/[lmdze]/trunk/phylmd/pbl_surface.f
ViewVC logotype

Diff of /trunk/phylmd/pbl_surface.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/clmain.f90 revision 15 by guez, Fri Aug 1 15:24:12 2008 UTC trunk/Sources/phylmd/clmain.f revision 246 by guez, Wed Nov 15 13:56:45 2017 UTC
# Line 1  Line 1 
1  SUBROUTINE clmain(dtime, itap, date0, pctsrf, pctsrf_new, t, q, u, v,&  module clmain_m
      jour, rmu0, co2_ppm, ok_veget, ocean, npas, nexca, ts,&  
      soil_model, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil,&  
      qsol, paprs, pplay, snow, qsurf, evap, albe, alblw, fluxlat,&  
      rain_f, snow_f, solsw, sollw, sollwdown, fder, rlon, rlat, cufi,&  
      cvfi, rugos, debut, lafin, agesno, rugoro, d_t, d_q, d_u, d_v,&  
      d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, q2,&  
      dflux_t, dflux_q, zcoefh, zu1, zv1, t2m, q2m, u10m, v10m, &  
      pblh, capcl, oliqcl, cteicl, pblt, therm, trmb1, trmb2, trmb3,&  
      plcl, fqcalving, ffonte, run_off_lic_0, & !IM "slab" ocean  
      flux_o, flux_g, tslab, seaice)  
   
   ! From phylmd/clmain.F, v 1.6 2005/11/16 14:47:19  
   
   !AA Tout ce qui a trait au traceurs est dans phytrac maintenant  
   !AA pour l'instant le calcul de la couche limite pour les traceurs  
   !AA se fait avec cltrac et ne tient pas compte de la differentiation  
   !AA des sous-fraction de sol.  
   
   !AA Pour pouvoir extraire les coefficient d'echanges et le vent  
   !AA dans la premiere couche, 3 champs supplementaires ont ete crees  
   !AA zcoefh, zu1 et zv1. Pour l'instant nous avons moyenne les valeurs  
   !AA de ces trois champs sur les 4 subsurfaces du modele. Dans l'avenir  
   !AA si les informations des subsurfaces doivent etre prises en compte  
   !AA il faudra sortir ces memes champs en leur ajoutant une dimension,  
   !AA c'est a dire nbsrf (nbre de subsurface).  
   
   ! Auteur(s) Z.X. Li (LMD/CNRS) date: 19930818  
   ! Objet: interface de "couche limite" (diffusion verticale)  
   
   ! Arguments:  
   ! dtime----input-R- interval du temps (secondes)  
   ! itap-----input-I- numero du pas de temps  
   ! date0----input-R- jour initial  
   ! t--------input-R- temperature (K)  
   ! q--------input-R- vapeur d'eau (kg/kg)  
   ! u--------input-R- vitesse u  
   ! v--------input-R- vitesse v  
   ! ts-------input-R- temperature du sol (en Kelvin)  
   ! paprs----input-R- pression a intercouche (Pa)  
   ! pplay----input-R- pression au milieu de couche (Pa)  
   ! radsol---input-R- flux radiatif net (positif vers le sol) en W/m**2  
   ! rlat-----input-R- latitude en degree  
   ! rugos----input-R- longeur de rugosite (en m)  
   ! cufi-----input-R- resolution des mailles en x (m)  
   ! cvfi-----input-R- resolution des mailles en y (m)  
   
   ! d_t------output-R- le changement pour "t"  
   ! d_q------output-R- le changement pour "q"  
   ! d_u------output-R- le changement pour "u"  
   ! d_v------output-R- le changement pour "v"  
   ! d_ts-----output-R- le changement pour "ts"  
   ! flux_t---output-R- flux de chaleur sensible (CpT) J/m**2/s (W/m**2)  
   !                    (orientation positive vers le bas)  
   ! flux_q---output-R- flux de vapeur d'eau (kg/m**2/s)  
   ! flux_u---output-R- tension du vent X: (kg m/s)/(m**2 s) ou Pascal  
   ! flux_v---output-R- tension du vent Y: (kg m/s)/(m**2 s) ou Pascal  
   ! dflux_t derive du flux sensible  
   ! dflux_q derive du flux latent  
   !IM "slab" ocean  
   ! flux_g---output-R-  flux glace (pour OCEAN='slab  ')  
   ! flux_o---output-R-  flux ocean (pour OCEAN='slab  ')  
   ! tslab-in/output-R temperature du slab ocean (en Kelvin) ! uniqmnt pour slab  
   ! seaice---output-R-  glace de mer (kg/m2) (pour OCEAN='slab  ')  
   !cc  
   ! ffonte----Flux thermique utilise pour fondre la neige  
   ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la  
   !           hauteur de neige, en kg/m2/s  
   !AA on rajoute en output yu1 et yv1 qui sont les vents dans  
   !AA la premiere couche  
   !AA ces 4 variables sont maintenant traites dans phytrac  
   ! itr--------input-I- nombre de traceurs  
   ! tr---------input-R- q. de traceurs  
   ! flux_surf--input-R- flux de traceurs a la surface  
   ! d_tr-------output-R tendance de traceurs  
   !IM cf. AM : PBL  
   ! trmb1-------deep_cape  
   ! trmb2--------inhibition  
   ! trmb3-------Point Omega  
   ! Cape(klon)-------Cape du thermique  
   ! EauLiq(klon)-------Eau liqu integr du thermique  
   ! ctei(klon)-------Critere d'instab d'entrainmt des nuages de CL  
   ! lcl------- Niveau de condensation  
   ! pblh------- HCL  
   ! pblT------- T au nveau HCL  
   
   !$$$ PB ajout pour soil  
   
   USE ioipsl  
   USE interface_surf  
   USE dimens_m  
   USE indicesol  
   USE dimphy  
   USE dimsoil  
   USE temps  
   USE iniprint  
   USE yomcst  
   USE yoethf  
   USE fcttre  
   USE conf_phys_m  
   USE gath_cpl, ONLY : gath2cpl  
2    
3    IMPLICIT NONE    IMPLICIT NONE
4    
5    REAL, INTENT (IN) :: dtime  contains
   REAL date0  
   INTEGER, INTENT (IN) :: itap  
   REAL t(klon, klev), q(klon, klev)  
   REAL u(klon, klev), v(klon, klev)  
   REAL, INTENT (IN) :: paprs(klon, klev+1)  
   REAL, INTENT (IN) :: pplay(klon, klev)  
   REAL, INTENT (IN) :: rlon(klon), rlat(klon)  
   REAL cufi(klon), cvfi(klon)  
   REAL d_t(klon, klev), d_q(klon, klev)  
   REAL d_u(klon, klev), d_v(klon, klev)  
   REAL flux_t(klon, klev, nbsrf), flux_q(klon, klev, nbsrf)  
   REAL dflux_t(klon), dflux_q(klon)  
   !IM "slab" ocean  
   REAL flux_o(klon), flux_g(klon)  
   REAL y_flux_o(klon), y_flux_g(klon)  
   REAL tslab(klon), ytslab(klon)  
   REAL seaice(klon), y_seaice(klon)  
   REAL y_fqcalving(klon), y_ffonte(klon)  
   REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)  
   REAL run_off_lic_0(klon), y_run_off_lic_0(klon)  
   
   REAL flux_u(klon, klev, nbsrf), flux_v(klon, klev, nbsrf)  
   REAL rugmer(klon), agesno(klon, nbsrf)  
   REAL, INTENT (IN) :: rugoro(klon)  
   REAL cdragh(klon), cdragm(klon)  
   ! jour de l'annee en cours                  
   INTEGER jour  
   REAL rmu0(klon) ! cosinus de l'angle solaire zenithal      
   ! taux CO2 atmosphere                      
   REAL co2_ppm  
   LOGICAL, INTENT (IN) :: debut  
   LOGICAL, INTENT (IN) :: lafin  
   LOGICAL ok_veget  
   CHARACTER (len=*), INTENT (IN) :: ocean  
   INTEGER npas, nexca  
   
   REAL pctsrf(klon, nbsrf)  
   REAL ts(klon, nbsrf)  
   REAL d_ts(klon, nbsrf)  
   REAL snow(klon, nbsrf)  
   REAL qsurf(klon, nbsrf)  
   REAL evap(klon, nbsrf)  
   REAL albe(klon, nbsrf)  
   REAL alblw(klon, nbsrf)  
   
   REAL fluxlat(klon, nbsrf)  
   
   REAL rain_f(klon), snow_f(klon)  
   REAL fder(klon)  
   
   REAL sollw(klon, nbsrf), solsw(klon, nbsrf), sollwdown(klon)  
   REAL rugos(klon, nbsrf)  
   ! la nouvelle repartition des surfaces sortie de l'interface  
   REAL pctsrf_new(klon, nbsrf)  
   
   REAL zcoefh(klon, klev)  
   REAL zu1(klon)  
   REAL zv1(klon)  
   
   !$$$ PB ajout pour soil  
   LOGICAL, INTENT (IN) :: soil_model  
   !IM ajout seuils cdrm, cdrh  
   REAL cdmmax, cdhmax  
   
   REAL ksta, ksta_ter  
   LOGICAL ok_kzmin  
   
   REAL ftsoil(klon, nsoilmx, nbsrf)  
   REAL ytsoil(klon, nsoilmx)  
   REAL qsol(klon)  
   
   EXTERNAL clqh, clvent, coefkz, calbeta, cltrac  
   
   REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)  
   REAL yalb(klon)  
   REAL yalblw(klon)  
   REAL yu1(klon), yv1(klon)  
   REAL ysnow(klon), yqsurf(klon), yagesno(klon), yqsol(klon)  
   REAL yrain_f(klon), ysnow_f(klon)  
   REAL ysollw(klon), ysolsw(klon), ysollwdown(klon)  
   REAL yfder(klon), ytaux(klon), ytauy(klon)  
   REAL yrugm(klon), yrads(klon), yrugoro(klon)  
   
   REAL yfluxlat(klon)  
   
   REAL y_d_ts(klon)  
   REAL y_d_t(klon, klev), y_d_q(klon, klev)  
   REAL y_d_u(klon, klev), y_d_v(klon, klev)  
   REAL y_flux_t(klon, klev), y_flux_q(klon, klev)  
   REAL y_flux_u(klon, klev), y_flux_v(klon, klev)  
   REAL y_dflux_t(klon), y_dflux_q(klon)  
   REAL ycoefh(klon, klev), ycoefm(klon, klev)  
   REAL yu(klon, klev), yv(klon, klev)  
   REAL yt(klon, klev), yq(klon, klev)  
   REAL ypaprs(klon, klev+1), ypplay(klon, klev), ydelp(klon, klev)  
   
   LOGICAL ok_nonloc  
   PARAMETER (ok_nonloc=.FALSE.)  
   REAL ycoefm0(klon, klev), ycoefh0(klon, klev)  
   
   !IM 081204 hcl_Anne ? BEG  
   REAL yzlay(klon, klev), yzlev(klon, klev+1), yteta(klon, klev)  
   REAL ykmm(klon, klev+1), ykmn(klon, klev+1)  
   REAL ykmq(klon, klev+1)  
   REAL yq2(klon, klev+1), q2(klon, klev+1, nbsrf)  
   REAL q2diag(klon, klev+1)  
   !IM 081204 hcl_Anne ? END  
   
   REAL u1lay(klon), v1lay(klon)  
   REAL delp(klon, klev)  
   INTEGER i, k, nsrf  
   
   INTEGER ni(klon), knon, j  
   ! Introduction d'une variable "pourcentage potentiel" pour tenir compte  
   ! des eventuelles apparitions et/ou disparitions de la glace de mer  
   REAL pctsrf_pot(klon, nbsrf)  
   
   REAL zx_alf1, zx_alf2 !valeur ambiante par extrapola.  
   
   ! maf pour sorties IOISPL en cas de debugagage  
   
   CHARACTER*80 cldebug  
   SAVE cldebug  
   CHARACTER*8 cl_surf(nbsrf)  
   SAVE cl_surf  
   INTEGER nhoridbg, nidbg  
   SAVE nhoridbg, nidbg  
   INTEGER ndexbg(iim*(jjm+1))  
   REAL zx_lon(iim, jjm+1), zx_lat(iim, jjm+1), zjulian  
   REAL tabindx(klon)  
   REAL debugtab(iim, jjm+1)  
   LOGICAL first_appel  
   SAVE first_appel  
   DATA first_appel/ .TRUE./  
   LOGICAL :: debugindex = .FALSE.  
   INTEGER idayref  
   REAL t2m(klon, nbsrf), q2m(klon, nbsrf)  
   REAL u10m(klon, nbsrf), v10m(klon, nbsrf)  
   
   REAL yt2m(klon), yq2m(klon), yu10m(klon)  
   REAL yustar(klon)  
   ! -- LOOP  
   REAL yu10mx(klon)  
   REAL yu10my(klon)  
   REAL ywindsp(klon)  
   ! -- LOOP  
   
   REAL yt10m(klon), yq10m(klon)  
   !IM cf. AM : pbl, hbtm2 (Comme les autres diagnostics on cumule ds  
   ! physiq ce qui permet de sortir les grdeurs par sous surface)  
   REAL pblh(klon, nbsrf)  
   REAL plcl(klon, nbsrf)  
   REAL capcl(klon, nbsrf)  
   REAL oliqcl(klon, nbsrf)  
   REAL cteicl(klon, nbsrf)  
   REAL pblt(klon, nbsrf)  
   REAL therm(klon, nbsrf)  
   REAL trmb1(klon, nbsrf)  
   REAL trmb2(klon, nbsrf)  
   REAL trmb3(klon, nbsrf)  
   REAL ypblh(klon)  
   REAL ylcl(klon)  
   REAL ycapcl(klon)  
   REAL yoliqcl(klon)  
   REAL ycteicl(klon)  
   REAL ypblt(klon)  
   REAL ytherm(klon)  
   REAL ytrmb1(klon)  
   REAL ytrmb2(klon)  
   REAL ytrmb3(klon)  
   REAL y_cd_h(klon), y_cd_m(klon)  
   REAL uzon(klon), vmer(klon)  
   REAL tair1(klon), qair1(klon), tairsol(klon)  
   REAL psfce(klon), patm(klon)  
   
   REAL qairsol(klon), zgeo1(klon)  
   REAL rugo1(klon)  
   
   ! utiliser un jeu de fonctions simples                
   LOGICAL zxli  
   PARAMETER (zxli=.FALSE.)  
   
   REAL zt, zqs, zdelta, zcor  
   REAL t_coup  
   PARAMETER (t_coup=273.15)  
   
   CHARACTER (len=20) :: modname = 'clmain'  
   LOGICAL check  
   PARAMETER (check=.FALSE.)  
   
   !------------------------------------------------------------  
   
   ! initialisation Anne  
   ytherm = 0.  
   
   IF (check) THEN  
      print *, modname, '  klon=', klon  
   END IF  
   
   IF (debugindex .AND. first_appel) THEN  
      first_appel = .FALSE.  
   
      ! initialisation sorties netcdf  
   
      idayref = day_ini  
      CALL ymds2ju(annee_ref, 1, idayref, 0.0, zjulian)  
      CALL gr_fi_ecrit(1, klon, iim, jjm+1, rlon, zx_lon)  
      DO i = 1, iim  
         zx_lon(i, 1) = rlon(i+1)  
         zx_lon(i, jjm+1) = rlon(i+1)  
      END DO  
      CALL gr_fi_ecrit(1, klon, iim, jjm+1, rlat, zx_lat)  
      cldebug = 'sous_index'  
      CALL histbeg_totreg(cldebug, zx_lon(:, 1), zx_lat(1, :), 1, &  
           iim, 1, jjm+1, itau_phy, zjulian, dtime, nhoridbg, nidbg)  
      ! no vertical axis  
      cl_surf(1) = 'ter'  
      cl_surf(2) = 'lic'  
      cl_surf(3) = 'oce'  
      cl_surf(4) = 'sic'  
      DO nsrf = 1, nbsrf  
         CALL histdef(nidbg, cl_surf(nsrf), cl_surf(nsrf), '-', iim, jjm+1, &  
              nhoridbg, 1, 1, 1, -99, 'inst', dtime, dtime)  
      END DO  
      CALL histend(nidbg)  
      CALL histsync(nidbg)  
   END IF  
   
   DO k = 1, klev ! epaisseur de couche  
      DO i = 1, klon  
         delp(i, k) = paprs(i, k) - paprs(i, k+1)  
      END DO  
   END DO  
   DO i = 1, klon ! vent de la premiere couche  
      zx_alf1 = 1.0  
      zx_alf2 = 1.0 - zx_alf1  
      u1lay(i) = u(i, 1)*zx_alf1 + u(i, 2)*zx_alf2  
      v1lay(i) = v(i, 1)*zx_alf1 + v(i, 2)*zx_alf2  
   END DO  
   
   ! initialisation:  
   
   DO i = 1, klon  
      rugmer(i) = 0.0  
      cdragh(i) = 0.0  
      cdragm(i) = 0.0  
      dflux_t(i) = 0.0  
      dflux_q(i) = 0.0  
      zu1(i) = 0.0  
      zv1(i) = 0.0  
   END DO  
   ypct = 0.0  
   yts = 0.0  
   ysnow = 0.0  
   yqsurf = 0.0  
   yalb = 0.0  
   yalblw = 0.0  
   yrain_f = 0.0  
   ysnow_f = 0.0  
   yfder = 0.0  
   ytaux = 0.0  
   ytauy = 0.0  
   ysolsw = 0.0  
   ysollw = 0.0  
   ysollwdown = 0.0  
   yrugos = 0.0  
   yu1 = 0.0  
   yv1 = 0.0  
   yrads = 0.0  
   ypaprs = 0.0  
   ypplay = 0.0  
   ydelp = 0.0  
   yu = 0.0  
   yv = 0.0  
   yt = 0.0  
   yq = 0.0  
   pctsrf_new = 0.0  
   y_flux_u = 0.0  
   y_flux_v = 0.0  
   !$$ PB  
   y_dflux_t = 0.0  
   y_dflux_q = 0.0  
   ytsoil = 999999.  
   yrugoro = 0.  
   ! -- LOOP  
   yu10mx = 0.0  
   yu10my = 0.0  
   ywindsp = 0.0  
   ! -- LOOP  
   DO nsrf = 1, nbsrf  
      DO i = 1, klon  
         d_ts(i, nsrf) = 0.0  
      END DO  
   END DO  
   !§§§ PB  
   yfluxlat = 0.  
   flux_t = 0.  
   flux_q = 0.  
   flux_u = 0.  
   flux_v = 0.  
   DO k = 1, klev  
      DO i = 1, klon  
         d_t(i, k) = 0.0  
         d_q(i, k) = 0.0  
         !$$$         flux_t(i, k) = 0.0  
         !$$$         flux_q(i, k) = 0.0  
         d_u(i, k) = 0.0  
         d_v(i, k) = 0.0  
         !$$$         flux_u(i, k) = 0.0  
         !$$$         flux_v(i, k) = 0.0  
         zcoefh(i, k) = 0.0  
      END DO  
   END DO  
   !AA      IF (itr.GE.1) THEN  
   !AA      DO it = 1, itr  
   !AA      DO k = 1, klev  
   !AA      DO i = 1, klon  
   !AA         d_tr(i, k, it) = 0.0  
   !AA      ENDDO  
   !AA      ENDDO  
   !AA      ENDDO  
   !AA      ENDIF  
   
   
   ! Boucler sur toutes les sous-fractions du sol:  
   
   ! Initialisation des "pourcentages potentiels". On considere ici qu'on  
   ! peut avoir potentiellementdela glace sur tout le domaine oceanique  
   ! (a affiner)  
   
   pctsrf_pot = pctsrf  
   pctsrf_pot(:, is_oce) = 1. - zmasq  
   pctsrf_pot(:, is_sic) = 1. - zmasq  
   
   DO nsrf = 1, nbsrf  
      ! chercher les indices:  
      ni = 0  
      knon = 0  
      DO i = 1, klon  
         ! pour determiner le domaine a traiter on utilise les surfaces  
         ! "potentielles"  
         IF (pctsrf_pot(i, nsrf) > epsfra) THEN  
            knon = knon + 1  
            ni(knon) = i  
         END IF  
      END DO  
   
      IF (check) THEN  
         print *, 'CLMAIN, nsrf, knon =', nsrf, knon  
      END IF  
   
      ! variables pour avoir une sortie IOIPSL des INDEX  
      IF (debugindex) THEN  
         tabindx = 0.  
         DO i = 1, knon  
            tabindx(i) = real(i)  
         END DO  
         debugtab = 0.  
         ndexbg = 0  
         CALL gath2cpl(tabindx, debugtab, klon, knon, iim, jjm, ni)  
         CALL histwrite(nidbg, cl_surf(nsrf), itap, debugtab)  
      END IF  
   
      IF (knon==0) CYCLE  
   
      DO j = 1, knon  
         i = ni(j)  
         ypct(j) = pctsrf(i, nsrf)  
         yts(j) = ts(i, nsrf)  
         ytslab(i) = tslab(i)  
         ysnow(j) = snow(i, nsrf)  
         yqsurf(j) = qsurf(i, nsrf)  
         yalb(j) = albe(i, nsrf)  
         yalblw(j) = alblw(i, nsrf)  
         yrain_f(j) = rain_f(i)  
         ysnow_f(j) = snow_f(i)  
         yagesno(j) = agesno(i, nsrf)  
         yfder(j) = fder(i)  
         ytaux(j) = flux_u(i, 1, nsrf)  
         ytauy(j) = flux_v(i, 1, nsrf)  
         ysolsw(j) = solsw(i, nsrf)  
         ysollw(j) = sollw(i, nsrf)  
         ysollwdown(j) = sollwdown(i)  
         yrugos(j) = rugos(i, nsrf)  
         yrugoro(j) = rugoro(i)  
         yu1(j) = u1lay(i)  
         yv1(j) = v1lay(i)  
         yrads(j) = ysolsw(j) + ysollw(j)  
         ypaprs(j, klev+1) = paprs(i, klev+1)  
         y_run_off_lic_0(j) = run_off_lic_0(i)  
         yu10mx(j) = u10m(i, nsrf)  
         yu10my(j) = v10m(i, nsrf)  
         ywindsp(j) = sqrt(yu10mx(j)*yu10mx(j)+yu10my(j)*yu10my(j))  
      END DO  
   
      !     IF bucket model for continent, copy soil water content  
      IF (nsrf==is_ter .AND. .NOT. ok_veget) THEN  
         DO j = 1, knon  
            i = ni(j)  
            yqsol(j) = qsol(i)  
         END DO  
      ELSE  
         yqsol = 0.  
      END IF  
      !$$$ PB ajour pour soil  
      DO k = 1, nsoilmx  
         DO j = 1, knon  
            i = ni(j)  
            ytsoil(j, k) = ftsoil(i, k, nsrf)  
         END DO  
      END DO  
      DO k = 1, klev  
         DO j = 1, knon  
            i = ni(j)  
            ypaprs(j, k) = paprs(i, k)  
            ypplay(j, k) = pplay(i, k)  
            ydelp(j, k) = delp(i, k)  
            yu(j, k) = u(i, k)  
            yv(j, k) = v(i, k)  
            yt(j, k) = t(i, k)  
            yq(j, k) = q(i, k)  
         END DO  
      END DO  
   
   
      ! calculer Cdrag et les coefficients d'echange  
      CALL coefkz(nsrf, knon, ypaprs, ypplay, & !IM 261103  
           ksta, ksta_ter, & !IM 261103  
           yts, yrugos, yu, yv, yt, yq, yqsurf, ycoefm, ycoefh)  
      !IM 081204 BEG  
      !CR test  
      IF (iflag_pbl==1) THEN  
         !IM 081204 END  
         CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0)  
         DO k = 1, klev  
            DO i = 1, knon  
               ycoefm(i, k) = max(ycoefm(i, k), ycoefm0(i, k))  
               ycoefh(i, k) = max(ycoefh(i, k), ycoefh0(i, k))  
            END DO  
         END DO  
      END IF  
   
      !IM cf JLD : on seuille ycoefm et ycoefh  
      IF (nsrf==is_oce) THEN  
         DO j = 1, knon  
            !           ycoefm(j, 1)=min(ycoefm(j, 1), 1.1E-3)  
            ycoefm(j, 1) = min(ycoefm(j, 1), cdmmax)  
            !           ycoefh(j, 1)=min(ycoefh(j, 1), 1.1E-3)  
            ycoefh(j, 1) = min(ycoefh(j, 1), cdhmax)  
         END DO  
      END IF  
   
   
      !IM: 261103  
      IF (ok_kzmin) THEN  
         !IM cf FH: 201103 BEG  
         !   Calcul d'une diffusion minimale pour les conditions tres stables.  
         CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, ycoefm, ycoefm0, &  
              ycoefh0)  
         !      call dump2d(iim, jjm-1, ycoefm(2:klon-1, 2), 'KZ         ')  
         !      call dump2d(iim, jjm-1, ycoefm0(2:klon-1, 2), 'KZMIN      ')  
   
         IF (1==1) THEN  
            DO k = 1, klev  
               DO i = 1, knon  
                  ycoefm(i, k) = max(ycoefm(i, k), ycoefm0(i, k))  
                  ycoefh(i, k) = max(ycoefh(i, k), ycoefh0(i, k))  
               END DO  
            END DO  
         END IF  
         !IM cf FH: 201103 END  
         !IM: 261103  
      END IF !ok_kzmin  
   
      IF (iflag_pbl>=3) THEN  
   
         !ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc  
         ! MELLOR ET YAMADA adapte a Mars Richard Fournier et Frederic Hourdin  
         !ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc  
   
         yzlay(1:knon, 1) = rd*yt(1:knon, 1)/(0.5*(ypaprs(1:knon, &  
              1)+ypplay(1:knon, 1)))*(ypaprs(1:knon, 1)-ypplay(1:knon, 1))/rg  
         DO k = 2, klev  
            yzlay(1:knon, k) = yzlay(1:knon, k-1) + rd*0.5*(yt(1:knon, k-1)+yt(1: &  
                 knon, k))/ypaprs(1:knon, k)*(ypplay(1:knon, k-1)-ypplay(1:knon, k))/ &  
                 rg  
         END DO  
         DO k = 1, klev  
            yteta(1:knon, k) = yt(1:knon, k)*(ypaprs(1:knon, 1)/ypplay(1:knon, k)) &  
                 **rkappa*(1.+0.61*yq(1:knon, k))  
         END DO  
         yzlev(1:knon, 1) = 0.  
         yzlev(1:knon, klev+1) = 2.*yzlay(1:knon, klev) - yzlay(1:knon, klev-1)  
         DO k = 2, klev  
            yzlev(1:knon, k) = 0.5*(yzlay(1:knon, k)+yzlay(1:knon, k-1))  
         END DO  
         DO k = 1, klev + 1  
            DO j = 1, knon  
               i = ni(j)  
               yq2(j, k) = q2(i, k, nsrf)  
            END DO  
         END DO  
   
   
         !   Bug introduit volontairement pour converger avec les resultats  
         !  du papier sur les thermiques.  
         IF (1==1) THEN  
            y_cd_m(1:knon) = ycoefm(1:knon, 1)  
            y_cd_h(1:knon) = ycoefh(1:knon, 1)  
         ELSE  
            y_cd_h(1:knon) = ycoefm(1:knon, 1)  
            y_cd_m(1:knon) = ycoefh(1:knon, 1)  
         END IF  
         CALL ustarhb(knon, yu, yv, y_cd_m, yustar)  
   
         IF (prt_level>9) THEN  
            PRINT *, 'USTAR = ', yustar  
         END IF  
   
         !   iflag_pbl peut etre utilise comme longuer de melange  
   
         IF (iflag_pbl>=11) THEN  
            CALL vdif_kcay(knon, dtime, rg, rd, ypaprs, yt, yzlev, yzlay, yu, yv, yteta, &  
                 y_cd_m, yq2, q2diag, ykmm, ykmn, yustar, iflag_pbl)  
         ELSE  
            CALL yamada4(knon, dtime, rg, rd, ypaprs, yt, yzlev, yzlay, yu, yv, yteta, &  
                 y_cd_m, yq2, ykmm, ykmn, ykmq, yustar, iflag_pbl)  
         END IF  
   
         ycoefm(1:knon, 1) = y_cd_m(1:knon)  
         ycoefh(1:knon, 1) = y_cd_h(1:knon)  
         ycoefm(1:knon, 2:klev) = ykmm(1:knon, 2:klev)  
         ycoefh(1:knon, 2:klev) = ykmn(1:knon, 2:klev)  
   
   
      END IF  
   
      !ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc  
      ! calculer la diffusion des vitesses "u" et "v"  
      !ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc  
   
      CALL clvent(knon, dtime, yu1, yv1, ycoefm, yt, yu, ypaprs, ypplay, ydelp, &  
           y_d_u, y_flux_u)  
      CALL clvent(knon, dtime, yu1, yv1, ycoefm, yt, yv, ypaprs, ypplay, ydelp, &  
           y_d_v, y_flux_v)  
   
      ! pour le couplage  
      ytaux = y_flux_u(:, 1)  
      ytauy = y_flux_v(:, 1)  
   
      ! FH modif sur le cdrag temperature  
      !$$$PB : déplace dans clcdrag  
      !$$$      do i=1, knon  
      !$$$         ycoefh(i, 1)=ycoefm(i, 1)*0.8  
      !$$$      enddo  
   
      ! calculer la diffusion de "q" et de "h"  
      CALL clqh(dtime, itap, date0, jour, debut, lafin, rlon, rlat,&  
           cufi, cvfi, knon, nsrf, ni, pctsrf, soil_model, ytsoil,&  
           yqsol, ok_veget, ocean, npas, nexca, rmu0, co2_ppm, yrugos,&  
           yrugoro, yu1, yv1, ycoefh, yt, yq, yts, ypaprs, ypplay,&  
           ydelp, yrads, yalb, yalblw, ysnow, yqsurf, yrain_f, ysnow_f, &  
           yfder, ytaux, ytauy, ywindsp, ysollw, ysollwdown, ysolsw,&  
           yfluxlat, pctsrf_new, yagesno, y_d_t, y_d_q, y_d_ts,&  
           yz0_new, y_flux_t, y_flux_q, y_dflux_t, y_dflux_q,&  
           y_fqcalving, y_ffonte, y_run_off_lic_0, y_flux_o, y_flux_g,&  
           ytslab, y_seaice)  
   
      ! calculer la longueur de rugosite sur ocean  
      yrugm = 0.  
      IF (nsrf==is_oce) THEN  
         DO j = 1, knon  
            yrugm(j) = 0.018*ycoefm(j, 1)*(yu1(j)**2+yv1(j)**2)/rg + &  
                 0.11*14E-6/sqrt(ycoefm(j, 1)*(yu1(j)**2+yv1(j)**2))  
            yrugm(j) = max(1.5E-05, yrugm(j))  
         END DO  
      END IF  
      DO j = 1, knon  
         y_dflux_t(j) = y_dflux_t(j)*ypct(j)  
         y_dflux_q(j) = y_dflux_q(j)*ypct(j)  
         yu1(j) = yu1(j)*ypct(j)  
         yv1(j) = yv1(j)*ypct(j)  
      END DO  
   
      DO k = 1, klev  
         DO j = 1, knon  
            i = ni(j)  
            ycoefh(j, k) = ycoefh(j, k)*ypct(j)  
            ycoefm(j, k) = ycoefm(j, k)*ypct(j)  
            y_d_t(j, k) = y_d_t(j, k)*ypct(j)  
            y_d_q(j, k) = y_d_q(j, k)*ypct(j)  
            !§§§ PB  
            flux_t(i, k, nsrf) = y_flux_t(j, k)  
            flux_q(i, k, nsrf) = y_flux_q(j, k)  
            flux_u(i, k, nsrf) = y_flux_u(j, k)  
            flux_v(i, k, nsrf) = y_flux_v(j, k)  
            !$$$ PB        y_flux_t(j, k) = y_flux_t(j, k) * ypct(j)  
            !$$$ PB        y_flux_q(j, k) = y_flux_q(j, k) * ypct(j)  
            y_d_u(j, k) = y_d_u(j, k)*ypct(j)  
            y_d_v(j, k) = y_d_v(j, k)*ypct(j)  
            !$$$ PB        y_flux_u(j, k) = y_flux_u(j, k) * ypct(j)  
            !$$$ PB        y_flux_v(j, k) = y_flux_v(j, k) * ypct(j)  
         END DO  
      END DO  
   
   
      evap(:, nsrf) = -flux_q(:, 1, nsrf)  
   
      albe(:, nsrf) = 0.  
      alblw(:, nsrf) = 0.  
      snow(:, nsrf) = 0.  
      qsurf(:, nsrf) = 0.  
      rugos(:, nsrf) = 0.  
      fluxlat(:, nsrf) = 0.  
      DO j = 1, knon  
         i = ni(j)  
         d_ts(i, nsrf) = y_d_ts(j)  
         albe(i, nsrf) = yalb(j)  
         alblw(i, nsrf) = yalblw(j)  
         snow(i, nsrf) = ysnow(j)  
         qsurf(i, nsrf) = yqsurf(j)  
         rugos(i, nsrf) = yz0_new(j)  
         fluxlat(i, nsrf) = yfluxlat(j)  
         !$$$ pb         rugmer(i) = yrugm(j)  
         IF (nsrf==is_oce) THEN  
            rugmer(i) = yrugm(j)  
            rugos(i, nsrf) = yrugm(j)  
         END IF  
         !IM cf JLD ??  
         agesno(i, nsrf) = yagesno(j)  
         fqcalving(i, nsrf) = y_fqcalving(j)  
         ffonte(i, nsrf) = y_ffonte(j)  
         cdragh(i) = cdragh(i) + ycoefh(j, 1)  
         cdragm(i) = cdragm(i) + ycoefm(j, 1)  
         dflux_t(i) = dflux_t(i) + y_dflux_t(j)  
         dflux_q(i) = dflux_q(i) + y_dflux_q(j)  
         zu1(i) = zu1(i) + yu1(j)  
         zv1(i) = zv1(i) + yv1(j)  
      END DO  
      IF (nsrf==is_ter) THEN  
         DO j = 1, knon  
            i = ni(j)  
            qsol(i) = yqsol(j)  
         END DO  
      END IF  
      IF (nsrf==is_lic) THEN  
         DO j = 1, knon  
            i = ni(j)  
            run_off_lic_0(i) = y_run_off_lic_0(j)  
         END DO  
      END IF  
      !$$$ PB ajout pour soil  
      ftsoil(:, :, nsrf) = 0.  
      DO k = 1, nsoilmx  
         DO j = 1, knon  
            i = ni(j)  
            ftsoil(i, k, nsrf) = ytsoil(j, k)  
         END DO  
      END DO  
   
      DO j = 1, knon  
         i = ni(j)  
         DO k = 1, klev  
            d_t(i, k) = d_t(i, k) + y_d_t(j, k)  
            d_q(i, k) = d_q(i, k) + y_d_q(j, k)  
            !$$$ PB        flux_t(i, k) = flux_t(i, k) + y_flux_t(j, k)  
            !$$$         flux_q(i, k) = flux_q(i, k) + y_flux_q(j, k)  
            d_u(i, k) = d_u(i, k) + y_d_u(j, k)  
            d_v(i, k) = d_v(i, k) + y_d_v(j, k)  
            !$$$  PB       flux_u(i, k) = flux_u(i, k) + y_flux_u(j, k)  
            !$$$         flux_v(i, k) = flux_v(i, k) + y_flux_v(j, k)  
            zcoefh(i, k) = zcoefh(i, k) + ycoefh(j, k)  
         END DO  
      END DO  
   
   
      !cc diagnostic t, q a 2m et u, v a 10m  
   
      DO j = 1, knon  
         i = ni(j)  
         uzon(j) = yu(j, 1) + y_d_u(j, 1)  
         vmer(j) = yv(j, 1) + y_d_v(j, 1)  
         tair1(j) = yt(j, 1) + y_d_t(j, 1)  
         qair1(j) = yq(j, 1) + y_d_q(j, 1)  
         zgeo1(j) = rd*tair1(j)/(0.5*(ypaprs(j, 1)+ypplay(j, &  
              1)))*(ypaprs(j, 1)-ypplay(j, 1))  
         tairsol(j) = yts(j) + y_d_ts(j)  
         rugo1(j) = yrugos(j)  
         IF (nsrf==is_oce) THEN  
            rugo1(j) = rugos(i, nsrf)  
         END IF  
         psfce(j) = ypaprs(j, 1)  
         patm(j) = ypplay(j, 1)  
   
         qairsol(j) = yqsurf(j)  
      END DO  
   
      CALL stdlevvar(klon, knon, nsrf, zxli, uzon, vmer, tair1, qair1, zgeo1, &  
           tairsol, qairsol, rugo1, psfce, patm, &  
           yt2m, yq2m, yt10m, yq10m, yu10m, yustar)  
      !IM 081204 END  
   
      DO j = 1, knon  
         i = ni(j)  
         t2m(i, nsrf) = yt2m(j)  
         q2m(i, nsrf) = yq2m(j)  
   
         ! u10m, v10m : composantes du vent a 10m sans spirale de Ekman  
         u10m(i, nsrf) = (yu10m(j)*uzon(j))/sqrt(uzon(j)**2+vmer(j)**2)  
         v10m(i, nsrf) = (yu10m(j)*vmer(j))/sqrt(uzon(j)**2+vmer(j)**2)  
   
      END DO  
   
      !IM cf AM : pbl, HBTM  
      DO i = 1, knon  
         y_cd_h(i) = ycoefh(i, 1)  
         y_cd_m(i) = ycoefm(i, 1)  
      END DO  
      !     print*, 'appel hbtm2'  
      CALL hbtm(knon, ypaprs, ypplay, yt2m, yt10m, yq2m, yq10m, yustar, y_flux_t, &  
           y_flux_q, yu, yv, yt, yq, ypblh, ycapcl, yoliqcl, ycteicl, ypblt, ytherm, &  
           ytrmb1, ytrmb2, ytrmb3, ylcl)  
      !     print*, 'fin hbtm2'  
   
      DO j = 1, knon  
         i = ni(j)  
         pblh(i, nsrf) = ypblh(j)  
         plcl(i, nsrf) = ylcl(j)  
         capcl(i, nsrf) = ycapcl(j)  
         oliqcl(i, nsrf) = yoliqcl(j)  
         cteicl(i, nsrf) = ycteicl(j)  
         pblt(i, nsrf) = ypblt(j)  
         therm(i, nsrf) = ytherm(j)  
         trmb1(i, nsrf) = ytrmb1(j)  
         trmb2(i, nsrf) = ytrmb2(j)  
         trmb3(i, nsrf) = ytrmb3(j)  
      END DO  
   
   
      DO j = 1, knon  
         DO k = 1, klev + 1  
            i = ni(j)  
            q2(i, k, nsrf) = yq2(j, k)  
         END DO  
      END DO  
      !IM "slab" ocean  
      IF (nsrf==is_oce) THEN  
         DO j = 1, knon  
            ! on projette sur la grille globale  
            i = ni(j)  
            IF (pctsrf_new(i, is_oce)>epsfra) THEN  
               flux_o(i) = y_flux_o(j)  
            ELSE  
               flux_o(i) = 0.  
            END IF  
         END DO  
      END IF  
   
      IF (nsrf==is_sic) THEN  
         DO j = 1, knon  
            i = ni(j)  
            !IM 230604 on pondere lorsque l'on fait le bilan au sol :  flux_g(i) = y_flux_g(j)*ypct(j)  
            IF (pctsrf_new(i, is_sic)>epsfra) THEN  
               flux_g(i) = y_flux_g(j)  
            ELSE  
               flux_g(i) = 0.  
            END IF  
         END DO  
   
      END IF  
      !nsrf.EQ.is_sic                                              
      IF (ocean=='slab  ') THEN  
         IF (nsrf==is_oce) THEN  
            tslab(1:klon) = ytslab(1:klon)  
            seaice(1:klon) = y_seaice(1:klon)  
            !nsrf                                                        
         END IF  
         !OCEAN                                                        
      END IF  
   END DO  
6    
7    ! On utilise les nouvelles surfaces    SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, julien, mu0, ftsol, cdmmax, &
8    ! A rajouter: conservation de l'albedo         cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, fsnow, &
9           qsurf, evap, falbe, fluxlat, rain_fall, snow_f, fsolsw, fsollw, frugs, &
10           agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, flux_u, &
11           flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, coefh, t2m, q2m, &
12           u10m_srf, v10m_srf, pblh, capcl, oliqcl, cteicl, pblt, therm, trmb1, &
13           trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0)
14    
15        ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19
16        ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18
17        ! Objet : interface de couche limite (diffusion verticale)
18    
19        ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul
20        ! de la couche limite pour les traceurs se fait avec "cltrac" et
21        ! ne tient pas compte de la diff\'erentiation des sous-fractions
22        ! de sol.
23    
24        use clqh_m, only: clqh
25        use clvent_m, only: clvent
26        use coefkz_m, only: coefkz
27        use coefkzmin_m, only: coefkzmin
28        use coefkz2_m, only: coefkz2
29        USE conf_gcm_m, ONLY: lmt_pas
30        USE conf_phys_m, ONLY: iflag_pbl
31        USE dimphy, ONLY: klev, klon, zmasq
32        USE dimsoil, ONLY: nsoilmx
33        use hbtm_m, only: hbtm
34        USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf
35        USE interfoce_lim_m, ONLY: interfoce_lim
36        use stdlevvar_m, only: stdlevvar
37        USE suphec_m, ONLY: rd, rg, rkappa
38        use time_phylmdz, only: itap
39        use ustarhb_m, only: ustarhb
40        use yamada4_m, only: yamada4
41    
42        REAL, INTENT(IN):: dtime ! interval du temps (secondes)
43    
44        REAL, INTENT(inout):: pctsrf(klon, nbsrf)
45        ! tableau des pourcentages de surface de chaque maille
46    
47        REAL, INTENT(IN):: t(klon, klev) ! temperature (K)
48        REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg / kg)
49        REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse
50        INTEGER, INTENT(IN):: julien ! jour de l'annee en cours
51        REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal    
52        REAL, INTENT(IN):: ftsol(:, :) ! (klon, nbsrf) temp\'erature du sol (en K)
53        REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh
54        REAL, INTENT(IN):: ksta, ksta_ter
55        LOGICAL, INTENT(IN):: ok_kzmin
56    
57        REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)
58        ! soil temperature of surface fraction
59    
60        REAL, INTENT(inout):: qsol(:) ! (klon)
61        ! column-density of water in soil, in kg m-2
62    
63        REAL, INTENT(IN):: paprs(klon, klev + 1) ! pression a intercouche (Pa)
64        REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa)
65        REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf) \'epaisseur neigeuse
66        REAL qsurf(klon, nbsrf)
67        REAL evap(klon, nbsrf)
68        REAL, intent(inout):: falbe(klon, nbsrf)
69        REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf)
70    
71        REAL, intent(in):: rain_fall(klon)
72        ! liquid water mass flux (kg / m2 / s), positive down
73    
74        REAL, intent(in):: snow_f(klon)
75        ! solid water mass flux (kg / m2 / s), positive down
76    
77        REAL, INTENT(IN):: fsolsw(klon, nbsrf), fsollw(klon, nbsrf)
78        REAL, intent(inout):: frugs(klon, nbsrf) ! longueur de rugosit\'e (en m)
79        real agesno(klon, nbsrf)
80        REAL, INTENT(IN):: rugoro(klon)
81    
82        REAL d_t(klon, klev), d_q(klon, klev)
83        ! d_t------output-R- le changement pour "t"
84        ! d_q------output-R- le changement pour "q"
85    
86        REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)
87        ! changement pour "u" et "v"
88    
89        REAL, intent(out):: d_ts(:, :) ! (klon, nbsrf) variation of ftsol
90    
91        REAL, intent(out):: flux_t(klon, nbsrf)
92        ! flux de chaleur sensible (Cp T) (W / m2) (orientation positive vers
93        ! le bas) à la surface
94    
95        REAL, intent(out):: flux_q(klon, nbsrf)
96        ! flux de vapeur d'eau (kg / m2 / s) à la surface
97    
98        REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf)
99        ! tension du vent (flux turbulent de vent) à la surface, en Pa
100    
101        REAL, INTENT(out):: cdragh(klon), cdragm(klon)
102        real q2(klon, klev + 1, nbsrf)
103    
104        REAL, INTENT(out):: dflux_t(klon), dflux_q(klon)
105        ! dflux_t derive du flux sensible
106        ! dflux_q derive du flux latent
107        ! IM "slab" ocean
108    
109        REAL, intent(out):: coefh(:, 2:) ! (klon, 2:klev)
110        ! Pour pouvoir extraire les coefficients d'\'echange, le champ
111        ! "coefh" a \'et\'e cr\'e\'e. Nous avons moyenn\'e les valeurs de
112        ! ce champ sur les quatre sous-surfaces du mod\`ele.
113    
114        REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf)
115    
116        REAL, INTENT(inout):: u10m_srf(:, :), v10m_srf(:, :) ! (klon, nbsrf)
117        ! composantes du vent \`a 10m sans spirale d'Ekman
118    
119        ! Ionela Musat. Cf. Anne Mathieu : planetary boundary layer, hbtm.
120        ! Comme les autres diagnostics on cumule dans physiq ce qui permet
121        ! de sortir les grandeurs par sous-surface.
122        REAL pblh(klon, nbsrf) ! height of planetary boundary layer
123        REAL capcl(klon, nbsrf)
124        REAL oliqcl(klon, nbsrf)
125        REAL cteicl(klon, nbsrf)
126        REAL, INTENT(inout):: pblt(klon, nbsrf) ! T au nveau HCL
127        REAL therm(klon, nbsrf)
128        REAL trmb1(klon, nbsrf)
129        ! trmb1-------deep_cape
130        REAL trmb2(klon, nbsrf)
131        ! trmb2--------inhibition
132        REAL trmb3(klon, nbsrf)
133        ! trmb3-------Point Omega
134        REAL plcl(klon, nbsrf)
135        REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)
136        ! ffonte----Flux thermique utilise pour fondre la neige
137        ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la
138        !           hauteur de neige, en kg / m2 / s
139        REAL run_off_lic_0(klon)
140    
141        ! Local:
142    
143        LOGICAL:: firstcal = .true.
144    
145        ! la nouvelle repartition des surfaces sortie de l'interface
146        REAL, save:: pctsrf_new_oce(klon)
147        REAL, save:: pctsrf_new_sic(klon)
148    
149        REAL y_fqcalving(klon), y_ffonte(klon)
150        real y_run_off_lic_0(klon)
151        REAL rugmer(klon)
152        REAL ytsoil(klon, nsoilmx)
153        REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)
154        REAL yalb(klon)
155        REAL snow(klon), yqsurf(klon), yagesno(klon)
156        real yqsol(klon) ! column-density of water in soil, in kg m-2
157        REAL yrain_f(klon) ! liquid water mass flux (kg / m2 / s), positive down
158        REAL ysnow_f(klon) ! solid water mass flux (kg / m2 / s), positive down
159        REAL yrugm(klon), yrads(klon), yrugoro(klon)
160        REAL yfluxlat(klon)
161        REAL y_d_ts(klon)
162        REAL y_d_t(klon, klev), y_d_q(klon, klev)
163        REAL y_d_u(klon, klev), y_d_v(klon, klev)
164        REAL y_flux_t(klon), y_flux_q(klon)
165        REAL y_flux_u(klon), y_flux_v(klon)
166        REAL y_dflux_t(klon), y_dflux_q(klon)
167        REAL ycoefh(klon, 2:klev), ycoefm(klon, 2:klev)
168        real ycdragh(klon), ycdragm(klon)
169        REAL yu(klon, klev), yv(klon, klev)
170        REAL yt(klon, klev), yq(klon, klev)
171        REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev)
172        REAL ycoefm0(klon, 2:klev), ycoefh0(klon, 2:klev)
173        REAL yzlay(klon, klev), zlev(klon, klev + 1), yteta(klon, klev)
174        REAL yq2(klon, klev + 1)
175        REAL delp(klon, klev)
176        INTEGER i, k, nsrf
177        INTEGER ni(klon), knon, j
178    
179        REAL pctsrf_pot(klon, nbsrf)
180        ! "pourcentage potentiel" pour tenir compte des \'eventuelles
181        ! apparitions ou disparitions de la glace de mer
182    
183        REAL yt2m(klon), yq2m(klon), wind10m(klon)
184        REAL ustar(klon)
185    
186        REAL yt10m(klon), yq10m(klon)
187        REAL ypblh(klon)
188        REAL ylcl(klon)
189        REAL ycapcl(klon)
190        REAL yoliqcl(klon)
191        REAL ycteicl(klon)
192        REAL ypblt(klon)
193        REAL ytherm(klon)
194        REAL ytrmb1(klon)
195        REAL ytrmb2(klon)
196        REAL ytrmb3(klon)
197        REAL u1(klon), v1(klon)
198        REAL tair1(klon), qair1(klon), tairsol(klon)
199        REAL psfce(klon), patm(klon)
200    
201        REAL qairsol(klon), zgeo1(klon)
202        REAL rugo1(klon)
203    
204        !------------------------------------------------------------
205    
206        ytherm = 0.
207    
208        DO k = 1, klev ! epaisseur de couche
209           DO i = 1, klon
210              delp(i, k) = paprs(i, k) - paprs(i, k + 1)
211           END DO
212        END DO
213    
214        ! Initialization:
215        rugmer = 0.
216        cdragh = 0.
217        cdragm = 0.
218        dflux_t = 0.
219        dflux_q = 0.
220        ypct = 0.
221        yqsurf = 0.
222        yrain_f = 0.
223        ysnow_f = 0.
224        yrugos = 0.
225        ypaprs = 0.
226        ypplay = 0.
227        ydelp = 0.
228        yu = 0.
229        yv = 0.
230        yt = 0.
231        yq = 0.
232        y_dflux_t = 0.
233        y_dflux_q = 0.
234        yrugoro = 0.
235        d_ts = 0.
236        flux_t = 0.
237        flux_q = 0.
238        flux_u = 0.
239        flux_v = 0.
240        fluxlat = 0.
241        d_t = 0.
242        d_q = 0.
243        d_u = 0.
244        d_v = 0.
245        coefh = 0.
246    
247        ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on
248        ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique
249        ! (\`a affiner)
250    
251        pctsrf_pot(:, is_ter) = pctsrf(:, is_ter)
252        pctsrf_pot(:, is_lic) = pctsrf(:, is_lic)
253        pctsrf_pot(:, is_oce) = 1. - zmasq
254        pctsrf_pot(:, is_sic) = 1. - zmasq
255    
256        ! Tester si c'est le moment de lire le fichier:
257        if (mod(itap - 1, lmt_pas) == 0) then
258           CALL interfoce_lim(julien, pctsrf_new_oce, pctsrf_new_sic)
259        endif
260    
261        ! Boucler sur toutes les sous-fractions du sol:
262    
263        loop_surface: DO nsrf = 1, nbsrf
264           ! Chercher les indices :
265           ni = 0
266           knon = 0
267           DO i = 1, klon
268              ! Pour d\'eterminer le domaine \`a traiter, on utilise les surfaces
269              ! "potentielles"
270              IF (pctsrf_pot(i, nsrf) > epsfra) THEN
271                 knon = knon + 1
272                 ni(knon) = i
273              END IF
274           END DO
275    
276           if_knon: IF (knon /= 0) then
277              DO j = 1, knon
278                 i = ni(j)
279                 ypct(j) = pctsrf(i, nsrf)
280                 yts(j) = ftsol(i, nsrf)
281                 snow(j) = fsnow(i, nsrf)
282                 yqsurf(j) = qsurf(i, nsrf)
283                 yalb(j) = falbe(i, nsrf)
284                 yrain_f(j) = rain_fall(i)
285                 ysnow_f(j) = snow_f(i)
286                 yagesno(j) = agesno(i, nsrf)
287                 yrugos(j) = frugs(i, nsrf)
288                 yrugoro(j) = rugoro(i)
289                 yrads(j) = fsolsw(i, nsrf) + fsollw(i, nsrf)
290                 ypaprs(j, klev + 1) = paprs(i, klev + 1)
291                 y_run_off_lic_0(j) = run_off_lic_0(i)
292              END DO
293    
294              ! For continent, copy soil water content
295              IF (nsrf == is_ter) yqsol(:knon) = qsol(ni(:knon))
296    
297              ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf)
298    
299              DO k = 1, klev
300                 DO j = 1, knon
301                    i = ni(j)
302                    ypaprs(j, k) = paprs(i, k)
303                    ypplay(j, k) = pplay(i, k)
304                    ydelp(j, k) = delp(i, k)
305                    yu(j, k) = u(i, k)
306                    yv(j, k) = v(i, k)
307                    yt(j, k) = t(i, k)
308                    yq(j, k) = q(i, k)
309                 END DO
310              END DO
311    
312              CALL coefkz(nsrf, ypaprs, ypplay, ksta, ksta_ter, yts(:knon), &
313                   yrugos, yu, yv, yt, yq, yqsurf(:knon), ycoefm(:knon, :), &
314                   ycoefh(:knon, :), ycdragm(:knon), ycdragh(:knon))
315    
316              IF (iflag_pbl == 1) THEN
317                 CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0(:knon, :), &
318                      ycoefh0(:knon, :))
319                 ycoefm(:knon, :) = max(ycoefm(:knon, :), ycoefm0(:knon, :))
320                 ycoefh(:knon, :) = max(ycoefh(:knon, :), ycoefh0(:knon, :))
321                 ycdragm(:knon) = max(ycdragm(:knon), 0.)
322                 ycdragh(:knon) = max(ycdragh(:knon), 0.)
323              END IF
324    
325              ! on met un seuil pour ycdragm et ycdragh
326              IF (nsrf == is_oce) THEN
327                 ycdragm(:knon) = min(ycdragm(:knon), cdmmax)
328                 ycdragh(:knon) = min(ycdragh(:knon), cdhmax)
329              END IF
330    
331              IF (ok_kzmin) THEN
332                 ! Calcul d'une diffusion minimale pour les conditions tres stables
333                 CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, &
334                      ycdragm(:knon), ycoefh0(:knon, :))
335                 ycoefm0(:knon, :) = ycoefh0(:knon, :)
336                 ycoefm(:knon, :) = max(ycoefm(:knon, :), ycoefm0(:knon, :))
337                 ycoefh(:knon, :) = max(ycoefh(:knon, :), ycoefh0(:knon, :))
338              END IF
339    
340              IF (iflag_pbl >= 6) THEN
341                 ! Mellor et Yamada adapt\'e \`a Mars, Richard Fournier et
342                 ! Fr\'ed\'eric Hourdin
343                 yzlay(:knon, 1) = rd * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &
344                      + ypplay(:knon, 1))) &
345                      * (ypaprs(:knon, 1) - ypplay(:knon, 1)) / rg
346    
347                 DO k = 2, klev
348                    yzlay(:knon, k) = yzlay(:knon, k-1) &
349                         + rd * 0.5 * (yt(1:knon, k-1) + yt(1:knon, k)) &
350                         / ypaprs(1:knon, k) &
351                         * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg
352                 END DO
353    
354                 DO k = 1, klev
355                    yteta(1:knon, k) = yt(1:knon, k) * (ypaprs(1:knon, 1) &
356                         / ypplay(1:knon, k))**rkappa * (1. + 0.61 * yq(1:knon, k))
357                 END DO
358    
359                 zlev(:knon, 1) = 0.
360                 zlev(:knon, klev + 1) = 2. * yzlay(:knon, klev) &
361                      - yzlay(:knon, klev - 1)
362    
363                 DO k = 2, klev
364                    zlev(:knon, k) = 0.5 * (yzlay(:knon, k) + yzlay(:knon, k-1))
365                 END DO
366    
367                 DO k = 1, klev + 1
368                    DO j = 1, knon
369                       i = ni(j)
370                       yq2(j, k) = q2(i, k, nsrf)
371                    END DO
372                 END DO
373    
374                 ustar(:knon) = ustarhb(yu(:knon, 1), yv(:knon, 1), ycdragm(:knon))
375                 CALL yamada4(dtime, rg, zlev(:knon, :), yzlay(:knon, :), &
376                      yu(:knon, :), yv(:knon, :), yteta(:knon, :), yq2(:knon, :), &
377                      ycoefm(:knon, :), ycoefh(:knon, :), ustar(:knon))
378              END IF
379    
380              CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), &
381                   ycdragm(:knon), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), &
382                   ypplay(:knon, :), ydelp(:knon, :), y_d_u(:knon, :), &
383                   y_flux_u(:knon))
384              CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), &
385                   ycdragm(:knon), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), &
386                   ypplay(:knon, :), ydelp(:knon, :), y_d_v(:knon, :), &
387                   y_flux_v(:knon))
388    
389              ! calculer la diffusion de "q" et de "h"
390              CALL clqh(dtime, julien, firstcal, nsrf, ni(:knon), &
391                   ytsoil(:knon, :), yqsol(:knon), mu0, yrugos, yrugoro, &
392                   yu(:knon, 1), yv(:knon, 1), ycoefh(:knon, :), ycdragh(:knon), &
393                   yt, yq, yts(:knon), ypaprs, ypplay, ydelp, yrads(:knon), &
394                   yalb(:knon), snow(:knon), yqsurf, yrain_f, ysnow_f, &
395                   yfluxlat(:knon), pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, &
396                   y_d_ts(:knon), yz0_new, y_flux_t(:knon), y_flux_q(:knon), &
397                   y_dflux_t(:knon), y_dflux_q(:knon), y_fqcalving, y_ffonte, &
398                   y_run_off_lic_0)
399    
400              ! calculer la longueur de rugosite sur ocean
401              yrugm = 0.
402              IF (nsrf == is_oce) THEN
403                 DO j = 1, knon
404                    yrugm(j) = 0.018 * ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2) &
405                         / rg + 0.11 * 14E-6 &
406                         / sqrt(ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2))
407                    yrugm(j) = max(1.5E-05, yrugm(j))
408                 END DO
409              END IF
410              DO j = 1, knon
411                 y_dflux_t(j) = y_dflux_t(j) * ypct(j)
412                 y_dflux_q(j) = y_dflux_q(j) * ypct(j)
413              END DO
414    
415              DO k = 1, klev
416                 DO j = 1, knon
417                    i = ni(j)
418                    y_d_t(j, k) = y_d_t(j, k) * ypct(j)
419                    y_d_q(j, k) = y_d_q(j, k) * ypct(j)
420                    y_d_u(j, k) = y_d_u(j, k) * ypct(j)
421                    y_d_v(j, k) = y_d_v(j, k) * ypct(j)
422                 END DO
423              END DO
424    
425              flux_t(ni(:knon), nsrf) = y_flux_t(:knon)
426              flux_q(ni(:knon), nsrf) = y_flux_q(:knon)
427              flux_u(ni(:knon), nsrf) = y_flux_u(:knon)
428              flux_v(ni(:knon), nsrf) = y_flux_v(:knon)
429    
430              evap(:, nsrf) = -flux_q(:, nsrf)
431    
432              falbe(:, nsrf) = 0.
433              fsnow(:, nsrf) = 0.
434              qsurf(:, nsrf) = 0.
435              frugs(:, nsrf) = 0.
436              DO j = 1, knon
437                 i = ni(j)
438                 d_ts(i, nsrf) = y_d_ts(j)
439                 falbe(i, nsrf) = yalb(j)
440                 fsnow(i, nsrf) = snow(j)
441                 qsurf(i, nsrf) = yqsurf(j)
442                 frugs(i, nsrf) = yz0_new(j)
443                 fluxlat(i, nsrf) = yfluxlat(j)
444                 IF (nsrf == is_oce) THEN
445                    rugmer(i) = yrugm(j)
446                    frugs(i, nsrf) = yrugm(j)
447                 END IF
448                 agesno(i, nsrf) = yagesno(j)
449                 fqcalving(i, nsrf) = y_fqcalving(j)
450                 ffonte(i, nsrf) = y_ffonte(j)
451                 cdragh(i) = cdragh(i) + ycdragh(j) * ypct(j)
452                 cdragm(i) = cdragm(i) + ycdragm(j) * ypct(j)
453                 dflux_t(i) = dflux_t(i) + y_dflux_t(j)
454                 dflux_q(i) = dflux_q(i) + y_dflux_q(j)
455              END DO
456              IF (nsrf == is_ter) THEN
457                 qsol(ni(:knon)) = yqsol(:knon)
458              else IF (nsrf == is_lic) THEN
459                 DO j = 1, knon
460                    i = ni(j)
461                    run_off_lic_0(i) = y_run_off_lic_0(j)
462                 END DO
463              END IF
464    
465              ftsoil(:, :, nsrf) = 0.
466              ftsoil(ni(:knon), :, nsrf) = ytsoil(:knon, :)
467    
468              DO j = 1, knon
469                 i = ni(j)
470                 DO k = 1, klev
471                    d_t(i, k) = d_t(i, k) + y_d_t(j, k)
472                    d_q(i, k) = d_q(i, k) + y_d_q(j, k)
473                    d_u(i, k) = d_u(i, k) + y_d_u(j, k)
474                    d_v(i, k) = d_v(i, k) + y_d_v(j, k)
475                 END DO
476              END DO
477    
478              forall (k = 2:klev) coefh(ni(:knon), k) &
479                   = coefh(ni(:knon), k) + ycoefh(:knon, k) * ypct(:knon)
480    
481              ! diagnostic t, q a 2m et u, v a 10m
482    
483              DO j = 1, knon
484                 i = ni(j)
485                 u1(j) = yu(j, 1) + y_d_u(j, 1)
486                 v1(j) = yv(j, 1) + y_d_v(j, 1)
487                 tair1(j) = yt(j, 1) + y_d_t(j, 1)
488                 qair1(j) = yq(j, 1) + y_d_q(j, 1)
489                 zgeo1(j) = rd * tair1(j) / (0.5 * (ypaprs(j, 1) + ypplay(j, &
490                      1))) * (ypaprs(j, 1)-ypplay(j, 1))
491                 tairsol(j) = yts(j) + y_d_ts(j)
492                 rugo1(j) = yrugos(j)
493                 IF (nsrf == is_oce) THEN
494                    rugo1(j) = frugs(i, nsrf)
495                 END IF
496                 psfce(j) = ypaprs(j, 1)
497                 patm(j) = ypplay(j, 1)
498    
499                 qairsol(j) = yqsurf(j)
500              END DO
501    
502              CALL stdlevvar(klon, knon, nsrf, u1(:knon), v1(:knon), tair1(:knon), &
503                   qair1, zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, &
504                   yq2m, yt10m, yq10m, wind10m(:knon), ustar(:knon))
505    
506              DO j = 1, knon
507                 i = ni(j)
508                 t2m(i, nsrf) = yt2m(j)
509                 q2m(i, nsrf) = yq2m(j)
510    
511                 u10m_srf(i, nsrf) = (wind10m(j) * u1(j)) &
512                      / sqrt(u1(j)**2 + v1(j)**2)
513                 v10m_srf(i, nsrf) = (wind10m(j) * v1(j)) &
514                      / sqrt(u1(j)**2 + v1(j)**2)
515              END DO
516    
517              CALL hbtm(ypaprs, ypplay, yt2m, yq2m, ustar(:knon), y_flux_t(:knon), &
518                   y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, &
519                   yoliqcl, ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)
520    
521              DO j = 1, knon
522                 i = ni(j)
523                 pblh(i, nsrf) = ypblh(j)
524                 plcl(i, nsrf) = ylcl(j)
525                 capcl(i, nsrf) = ycapcl(j)
526                 oliqcl(i, nsrf) = yoliqcl(j)
527                 cteicl(i, nsrf) = ycteicl(j)
528                 pblt(i, nsrf) = ypblt(j)
529                 therm(i, nsrf) = ytherm(j)
530                 trmb1(i, nsrf) = ytrmb1(j)
531                 trmb2(i, nsrf) = ytrmb2(j)
532                 trmb3(i, nsrf) = ytrmb3(j)
533              END DO
534    
535              DO j = 1, knon
536                 DO k = 1, klev + 1
537                    i = ni(j)
538                    q2(i, k, nsrf) = yq2(j, k)
539                 END DO
540              END DO
541           else
542              fsnow(:, nsrf) = 0.
543           end IF if_knon
544        END DO loop_surface
545    
546        ! On utilise les nouvelles surfaces
547        frugs(:, is_oce) = rugmer
548        pctsrf(:, is_oce) = pctsrf_new_oce
549        pctsrf(:, is_sic) = pctsrf_new_sic
550    
551    rugos(:, is_oce) = rugmer      firstcal = .false.
   pctsrf = pctsrf_new  
552    
553  END SUBROUTINE clmain    END SUBROUTINE clmain
554    
555    end module clmain_m

Legend:
Removed from v.15  
changed lines
  Added in v.246

  ViewVC Help
Powered by ViewVC 1.1.21