                , icb, inb, delt &  
                , t, q, u, v, gz, p, ph, h, hp, lv, cpn, th &  
                , ep, clw, m, tp, mp, qp, up, vp &  
                , wt, water, evap, b &  
                , ment, qent, uent, vent, nent, elij, sig &  
                , tv, tvp &  
                , iflag, precip, VPrecip, ft, fq, fu, fv &  
                , upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc, wd)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_yield(nloc, ncum, nd, nk, icb, inb, delt &  
                , t, q, u, v, gz, p, ph, h, hp, lv, cpn &  
                , ep, clw, frac, m, mp, qp, up, vp &  
                , wt, water, evap &  
                , ment, qent, uent, vent, nent, elij &  
                , tv, tvp &  
                , iflag, wd, qprime, tprime &  
                , precip, cbmf, ft, fq, fu, fv, Ma, qcondc)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- passive tracers  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
        if (iflag_con.eq.3) then  
           CALL cv3_tracer(nloc, len, ncum, nd, nd, &  
                ment, sij, da, phi)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- UNCOMPRESS THE FIELDS  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! set iflag1  = 42 for non convective points  
        do  i = 1, len  
           iflag1(i) = 42  
        end do  
   
        if (iflag_con.eq.3) then  
           CALL cv3_uncompress(nloc, len, ncum, nd, idcum &  
                , iflag &  
                , precip, VPrecip, sig, w0 &  
                , ft, fq, fu, fv &  
                , inb  &  
                , Ma, upwd, dnwd, dnwd0, qcondc, wd, cape &  
                , da, phi, mp &  
                , iflag1 &  
                , precip1, VPrecip1, sig1, w01 &  
                , ft1, fq1, fu1, fv1 &  
                , inb1 &  
                , Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1  &  
                , da1, phi1, mp1)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_uncompress(nloc, len, ncum, nd, idcum &  
                , iflag &  
                , precip, cbmf &  
                , ft, fq, fu, fv &  
                , Ma, qcondc             &  
                , iflag1 &  
                , precip1, cbmf1 &  
                , ft1, fq1, fu1, fv1 &  
                , Ma1, qcondc1 )  
        endif  
     ENDIF ! ncum>0  
283    
284    end SUBROUTINE cv_driver    end SUBROUTINE cv_driver
285    

Legend:
Removed from v.97  
changed lines
  Added in v.192

  ViewVC Help
Powered by ViewVC 1.1.21