/[lmdze]/trunk/phylmd/newmicro.f90
ViewVC logotype

Annotation of /trunk/phylmd/newmicro.f90

Parent Directory Parent Directory | Revision Log Revision Log


Revision 76 - (hide annotations)
Fri Nov 15 18:45:49 2013 UTC (10 years, 6 months ago) by guez
File size: 8666 byte(s)
Moved everything out of libf.
1 guez 68 module newmicro_m
2 guez 3
3 guez 52 IMPLICIT none
4 guez 3
5 guez 68 contains
6 guez 3
7 guez 69 SUBROUTINE newmicro (paprs, play, t, qlwp, clc, cltau, clemi, cldh, &
8     cldl, cldm, cldt, ctlwp, flwp, fiwp, flwc, fiwc, ok_aie, sulfate, &
9     sulfate_pi, bl95_b0, bl95_b1, cldtaupi, re, fl)
10 guez 3
11 guez 68 ! From LMDZ4/libf/phylmd/newmicro.F, version 1.2 2004/06/03 09:22:43
12 guez 3
13 guez 69 ! Authors: Z. X. Li (LMD/CNRS), Johannes Quaas
14     ! Date: 1993/09/10
15     ! Objet: calcul de l'épaisseur optique et de l'émissivité des nuages.
16    
17     USE conf_phys_m, ONLY: rad_chau1, rad_chau2
18     USE dimphy, ONLY: klev, klon
19     USE suphec_m, ONLY: rd, rg
20     use nr_util, only: pi
21    
22     REAL, intent(in):: paprs(:, :) ! (klon, klev+1)
23     real, intent(in):: play(:, :) ! (klon, klev)
24     REAL, intent(in):: t(:, :) ! (klon, klev) temperature
25    
26     REAL, intent(in):: qlwp(:, :) ! (klon, klev)
27     ! eau liquide nuageuse dans l'atmosphère (kg/kg)
28    
29     REAL, intent(inout):: clc(:, :) ! (klon, klev)
30     ! couverture nuageuse pour le rayonnement (0 à 1)
31    
32     REAL, intent(out):: cltau(:, :) ! (klon, klev) épaisseur optique des nuages
33     REAL, intent(out):: clemi(:, :) ! (klon, klev) émissivité des nuages (0 à 1)
34    
35     REAL, intent(out):: cldh(:), cldl(:), cldm(:), cldt(:) ! (klon)
36     REAL, intent(out):: ctlwp(:) ! (klon)
37     REAL, intent(out):: flwp(:), fiwp(:) ! (klon)
38     REAL, intent(out):: flwc(:, :), fiwc(:, :) ! (klon, klev)
39     LOGICAL, intent(in):: ok_aie ! apply aerosol indirect effect
40    
41     REAL, intent(in):: sulfate(:, :) ! (klon, klev)
42     ! sulfate aerosol mass concentration (micro g m-3)
43    
44     REAL, intent(in):: sulfate_pi(:, :) ! (klon, klev)
45     ! sulfate aerosol mass concentration (micro g m-3), pre-industrial value
46    
47     REAL, intent(in):: bl95_b0, bl95_b1
48     ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus
49     ! B). They link cloud droplet number concentration to aerosol mass
50     ! concentration.
51    
52     REAL, intent(out):: cldtaupi(:, :) ! (klon, klev)
53     ! pre-industrial value of cloud optical thickness, needed for the
54     ! diagnosis of the aerosol indirect radiative forcing (see
55     ! radlwsw)
56    
57     REAL, intent(out):: re(:, :) ! (klon, klev)
58     ! cloud droplet effective radius multiplied by fl (micro m)
59    
60     REAL, intent(out):: fl(:, :) ! (klon, klev)
61     ! Denominator to re, introduced to avoid problems in the averaging
62     ! of the output. fl is the fraction of liquid water clouds within
63     ! a grid cell.
64    
65     ! Local:
66    
67     REAL, PARAMETER:: cetahb = 0.45, cetamb = 0.8
68 guez 68 INTEGER i, k
69 guez 69 REAL zflwp(klon), fice
70 guez 68 REAL radius, rad_chaud
71 guez 69 REAL, PARAMETER:: coef_chau = 0.13
72     REAL, PARAMETER:: seuil_neb = 0.001, t_glace = 273. - 15.
73 guez 68 real rel, tc, rei, zfiwp(klon)
74 guez 69 real k_ice
75     real, parameter:: k_ice0 = 0.005 ! units=m2/g
76     real, parameter:: DF = 1.66 ! diffusivity factor
77     REAL cdnc(klon, klev) ! cloud droplet number concentration (m-3)
78 guez 3
79 guez 69 REAL cdnc_pi(klon, klev)
80     ! cloud droplet number concentration, pre-industrial value (m-3)
81 guez 3
82 guez 69 !-----------------------------------------------------------------
83 guez 3
84 guez 69 ! Calculer l'épaisseur optique et l'émissivité des nuages
85 guez 3
86 guez 69 loop_horizontal: DO i = 1, klon
87     flwp(i) = 0.
88     fiwp(i) = 0.
89    
90 guez 68 DO k = 1, klev
91 guez 69 clc(i, k) = MAX(clc(i, k), seuil_neb)
92 guez 3
93 guez 69 ! liquid/ice cloud water paths:
94 guez 3
95 guez 69 fice = 1. - (t(i, k) - t_glace) / (273.13 - t_glace)
96     fice = MIN(MAX(fice, 0.), 1.)
97 guez 3
98 guez 69 zflwp(i) = 1000. * (1. - fice) * qlwp(i, k) / clc(i, k) &
99     * (paprs(i, k) - paprs(i, k + 1)) / RG
100     zfiwp(i) = 1000. * fice * qlwp(i, k) / clc(i, k) &
101     * (paprs(i, k) - paprs(i, k + 1)) / RG
102 guez 3
103 guez 69 flwp(i) = flwp(i) &
104     + (1. - fice) * qlwp(i, k) * (paprs(i, k) - paprs(i, k + 1)) / RG
105     fiwp(i) = fiwp(i) &
106     + fice * qlwp(i, k) * (paprs(i, k) - paprs(i, k + 1)) / RG
107 guez 3
108 guez 69 ! Total Liquid/Ice water content
109     flwc(i, k) = (1.-fice) * qlwp(i, k)
110     fiwc(i, k) = fice * qlwp(i, k)
111     ! In-Cloud Liquid/Ice water content
112 guez 3
113 guez 69 ! effective cloud droplet radius (microns):
114 guez 3
115 guez 69 ! for liquid water clouds:
116     IF (ok_aie) THEN
117     cdnc(i, k) = 10.**(bl95_b0 + bl95_b1 &
118     * log10(MAX(sulfate(i, k), 1e-4))) * 1.e6
119     cdnc_pi(i, k) = 10.**(bl95_b0 + bl95_b1 &
120     * log10(MAX(sulfate_pi(i, k), 1e-4))) * 1e6
121 guez 52
122 guez 69 ! Restrict to interval [20, 1000] cm^3:
123     cdnc(i, k) = MIN(1000e6, MAX(20e6, cdnc(i, k)))
124     cdnc_pi(i, k) = MIN(1000e6, MAX(20e6, cdnc_pi(i, k)))
125 guez 52
126 guez 69 ! air density: play(i, k) / (RD * T(i, k))
127     ! factor 1.1: derive effective radius from volume-mean radius
128     ! factor 1000 is the water density
129     ! "_chaud" means that this is the CDR for liquid water clouds
130 guez 52
131 guez 69 rad_chaud = 1.1 * ((qlwp(i, k) * play(i, k) / (RD * T(i, k))) &
132     / (4./3. * PI * 1000. * cdnc(i, k)))**(1./3.)
133 guez 52
134 guez 69 ! Convert to micro m and set a lower limit:
135     rad_chaud = MAX(rad_chaud * 1e6, 5.)
136 guez 52
137 guez 69 ! Pre-industrial cloud optical thickness
138 guez 52
139 guez 69 ! "radius" is calculated as rad_chaud above (plus the
140     ! ice cloud contribution) but using cdnc_pi instead of
141     ! cdnc.
142     radius = 1.1 * ((qlwp(i, k) * play(i, k) / (RD * T(i, k))) &
143     / (4./3. * PI * 1000. * cdnc_pi(i, k)))**(1./3.)
144     radius = MAX(radius * 1e6, 5.)
145 guez 52
146 guez 69 tc = t(i, k)-273.15
147     rei = merge(3.5, 0.71 * tc + 61.29, tc <= -81.4)
148     if (zflwp(i) == 0.) radius = 1.
149     if (zfiwp(i) == 0. .or. rei <= 0.) rei = 1.
150     cldtaupi(i, k) = 3. / 2. * zflwp(i) / radius &
151     + zfiwp(i) * (3.448e-03 + 2.431 / rei)
152     else
153     rad_chaud = merge(rad_chau2, rad_chau1, k <= 3)
154     ENDIF
155     ! For output diagnostics
156 guez 52
157 guez 69 ! Cloud droplet effective radius (micro m)
158 guez 52
159 guez 69 ! we multiply here with f * xl (fraction of liquid water
160     ! clouds in the grid cell) to avoid problems in the
161     ! averaging of the output.
162     ! In the output of IOIPSL, derive the real cloud droplet
163     ! effective radius as re/fl
164 guez 52
165 guez 69 fl(i, k) = clc(i, k) * (1.-fice)
166     re(i, k) = rad_chaud * fl(i, k)
167 guez 52
168 guez 69 rel = rad_chaud
169     ! for ice clouds: as a function of the ambiant temperature
170     ! (formula used by Iacobellis and Somerville (2000), with an
171     ! asymptotical value of 3.5 microns at T<-81.4 C added to be
172     ! consistent with observations of Heymsfield et al. 1986):
173     tc = t(i, k)-273.15
174     rei = merge(3.5, 0.71 * tc + 61.29, tc <= -81.4)
175 guez 52
176 guez 69 ! cloud optical thickness:
177 guez 68
178 guez 69 ! (for liquid clouds, traditional formula,
179     ! for ice clouds, Ebert & Curry (1992))
180 guez 68
181 guez 69 if (zflwp(i) == 0.) rel = 1.
182     if (zfiwp(i) == 0. .or. rei <= 0.) rei = 1.
183     cltau(i, k) = 3./2. * (zflwp(i)/rel) &
184     + zfiwp(i) * (3.448e-03 + 2.431/rei)
185 guez 68
186 guez 69 ! cloud infrared emissivity:
187    
188     ! (the broadband infrared absorption coefficient is parameterized
189     ! as a function of the effective cld droplet radius)
190    
191     ! Ebert and Curry (1992) formula as used by Kiehl & Zender (1995):
192     k_ice = k_ice0 + 1. / rei
193    
194     clemi(i, k) = 1. - EXP(- coef_chau * zflwp(i) - DF * k_ice * zfiwp(i))
195    
196     if (clc(i, k) <= seuil_neb) then
197     clc(i, k) = 0.
198     cltau(i, k) = 0.
199     clemi(i, k) = 0.
200     cldtaupi(i, k) = 0.
201     end if
202    
203     IF (.NOT. ok_aie) cldtaupi(i, k) = cltau(i, k)
204 guez 68 ENDDO
205 guez 69 ENDDO loop_horizontal
206    
207 guez 68 ! COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS
208 guez 69
209 guez 68 DO i = 1, klon
210 guez 69 cldt(i)=1.
211     cldh(i)=1.
212     cldm(i) = 1.
213     cldl(i) = 1.
214     ctlwp(i) = 0.
215 guez 68 ENDDO
216 guez 69
217 guez 68 DO k = klev, 1, -1
218     DO i = 1, klon
219 guez 69 ctlwp(i) = ctlwp(i) &
220     + qlwp(i, k) * (paprs(i, k) - paprs(i, k + 1)) / RG
221     cldt(i) = cldt(i) * (1.-clc(i, k))
222     if (play(i, k) <= cetahb * paprs(i, 1)) &
223     cldh(i) = cldh(i) * (1. - clc(i, k))
224     if (play(i, k) > cetahb * paprs(i, 1) .AND. &
225     play(i, k) <= cetamb * paprs(i, 1)) &
226     cldm(i) = cldm(i) * (1.-clc(i, k))
227     if (play(i, k) > cetamb * paprs(i, 1)) &
228     cldl(i) = cldl(i) * (1. - clc(i, k))
229 guez 68 ENDDO
230     ENDDO
231 guez 69
232 guez 68 DO i = 1, klon
233 guez 69 cldt(i)=1.-cldt(i)
234     cldh(i)=1.-cldh(i)
235     cldm(i)=1.-cldm(i)
236     cldl(i)=1.-cldl(i)
237 guez 68 ENDDO
238    
239     END SUBROUTINE newmicro
240    
241     end module newmicro_m

  ViewVC Help
Powered by ViewVC 1.1.21