--- trunk/libf/phylmd/diagphy.f 2011/07/01 15:00:48 47 +++ trunk/libf/phylmd/diagphy.f90 2013/07/23 13:00:07 72 @@ -1,146 +1,148 @@ -! -! $Header: /home/cvsroot/LMDZ4/libf/phylmd/diagphy.F,v 1.1.1.1 2004/05/19 12:53:08 lmdzadmin Exp $ -! - SUBROUTINE diagphy(airephy,tit,iprt - $ , tops, topl, sols, soll, sens - $ , evap, rain_fall, snow_fall, ts - $ , d_etp_tot, d_qt_tot, d_ec_tot - $ , fs_bound, fq_bound) -C====================================================================== -C -C Purpose: -C Compute the thermal flux and the watter mass flux at the atmosphere -c boundaries. Print them and also the atmospheric enthalpy change and -C the atmospheric mass change. -C -C Arguments: -C airephy-------input-R- grid area -C tit---------input-A15- Comment to be added in PRINT (CHARACTER*15) -C iprt--------input-I- PRINT level ( <=0 : no PRINT) -C tops(klon)--input-R- SW rad. at TOA (W/m2), positive up. -C topl(klon)--input-R- LW rad. at TOA (W/m2), positive down -C sols(klon)--input-R- Net SW flux above surface (W/m2), positive up -C (i.e. -1 * flux absorbed by the surface) -C soll(klon)--input-R- Net LW flux above surface (W/m2), positive up -C (i.e. flux emited - flux absorbed by the surface) -C sens(klon)--input-R- Sensible Flux at surface (W/m2), positive down -C evap(klon)--input-R- Evaporation + sublimation watter vapour mass flux -C (kg/m2/s), positive up -C rain_fall(klon) -C --input-R- Liquid watter mass flux (kg/m2/s), positive down -C snow_fall(klon) -C --input-R- Solid watter mass flux (kg/m2/s), positive down -C ts(klon)----input-R- Surface temperature (K) -C d_etp_tot---input-R- Heat flux equivalent to atmospheric enthalpy -C change (W/m2) -C d_qt_tot----input-R- Mass flux equivalent to atmospheric watter mass -C change (kg/m2/s) -C d_ec_tot----input-R- Flux equivalent to atmospheric cinetic energy -C change (W/m2) -C -C fs_bound---output-R- Thermal flux at the atmosphere boundaries (W/m2) -C fq_bound---output-R- Watter mass flux at the atmosphere boundaries (kg/m2/s) -C -C J.L. Dufresne, July 2002 -C====================================================================== -C - use dimens_m - use dimphy - use SUPHEC_M - use yoethf_m - implicit none - -C -C Input variables - real airephy(klon) - CHARACTER*15 tit - INTEGER iprt - real tops(klon),topl(klon),sols(klon),soll(klon) - real sens(klon),evap(klon),rain_fall(klon),snow_fall(klon) - REAL ts(klon) - REAL d_etp_tot, d_qt_tot, d_ec_tot -c Output variables - REAL fs_bound, fq_bound -C -C Local variables - real stops,stopl,ssols,ssoll - real ssens,sfront,slat - real airetot, zcpvap, zcwat, zcice - REAL rain_fall_tot, snow_fall_tot, evap_tot -C - integer i -C - integer pas - save pas - data pas/0/ -C - pas=pas+1 - stops=0. - stopl=0. - ssols=0. - ssoll=0. - ssens=0. - sfront = 0. - evap_tot = 0. - rain_fall_tot = 0. - snow_fall_tot = 0. - airetot=0. -C -C Pour les chaleur specifiques de la vapeur d'eau, de l'eau et de -C la glace, on travaille par difference a la chaleur specifique de l' -c air sec. En effet, comme on travaille a niveau de pression donne, -C toute variation de la masse d'un constituant est totalement -c compense par une variation de masse d'air. -C - zcpvap=RCPV-RCPD - zcwat=RCW-RCPD - zcice=RCS-RCPD -C - do i=1,klon - stops=stops+tops(i)*airephy(i) - stopl=stopl+topl(i)*airephy(i) - ssols=ssols+sols(i)*airephy(i) - ssoll=ssoll+soll(i)*airephy(i) - ssens=ssens+sens(i)*airephy(i) - sfront = sfront - $ + ( evap(i)*zcpvap-rain_fall(i)*zcwat-snow_fall(i)*zcice - $ ) *ts(i) *airephy(i) - evap_tot = evap_tot + evap(i)*airephy(i) - rain_fall_tot = rain_fall_tot + rain_fall(i)*airephy(i) - snow_fall_tot = snow_fall_tot + snow_fall(i)*airephy(i) - airetot=airetot+airephy(i) - enddo - stops=stops/airetot - stopl=stopl/airetot - ssols=ssols/airetot - ssoll=ssoll/airetot - ssens=ssens/airetot - sfront = sfront/airetot - evap_tot = evap_tot /airetot - rain_fall_tot = rain_fall_tot/airetot - snow_fall_tot = snow_fall_tot/airetot -C - slat = RLVTT * rain_fall_tot + RLSTT * snow_fall_tot -C Heat flux at atm. boundaries - fs_bound = stops-stopl - (ssols+ssoll)+ssens+sfront - $ + slat -C Watter flux at atm. boundaries - fq_bound = evap_tot - rain_fall_tot -snow_fall_tot -C - IF (iprt.ge.1) write(6,6666) - $ tit, pas, fs_bound, d_etp_tot, fq_bound, d_qt_tot -C - IF (iprt.ge.1) write(6,6668) - $ tit, pas, d_etp_tot+d_ec_tot-fs_bound, d_qt_tot-fq_bound -C - IF (iprt.ge.2) write(6,6667) - $ tit, pas, stops,stopl,ssols,ssoll,ssens,slat,evap_tot - $ ,rain_fall_tot+snow_fall_tot - - return - - 6666 format('Phys. Flux Budget ',a15,1i6,2f8.2,2(1pE13.5)) - 6667 format('Phys. Boundary Flux ',a15,1i6,6f8.2,2(1pE13.5)) - 6668 format('Phys. Total Budget ',a15,1i6,f8.2,2(1pE13.5)) +module diagphy_m - end + implicit none + +contains + + SUBROUTINE diagphy(airephy, tit, iprt, tops, topl, sols, soll, sens, evap, & + rain_fall, snow_fall, ts, d_etp_tot, d_qt_tot, d_ec_tot, fs_bound, & + fq_bound) + + ! From LMDZ4/libf/phylmd/diagphy.F, version 1.1.1.1 2004/05/19 12:53:08 + + ! Purpose: compute the thermal flux and the water mass flux at + ! the atmospheric boundaries. Print them and print the atmospheric + ! enthalpy change and the atmospheric mass change. + + ! J.-L. Dufresne, July 2002 + + USE dimphy, ONLY: klon + USE suphec_m, ONLY: rcpd, rcpv, rcs, rcw, rlstt, rlvtt + + ! Arguments: + + ! Input variables + real airephy(klon) + ! airephy-------input-R- grid area + CHARACTER(len=15) tit + ! tit---------input-A15- Comment to be added in PRINT (CHARACTER*15) + INTEGER iprt + ! iprt--------input-I- PRINT level (<=0 : no PRINT) + real tops(klon), sols(klon) + ! tops(klon)--input-R- SW rad. at TOA (W/m2), positive up. + ! sols(klon)--input-R- Net SW flux above surface (W/m2), positive up + ! (i.e. -1 * flux absorbed by the surface) + + real, intent(in):: soll(klon) + ! net longwave flux above surface (W/m2), positive up (i. e. flux emited + ! - flux absorbed by the surface) + + real, intent(in):: topl(klon) !LW rad. at TOA (W/m2), positive down + real sens(klon) + ! sens(klon)--input-R- Sensible Flux at surface (W/m2), positive down + real evap(klon) + ! evap(klon)--input-R- Evaporation + sublimation water vapour mass flux + ! (kg/m2/s), positive up + + real, intent(in):: rain_fall(klon) + ! liquid water mass flux (kg/m2/s), positive down + + real snow_fall(klon) + ! snow_fall(klon) + ! --input-R- Solid water mass flux (kg/m2/s), positive down + REAL ts(klon) + ! ts(klon)----input-R- Surface temperature (K) + REAL d_etp_tot, d_qt_tot, d_ec_tot + ! d_etp_tot---input-R- Heat flux equivalent to atmospheric enthalpy + ! change (W/m2) + ! d_qt_tot----input-R- Mass flux equivalent to atmospheric water mass + ! change (kg/m2/s) + ! d_ec_tot----input-R- Flux equivalent to atmospheric cinetic energy + ! change (W/m2) + + ! Output variables + REAL fs_bound + ! fs_bound---output-R- Thermal flux at the atmosphere boundaries (W/m2) + real fq_bound + ! fq_bound---output-R- Water mass flux at the atmosphere + ! boundaries (kg/m2/s) + + ! Local variables: + + real stops, stopl, ssols, ssoll + real ssens, sfront, slat + real airetot, zcpvap, zcwat, zcice + REAL rain_fall_tot, snow_fall_tot, evap_tot + + integer i + integer:: pas = 0 + + !------------------------------------------------------------------ + + pas=pas+1 + stops=0. + stopl=0. + ssols=0. + ssoll=0. + ssens=0. + sfront = 0. + evap_tot = 0. + rain_fall_tot = 0. + snow_fall_tot = 0. + airetot=0. + + ! Pour les chaleur specifiques de la vapeur d'eau, de l'eau et de + ! la glace, on travaille par difference a la chaleur specifique de + ! l' air sec. En effet, comme on travaille a niveau de pression + ! donne, toute variation de la masse d'un constituant est + ! totalement compense par une variation de masse d'air. + + zcpvap=RCPV-RCPD + zcwat=RCW-RCPD + zcice=RCS-RCPD + + do i=1, klon + stops=stops+tops(i)*airephy(i) + stopl=stopl+topl(i)*airephy(i) + ssols=ssols+sols(i)*airephy(i) + ssoll=ssoll+soll(i)*airephy(i) + ssens=ssens+sens(i)*airephy(i) + sfront = sfront & + + (evap(i)*zcpvap-rain_fall(i)*zcwat-snow_fall(i)*zcice) * ts(i) & + * airephy(i) + evap_tot = evap_tot + evap(i)*airephy(i) + rain_fall_tot = rain_fall_tot + rain_fall(i)*airephy(i) + snow_fall_tot = snow_fall_tot + snow_fall(i)*airephy(i) + airetot=airetot+airephy(i) + enddo + stops=stops/airetot + stopl=stopl/airetot + ssols=ssols/airetot + ssoll=ssoll/airetot + ssens=ssens/airetot + sfront = sfront/airetot + evap_tot = evap_tot /airetot + rain_fall_tot = rain_fall_tot/airetot + snow_fall_tot = snow_fall_tot/airetot + + slat = RLVTT * rain_fall_tot + RLSTT * snow_fall_tot + ! Heat flux at atm. boundaries + fs_bound = stops-stopl - (ssols+ssoll)+ssens+sfront + slat + ! Water flux at atm. boundaries + fq_bound = evap_tot - rain_fall_tot -snow_fall_tot + + IF (iprt >= 1) print 6666, tit, pas, fs_bound, d_etp_tot, fq_bound, d_qt_tot + + IF (iprt >= 1) print 6668, tit, pas, d_etp_tot+d_ec_tot-fs_bound, & + d_qt_tot-fq_bound + + IF (iprt >= 2) print 6667, tit, pas, stops, stopl, ssols, ssoll, ssens, & + slat, evap_tot, rain_fall_tot+snow_fall_tot + +6666 format('Phys. Flux Budget ', a15, 1i6, 2f8.2, 2(1pE13.5)) +6667 format('Phys. Boundary Flux ', a15, 1i6, 6f8.2, 2(1pE13.5)) +6668 format('Phys. Total Budget ', a15, 1i6, f8.2, 2(1pE13.5)) + + end SUBROUTINE diagphy + +end module diagphy_m