/[lmdze]/trunk/phylmd/pbl_surface.f
ViewVC logotype

Diff of /trunk/phylmd/pbl_surface.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 208 by guez, Wed Dec 7 16:44:53 2016 UTC revision 235 by guez, Thu Nov 9 12:37:48 2017 UTC
# Line 4  module clmain_m Line 4  module clmain_m
4    
5  contains  contains
6    
7    SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, jour, rmu0, ftsol, cdmmax, &    SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, julien, mu0, ftsol, cdmmax, &
8         cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, snow, &         cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, fsnow, &
9         qsurf, evap, falbe, fluxlat, rain_fall, snow_f, solsw, sollw, fder, &         qsurf, evap, falbe, fluxlat, rain_fall, snow_f, fsolsw, fsollw, frugs, &
10         rlat, rugos, agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, &         agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, flux_u, &
11         flux_u, flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, zu1, &         flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, t2m, q2m, &
12         zv1, t2m, q2m, u10m, v10m, pblh, capcl, oliqcl, cteicl, pblt, therm, &         u10m_srf, v10m_srf, pblh, capcl, oliqcl, cteicl, pblt, therm, trmb1, &
13         trmb1, trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0)         trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0)
14    
15      ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19      ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19
16      ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18      ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18
# Line 21  contains Line 21  contains
21      ! ne tient pas compte de la diff\'erentiation des sous-fractions      ! ne tient pas compte de la diff\'erentiation des sous-fractions
22      ! de sol.      ! de sol.
23    
     ! Pour pouvoir extraire les coefficients d'\'echanges et le vent  
     ! dans la premi\`ere couche, trois champs ont \'et\'e cr\'e\'es : "ycoefh",  
     ! "zu1" et "zv1". Nous avons moyenn\'e les valeurs de ces trois  
     ! champs sur les quatre sous-surfaces du mod\`ele.  
   
24      use clqh_m, only: clqh      use clqh_m, only: clqh
25      use clvent_m, only: clvent      use clvent_m, only: clvent
26      use coefkz_m, only: coefkz      use coefkz_m, only: coefkz
27      use coefkzmin_m, only: coefkzmin      use coefkzmin_m, only: coefkzmin
28      USE conf_gcm_m, ONLY: prt_level, lmt_pas      use coefkz2_m, only: coefkz2
29        USE conf_gcm_m, ONLY: lmt_pas
30      USE conf_phys_m, ONLY: iflag_pbl      USE conf_phys_m, ONLY: iflag_pbl
31      USE dimphy, ONLY: klev, klon, zmasq      USE dimphy, ONLY: klev, klon, zmasq
32      USE dimsoil, ONLY: nsoilmx      USE dimsoil, ONLY: nsoilmx
# Line 41  contains Line 37  contains
37      USE suphec_m, ONLY: rd, rg, rkappa      USE suphec_m, ONLY: rd, rg, rkappa
38      use time_phylmdz, only: itap      use time_phylmdz, only: itap
39      use ustarhb_m, only: ustarhb      use ustarhb_m, only: ustarhb
     use vdif_kcay_m, only: vdif_kcay  
40      use yamada4_m, only: yamada4      use yamada4_m, only: yamada4
41    
42      REAL, INTENT(IN):: dtime ! interval du temps (secondes)      REAL, INTENT(IN):: dtime ! interval du temps (secondes)
# Line 50  contains Line 45  contains
45      ! tableau des pourcentages de surface de chaque maille      ! tableau des pourcentages de surface de chaque maille
46    
47      REAL, INTENT(IN):: t(klon, klev) ! temperature (K)      REAL, INTENT(IN):: t(klon, klev) ! temperature (K)
48      REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg/kg)      REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg / kg)
49      REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse      REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse
50      INTEGER, INTENT(IN):: jour ! jour de l'annee en cours      INTEGER, INTENT(IN):: julien ! jour de l'annee en cours
51      REAL, intent(in):: rmu0(klon) ! cosinus de l'angle solaire zenithal          REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal    
52      REAL, INTENT(IN):: ftsol(klon, nbsrf) ! temp\'erature du sol (en K)      REAL, INTENT(IN):: ftsol(:, :) ! (klon, nbsrf) temp\'erature du sol (en K)
53      REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh      REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh
54      REAL, INTENT(IN):: ksta, ksta_ter      REAL, INTENT(IN):: ksta, ksta_ter
55      LOGICAL, INTENT(IN):: ok_kzmin      LOGICAL, INTENT(IN):: ok_kzmin
# Line 62  contains Line 57  contains
57      REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)      REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)
58      ! soil temperature of surface fraction      ! soil temperature of surface fraction
59    
60      REAL, INTENT(inout):: qsol(klon)      REAL, INTENT(inout):: qsol(:) ! (klon)
61      ! column-density of water in soil, in kg m-2      ! column-density of water in soil, in kg m-2
62    
63      REAL, INTENT(IN):: paprs(klon, klev+1) ! pression a intercouche (Pa)      REAL, INTENT(IN):: paprs(klon, klev + 1) ! pression a intercouche (Pa)
64      REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa)      REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa)
65      REAL, INTENT(inout):: snow(klon, nbsrf)      REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf) \'epaisseur neigeuse
66      REAL qsurf(klon, nbsrf)      REAL qsurf(klon, nbsrf)
67      REAL evap(klon, nbsrf)      REAL evap(klon, nbsrf)
68      REAL, intent(inout):: falbe(klon, nbsrf)      REAL, intent(inout):: falbe(klon, nbsrf)
69        REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf)
     REAL fluxlat(klon, nbsrf)  
70    
71      REAL, intent(in):: rain_fall(klon)      REAL, intent(in):: rain_fall(klon)
72      ! liquid water mass flux (kg/m2/s), positive down      ! liquid water mass flux (kg / m2 / s), positive down
73    
74      REAL, intent(in):: snow_f(klon)      REAL, intent(in):: snow_f(klon)
75      ! solid water mass flux (kg/m2/s), positive down      ! solid water mass flux (kg / m2 / s), positive down
   
     REAL, INTENT(IN):: solsw(klon, nbsrf), sollw(klon, nbsrf)  
     REAL, intent(in):: fder(klon)  
     REAL, INTENT(IN):: rlat(klon) ! latitude en degr\'es  
   
     REAL, intent(inout):: rugos(klon, nbsrf) ! longueur de rugosit\'e (en m)  
76    
77        REAL, INTENT(IN):: fsolsw(klon, nbsrf), fsollw(klon, nbsrf)
78        REAL, intent(inout):: frugs(klon, nbsrf) ! longueur de rugosit\'e (en m)
79      real agesno(klon, nbsrf)      real agesno(klon, nbsrf)
80      REAL, INTENT(IN):: rugoro(klon)      REAL, INTENT(IN):: rugoro(klon)
81    
# Line 96  contains Line 86  contains
86      REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)      REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)
87      ! changement pour "u" et "v"      ! changement pour "u" et "v"
88    
89      REAL, intent(out):: d_ts(klon, nbsrf) ! le changement pour ftsol      REAL, intent(out):: d_ts(:, :) ! (klon, nbsrf) variation of ftsol
90    
91      REAL, intent(out):: flux_t(klon, nbsrf)      REAL, intent(out):: flux_t(klon, nbsrf)
92      ! flux de chaleur sensible (Cp T) (W/m2) (orientation positive vers      ! flux de chaleur sensible (Cp T) (W / m2) (orientation positive vers
93      ! le bas) à la surface      ! le bas) à la surface
94    
95      REAL, intent(out):: flux_q(klon, nbsrf)      REAL, intent(out):: flux_q(klon, nbsrf)
96      ! flux de vapeur d'eau (kg/m2/s) à la surface      ! flux de vapeur d'eau (kg / m2 / s) à la surface
97    
98      REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf)      REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf)
99      ! tension du vent à la surface, en Pa      ! tension du vent (flux turbulent de vent) à la surface, en Pa
100    
101      REAL, INTENT(out):: cdragh(klon), cdragm(klon)      REAL, INTENT(out):: cdragh(klon), cdragm(klon)
102      real q2(klon, klev+1, nbsrf)      real q2(klon, klev + 1, nbsrf)
103    
104      REAL, INTENT(out):: dflux_t(klon), dflux_q(klon)      REAL, INTENT(out):: dflux_t(klon), dflux_q(klon)
105      ! dflux_t derive du flux sensible      ! dflux_t derive du flux sensible
# Line 117  contains Line 107  contains
107      ! IM "slab" ocean      ! IM "slab" ocean
108    
109      REAL, intent(out):: ycoefh(klon, klev)      REAL, intent(out):: ycoefh(klon, klev)
110      REAL, intent(out):: zu1(klon)      ! Pour pouvoir extraire les coefficients d'\'echange, le champ
111      REAL zv1(klon)      ! "ycoefh" a \'et\'e cr\'e\'e. Nous avons moyenn\'e les valeurs de
112      REAL t2m(klon, nbsrf), q2m(klon, nbsrf)      ! ce champ sur les quatre sous-surfaces du mod\`ele.
113      REAL u10m(klon, nbsrf), v10m(klon, nbsrf)  
114        REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf)
115      ! Ionela Musat cf. Anne Mathieu : planetary boundary layer, hbtm  
116      ! (Comme les autres diagnostics on cumule dans physiq ce qui      REAL, INTENT(inout):: u10m_srf(:, :), v10m_srf(:, :) ! (klon, nbsrf)
117      ! permet de sortir les grandeurs par sous-surface)      ! composantes du vent \`a 10m sans spirale d'Ekman
118    
119        ! Ionela Musat. Cf. Anne Mathieu : planetary boundary layer, hbtm.
120        ! Comme les autres diagnostics on cumule dans physiq ce qui permet
121        ! de sortir les grandeurs par sous-surface.
122      REAL pblh(klon, nbsrf) ! height of planetary boundary layer      REAL pblh(klon, nbsrf) ! height of planetary boundary layer
123      REAL capcl(klon, nbsrf)      REAL capcl(klon, nbsrf)
124      REAL oliqcl(klon, nbsrf)      REAL oliqcl(klon, nbsrf)
125      REAL cteicl(klon, nbsrf)      REAL cteicl(klon, nbsrf)
126      REAL pblt(klon, nbsrf)      REAL, INTENT(inout):: pblt(klon, nbsrf) ! T au nveau HCL
     ! pblT------- T au nveau HCL  
127      REAL therm(klon, nbsrf)      REAL therm(klon, nbsrf)
128      REAL trmb1(klon, nbsrf)      REAL trmb1(klon, nbsrf)
129      ! trmb1-------deep_cape      ! trmb1-------deep_cape
# Line 142  contains Line 135  contains
135      REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)      REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)
136      ! ffonte----Flux thermique utilise pour fondre la neige      ! ffonte----Flux thermique utilise pour fondre la neige
137      ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la      ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la
138      !           hauteur de neige, en kg/m2/s      !           hauteur de neige, en kg / m2 / s
139      REAL run_off_lic_0(klon)      REAL run_off_lic_0(klon)
140    
141      ! Local:      ! Local:
# Line 159  contains Line 152  contains
152      REAL ytsoil(klon, nsoilmx)      REAL ytsoil(klon, nsoilmx)
153      REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)      REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)
154      REAL yalb(klon)      REAL yalb(klon)
155      REAL yu1(klon), yv1(klon)      REAL snow(klon), yqsurf(klon), yagesno(klon)
156      ! on rajoute en output yu1 et yv1 qui sont les vents dans      real yqsol(klon) ! column-density of water in soil, in kg m-2
157      ! la premiere couche      REAL yrain_f(klon) ! liquid water mass flux (kg / m2 / s), positive down
158      REAL ysnow(klon), yqsurf(klon), yagesno(klon)      REAL ysnow_f(klon) ! solid water mass flux (kg / m2 / s), positive down
   
     real yqsol(klon)  
     ! column-density of water in soil, in kg m-2  
   
     REAL yrain_f(klon)  
     ! liquid water mass flux (kg/m2/s), positive down  
   
     REAL ysnow_f(klon)  
     ! solid water mass flux (kg/m2/s), positive down  
   
     REAL yfder(klon)  
159      REAL yrugm(klon), yrads(klon), yrugoro(klon)      REAL yrugm(klon), yrads(klon), yrugoro(klon)
   
160      REAL yfluxlat(klon)      REAL yfluxlat(klon)
   
161      REAL y_d_ts(klon)      REAL y_d_ts(klon)
162      REAL y_d_t(klon, klev), y_d_q(klon, klev)      REAL y_d_t(klon, klev), y_d_q(klon, klev)
163      REAL y_d_u(klon, klev), y_d_v(klon, klev)      REAL y_d_u(klon, klev), y_d_v(klon, klev)
# Line 187  contains Line 167  contains
167      REAL coefh(klon, klev), coefm(klon, klev)      REAL coefh(klon, klev), coefm(klon, klev)
168      REAL yu(klon, klev), yv(klon, klev)      REAL yu(klon, klev), yv(klon, klev)
169      REAL yt(klon, klev), yq(klon, klev)      REAL yt(klon, klev), yq(klon, klev)
170      REAL ypaprs(klon, klev+1), ypplay(klon, klev), ydelp(klon, klev)      REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev)
   
171      REAL ycoefm0(klon, klev), ycoefh0(klon, klev)      REAL ycoefm0(klon, klev), ycoefh0(klon, klev)
172        REAL yzlay(klon, klev), zlev(klon, klev + 1), yteta(klon, klev)
173      REAL yzlay(klon, klev), yzlev(klon, klev+1), yteta(klon, klev)      REAL ykmm(klon, klev + 1), ykmn(klon, klev + 1)
174      REAL ykmm(klon, klev+1), ykmn(klon, klev+1)      REAL ykmq(klon, klev + 1)
175      REAL ykmq(klon, klev+1)      REAL yq2(klon, klev + 1)
     REAL yq2(klon, klev+1)  
     REAL q2diag(klon, klev+1)  
   
     REAL u1lay(klon), v1lay(klon)  
176      REAL delp(klon, klev)      REAL delp(klon, klev)
177      INTEGER i, k, nsrf      INTEGER i, k, nsrf
   
178      INTEGER ni(klon), knon, j      INTEGER ni(klon), knon, j
179    
180      REAL pctsrf_pot(klon, nbsrf)      REAL pctsrf_pot(klon, nbsrf)
181      ! "pourcentage potentiel" pour tenir compte des \'eventuelles      ! "pourcentage potentiel" pour tenir compte des \'eventuelles
182      ! apparitions ou disparitions de la glace de mer      ! apparitions ou disparitions de la glace de mer
183    
184      REAL zx_alf1, zx_alf2 ! valeur ambiante par extrapolation      REAL yt2m(klon), yq2m(klon), wind10m(klon)
185        REAL ustar(klon)
     REAL yt2m(klon), yq2m(klon), yu10m(klon)  
     REAL yustar(klon)  
186    
187      REAL yt10m(klon), yq10m(klon)      REAL yt10m(klon), yq10m(klon)
188      REAL ypblh(klon)      REAL ypblh(klon)
# Line 223  contains Line 195  contains
195      REAL ytrmb1(klon)      REAL ytrmb1(klon)
196      REAL ytrmb2(klon)      REAL ytrmb2(klon)
197      REAL ytrmb3(klon)      REAL ytrmb3(klon)
198      REAL uzon(klon), vmer(klon)      REAL u1(klon), v1(klon)
199      REAL tair1(klon), qair1(klon), tairsol(klon)      REAL tair1(klon), qair1(klon), tairsol(klon)
200      REAL psfce(klon), patm(klon)      REAL psfce(klon), patm(klon)
201    
202      REAL qairsol(klon), zgeo1(klon)      REAL qairsol(klon), zgeo1(klon)
203      REAL rugo1(klon)      REAL rugo1(klon)
204    
     ! utiliser un jeu de fonctions simples                
     LOGICAL zxli  
     PARAMETER (zxli=.FALSE.)  
   
205      !------------------------------------------------------------      !------------------------------------------------------------
206    
207      ytherm = 0.      ytherm = 0.
208    
209      DO k = 1, klev ! epaisseur de couche      DO k = 1, klev ! epaisseur de couche
210         DO i = 1, klon         DO i = 1, klon
211            delp(i, k) = paprs(i, k) - paprs(i, k+1)            delp(i, k) = paprs(i, k) - paprs(i, k + 1)
212         END DO         END DO
213      END DO      END DO
     DO i = 1, klon ! vent de la premiere couche  
        zx_alf1 = 1.0  
        zx_alf2 = 1.0 - zx_alf1  
        u1lay(i) = u(i, 1)*zx_alf1 + u(i, 2)*zx_alf2  
        v1lay(i) = v(i, 1)*zx_alf1 + v(i, 2)*zx_alf2  
     END DO  
214    
215      ! Initialization:      ! Initialization:
216      rugmer = 0.      rugmer = 0.
# Line 256  contains Line 218  contains
218      cdragm = 0.      cdragm = 0.
219      dflux_t = 0.      dflux_t = 0.
220      dflux_q = 0.      dflux_q = 0.
     zu1 = 0.  
     zv1 = 0.  
221      ypct = 0.      ypct = 0.
     yts = 0.  
     ysnow = 0.  
222      yqsurf = 0.      yqsurf = 0.
223      yrain_f = 0.      yrain_f = 0.
224      ysnow_f = 0.      ysnow_f = 0.
     yfder = 0.  
225      yrugos = 0.      yrugos = 0.
     yu1 = 0.  
     yv1 = 0.  
     yrads = 0.  
226      ypaprs = 0.      ypaprs = 0.
227      ypplay = 0.      ypplay = 0.
228      ydelp = 0.      ydelp = 0.
# Line 280  contains Line 234  contains
234      y_dflux_q = 0.      y_dflux_q = 0.
235      yrugoro = 0.      yrugoro = 0.
236      d_ts = 0.      d_ts = 0.
     yfluxlat = 0.  
237      flux_t = 0.      flux_t = 0.
238      flux_q = 0.      flux_q = 0.
239      flux_u = 0.      flux_u = 0.
240      flux_v = 0.      flux_v = 0.
241        fluxlat = 0.
242      d_t = 0.      d_t = 0.
243      d_q = 0.      d_q = 0.
244      d_u = 0.      d_u = 0.
# Line 302  contains Line 256  contains
256    
257      ! Tester si c'est le moment de lire le fichier:      ! Tester si c'est le moment de lire le fichier:
258      if (mod(itap - 1, lmt_pas) == 0) then      if (mod(itap - 1, lmt_pas) == 0) then
259         CALL interfoce_lim(jour, pctsrf_new_oce, pctsrf_new_sic)         CALL interfoce_lim(julien, pctsrf_new_oce, pctsrf_new_sic)
260      endif      endif
261    
262      ! Boucler sur toutes les sous-fractions du sol:      ! Boucler sur toutes les sous-fractions du sol:
# Line 325  contains Line 279  contains
279               i = ni(j)               i = ni(j)
280               ypct(j) = pctsrf(i, nsrf)               ypct(j) = pctsrf(i, nsrf)
281               yts(j) = ftsol(i, nsrf)               yts(j) = ftsol(i, nsrf)
282               ysnow(j) = snow(i, nsrf)               snow(j) = fsnow(i, nsrf)
283               yqsurf(j) = qsurf(i, nsrf)               yqsurf(j) = qsurf(i, nsrf)
284               yalb(j) = falbe(i, nsrf)               yalb(j) = falbe(i, nsrf)
285               yrain_f(j) = rain_fall(i)               yrain_f(j) = rain_fall(i)
286               ysnow_f(j) = snow_f(i)               ysnow_f(j) = snow_f(i)
287               yagesno(j) = agesno(i, nsrf)               yagesno(j) = agesno(i, nsrf)
288               yfder(j) = fder(i)               yrugos(j) = frugs(i, nsrf)
              yrugos(j) = rugos(i, nsrf)  
289               yrugoro(j) = rugoro(i)               yrugoro(j) = rugoro(i)
290               yu1(j) = u1lay(i)               yrads(j) = fsolsw(i, nsrf) + fsollw(i, nsrf)
291               yv1(j) = v1lay(i)               ypaprs(j, klev + 1) = paprs(i, klev + 1)
              yrads(j) = solsw(i, nsrf) + sollw(i, nsrf)  
              ypaprs(j, klev+1) = paprs(i, klev+1)  
292               y_run_off_lic_0(j) = run_off_lic_0(i)               y_run_off_lic_0(j) = run_off_lic_0(i)
293            END DO            END DO
294    
295            ! For continent, copy soil water content            ! For continent, copy soil water content
296            IF (nsrf == is_ter) THEN            IF (nsrf == is_ter) yqsol(:knon) = qsol(ni(:knon))
              yqsol(:knon) = qsol(ni(:knon))  
           ELSE  
              yqsol = 0.  
           END IF  
297    
298            ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf)            ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf)
299    
# Line 364  contains Line 311  contains
311            END DO            END DO
312    
313            ! calculer Cdrag et les coefficients d'echange            ! calculer Cdrag et les coefficients d'echange
314            CALL coefkz(nsrf, ypaprs, ypplay, ksta, ksta_ter, yts, yrugos, yu, &            CALL coefkz(nsrf, ypaprs, ypplay, ksta, ksta_ter, yts(:knon), &
315                 yv, yt, yq, yqsurf, coefm(:knon, :), coefh(:knon, :))                 yrugos, yu, yv, yt, yq, yqsurf(:knon), coefm(:knon, 2:), &
316                   coefh(:knon, 2:), coefm(:knon, 1), coefh(:knon, 1))
317    
318            IF (iflag_pbl == 1) THEN            IF (iflag_pbl == 1) THEN
319               CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0)               CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0(:knon, 2:), &
320                      ycoefh0(:knon, 2:))
321                 ycoefm0(:knon, 1) = 0.
322                 ycoefh0(:knon, 1) = 0.
323               coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))               coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))
324               coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))               coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))
325            END IF            END IF
# Line 381  contains Line 333  contains
333            IF (ok_kzmin) THEN            IF (ok_kzmin) THEN
334               ! Calcul d'une diffusion minimale pour les conditions tres stables               ! Calcul d'une diffusion minimale pour les conditions tres stables
335               CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, &               CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, &
336                    coefm(:knon, 1), ycoefm0, ycoefh0)                    coefm(:knon, 1), ycoefm0(:knon, 2:), ycoefh0(:knon, 2:))
337               coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))               coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))
338               coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))               coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))
339            END IF            END IF
340    
341            IF (iflag_pbl >= 3) THEN            IF (iflag_pbl >= 6) THEN
342               ! Mellor et Yamada adapt\'e \`a Mars, Richard Fournier et               ! Mellor et Yamada adapt\'e \`a Mars, Richard Fournier et
343               ! Fr\'ed\'eric Hourdin               ! Fr\'ed\'eric Hourdin
344               yzlay(:knon, 1) = rd * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &               yzlay(:knon, 1) = rd * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &
345                    + ypplay(:knon, 1))) &                    + ypplay(:knon, 1))) &
346                    * (ypaprs(:knon, 1) - ypplay(:knon, 1)) / rg                    * (ypaprs(:knon, 1) - ypplay(:knon, 1)) / rg
347    
348               DO k = 2, klev               DO k = 2, klev
349                  yzlay(1:knon, k) = yzlay(1:knon, k-1) &                  yzlay(:knon, k) = yzlay(:knon, k-1) &
350                       + rd * 0.5 * (yt(1:knon, k-1) + yt(1:knon, k)) &                       + rd * 0.5 * (yt(1:knon, k-1) + yt(1:knon, k)) &
351                       / ypaprs(1:knon, k) &                       / ypaprs(1:knon, k) &
352                       * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg                       * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg
353               END DO               END DO
354    
355               DO k = 1, klev               DO k = 1, klev
356                  yteta(1:knon, k) = yt(1:knon, k)*(ypaprs(1:knon, 1) &                  yteta(1:knon, k) = yt(1:knon, k) * (ypaprs(1:knon, 1) &
357                       / ypplay(1:knon, k))**rkappa * (1.+0.61*yq(1:knon, k))                       / ypplay(1:knon, k))**rkappa * (1. + 0.61 * yq(1:knon, k))
358               END DO               END DO
359               yzlev(1:knon, 1) = 0.  
360               yzlev(:knon, klev+1) = 2. * yzlay(:knon, klev) &               zlev(:knon, 1) = 0.
361                 zlev(:knon, klev + 1) = 2. * yzlay(:knon, klev) &
362                    - yzlay(:knon, klev - 1)                    - yzlay(:knon, klev - 1)
363    
364               DO k = 2, klev               DO k = 2, klev
365                  yzlev(1:knon, k) = 0.5*(yzlay(1:knon, k)+yzlay(1:knon, k-1))                  zlev(:knon, k) = 0.5 * (yzlay(:knon, k) + yzlay(:knon, k-1))
366               END DO               END DO
367    
368               DO k = 1, klev + 1               DO k = 1, klev + 1
369                  DO j = 1, knon                  DO j = 1, knon
370                     i = ni(j)                     i = ni(j)
# Line 415  contains Line 372  contains
372                  END DO                  END DO
373               END DO               END DO
374    
375               CALL ustarhb(knon, yu, yv, coefm(:knon, 1), yustar)               ustar(:knon) = ustarhb(yu(:knon, 1), yv(:knon, 1), coefm(:knon, 1))
376               IF (prt_level > 9) PRINT *, 'USTAR = ', yustar               CALL yamada4(dtime, rg, zlev(:knon, :), yzlay(:knon, :), &
377                      yu(:knon, :), yv(:knon, :), yteta(:knon, :), &
378               ! iflag_pbl peut \^etre utilis\'e comme longueur de m\'elange                    coefm(:knon, 1), yq2(:knon, :), ykmm(:knon, :), &
379                      ykmn(:knon, :), ykmq(:knon, :), ustar(:knon))
              IF (iflag_pbl >= 11) THEN  
                 CALL vdif_kcay(knon, dtime, rg, ypaprs, yzlev, yzlay, yu, yv, &  
                      yteta, coefm(:knon, 1), yq2, q2diag, ykmm, ykmn, yustar, &  
                      iflag_pbl)  
              ELSE  
                 CALL yamada4(knon, dtime, rg, yzlev, yzlay, yu, yv, yteta, &  
                      coefm(:knon, 1), yq2, ykmm, ykmn, ykmq, yustar, iflag_pbl)  
              END IF  
   
380               coefm(:knon, 2:) = ykmm(:knon, 2:klev)               coefm(:knon, 2:) = ykmm(:knon, 2:klev)
381               coefh(:knon, 2:) = ykmn(:knon, 2:klev)               coefh(:knon, 2:) = ykmn(:knon, 2:klev)
382            END IF            END IF
383    
384            ! calculer la diffusion des vitesses "u" et "v"            CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), coefm(:knon, 2:), &
385            CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yu, ypaprs, &                 coefm(:knon, 1), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), &
386                 ypplay, ydelp, y_d_u, y_flux_u(:knon))                 ypplay(:knon, :), ydelp(:knon, :), y_d_u(:knon, :), &
387            CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yv, ypaprs, &                 y_flux_u(:knon))
388                 ypplay, ydelp, y_d_v, y_flux_v(:knon))            CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), coefm(:knon, 2:), &
389                   coefm(:knon, 1), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), &
390                   ypplay(:knon, :), ydelp(:knon, :), y_d_v(:knon, :), &
391                   y_flux_v(:knon))
392    
393            ! calculer la diffusion de "q" et de "h"            ! calculer la diffusion de "q" et de "h"
394            CALL clqh(dtime, jour, firstcal, rlat, nsrf, ni(:knon), &            CALL clqh(dtime, julien, firstcal, nsrf, ni(:knon), &
395                 ytsoil(:knon, :), yqsol, rmu0, yrugos, yrugoro, yu1, yv1, &                 ytsoil(:knon, :), yqsol(:knon), mu0, yrugos, yrugoro, &
396                 coefh(:knon, :), yt, yq, yts(:knon), ypaprs, ypplay, ydelp, &                 yu(:knon, 1), yv(:knon, 1), coefh(:knon, :), yt, yq, &
397                 yrads, yalb(:knon), ysnow, yqsurf, yrain_f, ysnow_f, yfder, &                 yts(:knon), ypaprs, ypplay, ydelp, yrads(:knon), yalb(:knon), &
398                 yfluxlat, pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, &                 snow(:knon), yqsurf, yrain_f, ysnow_f, yfluxlat(:knon), &
399                 y_d_ts(:knon), yz0_new, y_flux_t(:knon), y_flux_q(:knon), &                 pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, y_d_ts(:knon), &
400                 y_dflux_t, y_dflux_q, y_fqcalving, y_ffonte, y_run_off_lic_0)                 yz0_new, y_flux_t(:knon), y_flux_q(:knon), y_dflux_t(:knon), &
401                   y_dflux_q(:knon), y_fqcalving, y_ffonte, y_run_off_lic_0)
402    
403            ! calculer la longueur de rugosite sur ocean            ! calculer la longueur de rugosite sur ocean
404            yrugm = 0.            yrugm = 0.
405            IF (nsrf == is_oce) THEN            IF (nsrf == is_oce) THEN
406               DO j = 1, knon               DO j = 1, knon
407                  yrugm(j) = 0.018*coefm(j, 1)*(yu1(j)**2+yv1(j)**2)/rg + &                  yrugm(j) = 0.018 * coefm(j, 1) * (yu(j, 1)**2 + yv(j, 1)**2) &
408                       0.11*14E-6/sqrt(coefm(j, 1)*(yu1(j)**2+yv1(j)**2))                       / rg + 0.11 * 14E-6 &
409                         / sqrt(coefm(j, 1) * (yu(j, 1)**2 + yv(j, 1)**2))
410                  yrugm(j) = max(1.5E-05, yrugm(j))                  yrugm(j) = max(1.5E-05, yrugm(j))
411               END DO               END DO
412            END IF            END IF
413            DO j = 1, knon            DO j = 1, knon
414               y_dflux_t(j) = y_dflux_t(j)*ypct(j)               y_dflux_t(j) = y_dflux_t(j) * ypct(j)
415               y_dflux_q(j) = y_dflux_q(j)*ypct(j)               y_dflux_q(j) = y_dflux_q(j) * ypct(j)
              yu1(j) = yu1(j)*ypct(j)  
              yv1(j) = yv1(j)*ypct(j)  
416            END DO            END DO
417    
418            DO k = 1, klev            DO k = 1, klev
419               DO j = 1, knon               DO j = 1, knon
420                  i = ni(j)                  i = ni(j)
421                  coefh(j, k) = coefh(j, k)*ypct(j)                  coefh(j, k) = coefh(j, k) * ypct(j)
422                  coefm(j, k) = coefm(j, k)*ypct(j)                  coefm(j, k) = coefm(j, k) * ypct(j)
423                  y_d_t(j, k) = y_d_t(j, k)*ypct(j)                  y_d_t(j, k) = y_d_t(j, k) * ypct(j)
424                  y_d_q(j, k) = y_d_q(j, k)*ypct(j)                  y_d_q(j, k) = y_d_q(j, k) * ypct(j)
425                  y_d_u(j, k) = y_d_u(j, k)*ypct(j)                  y_d_u(j, k) = y_d_u(j, k) * ypct(j)
426                  y_d_v(j, k) = y_d_v(j, k)*ypct(j)                  y_d_v(j, k) = y_d_v(j, k) * ypct(j)
427               END DO               END DO
428            END DO            END DO
429    
430            DO j = 1, knon            flux_t(ni(:knon), nsrf) = y_flux_t(:knon)
431               i = ni(j)            flux_q(ni(:knon), nsrf) = y_flux_q(:knon)
432               flux_t(i, nsrf) = y_flux_t(j)            flux_u(ni(:knon), nsrf) = y_flux_u(:knon)
433               flux_q(i, nsrf) = y_flux_q(j)            flux_v(ni(:knon), nsrf) = y_flux_v(:knon)
              flux_u(i, nsrf) = y_flux_u(j)  
              flux_v(i, nsrf) = y_flux_v(j)  
           END DO  
434    
435            evap(:, nsrf) = -flux_q(:, nsrf)            evap(:, nsrf) = -flux_q(:, nsrf)
436    
437            falbe(:, nsrf) = 0.            falbe(:, nsrf) = 0.
438            snow(:, nsrf) = 0.            fsnow(:, nsrf) = 0.
439            qsurf(:, nsrf) = 0.            qsurf(:, nsrf) = 0.
440            rugos(:, nsrf) = 0.            frugs(:, nsrf) = 0.
           fluxlat(:, nsrf) = 0.  
441            DO j = 1, knon            DO j = 1, knon
442               i = ni(j)               i = ni(j)
443               d_ts(i, nsrf) = y_d_ts(j)               d_ts(i, nsrf) = y_d_ts(j)
444               falbe(i, nsrf) = yalb(j)               falbe(i, nsrf) = yalb(j)
445               snow(i, nsrf) = ysnow(j)               fsnow(i, nsrf) = snow(j)
446               qsurf(i, nsrf) = yqsurf(j)               qsurf(i, nsrf) = yqsurf(j)
447               rugos(i, nsrf) = yz0_new(j)               frugs(i, nsrf) = yz0_new(j)
448               fluxlat(i, nsrf) = yfluxlat(j)               fluxlat(i, nsrf) = yfluxlat(j)
449               IF (nsrf == is_oce) THEN               IF (nsrf == is_oce) THEN
450                  rugmer(i) = yrugm(j)                  rugmer(i) = yrugm(j)
451                  rugos(i, nsrf) = yrugm(j)                  frugs(i, nsrf) = yrugm(j)
452               END IF               END IF
453               agesno(i, nsrf) = yagesno(j)               agesno(i, nsrf) = yagesno(j)
454               fqcalving(i, nsrf) = y_fqcalving(j)               fqcalving(i, nsrf) = y_fqcalving(j)
# Line 510  contains Line 457  contains
457               cdragm(i) = cdragm(i) + coefm(j, 1)               cdragm(i) = cdragm(i) + coefm(j, 1)
458               dflux_t(i) = dflux_t(i) + y_dflux_t(j)               dflux_t(i) = dflux_t(i) + y_dflux_t(j)
459               dflux_q(i) = dflux_q(i) + y_dflux_q(j)               dflux_q(i) = dflux_q(i) + y_dflux_q(j)
              zu1(i) = zu1(i) + yu1(j)  
              zv1(i) = zv1(i) + yv1(j)  
460            END DO            END DO
461            IF (nsrf == is_ter) THEN            IF (nsrf == is_ter) THEN
462               qsol(ni(:knon)) = yqsol(:knon)               qsol(ni(:knon)) = yqsol(:knon)
# Line 540  contains Line 485  contains
485    
486            DO j = 1, knon            DO j = 1, knon
487               i = ni(j)               i = ni(j)
488               uzon(j) = yu(j, 1) + y_d_u(j, 1)               u1(j) = yu(j, 1) + y_d_u(j, 1)
489               vmer(j) = yv(j, 1) + y_d_v(j, 1)               v1(j) = yv(j, 1) + y_d_v(j, 1)
490               tair1(j) = yt(j, 1) + y_d_t(j, 1)               tair1(j) = yt(j, 1) + y_d_t(j, 1)
491               qair1(j) = yq(j, 1) + y_d_q(j, 1)               qair1(j) = yq(j, 1) + y_d_q(j, 1)
492               zgeo1(j) = rd*tair1(j)/(0.5*(ypaprs(j, 1)+ypplay(j, &               zgeo1(j) = rd * tair1(j) / (0.5 * (ypaprs(j, 1) + ypplay(j, &
493                    1)))*(ypaprs(j, 1)-ypplay(j, 1))                    1))) * (ypaprs(j, 1)-ypplay(j, 1))
494               tairsol(j) = yts(j) + y_d_ts(j)               tairsol(j) = yts(j) + y_d_ts(j)
495               rugo1(j) = yrugos(j)               rugo1(j) = yrugos(j)
496               IF (nsrf == is_oce) THEN               IF (nsrf == is_oce) THEN
497                  rugo1(j) = rugos(i, nsrf)                  rugo1(j) = frugs(i, nsrf)
498               END IF               END IF
499               psfce(j) = ypaprs(j, 1)               psfce(j) = ypaprs(j, 1)
500               patm(j) = ypplay(j, 1)               patm(j) = ypplay(j, 1)
# Line 557  contains Line 502  contains
502               qairsol(j) = yqsurf(j)               qairsol(j) = yqsurf(j)
503            END DO            END DO
504    
505            CALL stdlevvar(klon, knon, nsrf, zxli, uzon, vmer, tair1, qair1, &            CALL stdlevvar(klon, knon, nsrf, u1(:knon), v1(:knon), tair1(:knon), &
506                 zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, yq2m, &                 qair1, zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, &
507                 yt10m, yq10m, yu10m, yustar)                 yq2m, yt10m, yq10m, wind10m(:knon), ustar)
508    
509            DO j = 1, knon            DO j = 1, knon
510               i = ni(j)               i = ni(j)
511               t2m(i, nsrf) = yt2m(j)               t2m(i, nsrf) = yt2m(j)
512               q2m(i, nsrf) = yq2m(j)               q2m(i, nsrf) = yq2m(j)
513    
514               ! u10m, v10m : composantes du vent a 10m sans spirale de Ekman               u10m_srf(i, nsrf) = (wind10m(j) * u1(j)) &
515               u10m(i, nsrf) = (yu10m(j)*uzon(j))/sqrt(uzon(j)**2+vmer(j)**2)                    / sqrt(u1(j)**2 + v1(j)**2)
516               v10m(i, nsrf) = (yu10m(j)*vmer(j))/sqrt(uzon(j)**2+vmer(j)**2)               v10m_srf(i, nsrf) = (wind10m(j) * v1(j)) &
517                      / sqrt(u1(j)**2 + v1(j)**2)
518            END DO            END DO
519    
520            CALL hbtm(ypaprs, ypplay, yt2m, yq2m, yustar, y_flux_t(:knon), &            CALL hbtm(ypaprs, ypplay, yt2m, yq2m, ustar(:knon), y_flux_t(:knon), &
521                 y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, &                 y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, &
522                 yoliqcl, ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)                 yoliqcl, ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)
523    
# Line 595  contains Line 541  contains
541                  q2(i, k, nsrf) = yq2(j, k)                  q2(i, k, nsrf) = yq2(j, k)
542               END DO               END DO
543            END DO            END DO
544           else
545              fsnow(:, nsrf) = 0.
546         end IF if_knon         end IF if_knon
547      END DO loop_surface      END DO loop_surface
548    
549      ! On utilise les nouvelles surfaces      ! On utilise les nouvelles surfaces
550      rugos(:, is_oce) = rugmer      frugs(:, is_oce) = rugmer
551      pctsrf(:, is_oce) = pctsrf_new_oce      pctsrf(:, is_oce) = pctsrf_new_oce
552      pctsrf(:, is_sic) = pctsrf_new_sic      pctsrf(:, is_sic) = pctsrf_new_sic
553    

Legend:
Removed from v.208  
changed lines
  Added in v.235

  ViewVC Help
Powered by ViewVC 1.1.21