/[lmdze]/trunk/phylmd/pbl_surface.f
ViewVC logotype

Diff of /trunk/phylmd/pbl_surface.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 206 by guez, Tue Aug 30 12:52:46 2016 UTC revision 251 by guez, Mon Jan 8 14:12:02 2018 UTC
# Line 4  module clmain_m Line 4  module clmain_m
4    
5  contains  contains
6    
7    SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, jour, rmu0, ts, cdmmax, &    SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, julien, mu0, ftsol, cdmmax, &
8         cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, snow, &         cdhmax, ftsoil, qsol, paprs, pplay, fsnow, qsurf, evap, falbe, fluxlat, &
9         qsurf, evap, falbe, fluxlat, rain_fall, snow_f, solsw, sollw, fder, &         rain_fall, snow_f, fsolsw, fsollw, frugs, agesno, rugoro, d_t, d_q, &
10         rlat, rugos, agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, &         d_u, d_v, d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, q2, &
11         flux_u, flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, zu1, &         dflux_t, dflux_q, coefh, t2m, q2m, u10m_srf, v10m_srf, pblh, capcl, &
12         zv1, t2m, q2m, u10m, v10m, pblh, capcl, oliqcl, cteicl, pblt, therm, &         oliqcl, cteicl, pblt, therm, trmb1, trmb2, trmb3, plcl, fqcalving, &
13         trmb1, trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0)         ffonte, run_off_lic_0)
14    
15      ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19      ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19
16      ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18      ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18
# Line 21  contains Line 21  contains
21      ! ne tient pas compte de la diff\'erentiation des sous-fractions      ! ne tient pas compte de la diff\'erentiation des sous-fractions
22      ! de sol.      ! de sol.
23    
24      ! Pour pouvoir extraire les coefficients d'\'echanges et le vent      use clcdrag_m, only: clcdrag
     ! dans la premi\`ere couche, trois champs ont \'et\'e cr\'e\'es : "ycoefh",  
     ! "zu1" et "zv1". Nous avons moyenn\'e les valeurs de ces trois  
     ! champs sur les quatre sous-surfaces du mod\`ele.  
   
25      use clqh_m, only: clqh      use clqh_m, only: clqh
26      use clvent_m, only: clvent      use clvent_m, only: clvent
27      use coefkz_m, only: coefkz      use coef_diff_turb_m, only: coef_diff_turb
28      use coefkzmin_m, only: coefkzmin      USE conf_gcm_m, ONLY: lmt_pas
     USE conf_gcm_m, ONLY: prt_level, lmt_pas  
29      USE conf_phys_m, ONLY: iflag_pbl      USE conf_phys_m, ONLY: iflag_pbl
30      USE dimphy, ONLY: klev, klon, zmasq      USE dimphy, ONLY: klev, klon, zmasq
31      USE dimsoil, ONLY: nsoilmx      USE dimsoil, ONLY: nsoilmx
# Line 38  contains Line 33  contains
33      USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf      USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf
34      USE interfoce_lim_m, ONLY: interfoce_lim      USE interfoce_lim_m, ONLY: interfoce_lim
35      use stdlevvar_m, only: stdlevvar      use stdlevvar_m, only: stdlevvar
36      USE suphec_m, ONLY: rd, rg, rkappa      USE suphec_m, ONLY: rd, rg
37      use time_phylmdz, only: itap      use time_phylmdz, only: itap
     use ustarhb_m, only: ustarhb  
     use vdif_kcay_m, only: vdif_kcay  
     use yamada4_m, only: yamada4  
38    
39      REAL, INTENT(IN):: dtime ! interval du temps (secondes)      REAL, INTENT(IN):: dtime ! interval du temps (secondes)
40    
# Line 50  contains Line 42  contains
42      ! tableau des pourcentages de surface de chaque maille      ! tableau des pourcentages de surface de chaque maille
43    
44      REAL, INTENT(IN):: t(klon, klev) ! temperature (K)      REAL, INTENT(IN):: t(klon, klev) ! temperature (K)
45      REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg/kg)      REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg / kg)
46      REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse      REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse
47      INTEGER, INTENT(IN):: jour ! jour de l'annee en cours      INTEGER, INTENT(IN):: julien ! jour de l'annee en cours
48      REAL, intent(in):: rmu0(klon) ! cosinus de l'angle solaire zenithal          REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal    
49      REAL, INTENT(IN):: ts(klon, nbsrf) ! temperature du sol (en Kelvin)      REAL, INTENT(IN):: ftsol(:, :) ! (klon, nbsrf) temp\'erature du sol (en K)
50      REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh      REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh
     REAL, INTENT(IN):: ksta, ksta_ter  
     LOGICAL, INTENT(IN):: ok_kzmin  
51    
52      REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)      REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)
53      ! soil temperature of surface fraction      ! soil temperature of surface fraction
54    
55      REAL, INTENT(inout):: qsol(klon)      REAL, INTENT(inout):: qsol(:) ! (klon)
56      ! column-density of water in soil, in kg m-2      ! column-density of water in soil, in kg m-2
57    
58      REAL, INTENT(IN):: paprs(klon, klev+1) ! pression a intercouche (Pa)      REAL, INTENT(IN):: paprs(klon, klev + 1) ! pression a intercouche (Pa)
59      REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa)      REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa)
60      REAL, INTENT(inout):: snow(klon, nbsrf)      REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf) \'epaisseur neigeuse
61      REAL qsurf(klon, nbsrf)      REAL qsurf(klon, nbsrf)
62      REAL evap(klon, nbsrf)      REAL evap(klon, nbsrf)
63      REAL, intent(inout):: falbe(klon, nbsrf)      REAL, intent(inout):: falbe(klon, nbsrf)
64        REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf)
     REAL fluxlat(klon, nbsrf)  
65    
66      REAL, intent(in):: rain_fall(klon)      REAL, intent(in):: rain_fall(klon)
67      ! liquid water mass flux (kg/m2/s), positive down      ! liquid water mass flux (kg / m2 / s), positive down
68    
69      REAL, intent(in):: snow_f(klon)      REAL, intent(in):: snow_f(klon)
70      ! solid water mass flux (kg/m2/s), positive down      ! solid water mass flux (kg / m2 / s), positive down
   
     REAL, INTENT(IN):: solsw(klon, nbsrf), sollw(klon, nbsrf)  
     REAL, intent(in):: fder(klon)  
     REAL, INTENT(IN):: rlat(klon) ! latitude en degr\'es  
   
     REAL, intent(inout):: rugos(klon, nbsrf) ! longueur de rugosit\'e (en m)  
71    
72        REAL, INTENT(IN):: fsolsw(klon, nbsrf), fsollw(klon, nbsrf)
73        REAL, intent(inout):: frugs(klon, nbsrf) ! longueur de rugosit\'e (en m)
74      real agesno(klon, nbsrf)      real agesno(klon, nbsrf)
75      REAL, INTENT(IN):: rugoro(klon)      REAL, INTENT(IN):: rugoro(klon)
76    
# Line 96  contains Line 81  contains
81      REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)      REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)
82      ! changement pour "u" et "v"      ! changement pour "u" et "v"
83    
84      REAL, intent(out):: d_ts(klon, nbsrf) ! le changement pour "ts"      REAL, intent(out):: d_ts(:, :) ! (klon, nbsrf) variation of ftsol
85    
86      REAL, intent(out):: flux_t(klon, nbsrf)      REAL, intent(out):: flux_t(klon, nbsrf)
87      ! flux de chaleur sensible (Cp T) (W/m2) (orientation positive vers      ! flux de chaleur sensible (Cp T) (W / m2) (orientation positive vers
88      ! le bas) à la surface      ! le bas) à la surface
89    
90      REAL, intent(out):: flux_q(klon, nbsrf)      REAL, intent(out):: flux_q(klon, nbsrf)
91      ! flux de vapeur d'eau (kg/m2/s) à la surface      ! flux de vapeur d'eau (kg / m2 / s) à la surface
92    
93      REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf)      REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf)
94      ! tension du vent à la surface, en Pa      ! tension du vent (flux turbulent de vent) à la surface, en Pa
95    
96      REAL, INTENT(out):: cdragh(klon), cdragm(klon)      REAL, INTENT(out):: cdragh(klon), cdragm(klon)
97      real q2(klon, klev+1, nbsrf)      real q2(klon, klev + 1, nbsrf)
98    
99      REAL, INTENT(out):: dflux_t(klon), dflux_q(klon)      REAL, INTENT(out):: dflux_t(klon), dflux_q(klon)
100      ! dflux_t derive du flux sensible      ! dflux_t derive du flux sensible
101      ! dflux_q derive du flux latent      ! dflux_q derive du flux latent
102      ! IM "slab" ocean      ! IM "slab" ocean
103    
104      REAL, intent(out):: ycoefh(klon, klev)      REAL, intent(out):: coefh(:, 2:) ! (klon, 2:klev)
105      REAL, intent(out):: zu1(klon)      ! Pour pouvoir extraire les coefficients d'\'echange, le champ
106      REAL zv1(klon)      ! "coefh" a \'et\'e cr\'e\'e. Nous avons moyenn\'e les valeurs de
107      REAL t2m(klon, nbsrf), q2m(klon, nbsrf)      ! ce champ sur les quatre sous-surfaces du mod\`ele.
108      REAL u10m(klon, nbsrf), v10m(klon, nbsrf)  
109        REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf)
110      ! Ionela Musat cf. Anne Mathieu : planetary boundary layer, hbtm  
111      ! (Comme les autres diagnostics on cumule dans physiq ce qui      REAL, INTENT(inout):: u10m_srf(:, :), v10m_srf(:, :) ! (klon, nbsrf)
112      ! permet de sortir les grandeurs par sous-surface)      ! composantes du vent \`a 10m sans spirale d'Ekman
113    
114        ! Ionela Musat. Cf. Anne Mathieu : planetary boundary layer, hbtm.
115        ! Comme les autres diagnostics on cumule dans physiq ce qui permet
116        ! de sortir les grandeurs par sous-surface.
117      REAL pblh(klon, nbsrf) ! height of planetary boundary layer      REAL pblh(klon, nbsrf) ! height of planetary boundary layer
118      REAL capcl(klon, nbsrf)      REAL capcl(klon, nbsrf)
119      REAL oliqcl(klon, nbsrf)      REAL oliqcl(klon, nbsrf)
120      REAL cteicl(klon, nbsrf)      REAL cteicl(klon, nbsrf)
121      REAL pblt(klon, nbsrf)      REAL, INTENT(inout):: pblt(klon, nbsrf) ! T au nveau HCL
     ! pblT------- T au nveau HCL  
122      REAL therm(klon, nbsrf)      REAL therm(klon, nbsrf)
123      REAL trmb1(klon, nbsrf)      REAL trmb1(klon, nbsrf)
124      ! trmb1-------deep_cape      ! trmb1-------deep_cape
# Line 142  contains Line 130  contains
130      REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)      REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)
131      ! ffonte----Flux thermique utilise pour fondre la neige      ! ffonte----Flux thermique utilise pour fondre la neige
132      ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la      ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la
133      !           hauteur de neige, en kg/m2/s      !           hauteur de neige, en kg / m2 / s
134      REAL run_off_lic_0(klon)      REAL run_off_lic_0(klon)
135    
136      ! Local:      ! Local:
# Line 155  contains Line 143  contains
143    
144      REAL y_fqcalving(klon), y_ffonte(klon)      REAL y_fqcalving(klon), y_ffonte(klon)
145      real y_run_off_lic_0(klon)      real y_run_off_lic_0(klon)
   
146      REAL rugmer(klon)      REAL rugmer(klon)
   
147      REAL ytsoil(klon, nsoilmx)      REAL ytsoil(klon, nsoilmx)
148        REAL yts(klon), ypct(klon), yz0_new(klon)
149      REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)      real yrugos(klon) ! longeur de rugosite (en m)
150      REAL yalb(klon)      REAL yalb(klon)
151      REAL yu1(klon), yv1(klon)      REAL snow(klon), yqsurf(klon), yagesno(klon)
152      ! on rajoute en output yu1 et yv1 qui sont les vents dans      real yqsol(klon) ! column-density of water in soil, in kg m-2
153      ! la premiere couche      REAL yrain_f(klon) ! liquid water mass flux (kg / m2 / s), positive down
154      REAL ysnow(klon), yqsurf(klon), yagesno(klon)      REAL ysnow_f(klon) ! solid water mass flux (kg / m2 / s), positive down
   
     real yqsol(klon)  
     ! column-density of water in soil, in kg m-2  
   
     REAL yrain_f(klon)  
     ! liquid water mass flux (kg/m2/s), positive down  
   
     REAL ysnow_f(klon)  
     ! solid water mass flux (kg/m2/s), positive down  
   
     REAL yfder(klon)  
155      REAL yrugm(klon), yrads(klon), yrugoro(klon)      REAL yrugm(klon), yrads(klon), yrugoro(klon)
   
156      REAL yfluxlat(klon)      REAL yfluxlat(klon)
   
157      REAL y_d_ts(klon)      REAL y_d_ts(klon)
158      REAL y_d_t(klon, klev), y_d_q(klon, klev)      REAL y_d_t(klon, klev), y_d_q(klon, klev)
159      REAL y_d_u(klon, klev), y_d_v(klon, klev)      REAL y_d_u(klon, klev), y_d_v(klon, klev)
160      REAL y_flux_t(klon), y_flux_q(klon)      REAL y_flux_t(klon), y_flux_q(klon)
161      REAL y_flux_u(klon), y_flux_v(klon)      REAL y_flux_u(klon), y_flux_v(klon)
162      REAL y_dflux_t(klon), y_dflux_q(klon)      REAL y_dflux_t(klon), y_dflux_q(klon)
163      REAL coefh(klon, klev), coefm(klon, klev)      REAL ycoefh(klon, 2:klev), ycoefm(klon, 2:klev)
164        real ycdragh(klon), ycdragm(klon)
165      REAL yu(klon, klev), yv(klon, klev)      REAL yu(klon, klev), yv(klon, klev)
166      REAL yt(klon, klev), yq(klon, klev)      REAL yt(klon, klev), yq(klon, klev)
167      REAL ypaprs(klon, klev+1), ypplay(klon, klev), ydelp(klon, klev)      REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev)
168        REAL yq2(klon, klev + 1)
     REAL ycoefm0(klon, klev), ycoefh0(klon, klev)  
   
     REAL yzlay(klon, klev), yzlev(klon, klev+1), yteta(klon, klev)  
     REAL ykmm(klon, klev+1), ykmn(klon, klev+1)  
     REAL ykmq(klon, klev+1)  
     REAL yq2(klon, klev+1)  
     REAL q2diag(klon, klev+1)  
   
     REAL u1lay(klon), v1lay(klon)  
169      REAL delp(klon, klev)      REAL delp(klon, klev)
170      INTEGER i, k, nsrf      INTEGER i, k, nsrf
   
171      INTEGER ni(klon), knon, j      INTEGER ni(klon), knon, j
172    
173      REAL pctsrf_pot(klon, nbsrf)      REAL pctsrf_pot(klon, nbsrf)
174      ! "pourcentage potentiel" pour tenir compte des \'eventuelles      ! "pourcentage potentiel" pour tenir compte des \'eventuelles
175      ! apparitions ou disparitions de la glace de mer      ! apparitions ou disparitions de la glace de mer
176    
177      REAL zx_alf1, zx_alf2 ! valeur ambiante par extrapolation      REAL yt2m(klon), yq2m(klon), wind10m(klon)
178        REAL ustar(klon)
     REAL yt2m(klon), yq2m(klon), yu10m(klon)  
     REAL yustar(klon)  
179    
180      REAL yt10m(klon), yq10m(klon)      REAL yt10m(klon), yq10m(klon)
181      REAL ypblh(klon)      REAL ypblh(klon)
# Line 226  contains Line 188  contains
188      REAL ytrmb1(klon)      REAL ytrmb1(klon)
189      REAL ytrmb2(klon)      REAL ytrmb2(klon)
190      REAL ytrmb3(klon)      REAL ytrmb3(klon)
191      REAL uzon(klon), vmer(klon)      REAL u1(klon), v1(klon)
192      REAL tair1(klon), qair1(klon), tairsol(klon)      REAL tair1(klon), qair1(klon), tairsol(klon)
193      REAL psfce(klon), patm(klon)      REAL psfce(klon), patm(klon)
194    
195      REAL qairsol(klon), zgeo1(klon)      REAL qairsol(klon), zgeo1(klon)
196      REAL rugo1(klon)      REAL rugo1(klon)
197        REAL zgeop(klon, klev)
     ! utiliser un jeu de fonctions simples                
     LOGICAL zxli  
     PARAMETER (zxli=.FALSE.)  
198    
199      !------------------------------------------------------------      !------------------------------------------------------------
200    
# Line 243  contains Line 202  contains
202    
203      DO k = 1, klev ! epaisseur de couche      DO k = 1, klev ! epaisseur de couche
204         DO i = 1, klon         DO i = 1, klon
205            delp(i, k) = paprs(i, k) - paprs(i, k+1)            delp(i, k) = paprs(i, k) - paprs(i, k + 1)
206         END DO         END DO
207      END DO      END DO
     DO i = 1, klon ! vent de la premiere couche  
        zx_alf1 = 1.0  
        zx_alf2 = 1.0 - zx_alf1  
        u1lay(i) = u(i, 1)*zx_alf1 + u(i, 2)*zx_alf2  
        v1lay(i) = v(i, 1)*zx_alf1 + v(i, 2)*zx_alf2  
     END DO  
208    
209      ! Initialization:      ! Initialization:
210      rugmer = 0.      rugmer = 0.
# Line 259  contains Line 212  contains
212      cdragm = 0.      cdragm = 0.
213      dflux_t = 0.      dflux_t = 0.
214      dflux_q = 0.      dflux_q = 0.
     zu1 = 0.  
     zv1 = 0.  
215      ypct = 0.      ypct = 0.
     yts = 0.  
     ysnow = 0.  
216      yqsurf = 0.      yqsurf = 0.
217      yrain_f = 0.      yrain_f = 0.
218      ysnow_f = 0.      ysnow_f = 0.
     yfder = 0.  
219      yrugos = 0.      yrugos = 0.
     yu1 = 0.  
     yv1 = 0.  
     yrads = 0.  
220      ypaprs = 0.      ypaprs = 0.
221      ypplay = 0.      ypplay = 0.
222      ydelp = 0.      ydelp = 0.
# Line 281  contains Line 226  contains
226      yq = 0.      yq = 0.
227      y_dflux_t = 0.      y_dflux_t = 0.
228      y_dflux_q = 0.      y_dflux_q = 0.
     ytsoil = 999999.  
229      yrugoro = 0.      yrugoro = 0.
230      d_ts = 0.      d_ts = 0.
     yfluxlat = 0.  
231      flux_t = 0.      flux_t = 0.
232      flux_q = 0.      flux_q = 0.
233      flux_u = 0.      flux_u = 0.
234      flux_v = 0.      flux_v = 0.
235        fluxlat = 0.
236      d_t = 0.      d_t = 0.
237      d_q = 0.      d_q = 0.
238      d_u = 0.      d_u = 0.
239      d_v = 0.      d_v = 0.
240      ycoefh = 0.      coefh = 0.
241    
242      ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on      ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on
243      ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique      ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique
# Line 306  contains Line 250  contains
250    
251      ! Tester si c'est le moment de lire le fichier:      ! Tester si c'est le moment de lire le fichier:
252      if (mod(itap - 1, lmt_pas) == 0) then      if (mod(itap - 1, lmt_pas) == 0) then
253         CALL interfoce_lim(jour, pctsrf_new_oce, pctsrf_new_sic)         CALL interfoce_lim(julien, pctsrf_new_oce, pctsrf_new_sic)
254      endif      endif
255    
256      ! Boucler sur toutes les sous-fractions du sol:      ! Boucler sur toutes les sous-fractions du sol:
# Line 328  contains Line 272  contains
272            DO j = 1, knon            DO j = 1, knon
273               i = ni(j)               i = ni(j)
274               ypct(j) = pctsrf(i, nsrf)               ypct(j) = pctsrf(i, nsrf)
275               yts(j) = ts(i, nsrf)               yts(j) = ftsol(i, nsrf)
276               ysnow(j) = snow(i, nsrf)               snow(j) = fsnow(i, nsrf)
277               yqsurf(j) = qsurf(i, nsrf)               yqsurf(j) = qsurf(i, nsrf)
278               yalb(j) = falbe(i, nsrf)               yalb(j) = falbe(i, nsrf)
279               yrain_f(j) = rain_fall(i)               yrain_f(j) = rain_fall(i)
280               ysnow_f(j) = snow_f(i)               ysnow_f(j) = snow_f(i)
281               yagesno(j) = agesno(i, nsrf)               yagesno(j) = agesno(i, nsrf)
282               yfder(j) = fder(i)               yrugos(j) = frugs(i, nsrf)
              yrugos(j) = rugos(i, nsrf)  
283               yrugoro(j) = rugoro(i)               yrugoro(j) = rugoro(i)
284               yu1(j) = u1lay(i)               yrads(j) = fsolsw(i, nsrf) + fsollw(i, nsrf)
285               yv1(j) = v1lay(i)               ypaprs(j, klev + 1) = paprs(i, klev + 1)
              yrads(j) = solsw(i, nsrf) + sollw(i, nsrf)  
              ypaprs(j, klev+1) = paprs(i, klev+1)  
286               y_run_off_lic_0(j) = run_off_lic_0(i)               y_run_off_lic_0(j) = run_off_lic_0(i)
287            END DO            END DO
288    
289            ! For continent, copy soil water content            ! For continent, copy soil water content
290            IF (nsrf == is_ter) THEN            IF (nsrf == is_ter) yqsol(:knon) = qsol(ni(:knon))
              yqsol(:knon) = qsol(ni(:knon))  
           ELSE  
              yqsol = 0.  
           END IF  
291    
292            DO k = 1, nsoilmx            ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf)
              DO j = 1, knon  
                 i = ni(j)  
                 ytsoil(j, k) = ftsoil(i, k, nsrf)  
              END DO  
           END DO  
293    
294            DO k = 1, klev            DO k = 1, klev
295               DO j = 1, knon               DO j = 1, knon
# Line 372  contains Line 304  contains
304               END DO               END DO
305            END DO            END DO
306    
307            ! calculer Cdrag et les coefficients d'echange            ! Calculer les géopotentiels de chaque couche:
308            CALL coefkz(nsrf, knon, ypaprs, ypplay, ksta, ksta_ter, yts, yrugos, &  
309                 yu, yv, yt, yq, yqsurf, coefm(:knon, :), coefh(:knon, :))            zgeop(:knon, 1) = RD * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &
310                   + ypplay(:knon, 1))) * (ypaprs(:knon, 1) - ypplay(:knon, 1))
311    
312              DO k = 2, klev
313                 zgeop(:knon, k) = zgeop(:knon, k - 1) + RD * 0.5 &
314                      * (yt(:knon, k - 1) + yt(:knon, k)) / ypaprs(:knon, k) &
315                      * (ypplay(:knon, k - 1) - ypplay(:knon, k))
316              ENDDO
317    
318              CALL clcdrag(nsrf, yu(:knon, 1), yv(:knon, 1), yt(:knon, 1), &
319                   yq(:knon, 1), zgeop(:knon, 1), yts(:knon), yqsurf(:knon), &
320                   yrugos(:knon), ycdragm(:knon), ycdragh(:knon))
321    
322            IF (iflag_pbl == 1) THEN            IF (iflag_pbl == 1) THEN
323               CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0)               ycdragm(:knon) = max(ycdragm(:knon), 0.)
324               coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))               ycdragh(:knon) = max(ycdragh(:knon), 0.)
325               coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))            end IF
           END IF  
326    
327            ! on met un seuil pour coefm et coefh            ! on met un seuil pour ycdragm et ycdragh
328            IF (nsrf == is_oce) THEN            IF (nsrf == is_oce) THEN
329               coefm(:knon, 1) = min(coefm(:knon, 1), cdmmax)               ycdragm(:knon) = min(ycdragm(:knon), cdmmax)
330               coefh(:knon, 1) = min(coefh(:knon, 1), cdhmax)               ycdragh(:knon) = min(ycdragh(:knon), cdhmax)
           END IF  
   
           IF (ok_kzmin) THEN  
              ! Calcul d'une diffusion minimale pour les conditions tres stables  
              CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, &  
                   coefm(:knon, 1), ycoefm0, ycoefh0)  
              coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))  
              coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))  
331            END IF            END IF
332    
333            IF (iflag_pbl >= 3) THEN            IF (iflag_pbl >= 6) then
              ! Mellor et Yamada adapt\'e \`a Mars, Richard Fournier et  
              ! Fr\'ed\'eric Hourdin  
              yzlay(:knon, 1) = rd * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &  
                   + ypplay(:knon, 1))) &  
                   * (ypaprs(:knon, 1) - ypplay(:knon, 1)) / rg  
              DO k = 2, klev  
                 yzlay(1:knon, k) = yzlay(1:knon, k-1) &  
                      + rd * 0.5 * (yt(1:knon, k-1) + yt(1:knon, k)) &  
                      / ypaprs(1:knon, k) &  
                      * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg  
              END DO  
              DO k = 1, klev  
                 yteta(1:knon, k) = yt(1:knon, k)*(ypaprs(1:knon, 1) &  
                      / ypplay(1:knon, k))**rkappa * (1.+0.61*yq(1:knon, k))  
              END DO  
              yzlev(1:knon, 1) = 0.  
              yzlev(:knon, klev+1) = 2. * yzlay(:knon, klev) &  
                   - yzlay(:knon, klev - 1)  
              DO k = 2, klev  
                 yzlev(1:knon, k) = 0.5*(yzlay(1:knon, k)+yzlay(1:knon, k-1))  
              END DO  
334               DO k = 1, klev + 1               DO k = 1, klev + 1
335                  DO j = 1, knon                  DO j = 1, knon
336                     i = ni(j)                     i = ni(j)
337                     yq2(j, k) = q2(i, k, nsrf)                     yq2(j, k) = q2(i, k, nsrf)
338                  END DO                  END DO
339               END DO               END DO
340              end IF
341    
342               CALL ustarhb(knon, yu, yv, coefm(:knon, 1), yustar)            call coef_diff_turb(dtime, nsrf, ni(:knon), ypaprs(:knon, :), &
343               IF (prt_level > 9) PRINT *, 'USTAR = ', yustar                 ypplay(:knon, :), yu(:knon, :), yv(:knon, :), yq(:knon, :), &
344                   yt(:knon, :), yts(:knon), ycdragm(:knon), zgeop(:knon, :), &
345               ! iflag_pbl peut \^etre utilis\'e comme longueur de m\'elange                 ycoefm(:knon, :), ycoefh(:knon, :), yq2(:knon, :))
346    
347               IF (iflag_pbl >= 11) THEN            CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), &
348                  CALL vdif_kcay(knon, dtime, rg, ypaprs, yzlev, yzlay, yu, yv, &                 ycdragm(:knon), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), &
349                       yteta, coefm(:knon, 1), yq2, q2diag, ykmm, ykmn, yustar, &                 ypplay(:knon, :), ydelp(:knon, :), y_d_u(:knon, :), &
350                       iflag_pbl)                 y_flux_u(:knon))
351               ELSE            CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), &
352                  CALL yamada4(knon, dtime, rg, yzlev, yzlay, yu, yv, yteta, &                 ycdragm(:knon), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), &
353                       coefm(:knon, 1), yq2, ykmm, ykmn, ykmq, yustar, iflag_pbl)                 ypplay(:knon, :), ydelp(:knon, :), y_d_v(:knon, :), &
354               END IF                 y_flux_v(:knon))
   
              coefm(:knon, 2:) = ykmm(:knon, 2:klev)  
              coefh(:knon, 2:) = ykmn(:knon, 2:klev)  
           END IF  
   
           ! calculer la diffusion des vitesses "u" et "v"  
           CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yu, ypaprs, &  
                ypplay, ydelp, y_d_u, y_flux_u(:knon))  
           CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yv, ypaprs, &  
                ypplay, ydelp, y_d_v, y_flux_v(:knon))  
355    
356            ! calculer la diffusion de "q" et de "h"            ! calculer la diffusion de "q" et de "h"
357            CALL clqh(dtime, jour, firstcal, rlat, nsrf, ni(:knon), ytsoil, &            CALL clqh(dtime, julien, firstcal, nsrf, ni(:knon), &
358                 yqsol, rmu0, yrugos, yrugoro, yu1, yv1, coefh(:knon, :), yt, &                 ytsoil(:knon, :), yqsol(:knon), mu0, yrugos, yrugoro, &
359                 yq, yts, ypaprs, ypplay, ydelp, yrads, yalb(:knon), ysnow, &                 yu(:knon, 1), yv(:knon, 1), ycoefh(:knon, :), ycdragh(:knon), &
360                 yqsurf, yrain_f, ysnow_f, yfder, yfluxlat, pctsrf_new_sic, &                 yt, yq, yts(:knon), ypaprs, ypplay, ydelp, yrads(:knon), &
361                 yagesno(:knon), y_d_t, y_d_q, y_d_ts(:knon), yz0_new, &                 yalb(:knon), snow(:knon), yqsurf, yrain_f, ysnow_f, &
362                 y_flux_t(:knon), y_flux_q(:knon), y_dflux_t, y_dflux_q, &                 yfluxlat(:knon), pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, &
363                 y_fqcalving, y_ffonte, y_run_off_lic_0)                 y_d_ts(:knon), yz0_new, y_flux_t(:knon), y_flux_q(:knon), &
364                   y_dflux_t(:knon), y_dflux_q(:knon), y_fqcalving, y_ffonte, &
365                   y_run_off_lic_0)
366    
367            ! calculer la longueur de rugosite sur ocean            ! calculer la longueur de rugosite sur ocean
368            yrugm = 0.            yrugm = 0.
369            IF (nsrf == is_oce) THEN            IF (nsrf == is_oce) THEN
370               DO j = 1, knon               DO j = 1, knon
371                  yrugm(j) = 0.018*coefm(j, 1)*(yu1(j)**2+yv1(j)**2)/rg + &                  yrugm(j) = 0.018 * ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2) &
372                       0.11*14E-6/sqrt(coefm(j, 1)*(yu1(j)**2+yv1(j)**2))                       / rg + 0.11 * 14E-6 &
373                         / sqrt(ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2))
374                  yrugm(j) = max(1.5E-05, yrugm(j))                  yrugm(j) = max(1.5E-05, yrugm(j))
375               END DO               END DO
376            END IF            END IF
377            DO j = 1, knon            DO j = 1, knon
378               y_dflux_t(j) = y_dflux_t(j)*ypct(j)               y_dflux_t(j) = y_dflux_t(j) * ypct(j)
379               y_dflux_q(j) = y_dflux_q(j)*ypct(j)               y_dflux_q(j) = y_dflux_q(j) * ypct(j)
              yu1(j) = yu1(j)*ypct(j)  
              yv1(j) = yv1(j)*ypct(j)  
380            END DO            END DO
381    
382            DO k = 1, klev            DO k = 1, klev
383               DO j = 1, knon               DO j = 1, knon
384                  i = ni(j)                  i = ni(j)
385                  coefh(j, k) = coefh(j, k)*ypct(j)                  y_d_t(j, k) = y_d_t(j, k) * ypct(j)
386                  coefm(j, k) = coefm(j, k)*ypct(j)                  y_d_q(j, k) = y_d_q(j, k) * ypct(j)
387                  y_d_t(j, k) = y_d_t(j, k)*ypct(j)                  y_d_u(j, k) = y_d_u(j, k) * ypct(j)
388                  y_d_q(j, k) = y_d_q(j, k)*ypct(j)                  y_d_v(j, k) = y_d_v(j, k) * ypct(j)
                 y_d_u(j, k) = y_d_u(j, k)*ypct(j)  
                 y_d_v(j, k) = y_d_v(j, k)*ypct(j)  
389               END DO               END DO
390            END DO            END DO
391    
392            DO j = 1, knon            flux_t(ni(:knon), nsrf) = y_flux_t(:knon)
393               i = ni(j)            flux_q(ni(:knon), nsrf) = y_flux_q(:knon)
394               flux_t(i, nsrf) = y_flux_t(j)            flux_u(ni(:knon), nsrf) = y_flux_u(:knon)
395               flux_q(i, nsrf) = y_flux_q(j)            flux_v(ni(:knon), nsrf) = y_flux_v(:knon)
              flux_u(i, nsrf) = y_flux_u(j)  
              flux_v(i, nsrf) = y_flux_v(j)  
           END DO  
396    
397            evap(:, nsrf) = -flux_q(:, nsrf)            evap(:, nsrf) = -flux_q(:, nsrf)
398    
399            falbe(:, nsrf) = 0.            falbe(:, nsrf) = 0.
400            snow(:, nsrf) = 0.            fsnow(:, nsrf) = 0.
401            qsurf(:, nsrf) = 0.            qsurf(:, nsrf) = 0.
402            rugos(:, nsrf) = 0.            frugs(:, nsrf) = 0.
           fluxlat(:, nsrf) = 0.  
403            DO j = 1, knon            DO j = 1, knon
404               i = ni(j)               i = ni(j)
405               d_ts(i, nsrf) = y_d_ts(j)               d_ts(i, nsrf) = y_d_ts(j)
406               falbe(i, nsrf) = yalb(j)               falbe(i, nsrf) = yalb(j)
407               snow(i, nsrf) = ysnow(j)               fsnow(i, nsrf) = snow(j)
408               qsurf(i, nsrf) = yqsurf(j)               qsurf(i, nsrf) = yqsurf(j)
409               rugos(i, nsrf) = yz0_new(j)               frugs(i, nsrf) = yz0_new(j)
410               fluxlat(i, nsrf) = yfluxlat(j)               fluxlat(i, nsrf) = yfluxlat(j)
411               IF (nsrf == is_oce) THEN               IF (nsrf == is_oce) THEN
412                  rugmer(i) = yrugm(j)                  rugmer(i) = yrugm(j)
413                  rugos(i, nsrf) = yrugm(j)                  frugs(i, nsrf) = yrugm(j)
414               END IF               END IF
415               agesno(i, nsrf) = yagesno(j)               agesno(i, nsrf) = yagesno(j)
416               fqcalving(i, nsrf) = y_fqcalving(j)               fqcalving(i, nsrf) = y_fqcalving(j)
417               ffonte(i, nsrf) = y_ffonte(j)               ffonte(i, nsrf) = y_ffonte(j)
418               cdragh(i) = cdragh(i) + coefh(j, 1)               cdragh(i) = cdragh(i) + ycdragh(j) * ypct(j)
419               cdragm(i) = cdragm(i) + coefm(j, 1)               cdragm(i) = cdragm(i) + ycdragm(j) * ypct(j)
420               dflux_t(i) = dflux_t(i) + y_dflux_t(j)               dflux_t(i) = dflux_t(i) + y_dflux_t(j)
421               dflux_q(i) = dflux_q(i) + y_dflux_q(j)               dflux_q(i) = dflux_q(i) + y_dflux_q(j)
              zu1(i) = zu1(i) + yu1(j)  
              zv1(i) = zv1(i) + yv1(j)  
422            END DO            END DO
423            IF (nsrf == is_ter) THEN            IF (nsrf == is_ter) THEN
424               qsol(ni(:knon)) = yqsol(:knon)               qsol(ni(:knon)) = yqsol(:knon)
# Line 532  contains Line 430  contains
430            END IF            END IF
431    
432            ftsoil(:, :, nsrf) = 0.            ftsoil(:, :, nsrf) = 0.
433            DO k = 1, nsoilmx            ftsoil(ni(:knon), :, nsrf) = ytsoil(:knon, :)
              DO j = 1, knon  
                 i = ni(j)  
                 ftsoil(i, k, nsrf) = ytsoil(j, k)  
              END DO  
           END DO  
434    
435            DO j = 1, knon            DO j = 1, knon
436               i = ni(j)               i = ni(j)
# Line 546  contains Line 439  contains
439                  d_q(i, k) = d_q(i, k) + y_d_q(j, k)                  d_q(i, k) = d_q(i, k) + y_d_q(j, k)
440                  d_u(i, k) = d_u(i, k) + y_d_u(j, k)                  d_u(i, k) = d_u(i, k) + y_d_u(j, k)
441                  d_v(i, k) = d_v(i, k) + y_d_v(j, k)                  d_v(i, k) = d_v(i, k) + y_d_v(j, k)
                 ycoefh(i, k) = ycoefh(i, k) + coefh(j, k)  
442               END DO               END DO
443            END DO            END DO
444    
445              forall (k = 2:klev) coefh(ni(:knon), k) &
446                   = coefh(ni(:knon), k) + ycoefh(:knon, k) * ypct(:knon)
447    
448            ! diagnostic t, q a 2m et u, v a 10m            ! diagnostic t, q a 2m et u, v a 10m
449    
450            DO j = 1, knon            DO j = 1, knon
451               i = ni(j)               i = ni(j)
452               uzon(j) = yu(j, 1) + y_d_u(j, 1)               u1(j) = yu(j, 1) + y_d_u(j, 1)
453               vmer(j) = yv(j, 1) + y_d_v(j, 1)               v1(j) = yv(j, 1) + y_d_v(j, 1)
454               tair1(j) = yt(j, 1) + y_d_t(j, 1)               tair1(j) = yt(j, 1) + y_d_t(j, 1)
455               qair1(j) = yq(j, 1) + y_d_q(j, 1)               qair1(j) = yq(j, 1) + y_d_q(j, 1)
456               zgeo1(j) = rd*tair1(j)/(0.5*(ypaprs(j, 1)+ypplay(j, &               zgeo1(j) = rd * tair1(j) / (0.5 * (ypaprs(j, 1) + ypplay(j, &
457                    1)))*(ypaprs(j, 1)-ypplay(j, 1))                    1))) * (ypaprs(j, 1)-ypplay(j, 1))
458               tairsol(j) = yts(j) + y_d_ts(j)               tairsol(j) = yts(j) + y_d_ts(j)
459               rugo1(j) = yrugos(j)               rugo1(j) = yrugos(j)
460               IF (nsrf == is_oce) THEN               IF (nsrf == is_oce) THEN
461                  rugo1(j) = rugos(i, nsrf)                  rugo1(j) = frugs(i, nsrf)
462               END IF               END IF
463               psfce(j) = ypaprs(j, 1)               psfce(j) = ypaprs(j, 1)
464               patm(j) = ypplay(j, 1)               patm(j) = ypplay(j, 1)
# Line 571  contains Line 466  contains
466               qairsol(j) = yqsurf(j)               qairsol(j) = yqsurf(j)
467            END DO            END DO
468    
469            CALL stdlevvar(klon, knon, nsrf, zxli, uzon, vmer, tair1, qair1, &            CALL stdlevvar(klon, knon, nsrf, u1(:knon), v1(:knon), tair1(:knon), &
470                 zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, yq2m, &                 qair1, zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, &
471                 yt10m, yq10m, yu10m, yustar)                 yq2m, yt10m, yq10m, wind10m(:knon), ustar(:knon))
472    
473            DO j = 1, knon            DO j = 1, knon
474               i = ni(j)               i = ni(j)
475               t2m(i, nsrf) = yt2m(j)               t2m(i, nsrf) = yt2m(j)
476               q2m(i, nsrf) = yq2m(j)               q2m(i, nsrf) = yq2m(j)
477    
478               ! u10m, v10m : composantes du vent a 10m sans spirale de Ekman               u10m_srf(i, nsrf) = (wind10m(j) * u1(j)) &
479               u10m(i, nsrf) = (yu10m(j)*uzon(j))/sqrt(uzon(j)**2+vmer(j)**2)                    / sqrt(u1(j)**2 + v1(j)**2)
480               v10m(i, nsrf) = (yu10m(j)*vmer(j))/sqrt(uzon(j)**2+vmer(j)**2)               v10m_srf(i, nsrf) = (wind10m(j) * v1(j)) &
481                      / sqrt(u1(j)**2 + v1(j)**2)
482            END DO            END DO
483    
484            CALL hbtm(ypaprs, ypplay, yt2m, yq2m, yustar, y_flux_t(:knon), &            CALL hbtm(ypaprs, ypplay, yt2m, yq2m, ustar(:knon), y_flux_t(:knon), &
485                 y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, &                 y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, &
486                 yoliqcl, ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)                 yoliqcl, ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)
487    
# Line 610  contains Line 505  contains
505                  q2(i, k, nsrf) = yq2(j, k)                  q2(i, k, nsrf) = yq2(j, k)
506               END DO               END DO
507            END DO            END DO
508           else
509              fsnow(:, nsrf) = 0.
510         end IF if_knon         end IF if_knon
511      END DO loop_surface      END DO loop_surface
512    
513      ! On utilise les nouvelles surfaces      ! On utilise les nouvelles surfaces
514      rugos(:, is_oce) = rugmer      frugs(:, is_oce) = rugmer
515      pctsrf(:, is_oce) = pctsrf_new_oce      pctsrf(:, is_oce) = pctsrf_new_oce
516      pctsrf(:, is_sic) = pctsrf_new_sic      pctsrf(:, is_sic) = pctsrf_new_sic
517    

Legend:
Removed from v.206  
changed lines
  Added in v.251

  ViewVC Help
Powered by ViewVC 1.1.21