/[lmdze]/trunk/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/phylmd/cv_driver.f revision 97 by guez, Fri Apr 25 14:58:31 2014 UTC trunk/Sources/phylmd/cv_driver.f revision 195 by guez, Wed May 18 17:56:44 2016 UTC
# Line 4  module cv_driver_m Line 4  module cv_driver_m
4    
5  contains  contains
6    
7    SUBROUTINE cv_driver(len, nd, t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, &    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, fq1, fu1, &
8         fq1, fu1, fv1, precip1, VPrecip1, cbmf1, sig1, w01, icb1, inb1, delt, &         fv1, precip1, VPrecip1, sig1, w01, icb1, inb1, Ma1, upwd1, dnwd1, &
9         Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1)         dnwd01, qcondc1, cape1, da1, phi1, mp1)
10    
11      ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17      ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
12      ! Main driver for convection      ! Main driver for convection
# Line 14  contains Line 14  contains
14    
15      ! Several modules corresponding to different physical processes      ! Several modules corresponding to different physical processes
16    
17      ! Several versions of convect may be used:      use comconst, only: dtphys
18      ! - iflag_con = 3: version lmd      use cv30_closure_m, only: cv30_closure
19      ! - iflag_con = 4: version 4.3b      use cv30_compress_m, only: cv30_compress
20        use cv30_feed_m, only: cv30_feed
21      use clesphys2, only: iflag_con      use cv30_mixing_m, only: cv30_mixing
22      use cv3_compress_m, only: cv3_compress      use cv30_param_m, only: cv30_param, nl
23      use cv3_mixing_m, only: cv3_mixing      use cv30_prelim_m, only: cv30_prelim
24      use cv3_param_m, only: cv3_param      use cv30_tracer_m, only: cv30_tracer
25      use cv3_prelim_m, only: cv3_prelim      use cv30_trigger_m, only: cv30_trigger
26      use cv3_tracer_m, only: cv3_tracer      use cv30_uncompress_m, only: cv30_uncompress
27      use cv3_uncompress_m, only: cv3_uncompress      use cv30_undilute1_m, only: cv30_undilute1
28      use cv3_unsat_m, only: cv3_unsat      use cv30_undilute2_m, only: cv30_undilute2
29      use cv3_yield_m, only: cv3_yield      use cv30_unsat_m, only: cv30_unsat
30      use cv_uncompress_m, only: cv_uncompress      use cv30_yield_m, only: cv30_yield
31        use cv_thermo_m, only: cv_thermo
32      USE dimphy, ONLY: klev, klon      USE dimphy, ONLY: klev, klon
33    
34      integer, intent(in):: len ! first dimension      real, intent(in):: t1(klon, klev) ! temperature (K)
35      integer, intent(in):: nd ! vertical dimension      real, intent(in):: q1(klon, klev) ! specific humidity
36      real, intent(in):: t1(len, nd) ! temperature      real, intent(in):: qs1(klon, klev) ! saturation specific humidity
     real q1(len, nd) !           Input        specific hum  
     real qs1(len, nd)  
     !      qs1           Real           Input        sat specific hum  
     real, intent(in):: u1(len, nd)  
     !      u1            Real           Input        u-wind  
     real, intent(in):: v1(len, nd)  
     !      v1            Real           Input        v-wind  
     real p1(len, nd)  
     !      p1            Real           Input        full level pressure  
     real ph1(len, nd + 1)  
     !      ph1           Real           Input        half level pressure  
     integer iflag1(len)  
     !      iflag1        Integer        Output       flag for Emanuel conditions  
     real ft1(len, nd)  
     !      ft1           Real           Output       temp tend  
     real fq1(len, nd)  
     !      fq1           Real           Output       spec hum tend  
     real fu1(len, nd)  
     !      fu1           Real           Output       u-wind tend  
     real fv1(len, nd)  
     !      fv1           Real           Output       v-wind tend  
     real precip1(len)  
     !      precip1       Real           Output       precipitation  
     real VPrecip1(len, nd+1)  
     !      VPrecip1      Real           Output       vertical profile of precipitations  
     real cbmf1(len)  
     !      cbmf1         Real           Output       cloud base mass flux  
     real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft  
37    
38      real, intent(inout):: w01(klon, klev)      real, intent(in):: u1(klon, klev), v1(klon, klev)
39      ! vertical velocity within adiabatic updraft      ! zonal wind and meridional velocity (m/s)
40    
41      integer icb1(klon)      real, intent(in):: p1(klon, klev) ! full level pressure (hPa)
     integer inb1(klon)  
     real, intent(in):: delt  
     !      delt          Real           Input        time step  
     real Ma1(len, nd)  
     !      Ma1           Real           Output       mass flux adiabatic updraft  
     real, intent(out):: upwd1(len, nd) ! total upward mass flux (adiab+mixed)  
     real, intent(out):: dnwd1(len, nd) ! saturated downward mass flux (mixed)  
     real, intent(out):: dnwd01(len, nd) ! unsaturated downward mass flux  
   
     real qcondc1(len, nd)     ! cld  
     !      qcondc1       Real           Output       in-cld mixing ratio of condensed water  
     real wd1(len)            ! gust  
     !      wd1           Real           Output       downdraft velocity scale for sfc fluxes  
     real cape1(len)  
     !      cape1         Real           Output       CAPE  
42    
43      real da1(len, nd), phi1(len, nd, nd), mp1(len, nd)      real, intent(in):: ph1(klon, klev + 1)
44        ! Half level pressure (hPa). These pressures are defined at levels
45        ! intermediate between those of P1, T1, Q1 and QS1. The first
46        ! value of PH should be greater than (i.e. at a lower level than)
47        ! the first value of the array P1.
48    
49      !-------------------------------------------------------------------      integer, intent(out):: iflag1(klon)
50      ! --- ARGUMENTS      ! Flag for Emanuel conditions.
     !-------------------------------------------------------------------  
     ! --- On input:  
51    
52      !  t:   Array of absolute temperature (K) of dimension ND, with first      ! 0: Moist convection occurs.
     !       index corresponding to lowest model level. Note that this array  
     !       will be altered by the subroutine if dry convective adjustment  
     !       occurs and if IPBL is not equal to 0.  
   
     !  q:   Array of specific humidity (gm/gm) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  qs:  Array of saturation specific humidity of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  u:   Array of zonal wind velocity (m/s) of dimension ND, witth first  
     !       index corresponding with the lowest model level. Defined at  
     !       same levels as T. Note that this array will be altered if  
     !       dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  v:   Same as u but for meridional velocity.  
   
     !  p:   Array of pressure (mb) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T.  
   
     !  ph:  Array of pressure (mb) of dimension ND+1, with first index  
     !       corresponding to lowest level. These pressures are defined at  
     !       levels intermediate between those of P, T, Q and QS. The first  
     !       value of PH should be greater than (i.e. at a lower level than)  
     !       the first value of the array P.  
   
     !  nl:  The maximum number of levels to which convection can penetrate, plus 1.  
     !       NL MUST be less than or equal to ND-1.  
   
     !  delt: The model time step (sec) between calls to CONVECT  
   
     !----------------------------------------------------------------------------  
     ! ---   On Output:  
   
     !  iflag: An output integer whose value denotes the following:  
     !       VALUE   INTERPRETATION  
     !       -----   --------------  
     !         0     Moist convection occurs.  
     !         1     Moist convection occurs, but a CFL condition  
     !               on the subsidence warming is violated. This  
     !               does not cause the scheme to terminate.  
     !         2     Moist convection, but no precip because ep(inb) lt 0.0001  
     !         3     No moist convection because new cbmf is 0 and old cbmf is 0.  
     !         4     No moist convection; atmosphere is not  
     !               unstable  
     !         6     No moist convection because ihmin le minorig.  
     !         7     No moist convection because unreasonable  
     !               parcel level temperature or specific humidity.  
     !         8     No moist convection: lifted condensation  
     !               level is above the 200 mb level.  
     !         9     No moist convection: cloud base is higher  
     !               then the level NL-1.  
   
     !  ft:   Array of temperature tendency (K/s) of dimension ND, defined at same  
     !        grid levels as T, Q, QS and P.  
   
     !  fq:   Array of specific humidity tendencies ((gm/gm)/s) of dimension ND,  
     !        defined at same grid levels as T, Q, QS and P.  
   
     !  fu:   Array of forcing of zonal velocity (m/s^2) of dimension ND,  
     !        defined at same grid levels as T.  
   
     !  fv:   Same as FU, but for forcing of meridional velocity.  
   
     !  precip: Scalar convective precipitation rate (mm/day).  
   
     !  VPrecip: Vertical profile of convective precipitation (kg/m2/s).  
   
     !  wd:   A convective downdraft velocity scale. For use in surface  
     !        flux parameterizations. See convect.ps file for details.  
   
     !  tprime: A convective downdraft temperature perturbation scale (K).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  qprime: A convective downdraft specific humidity  
     !          perturbation scale (gm/gm).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST  
     !        BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT  
     !        ITS NEXT CALL. That is, the value of CBMF must be "remembered"  
     !        by the calling program between calls to CONVECT.  
53    
54      !  det:   Array of detrainment mass flux of dimension ND.      ! 1: Moist convection occurs, but a CFL condition on the
55        ! subsidence warming is violated. This does not cause the scheme
56        ! to terminate.
57    
58      !-------------------------------------------------------------------      ! 2: Moist convection, but no precipitation because ep(inb) < 1e-4
59    
60        ! 3: No moist convection because new cbmf is 0 and old cbmf is 0.
61    
62        ! 4: No moist convection; atmosphere is not unstable.
63    
64        ! 6: No moist convection because ihmin <= minorig.
65    
66        ! 7: No moist convection because unreasonable parcel level
67        ! temperature or specific humidity.
68    
69        ! 8: No moist convection: lifted condensation level is above the
70        ! 200 mbar level.
71    
72        ! 9: No moist convection: cloud base is higher than the level NL-1.
73    
74        real, intent(out):: ft1(klon, klev) ! temperature tendency (K/s)
75        real, intent(out):: fq1(klon, klev) ! specific humidity tendency (s-1)
76    
77        real, intent(out):: fu1(klon, klev), fv1(klon, klev)
78        ! forcing (tendency) of zonal and meridional velocity (m/s^2)
79    
80        real, intent(out):: precip1(klon) ! convective precipitation rate (mm/day)
81    
82        real, intent(out):: VPrecip1(klon, klev + 1)
83        ! vertical profile of convective precipitation (kg/m2/s)
84    
85        real, intent(inout):: sig1(klon, klev) ! section of adiabatic updraft
86    
87        real, intent(inout):: w01(klon, klev)
88        ! vertical velocity within adiabatic updraft
89    
90        integer, intent(out):: icb1(klon)
91        integer, intent(inout):: inb1(klon)
92        real, intent(out):: Ma1(klon, klev) ! mass flux of adiabatic updraft
93    
94        real, intent(out):: upwd1(klon, klev)
95        ! total upward mass flux (adiabatic + mixed)
96    
97        real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
98        real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux
99    
100        real, intent(out):: qcondc1(klon, klev)
101        ! in-cloud mixing ratio of condensed water
102    
103      !  Local arrays      real, intent(out):: cape1(klon)
104        real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)
105        real, intent(inout):: mp1(klon, klev)
106    
107      real da(len, nd), phi(len, nd, nd), mp(len, nd)      ! Local:
108    
109        real da(klon, klev), phi(klon, klev, klev), mp(klon, klev)
110      integer i, k, il      integer i, k, il
111      integer icbmax      integer icbmax
112      integer nk1(klon)      integer nk1(klon)
113      integer icbs1(klon)      integer icbs1(klon)
   
114      real plcl1(klon)      real plcl1(klon)
115      real tnk1(klon)      real tnk1(klon)
116      real qnk1(klon)      real qnk1(klon)
117      real gznk1(klon)      real gznk1(klon)
118      real pbase1(klon)      real pbase1(klon)
119      real buoybase1(klon)      real buoybase1(klon)
   
120      real lv1(klon, klev)      real lv1(klon, klev)
121      real cpn1(klon, klev)      real cpn1(klon, klev)
122      real tv1(klon, klev)      real tv1(klon, klev)
# Line 210  contains Line 127  contains
127      real tvp1(klon, klev)      real tvp1(klon, klev)
128      real clw1(klon, klev)      real clw1(klon, klev)
129      real th1(klon, klev)      real th1(klon, klev)
   
130      integer ncum      integer ncum
131    
132      ! (local) compressed fields:      ! Compressed fields:
133        integer idcum(klon)
134      integer nloc      integer iflag(klon), nk(klon)
135      parameter (nloc = klon) ! pour l'instant      integer, allocatable:: icb(:) ! (ncum)
136        integer nent(klon, klev)
137        integer icbs(klon)
138        integer inb(klon)
139        real plcl(klon), tnk(klon), qnk(klon), gznk(klon)
140        real t(klon, klev), q(klon, klev), qs(klon, klev)
141        real u(klon, klev), v(klon, klev)
142        real gz(klon, klev), h(klon, klev), lv(klon, klev), cpn(klon, klev)
143        real p(klon, klev) ! pressure at full level, in hPa
144        real ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
145        real clw(klon, klev)
146        real pbase(klon), buoybase(klon), th(klon, klev)
147        real tvp(klon, klev)
148        real sig(klon, klev), w0(klon, klev)
149        real hp(klon, klev), ep(klon, klev)
150        real buoy(klon, klev)
151        real cape(klon)
152        real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
153        real uent(klon, klev, klev), vent(klon, klev, klev)
154        real ments(klon, klev, klev), qents(klon, klev, klev)
155        real sij(klon, klev, klev), elij(klon, klev, klev)
156        real qp(klon, klev), up(klon, klev), vp(klon, klev)
157        real wt(klon, klev), water(klon, klev)
158        real, allocatable:: evap(:, :) ! (ncum, nl)
159        real, allocatable:: b(:, :) ! (ncum, nl - 1)
160        real ft(klon, klev), fq(klon, klev)
161        real fu(klon, klev), fv(klon, klev)
162        real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)
163        real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
164        real tps(klon, klev)
165        real precip(klon)
166        real VPrecip(klon, klev + 1)
167        real qcondc(klon, klev) ! cld
168    
     integer idcum(nloc)  
     integer iflag(nloc), nk(nloc), icb(nloc)  
     integer nent(nloc, klev)  
     integer icbs(nloc)  
     integer inb(nloc), inbis(nloc)  
   
     real cbmf(nloc), plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc)  
     real t(nloc, klev), q(nloc, klev), qs(nloc, klev)  
     real u(nloc, klev), v(nloc, klev)  
     real gz(nloc, klev), h(nloc, klev), lv(nloc, klev), cpn(nloc, klev)  
     real p(nloc, klev), ph(nloc, klev+1), tv(nloc, klev), tp(nloc, klev)  
     real clw(nloc, klev)  
     real dph(nloc, klev)  
     real pbase(nloc), buoybase(nloc), th(nloc, klev)  
     real tvp(nloc, klev)  
     real sig(nloc, klev), w0(nloc, klev)  
     real hp(nloc, klev), ep(nloc, klev), sigp(nloc, klev)  
     real frac(nloc), buoy(nloc, klev)  
     real cape(nloc)  
     real m(nloc, klev), ment(nloc, klev, klev), qent(nloc, klev, klev)  
     real uent(nloc, klev, klev), vent(nloc, klev, klev)  
     real ments(nloc, klev, klev), qents(nloc, klev, klev)  
     real sij(nloc, klev, klev), elij(nloc, klev, klev)  
     real qp(nloc, klev), up(nloc, klev), vp(nloc, klev)  
     real wt(nloc, klev), water(nloc, klev), evap(nloc, klev)  
     real b(nloc, klev), ft(nloc, klev), fq(nloc, klev)  
     real fu(nloc, klev), fv(nloc, klev)  
     real upwd(nloc, klev), dnwd(nloc, klev), dnwd0(nloc, klev)  
     real Ma(nloc, klev), mike(nloc, klev), tls(nloc, klev)  
     real tps(nloc, klev), qprime(nloc), tprime(nloc)  
     real precip(nloc)  
     real VPrecip(nloc, klev+1)  
     real qcondc(nloc, klev)  ! cld  
     real wd(nloc)           ! gust  
   
     !-------------------------------------------------------------------  
     ! --- SET CONSTANTS AND PARAMETERS  
169      !-------------------------------------------------------------------      !-------------------------------------------------------------------
170    
171      ! -- set simulation flags:      ! SET CONSTANTS AND PARAMETERS
     !   (common cvflag)  
   
     CALL cv_flag  
   
     ! -- set thermodynamical constants:  
     !     (common cvthermo)  
172    
173        ! set thermodynamical constants:
174      CALL cv_thermo      CALL cv_thermo
175    
176      ! -- set convect parameters      CALL cv30_param
177    
178        ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
179    
180      !     includes microphysical parameters and parameters that      do k = 1, klev
181      !     control the rate of approach to quasi-equilibrium)         do i = 1, klon
182      !     (common cvparam)            ft1(i, k) = 0.
183              fq1(i, k) = 0.
184      if (iflag_con.eq.3) then            fu1(i, k) = 0.
185         CALL cv3_param(nd, delt)            fv1(i, k) = 0.
186      endif            tvp1(i, k) = 0.
187              tp1(i, k) = 0.
188      if (iflag_con.eq.4) then            clw1(i, k) = 0.
189         CALL cv_param(nd)            clw(i, k) = 0.
190      endif            gz1(i, k) = 0.
   
     !---------------------------------------------------------------------  
     ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS  
     !---------------------------------------------------------------------  
   
     do k = 1, nd  
        do  i = 1, len  
           ft1(i, k) = 0.0  
           fq1(i, k) = 0.0  
           fu1(i, k) = 0.0  
           fv1(i, k) = 0.0  
           tvp1(i, k) = 0.0  
           tp1(i, k) = 0.0  
           clw1(i, k) = 0.0  
           !ym  
           clw(i, k) = 0.0  
           gz1(i, k)  =  0.  
191            VPrecip1(i, k) = 0.            VPrecip1(i, k) = 0.
192            Ma1(i, k) = 0.0            Ma1(i, k) = 0.
193            upwd1(i, k) = 0.0            upwd1(i, k) = 0.
194            dnwd1(i, k) = 0.0            dnwd1(i, k) = 0.
195            dnwd01(i, k) = 0.0            dnwd01(i, k) = 0.
196            qcondc1(i, k) = 0.0            qcondc1(i, k) = 0.
197         end do         end do
198      end do      end do
199    
200      do  i = 1, len      precip1 = 0.
201         precip1(i) = 0.0      iflag1 = 0
202         iflag1(i) = 0      cape1 = 0.
203         wd1(i) = 0.0      VPrecip1(:, klev + 1) = 0.
204         cape1(i) = 0.0  
205         VPrecip1(i, nd+1) = 0.0      do il = 1, klon
206      end do         sig1(il, klev) = sig1(il, klev) + 1.
207           sig1(il, klev) = min(sig1(il, klev), 12.1)
208      if (iflag_con.eq.3) then      enddo
209         do il = 1, len  
210            sig1(il, nd) = sig1(il, nd) + 1.      CALL cv30_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &
211            sig1(il, nd)  =  min(sig1(il, nd), 12.1)           gz1, h1, hm1, th1)
212         enddo      CALL cv30_feed(t1, q1, qs1, p1, ph1, gz1, nk1, icb1, icbmax, iflag1, &
213      endif           tnk1, qnk1, gznk1, plcl1)
214        CALL cv30_undilute1(t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, tp1, tvp1, &
215      !--------------------------------------------------------------------           clw1, icbs1)
216      ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY      CALL cv30_trigger(icb1, plcl1, p1, th1, tv1, tvp1, pbase1, buoybase1, &
217      !--------------------------------------------------------------------           iflag1, sig1, w01)
   
     if (iflag_con.eq.3) then  
        CALL cv3_prelim(len, nd, nd + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, &  
             h1, hm1, th1)  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_prelim(len, nd, nd + 1, t1, q1, p1, ph1 &  
             , lv1, cpn1, tv1, gz1, h1, hm1)  
     endif  
   
     !--------------------------------------------------------------------  
     ! --- CONVECTIVE FEED  
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_feed(len, nd, t1, q1, qs1, p1, ph1, hm1, gz1            &  
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_feed(len, nd, t1, q1, qs1, p1, hm1, gz1 &  
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1)  
     endif  
   
     !--------------------------------------------------------------------  
     ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part  
     ! (up through ICB for convect4, up through ICB+1 for convect3)  
     !     Calculates the lifted parcel virtual temperature at nk, the  
     !     actual temperature, and the adiabatic liquid water content.  
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_undilute1(len, nd, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1   &  
             , tp1, tvp1, clw1, icbs1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_undilute1(len, nd, t1, q1, qs1, gz1, p1, nk1, icb1, icbmax &  
             , tp1, tvp1, clw1)  
     endif  
218    
219      !-------------------------------------------------------------------      ! Moist convective adjustment is necessary
     ! --- TRIGGERING  
     !-------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_trigger(len, nd, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &  
             buoybase1, iflag1, sig1, w01) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_trigger(len, nd, icb1, cbmf1, tv1, tvp1, iflag1)  
     endif  
   
     ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY  
220    
221      ncum = 0      ncum = 0
222      do  i = 1, len      do i = 1, klon
223         if(iflag1(i).eq.0)then         if (iflag1(i) == 0) then
224            ncum = ncum+1            ncum = ncum + 1
225            idcum(ncum) = i            idcum(ncum) = i
226         endif         endif
227      end do      end do
228    
229      !       print*, 'klon, ncum = ', len, ncum      IF (ncum > 0) THEN
230           allocate(b(ncum, nl - 1), evap(ncum, nl), icb(ncum))
231      IF (ncum.gt.0) THEN         CALL cv30_compress(ncum, iflag1, nk1, icb1, icbs1, plcl1, tnk1, qnk1, &
232                gznk1, pbase1, buoybase1, t1, q1, qs1, u1, v1, gz1, th1, h1, lv1, &
233         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^              cpn1, p1, ph1, tv1, tp1, tvp1, clw1, sig1, w01, iflag, nk, icb, &
234         ! --- COMPRESS THE FIELDS              icbs, plcl, tnk, qnk, gznk, pbase, buoybase, t, q, qs, u, v, gz, &
235         !        (-> vectorization over convective gridpoints)              th, h, lv, cpn, p, ph, tv, tp, tvp, clw, sig, w0)
236         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^         CALL cv30_undilute2(icb, icbs(:ncum), nk, tnk, qnk, gznk, t, qs, gz, &
237                p, h, tv, lv, pbase, buoybase, plcl, inb(:ncum), tp, tvp, clw, &
238         if (iflag_con.eq.3) then              hp, ep, buoy)
239            CALL cv3_compress(len, nloc, ncum, nd, iflag1, nk1, icb1, icbs1, &         CALL cv30_closure(icb, inb(:ncum), pbase, p, ph, tv, buoy, sig, w0, &
240                 plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, &              cape, m)
241                 v1, gz1, th1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, &         CALL cv30_mixing(icb, nk(:ncum), inb(:ncum), t, q, qs, u, v, h, lv, &
242                 sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, &              hp, ep, clw, m, sig, ment, qent, uent, vent, nent, sij, elij, &
243                 buoybase, t, q, qs, u, v, gz, th, h, lv, cpn, p, ph, tv, tp, &              ments, qents)
244                 tvp, clw, sig, w0)         CALL cv30_unsat(icb, inb(:ncum), t(:ncum, :nl), q(:ncum, :nl), &
245         endif              qs(:ncum, :nl), gz, u, v, p, ph, th(:ncum, :nl - 1), tv, lv, cpn, &
246                ep(:ncum, :), clw(:ncum, :), m(:ncum, :), ment(:ncum, :, :), &
247         if (iflag_con.eq.4) then              elij(:ncum, :, :), dtphys, plcl, mp, qp(:ncum, :nl), &
248            CALL cv_compress( len, nloc, ncum, nd &              up(:ncum, :nl), vp(:ncum, :nl), wt(:ncum, :nl), &
249                 , iflag1, nk1, icb1 &              water(:ncum, :nl), evap, b)
250                 , cbmf1, plcl1, tnk1, qnk1, gznk1 &         CALL cv30_yield(icb, inb(:ncum), dtphys, t, q, u, v, gz, p, ph, h, hp, &
251                 , t1, q1, qs1, u1, v1, gz1 &              lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp(:ncum, 2:nl), &
252                 , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1 &              wt(:ncum, :nl - 1), water(:ncum, :nl), evap, b, ment, qent, uent, &
253                 , iflag, nk, icb &              vent, nent, elij, sig, tv, tvp, iflag, precip, VPrecip, ft, fq, &
254                 , cbmf, plcl, tnk, qnk, gznk &              fu, fv, upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc)
255                 , t, q, qs, u, v, gz, h, lv, cpn, p, ph, tv, tp, tvp, clw  &         CALL cv30_tracer(klon, ncum, klev, ment, sij, da, phi)
256                 , dph )  
257         endif         ! UNCOMPRESS THE FIELDS
258           iflag1 = 42 ! for non convective points
259         !-------------------------------------------------------------------         CALL cv30_uncompress(idcum(:ncum), iflag, precip, VPrecip, sig, w0, &
260         ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :              ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, cape, &
261         ! ---   FIND THE REST OF THE LIFTED PARCEL TEMPERATURES              da, phi, mp, iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, &
262         ! ---   &              fu1, fv1, inb1, Ma1, upwd1, dnwd1, dnwd01, qcondc1, cape1, da1, &
263         ! ---   COMPUTE THE PRECIPITATION EFFICIENCIES AND THE              phi1, mp1)
264         ! ---   FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD      ENDIF
        ! ---   &  
        ! ---   FIND THE LEVEL OF NEUTRAL BUOYANCY  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_undilute2(nloc, ncum, nd, icb, icbs, nk         &  
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, h, tv, lv, pbase, buoybase, plcl &  
                , inb, tp, tvp, clw, hp, ep, sigp, buoy) !na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_undilute2(nloc, ncum, nd, icb, nk &  
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, dph, h, tv, lv &  
                , inb, inbis, tp, tvp, clw, hp, ep, sigp, frac)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- CLOSURE  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_closure(nloc, ncum, nd, icb, inb               &  
                , pbase, p, ph, tv, buoy &  
                , sig, w0, cape, m) ! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_closure(nloc, ncum, nd, nk, icb &  
                , tv, tvp, p, ph, dph, plcl, cpn &  
                , iflag, cbmf)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- MIXING  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_mixing(nloc, ncum, nd, nd, icb, nk, inb, ph, t, q, &  
                qs, u, v, h, lv, qnk, hp, tv, tvp, ep, clw, m, sig, ment, &  
                qent, uent, vent, nent, sij, elij, ments, qents)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_mixing(nloc, ncum, nd, icb, nk, inb, inbis &  
                , ph, t, q, qs, u, v, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, cbmf &  
                , m, ment, qent, uent, vent, nent, sij, elij)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_unsat(nloc, ncum, nd, nd, icb, inb     &  
                , t, q, qs, gz, u, v, p, ph &  
                , th, tv, lv, cpn, ep, sigp, clw &  
                , m, ment, elij, delt, plcl &  
                , mp, qp, up, vp, wt, water, evap, b)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_unsat(nloc, ncum, nd, inb, t, q, qs, gz, u, v, p, ph &  
                , h, lv, ep, sigp, clw, m, ment, elij &  
                , iflag, mp, qp, up, vp, wt, water, evap)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- YIELD  
        !     (tendencies, precipitation, variables of interface with other  
        !      processes, etc)  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_yield(nloc, ncum, nd, nd             &  
                , icb, inb, delt &  
                , t, q, u, v, gz, p, ph, h, hp, lv, cpn, th &  
                , ep, clw, m, tp, mp, qp, up, vp &  
                , wt, water, evap, b &  
                , ment, qent, uent, vent, nent, elij, sig &  
                , tv, tvp &  
                , iflag, precip, VPrecip, ft, fq, fu, fv &  
                , upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc, wd)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_yield(nloc, ncum, nd, nk, icb, inb, delt &  
                , t, q, u, v, gz, p, ph, h, hp, lv, cpn &  
                , ep, clw, frac, m, mp, qp, up, vp &  
                , wt, water, evap &  
                , ment, qent, uent, vent, nent, elij &  
                , tv, tvp &  
                , iflag, wd, qprime, tprime &  
                , precip, cbmf, ft, fq, fu, fv, Ma, qcondc)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- passive tracers  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
        if (iflag_con.eq.3) then  
           CALL cv3_tracer(nloc, len, ncum, nd, nd, &  
                ment, sij, da, phi)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- UNCOMPRESS THE FIELDS  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! set iflag1  = 42 for non convective points  
        do  i = 1, len  
           iflag1(i) = 42  
        end do  
   
        if (iflag_con.eq.3) then  
           CALL cv3_uncompress(nloc, len, ncum, nd, idcum &  
                , iflag &  
                , precip, VPrecip, sig, w0 &  
                , ft, fq, fu, fv &  
                , inb  &  
                , Ma, upwd, dnwd, dnwd0, qcondc, wd, cape &  
                , da, phi, mp &  
                , iflag1 &  
                , precip1, VPrecip1, sig1, w01 &  
                , ft1, fq1, fu1, fv1 &  
                , inb1 &  
                , Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1  &  
                , da1, phi1, mp1)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_uncompress(nloc, len, ncum, nd, idcum &  
                , iflag &  
                , precip, cbmf &  
                , ft, fq, fu, fv &  
                , Ma, qcondc             &  
                , iflag1 &  
                , precip1, cbmf1 &  
                , ft1, fq1, fu1, fv1 &  
                , Ma1, qcondc1 )  
        endif  
     ENDIF ! ncum>0  
265    
266    end SUBROUTINE cv_driver    end SUBROUTINE cv_driver
267    

Legend:
Removed from v.97  
changed lines
  Added in v.195

  ViewVC Help
Powered by ViewVC 1.1.21