/[lmdze]/trunk/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/phylmd/cv_driver.f revision 97 by guez, Fri Apr 25 14:58:31 2014 UTC trunk/Sources/phylmd/cv_driver.f revision 201 by guez, Mon Jun 6 17:42:15 2016 UTC
# Line 4  module cv_driver_m Line 4  module cv_driver_m
4    
5  contains  contains
6    
7    SUBROUTINE cv_driver(len, nd, t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, &    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, fq1, fu1, &
8         fq1, fu1, fv1, precip1, VPrecip1, cbmf1, sig1, w01, icb1, inb1, delt, &         fv1, precip1, VPrecip1, sig1, w01, icb1, inb1, Ma1, upwd1, dnwd1, &
9         Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1)         dnwd01, qcondc1, cape1, da1, phi1, mp1)
10    
11      ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17      ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
12      ! Main driver for convection      ! Main driver for convection
# Line 14  contains Line 14  contains
14    
15      ! Several modules corresponding to different physical processes      ! Several modules corresponding to different physical processes
16    
17      ! Several versions of convect may be used:      use comconst, only: dtphys
18      ! - iflag_con = 3: version lmd      use cv30_closure_m, only: cv30_closure
19      ! - iflag_con = 4: version 4.3b      use cv30_compress_m, only: cv30_compress
20        use cv30_feed_m, only: cv30_feed
21      use clesphys2, only: iflag_con      use cv30_mixing_m, only: cv30_mixing
22      use cv3_compress_m, only: cv3_compress      use cv30_param_m, only: cv30_param, nl
23      use cv3_mixing_m, only: cv3_mixing      use cv30_prelim_m, only: cv30_prelim
24      use cv3_param_m, only: cv3_param      use cv30_tracer_m, only: cv30_tracer
25      use cv3_prelim_m, only: cv3_prelim      use cv30_trigger_m, only: cv30_trigger
26      use cv3_tracer_m, only: cv3_tracer      use cv30_uncompress_m, only: cv30_uncompress
27      use cv3_uncompress_m, only: cv3_uncompress      use cv30_undilute1_m, only: cv30_undilute1
28      use cv3_unsat_m, only: cv3_unsat      use cv30_undilute2_m, only: cv30_undilute2
29      use cv3_yield_m, only: cv3_yield      use cv30_unsat_m, only: cv30_unsat
30      use cv_uncompress_m, only: cv_uncompress      use cv30_yield_m, only: cv30_yield
31      USE dimphy, ONLY: klev, klon      USE dimphy, ONLY: klev, klon
32    
33      integer, intent(in):: len ! first dimension      real, intent(in):: t1(klon, klev) ! temperature, in K
34      integer, intent(in):: nd ! vertical dimension      real, intent(in):: q1(klon, klev) ! specific humidity
35      real, intent(in):: t1(len, nd) ! temperature      real, intent(in):: qs1(klon, klev) ! saturation specific humidity
     real q1(len, nd) !           Input        specific hum  
     real qs1(len, nd)  
     !      qs1           Real           Input        sat specific hum  
     real, intent(in):: u1(len, nd)  
     !      u1            Real           Input        u-wind  
     real, intent(in):: v1(len, nd)  
     !      v1            Real           Input        v-wind  
     real p1(len, nd)  
     !      p1            Real           Input        full level pressure  
     real ph1(len, nd + 1)  
     !      ph1           Real           Input        half level pressure  
     integer iflag1(len)  
     !      iflag1        Integer        Output       flag for Emanuel conditions  
     real ft1(len, nd)  
     !      ft1           Real           Output       temp tend  
     real fq1(len, nd)  
     !      fq1           Real           Output       spec hum tend  
     real fu1(len, nd)  
     !      fu1           Real           Output       u-wind tend  
     real fv1(len, nd)  
     !      fv1           Real           Output       v-wind tend  
     real precip1(len)  
     !      precip1       Real           Output       precipitation  
     real VPrecip1(len, nd+1)  
     !      VPrecip1      Real           Output       vertical profile of precipitations  
     real cbmf1(len)  
     !      cbmf1         Real           Output       cloud base mass flux  
     real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft  
36    
37      real, intent(inout):: w01(klon, klev)      real, intent(in):: u1(klon, klev), v1(klon, klev)
38      ! vertical velocity within adiabatic updraft      ! zonal wind and meridional velocity (m/s)
39    
40      integer icb1(klon)      real, intent(in):: p1(klon, klev) ! full level pressure, in hPa
     integer inb1(klon)  
     real, intent(in):: delt  
     !      delt          Real           Input        time step  
     real Ma1(len, nd)  
     !      Ma1           Real           Output       mass flux adiabatic updraft  
     real, intent(out):: upwd1(len, nd) ! total upward mass flux (adiab+mixed)  
     real, intent(out):: dnwd1(len, nd) ! saturated downward mass flux (mixed)  
     real, intent(out):: dnwd01(len, nd) ! unsaturated downward mass flux  
   
     real qcondc1(len, nd)     ! cld  
     !      qcondc1       Real           Output       in-cld mixing ratio of condensed water  
     real wd1(len)            ! gust  
     !      wd1           Real           Output       downdraft velocity scale for sfc fluxes  
     real cape1(len)  
     !      cape1         Real           Output       CAPE  
41    
42      real da1(len, nd), phi1(len, nd, nd), mp1(len, nd)      real, intent(in):: ph1(klon, klev + 1)
43        ! Half level pressure, in hPa. These pressures are defined at levels
44        ! intermediate between those of P1, T1, Q1 and QS1. The first
45        ! value of PH should be greater than (i.e. at a lower level than)
46        ! the first value of the array P1.
47    
48      !-------------------------------------------------------------------      integer, intent(out):: iflag1(:) ! (klon)
49      ! --- ARGUMENTS      ! Flag for Emanuel conditions.
     !-------------------------------------------------------------------  
     ! --- On input:  
50    
51      !  t:   Array of absolute temperature (K) of dimension ND, with first      ! 0: Moist convection occurs.
     !       index corresponding to lowest model level. Note that this array  
     !       will be altered by the subroutine if dry convective adjustment  
     !       occurs and if IPBL is not equal to 0.  
   
     !  q:   Array of specific humidity (gm/gm) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  qs:  Array of saturation specific humidity of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  u:   Array of zonal wind velocity (m/s) of dimension ND, witth first  
     !       index corresponding with the lowest model level. Defined at  
     !       same levels as T. Note that this array will be altered if  
     !       dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  v:   Same as u but for meridional velocity.  
   
     !  p:   Array of pressure (mb) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T.  
   
     !  ph:  Array of pressure (mb) of dimension ND+1, with first index  
     !       corresponding to lowest level. These pressures are defined at  
     !       levels intermediate between those of P, T, Q and QS. The first  
     !       value of PH should be greater than (i.e. at a lower level than)  
     !       the first value of the array P.  
   
     !  nl:  The maximum number of levels to which convection can penetrate, plus 1.  
     !       NL MUST be less than or equal to ND-1.  
   
     !  delt: The model time step (sec) between calls to CONVECT  
   
     !----------------------------------------------------------------------------  
     ! ---   On Output:  
   
     !  iflag: An output integer whose value denotes the following:  
     !       VALUE   INTERPRETATION  
     !       -----   --------------  
     !         0     Moist convection occurs.  
     !         1     Moist convection occurs, but a CFL condition  
     !               on the subsidence warming is violated. This  
     !               does not cause the scheme to terminate.  
     !         2     Moist convection, but no precip because ep(inb) lt 0.0001  
     !         3     No moist convection because new cbmf is 0 and old cbmf is 0.  
     !         4     No moist convection; atmosphere is not  
     !               unstable  
     !         6     No moist convection because ihmin le minorig.  
     !         7     No moist convection because unreasonable  
     !               parcel level temperature or specific humidity.  
     !         8     No moist convection: lifted condensation  
     !               level is above the 200 mb level.  
     !         9     No moist convection: cloud base is higher  
     !               then the level NL-1.  
   
     !  ft:   Array of temperature tendency (K/s) of dimension ND, defined at same  
     !        grid levels as T, Q, QS and P.  
   
     !  fq:   Array of specific humidity tendencies ((gm/gm)/s) of dimension ND,  
     !        defined at same grid levels as T, Q, QS and P.  
   
     !  fu:   Array of forcing of zonal velocity (m/s^2) of dimension ND,  
     !        defined at same grid levels as T.  
   
     !  fv:   Same as FU, but for forcing of meridional velocity.  
   
     !  precip: Scalar convective precipitation rate (mm/day).  
   
     !  VPrecip: Vertical profile of convective precipitation (kg/m2/s).  
   
     !  wd:   A convective downdraft velocity scale. For use in surface  
     !        flux parameterizations. See convect.ps file for details.  
   
     !  tprime: A convective downdraft temperature perturbation scale (K).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  qprime: A convective downdraft specific humidity  
     !          perturbation scale (gm/gm).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST  
     !        BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT  
     !        ITS NEXT CALL. That is, the value of CBMF must be "remembered"  
     !        by the calling program between calls to CONVECT.  
52    
53      !  det:   Array of detrainment mass flux of dimension ND.      ! 1: Moist convection occurs, but a CFL condition on the
54        ! subsidence warming is violated. This does not cause the scheme
55        ! to terminate.
56    
57      !-------------------------------------------------------------------      ! 2: Moist convection, but no precipitation because ep(inb) < 1e-4
58    
59        ! 3: No moist convection because new cbmf is 0 and old cbmf is 0.
60    
61        ! 4: No moist convection; atmosphere is not unstable.
62    
63        ! 6: No moist convection because ihmin <= minorig.
64    
65        ! 7: No moist convection because unreasonable parcel level
66        ! temperature or specific humidity.
67    
68        ! 8: No moist convection: lifted condensation level is above the
69        ! 200 mbar level.
70    
71        ! 9: No moist convection: cloud base is higher than the level NL-1.
72    
73        real, intent(out):: ft1(klon, klev) ! temperature tendency (K/s)
74        real, intent(out):: fq1(klon, klev) ! specific humidity tendency (s-1)
75    
76        real, intent(out):: fu1(klon, klev), fv1(klon, klev)
77        ! forcing (tendency) of zonal and meridional velocity (m/s^2)
78    
79        real, intent(out):: precip1(klon) ! convective precipitation rate (mm/day)
80    
81        real, intent(out):: VPrecip1(klon, klev + 1)
82        ! vertical profile of convective precipitation (kg/m2/s)
83    
84        real, intent(inout):: sig1(klon, klev) ! section of adiabatic updraft
85    
86        real, intent(inout):: w01(klon, klev)
87        ! vertical velocity within adiabatic updraft
88    
89        integer, intent(out):: icb1(klon)
90        integer, intent(inout):: inb1(klon)
91        real, intent(out):: Ma1(klon, klev) ! mass flux of adiabatic updraft
92    
93        real, intent(out):: upwd1(klon, klev)
94        ! total upward mass flux (adiabatic + mixed)
95    
96        real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
97        real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux
98    
99      !  Local arrays      real, intent(out):: qcondc1(klon, klev)
100        ! in-cloud mixing ratio of condensed water
101    
102      real da(len, nd), phi(len, nd, nd), mp(len, nd)      real, intent(out):: cape1(klon)
103        real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)
104        real, intent(inout):: mp1(klon, klev)
105    
106        ! Local:
107    
108        real da(klon, klev), phi(klon, klev, klev)
109        real, allocatable:: mp(:, :) ! (ncum, nl)
110      integer i, k, il      integer i, k, il
     integer icbmax  
     integer nk1(klon)  
111      integer icbs1(klon)      integer icbs1(klon)
   
112      real plcl1(klon)      real plcl1(klon)
113      real tnk1(klon)      real tnk1(klon)
114      real qnk1(klon)      real qnk1(klon)
# Line 200  contains Line 116  contains
116      real pbase1(klon)      real pbase1(klon)
117      real buoybase1(klon)      real buoybase1(klon)
118    
119      real lv1(klon, klev)      real lv1(klon, nl)
120      real cpn1(klon, klev)      ! specific latent heat of vaporization of water, in J kg-1
121    
122        real cpn1(klon, nl)
123        ! specific heat capacity at constant pressure of humid air, in J K-1 kg-1
124    
125      real tv1(klon, klev)      real tv1(klon, klev)
126      real gz1(klon, klev)      real gz1(klon, klev)
127      real hm1(klon, klev)      real hm1(klon, klev)
# Line 209  contains Line 129  contains
129      real tp1(klon, klev)      real tp1(klon, klev)
130      real tvp1(klon, klev)      real tvp1(klon, klev)
131      real clw1(klon, klev)      real clw1(klon, klev)
132      real th1(klon, klev)      real th1(klon, nl) ! potential temperature, in K
   
133      integer ncum      integer ncum
134    
135      ! (local) compressed fields:      ! Compressed fields:
136        integer, allocatable:: idcum(:), iflag(:) ! (ncum)
137      integer nloc      integer, allocatable:: icb(:) ! (ncum)
138      parameter (nloc = klon) ! pour l'instant      integer nent(klon, klev)
139        integer icbs(klon)
140    
141        integer, allocatable:: inb(:) ! (ncum)
142        ! first model level above the level of neutral buoyancy of the
143        ! parcel (1 <= inb <= nl - 1)
144    
145        real, allocatable:: plcl(:) ! (ncum)
146        real tnk(klon), qnk(klon), gznk(klon)
147        real t(klon, klev), q(klon, klev), qs(klon, klev)
148        real u(klon, klev), v(klon, klev)
149        real gz(klon, klev), h(klon, klev)
150    
151        real, allocatable:: lv(:, :) ! (ncum, nl)
152        ! specific latent heat of vaporization of water, in J kg-1
153    
154        real, allocatable:: cpn(:, :) ! (ncum, nl)
155        ! specific heat capacity at constant pressure of humid air, in J K-1 kg-1
156    
157        real p(klon, klev) ! pressure at full level, in hPa
158        real ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
159        real clw(klon, klev)
160        real pbase(klon), buoybase(klon)
161        real, allocatable:: th(:, :) ! (ncum, nl)
162        real tvp(klon, klev)
163        real sig(klon, klev), w0(klon, klev)
164        real hp(klon, klev), ep(klon, klev)
165        real buoy(klon, klev)
166        real cape(klon)
167        real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
168        real uent(klon, klev, klev), vent(klon, klev, klev)
169        real ments(klon, klev, klev), qents(klon, klev, klev)
170        real sij(klon, klev, klev), elij(klon, klev, klev)
171        real qp(klon, klev), up(klon, klev), vp(klon, klev)
172        real wt(klon, klev), water(klon, klev)
173        real, allocatable:: evap(:, :) ! (ncum, nl)
174        real, allocatable:: b(:, :) ! (ncum, nl - 1)
175        real ft(klon, klev), fq(klon, klev)
176        real fu(klon, klev), fv(klon, klev)
177        real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)
178        real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
179        real tps(klon, klev)
180        real precip(klon)
181        real VPrecip(klon, klev + 1)
182        real qcondc(klon, klev) ! cld
183    
     integer idcum(nloc)  
     integer iflag(nloc), nk(nloc), icb(nloc)  
     integer nent(nloc, klev)  
     integer icbs(nloc)  
     integer inb(nloc), inbis(nloc)  
   
     real cbmf(nloc), plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc)  
     real t(nloc, klev), q(nloc, klev), qs(nloc, klev)  
     real u(nloc, klev), v(nloc, klev)  
     real gz(nloc, klev), h(nloc, klev), lv(nloc, klev), cpn(nloc, klev)  
     real p(nloc, klev), ph(nloc, klev+1), tv(nloc, klev), tp(nloc, klev)  
     real clw(nloc, klev)  
     real dph(nloc, klev)  
     real pbase(nloc), buoybase(nloc), th(nloc, klev)  
     real tvp(nloc, klev)  
     real sig(nloc, klev), w0(nloc, klev)  
     real hp(nloc, klev), ep(nloc, klev), sigp(nloc, klev)  
     real frac(nloc), buoy(nloc, klev)  
     real cape(nloc)  
     real m(nloc, klev), ment(nloc, klev, klev), qent(nloc, klev, klev)  
     real uent(nloc, klev, klev), vent(nloc, klev, klev)  
     real ments(nloc, klev, klev), qents(nloc, klev, klev)  
     real sij(nloc, klev, klev), elij(nloc, klev, klev)  
     real qp(nloc, klev), up(nloc, klev), vp(nloc, klev)  
     real wt(nloc, klev), water(nloc, klev), evap(nloc, klev)  
     real b(nloc, klev), ft(nloc, klev), fq(nloc, klev)  
     real fu(nloc, klev), fv(nloc, klev)  
     real upwd(nloc, klev), dnwd(nloc, klev), dnwd0(nloc, klev)  
     real Ma(nloc, klev), mike(nloc, klev), tls(nloc, klev)  
     real tps(nloc, klev), qprime(nloc), tprime(nloc)  
     real precip(nloc)  
     real VPrecip(nloc, klev+1)  
     real qcondc(nloc, klev)  ! cld  
     real wd(nloc)           ! gust  
   
     !-------------------------------------------------------------------  
     ! --- SET CONSTANTS AND PARAMETERS  
184      !-------------------------------------------------------------------      !-------------------------------------------------------------------
185    
186      ! -- set simulation flags:      ! SET CONSTANTS AND PARAMETERS
187      !   (common cvflag)      CALL cv30_param
   
     CALL cv_flag  
188    
189      ! -- set thermodynamical constants:      ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
     !     (common cvthermo)  
190    
191      CALL cv_thermo      do k = 1, klev
192           do i = 1, klon
193      ! -- set convect parameters            ft1(i, k) = 0.
194              fq1(i, k) = 0.
195      !     includes microphysical parameters and parameters that            fu1(i, k) = 0.
196      !     control the rate of approach to quasi-equilibrium)            fv1(i, k) = 0.
197      !     (common cvparam)            tvp1(i, k) = 0.
198              tp1(i, k) = 0.
199      if (iflag_con.eq.3) then            clw1(i, k) = 0.
200         CALL cv3_param(nd, delt)            clw(i, k) = 0.
201      endif            gz1(i, k) = 0.
   
     if (iflag_con.eq.4) then  
        CALL cv_param(nd)  
     endif  
   
     !---------------------------------------------------------------------  
     ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS  
     !---------------------------------------------------------------------  
   
     do k = 1, nd  
        do  i = 1, len  
           ft1(i, k) = 0.0  
           fq1(i, k) = 0.0  
           fu1(i, k) = 0.0  
           fv1(i, k) = 0.0  
           tvp1(i, k) = 0.0  
           tp1(i, k) = 0.0  
           clw1(i, k) = 0.0  
           !ym  
           clw(i, k) = 0.0  
           gz1(i, k)  =  0.  
202            VPrecip1(i, k) = 0.            VPrecip1(i, k) = 0.
203            Ma1(i, k) = 0.0            Ma1(i, k) = 0.
204            upwd1(i, k) = 0.0            upwd1(i, k) = 0.
205            dnwd1(i, k) = 0.0            dnwd1(i, k) = 0.
206            dnwd01(i, k) = 0.0            dnwd01(i, k) = 0.
207            qcondc1(i, k) = 0.0            qcondc1(i, k) = 0.
208         end do         end do
209      end do      end do
210    
211      do  i = 1, len      precip1 = 0.
212         precip1(i) = 0.0      cape1 = 0.
213         iflag1(i) = 0      VPrecip1(:, klev + 1) = 0.
214         wd1(i) = 0.0  
215         cape1(i) = 0.0      do il = 1, klon
216         VPrecip1(i, nd+1) = 0.0         sig1(il, klev) = sig1(il, klev) + 1.
217      end do         sig1(il, klev) = min(sig1(il, klev), 12.1)
218        enddo
219      if (iflag_con.eq.3) then  
220         do il = 1, len      CALL cv30_prelim(t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, h1, hm1, th1)
221            sig1(il, nd) = sig1(il, nd) + 1.      CALL cv30_feed(t1, q1, qs1, p1, ph1, gz1, icb1, iflag1, tnk1, qnk1, &
222            sig1(il, nd)  =  min(sig1(il, nd), 12.1)           gznk1, plcl1)
223         enddo      CALL cv30_undilute1(t1, q1, qs1, gz1, plcl1, p1, icb1, tp1, tvp1, clw1, &
224      endif           icbs1)
225        CALL cv30_trigger(icb1, plcl1, p1, th1, tv1, tvp1, pbase1, buoybase1, &
226      !--------------------------------------------------------------------           iflag1, sig1, w01)
227      ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY  
228      !--------------------------------------------------------------------      ncum = count(iflag1 == 0)
229    
230      if (iflag_con.eq.3) then      IF (ncum > 0) THEN
231         CALL cv3_prelim(len, nd, nd + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, &         ! Moist convective adjustment is necessary
232              h1, hm1, th1)         allocate(idcum(ncum), plcl(ncum), inb(ncum))
233      endif         allocate(b(ncum, nl - 1), evap(ncum, nl), icb(ncum), iflag(ncum))
234           allocate(th(ncum, nl), lv(ncum, nl), cpn(ncum, nl), mp(ncum, nl))
235      if (iflag_con.eq.4) then         idcum = pack((/(i, i = 1, klon)/), iflag1 == 0)
236         CALL cv_prelim(len, nd, nd + 1, t1, q1, p1, ph1 &         CALL cv30_compress(idcum, iflag1, icb1, icbs1, plcl1, tnk1, qnk1, &
237              , lv1, cpn1, tv1, gz1, h1, hm1)              gznk1, pbase1, buoybase1, t1, q1, qs1, u1, v1, gz1, th1, h1, lv1, &
238      endif              cpn1, p1, ph1, tv1, tp1, tvp1, clw1, sig1, w01, icb, icbs, plcl, &
239                tnk, qnk, gznk, pbase, buoybase, t, q, qs, u, v, gz, th, h, lv, &
240      !--------------------------------------------------------------------              cpn, p, ph, tv, tp, tvp, clw, sig, w0)
241      ! --- CONVECTIVE FEED         CALL cv30_undilute2(icb, icbs(:ncum), tnk, qnk, gznk, t, qs, gz, p, h, &
242      !--------------------------------------------------------------------              tv, lv, pbase(:ncum), buoybase(:ncum), plcl, inb, tp, tvp, &
243                clw, hp, ep, buoy)
244      if (iflag_con.eq.3) then         CALL cv30_closure(icb, inb, pbase, p, ph(:ncum, :), tv, buoy, &
245         CALL cv3_feed(len, nd, t1, q1, qs1, p1, ph1, hm1, gz1            &              sig, w0, cape, m)
246              , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! nd->na         CALL cv30_mixing(icb, inb, t, q, qs, u, v, h, lv, &
247      endif              hp, ep, clw, m, sig, ment, qent, uent, vent, nent, sij, elij, &
248                ments, qents)
249      if (iflag_con.eq.4) then         CALL cv30_unsat(icb, inb, t(:ncum, :nl), q(:ncum, :nl), &
250         CALL cv_feed(len, nd, t1, q1, qs1, p1, hm1, gz1 &              qs(:ncum, :nl), gz, u(:ncum, :nl), v(:ncum, :nl), p, &
251              , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1)              ph(:ncum, :), th(:ncum, :nl - 1), tv, lv, cpn, ep(:ncum, :), &
252      endif              clw(:ncum, :), m(:ncum, :), ment(:ncum, :, :), elij(:ncum, :, :), &
253                dtphys, plcl, mp, qp(:ncum, :nl), up(:ncum, :nl), vp(:ncum, :nl), &
254      !--------------------------------------------------------------------              wt(:ncum, :nl), water(:ncum, :nl), evap, b)
255      ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part         CALL cv30_yield(icb, inb, dtphys, t, q, u, v, gz, p, ph, h, hp, &
256      ! (up through ICB for convect4, up through ICB+1 for convect3)              lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp(:ncum, 2:nl), &
257      !     Calculates the lifted parcel virtual temperature at nk, the              wt(:ncum, :nl - 1), water(:ncum, :nl), evap, b, ment, qent, uent, &
258      !     actual temperature, and the adiabatic liquid water content.              vent, nent, elij, sig, tv, tvp, iflag, precip, VPrecip, ft, fq, &
259      !--------------------------------------------------------------------              fu, fv, upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc)
260           CALL cv30_tracer(klon, ncum, klev, ment, sij, da, phi)
261      if (iflag_con.eq.3) then         CALL cv30_uncompress(idcum, iflag, precip, VPrecip, sig, w0, ft, fq, &
262         CALL cv3_undilute1(len, nd, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1   &              fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, cape, da, phi, mp, &
263              , tp1, tvp1, clw1, icbs1) ! nd->na              iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, fu1, fv1, inb1, &
264      endif              Ma1, upwd1, dnwd1, dnwd01, qcondc1, cape1, da1, phi1, mp1)
265        ENDIF
     if (iflag_con.eq.4) then  
        CALL cv_undilute1(len, nd, t1, q1, qs1, gz1, p1, nk1, icb1, icbmax &  
             , tp1, tvp1, clw1)  
     endif  
   
     !-------------------------------------------------------------------  
     ! --- TRIGGERING  
     !-------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_trigger(len, nd, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &  
             buoybase1, iflag1, sig1, w01) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_trigger(len, nd, icb1, cbmf1, tv1, tvp1, iflag1)  
     endif  
   
     ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY  
   
     ncum = 0  
     do  i = 1, len  
        if(iflag1(i).eq.0)then  
           ncum = ncum+1  
           idcum(ncum) = i  
        endif  
     end do  
   
     !       print*, 'klon, ncum = ', len, ncum  
   
     IF (ncum.gt.0) THEN  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- COMPRESS THE FIELDS  
        !        (-> vectorization over convective gridpoints)  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
        if (iflag_con.eq.3) then  
           CALL cv3_compress(len, nloc, ncum, nd, iflag1, nk1, icb1, icbs1, &  
                plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, &  
                v1, gz1, th1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, &  
                sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, &  
                buoybase, t, q, qs, u, v, gz, th, h, lv, cpn, p, ph, tv, tp, &  
                tvp, clw, sig, w0)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_compress( len, nloc, ncum, nd &  
                , iflag1, nk1, icb1 &  
                , cbmf1, plcl1, tnk1, qnk1, gznk1 &  
                , t1, q1, qs1, u1, v1, gz1 &  
                , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1 &  
                , iflag, nk, icb &  
                , cbmf, plcl, tnk, qnk, gznk &  
                , t, q, qs, u, v, gz, h, lv, cpn, p, ph, tv, tp, tvp, clw  &  
                , dph )  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :  
        ! ---   FIND THE REST OF THE LIFTED PARCEL TEMPERATURES  
        ! ---   &  
        ! ---   COMPUTE THE PRECIPITATION EFFICIENCIES AND THE  
        ! ---   FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD  
        ! ---   &  
        ! ---   FIND THE LEVEL OF NEUTRAL BUOYANCY  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_undilute2(nloc, ncum, nd, icb, icbs, nk         &  
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, h, tv, lv, pbase, buoybase, plcl &  
                , inb, tp, tvp, clw, hp, ep, sigp, buoy) !na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_undilute2(nloc, ncum, nd, icb, nk &  
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, dph, h, tv, lv &  
                , inb, inbis, tp, tvp, clw, hp, ep, sigp, frac)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- CLOSURE  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_closure(nloc, ncum, nd, icb, inb               &  
                , pbase, p, ph, tv, buoy &  
                , sig, w0, cape, m) ! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_closure(nloc, ncum, nd, nk, icb &  
                , tv, tvp, p, ph, dph, plcl, cpn &  
                , iflag, cbmf)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- MIXING  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_mixing(nloc, ncum, nd, nd, icb, nk, inb, ph, t, q, &  
                qs, u, v, h, lv, qnk, hp, tv, tvp, ep, clw, m, sig, ment, &  
                qent, uent, vent, nent, sij, elij, ments, qents)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_mixing(nloc, ncum, nd, icb, nk, inb, inbis &  
                , ph, t, q, qs, u, v, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, cbmf &  
                , m, ment, qent, uent, vent, nent, sij, elij)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_unsat(nloc, ncum, nd, nd, icb, inb     &  
                , t, q, qs, gz, u, v, p, ph &  
                , th, tv, lv, cpn, ep, sigp, clw &  
                , m, ment, elij, delt, plcl &  
                , mp, qp, up, vp, wt, water, evap, b)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_unsat(nloc, ncum, nd, inb, t, q, qs, gz, u, v, p, ph &  
                , h, lv, ep, sigp, clw, m, ment, elij &  
                , iflag, mp, qp, up, vp, wt, water, evap)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- YIELD  
        !     (tendencies, precipitation, variables of interface with other  
        !      processes, etc)  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_yield(nloc, ncum, nd, nd             &  
                , icb, inb, delt &  
                , t, q, u, v, gz, p, ph, h, hp, lv, cpn, th &  
                , ep, clw, m, tp, mp, qp, up, vp &  
                , wt, water, evap, b &  
                , ment, qent, uent, vent, nent, elij, sig &  
                , tv, tvp &  
                , iflag, precip, VPrecip, ft, fq, fu, fv &  
                , upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc, wd)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_yield(nloc, ncum, nd, nk, icb, inb, delt &  
                , t, q, u, v, gz, p, ph, h, hp, lv, cpn &  
                , ep, clw, frac, m, mp, qp, up, vp &  
                , wt, water, evap &  
                , ment, qent, uent, vent, nent, elij &  
                , tv, tvp &  
                , iflag, wd, qprime, tprime &  
                , precip, cbmf, ft, fq, fu, fv, Ma, qcondc)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- passive tracers  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
        if (iflag_con.eq.3) then  
           CALL cv3_tracer(nloc, len, ncum, nd, nd, &  
                ment, sij, da, phi)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- UNCOMPRESS THE FIELDS  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! set iflag1  = 42 for non convective points  
        do  i = 1, len  
           iflag1(i) = 42  
        end do  
   
        if (iflag_con.eq.3) then  
           CALL cv3_uncompress(nloc, len, ncum, nd, idcum &  
                , iflag &  
                , precip, VPrecip, sig, w0 &  
                , ft, fq, fu, fv &  
                , inb  &  
                , Ma, upwd, dnwd, dnwd0, qcondc, wd, cape &  
                , da, phi, mp &  
                , iflag1 &  
                , precip1, VPrecip1, sig1, w01 &  
                , ft1, fq1, fu1, fv1 &  
                , inb1 &  
                , Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1  &  
                , da1, phi1, mp1)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_uncompress(nloc, len, ncum, nd, idcum &  
                , iflag &  
                , precip, cbmf &  
                , ft, fq, fu, fv &  
                , Ma, qcondc             &  
                , iflag1 &  
                , precip1, cbmf1 &  
                , ft1, fq1, fu1, fv1 &  
                , Ma1, qcondc1 )  
        endif  
     ENDIF ! ncum>0  
266    
267    end SUBROUTINE cv_driver    end SUBROUTINE cv_driver
268    

Legend:
Removed from v.97  
changed lines
  Added in v.201

  ViewVC Help
Powered by ViewVC 1.1.21