--- trunk/Sources/phylmd/clmain.f 2016/06/08 12:23:41 202 +++ trunk/Sources/phylmd/clmain.f 2016/08/30 12:52:46 206 @@ -98,14 +98,15 @@ REAL, intent(out):: d_ts(klon, nbsrf) ! le changement pour "ts" - REAL flux_t(klon, klev, nbsrf), flux_q(klon, klev, nbsrf) - ! flux_t---output-R- flux de chaleur sensible (CpT) J/m**2/s (W/m**2) - ! (orientation positive vers le bas) - ! flux_q---output-R- flux de vapeur d'eau (kg/m**2/s) - - REAL flux_u(klon, klev, nbsrf), flux_v(klon, klev, nbsrf) - ! flux_u---output-R- tension du vent X: (kg m/s)/(m**2 s) ou Pascal - ! flux_v---output-R- tension du vent Y: (kg m/s)/(m**2 s) ou Pascal + REAL, intent(out):: flux_t(klon, nbsrf) + ! flux de chaleur sensible (Cp T) (W/m2) (orientation positive vers + ! le bas) à la surface + + REAL, intent(out):: flux_q(klon, nbsrf) + ! flux de vapeur d'eau (kg/m2/s) à la surface + + REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf) + ! tension du vent à la surface, en Pa REAL, INTENT(out):: cdragh(klon), cdragm(klon) real q2(klon, klev+1, nbsrf) @@ -183,8 +184,8 @@ REAL y_d_ts(klon) REAL y_d_t(klon, klev), y_d_q(klon, klev) REAL y_d_u(klon, klev), y_d_v(klon, klev) - REAL y_flux_t(klon, klev), y_flux_q(klon, klev) - REAL y_flux_u(klon, klev), y_flux_v(klon, klev) + REAL y_flux_t(klon), y_flux_q(klon) + REAL y_flux_u(klon), y_flux_v(klon) REAL y_dflux_t(klon), y_dflux_q(klon) REAL coefh(klon, klev), coefm(klon, klev) REAL yu(klon, klev), yv(klon, klev) @@ -278,8 +279,6 @@ yv = 0. yt = 0. yq = 0. - y_flux_u = 0. - y_flux_v = 0. y_dflux_t = 0. y_dflux_q = 0. ytsoil = 999999. @@ -445,17 +444,17 @@ ! calculer la diffusion des vitesses "u" et "v" CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yu, ypaprs, & - ypplay, ydelp, y_d_u, y_flux_u) + ypplay, ydelp, y_d_u, y_flux_u(:knon)) CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yv, ypaprs, & - ypplay, ydelp, y_d_v, y_flux_v) + ypplay, ydelp, y_d_v, y_flux_v(:knon)) ! calculer la diffusion de "q" et de "h" - CALL clqh(dtime, jour, firstcal, rlat, knon, nsrf, ni(:knon), & - ytsoil, yqsol, rmu0, yrugos, yrugoro, yu1, yv1, & - coefh(:knon, :), yt, yq, yts, ypaprs, ypplay, ydelp, yrads, & - yalb(:knon), ysnow, yqsurf, yrain_f, ysnow_f, yfder, yfluxlat, & - pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, y_d_ts(:knon), & - yz0_new, y_flux_t, y_flux_q, y_dflux_t, y_dflux_q, & + CALL clqh(dtime, jour, firstcal, rlat, nsrf, ni(:knon), ytsoil, & + yqsol, rmu0, yrugos, yrugoro, yu1, yv1, coefh(:knon, :), yt, & + yq, yts, ypaprs, ypplay, ydelp, yrads, yalb(:knon), ysnow, & + yqsurf, yrain_f, ysnow_f, yfder, yfluxlat, pctsrf_new_sic, & + yagesno(:knon), y_d_t, y_d_q, y_d_ts(:knon), yz0_new, & + y_flux_t(:knon), y_flux_q(:knon), y_dflux_t, y_dflux_q, & y_fqcalving, y_ffonte, y_run_off_lic_0) ! calculer la longueur de rugosite sur ocean @@ -481,16 +480,20 @@ coefm(j, k) = coefm(j, k)*ypct(j) y_d_t(j, k) = y_d_t(j, k)*ypct(j) y_d_q(j, k) = y_d_q(j, k)*ypct(j) - flux_t(i, k, nsrf) = y_flux_t(j, k) - flux_q(i, k, nsrf) = y_flux_q(j, k) - flux_u(i, k, nsrf) = y_flux_u(j, k) - flux_v(i, k, nsrf) = y_flux_v(j, k) y_d_u(j, k) = y_d_u(j, k)*ypct(j) y_d_v(j, k) = y_d_v(j, k)*ypct(j) END DO END DO - evap(:, nsrf) = -flux_q(:, 1, nsrf) + DO j = 1, knon + i = ni(j) + flux_t(i, nsrf) = y_flux_t(j) + flux_q(i, nsrf) = y_flux_q(j) + flux_u(i, nsrf) = y_flux_u(j) + flux_v(i, nsrf) = y_flux_v(j) + END DO + + evap(:, nsrf) = -flux_q(:, nsrf) falbe(:, nsrf) = 0. snow(:, nsrf) = 0. @@ -583,9 +586,9 @@ END DO - CALL hbtm(knon, ypaprs, ypplay, yt2m, yq2m, yustar, y_flux_t, & - y_flux_q, yu, yv, yt, yq, ypblh(:knon), ycapcl, yoliqcl, & - ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl) + CALL hbtm(ypaprs, ypplay, yt2m, yq2m, yustar, y_flux_t(:knon), & + y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, & + yoliqcl, ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl) DO j = 1, knon i = ni(j)