/[lmdze]/trunk/phylmd/pbl_surface.f
ViewVC logotype

Diff of /trunk/phylmd/pbl_surface.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/Sources/phylmd/clmain.f revision 225 by guez, Mon Oct 16 12:35:41 2017 UTC trunk/phylmd/clmain.f revision 254 by guez, Mon Feb 5 10:39:38 2018 UTC
# Line 5  module clmain_m Line 5  module clmain_m
5  contains  contains
6    
7    SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, julien, mu0, ftsol, cdmmax, &    SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, julien, mu0, ftsol, cdmmax, &
8         cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, fsnow, &         cdhmax, ftsoil, qsol, paprs, pplay, fsnow, qsurf, evap, falbe, fluxlat, &
9         qsurf, evap, falbe, fluxlat, rain_fall, snow_f, fsolsw, fsollw, frugs, &         rain_fall, snow_f, fsolsw, fsollw, frugs, agesno, rugoro, d_t, d_q, &
10         agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, flux_u, &         d_u, d_v, d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, q2, &
11         flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, zu1, zv1, t2m, &         dflux_t, dflux_q, coefh, t2m, q2m, u10m_srf, v10m_srf, pblh, capcl, &
12         q2m, u10m_srf, v10m_srf, pblh, capcl, oliqcl, cteicl, pblt, therm, &         oliqcl, cteicl, pblt, therm, plcl, fqcalving, ffonte, run_off_lic_0)
        trmb1, trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0)  
13    
14      ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19      ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19
15      ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18      ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18
# Line 21  contains Line 20  contains
20      ! ne tient pas compte de la diff\'erentiation des sous-fractions      ! ne tient pas compte de la diff\'erentiation des sous-fractions
21      ! de sol.      ! de sol.
22    
23      ! Pour pouvoir extraire les coefficients d'\'echanges et le vent      use clcdrag_m, only: clcdrag
     ! dans la premi\`ere couche, trois champs ont \'et\'e cr\'e\'es : "ycoefh",  
     ! "zu1" et "zv1". Nous avons moyenn\'e les valeurs de ces trois  
     ! champs sur les quatre sous-surfaces du mod\`ele.  
   
24      use clqh_m, only: clqh      use clqh_m, only: clqh
25      use clvent_m, only: clvent      use clvent_m, only: clvent
26      use coefkz_m, only: coefkz      use coef_diff_turb_m, only: coef_diff_turb
27      use coefkzmin_m, only: coefkzmin      USE conf_gcm_m, ONLY: lmt_pas
     USE conf_gcm_m, ONLY: prt_level, lmt_pas  
28      USE conf_phys_m, ONLY: iflag_pbl      USE conf_phys_m, ONLY: iflag_pbl
29      USE dimphy, ONLY: klev, klon, zmasq      USE dimphy, ONLY: klev, klon, zmasq
30      USE dimsoil, ONLY: nsoilmx      USE dimsoil, ONLY: nsoilmx
# Line 38  contains Line 32  contains
32      USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf      USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf
33      USE interfoce_lim_m, ONLY: interfoce_lim      USE interfoce_lim_m, ONLY: interfoce_lim
34      use stdlevvar_m, only: stdlevvar      use stdlevvar_m, only: stdlevvar
35      USE suphec_m, ONLY: rd, rg, rkappa      USE suphec_m, ONLY: rd, rg
36      use time_phylmdz, only: itap      use time_phylmdz, only: itap
     use ustarhb_m, only: ustarhb  
     use vdif_kcay_m, only: vdif_kcay  
     use yamada4_m, only: yamada4  
37    
38      REAL, INTENT(IN):: dtime ! interval du temps (secondes)      REAL, INTENT(IN):: dtime ! interval du temps (secondes)
39    
# Line 56  contains Line 47  contains
47      REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal          REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal    
48      REAL, INTENT(IN):: ftsol(:, :) ! (klon, nbsrf) temp\'erature du sol (en K)      REAL, INTENT(IN):: ftsol(:, :) ! (klon, nbsrf) temp\'erature du sol (en K)
49      REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh      REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh
     REAL, INTENT(IN):: ksta, ksta_ter  
     LOGICAL, INTENT(IN):: ok_kzmin  
50    
51      REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)      REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)
52      ! soil temperature of surface fraction      ! soil temperature of surface fraction
# Line 101  contains Line 90  contains
90      ! flux de vapeur d'eau (kg / m2 / s) à la surface      ! flux de vapeur d'eau (kg / m2 / s) à la surface
91    
92      REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf)      REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf)
93      ! tension du vent à la surface, en Pa      ! tension du vent (flux turbulent de vent) à la surface, en Pa
94    
95      REAL, INTENT(out):: cdragh(klon), cdragm(klon)      REAL, INTENT(out):: cdragh(klon), cdragm(klon)
96      real q2(klon, klev + 1, nbsrf)      real q2(klon, klev + 1, nbsrf)
# Line 111  contains Line 100  contains
100      ! dflux_q derive du flux latent      ! dflux_q derive du flux latent
101      ! IM "slab" ocean      ! IM "slab" ocean
102    
103      REAL, intent(out):: ycoefh(klon, klev)      REAL, intent(out):: coefh(:, 2:) ! (klon, 2:klev)
104      REAL, intent(out):: zu1(klon), zv1(klon)      ! Pour pouvoir extraire les coefficients d'\'echange, le champ
105        ! "coefh" a \'et\'e cr\'e\'e. Nous avons moyenn\'e les valeurs de
106        ! ce champ sur les quatre sous-surfaces du mod\`ele.
107    
108      REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf)      REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf)
109    
110      REAL, INTENT(inout):: u10m_srf(:, :), v10m_srf(:, :) ! (klon, nbsrf)      REAL, INTENT(inout):: u10m_srf(:, :), v10m_srf(:, :) ! (klon, nbsrf)
# Line 127  contains Line 119  contains
119      REAL cteicl(klon, nbsrf)      REAL cteicl(klon, nbsrf)
120      REAL, INTENT(inout):: pblt(klon, nbsrf) ! T au nveau HCL      REAL, INTENT(inout):: pblt(klon, nbsrf) ! T au nveau HCL
121      REAL therm(klon, nbsrf)      REAL therm(klon, nbsrf)
     REAL trmb1(klon, nbsrf)  
     ! trmb1-------deep_cape  
     REAL trmb2(klon, nbsrf)  
     ! trmb2--------inhibition  
     REAL trmb3(klon, nbsrf)  
     ! trmb3-------Point Omega  
122      REAL plcl(klon, nbsrf)      REAL plcl(klon, nbsrf)
123      REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)      REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)
124      ! ffonte----Flux thermique utilise pour fondre la neige      ! ffonte----Flux thermique utilise pour fondre la neige
# Line 152  contains Line 138  contains
138      real y_run_off_lic_0(klon)      real y_run_off_lic_0(klon)
139      REAL rugmer(klon)      REAL rugmer(klon)
140      REAL ytsoil(klon, nsoilmx)      REAL ytsoil(klon, nsoilmx)
141      REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)      REAL yts(klon), ypct(klon), yz0_new(klon)
142        real yrugos(klon) ! longeur de rugosite (en m)
143      REAL yalb(klon)      REAL yalb(klon)
   
     REAL u1lay(klon), v1lay(klon) ! vent dans la premi\`ere couche, pour  
                               ! une sous-surface donnée  
       
144      REAL snow(klon), yqsurf(klon), yagesno(klon)      REAL snow(klon), yqsurf(klon), yagesno(klon)
145      real yqsol(klon) ! column-density of water in soil, in kg m-2      real yqsol(klon) ! column-density of water in soil, in kg m-2
146      REAL yrain_f(klon) ! liquid water mass flux (kg / m2 / s), positive down      REAL yrain_f(klon) ! liquid water mass flux (kg / m2 / s), positive down
# Line 170  contains Line 153  contains
153      REAL y_flux_t(klon), y_flux_q(klon)      REAL y_flux_t(klon), y_flux_q(klon)
154      REAL y_flux_u(klon), y_flux_v(klon)      REAL y_flux_u(klon), y_flux_v(klon)
155      REAL y_dflux_t(klon), y_dflux_q(klon)      REAL y_dflux_t(klon), y_dflux_q(klon)
156      REAL coefh(klon, klev), coefm(klon, klev)      REAL ycoefh(klon, 2:klev), ycoefm(klon, 2:klev)
157        real ycdragh(klon), ycdragm(klon)
158      REAL yu(klon, klev), yv(klon, klev)      REAL yu(klon, klev), yv(klon, klev)
159      REAL yt(klon, klev), yq(klon, klev)      REAL yt(klon, klev), yq(klon, klev)
160      REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev)      REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev)
   
     REAL ycoefm0(klon, klev), ycoefh0(klon, klev)  
   
     REAL yzlay(klon, klev), yzlev(klon, klev + 1), yteta(klon, klev)  
     REAL ykmm(klon, klev + 1), ykmn(klon, klev + 1)  
     REAL ykmq(klon, klev + 1)  
161      REAL yq2(klon, klev + 1)      REAL yq2(klon, klev + 1)
     REAL q2diag(klon, klev + 1)  
   
162      REAL delp(klon, klev)      REAL delp(klon, klev)
163      INTEGER i, k, nsrf      INTEGER i, k, nsrf
   
164      INTEGER ni(klon), knon, j      INTEGER ni(klon), knon, j
165    
166      REAL pctsrf_pot(klon, nbsrf)      REAL pctsrf_pot(klon, nbsrf)
167      ! "pourcentage potentiel" pour tenir compte des \'eventuelles      ! "pourcentage potentiel" pour tenir compte des \'eventuelles
168      ! apparitions ou disparitions de la glace de mer      ! apparitions ou disparitions de la glace de mer
169    
170      REAL yt2m(klon), yq2m(klon), yu10m(klon)      REAL yt2m(klon), yq2m(klon), wind10m(klon)
171      REAL yustar(klon)      REAL ustar(klon)
172    
173      REAL yt10m(klon), yq10m(klon)      REAL yt10m(klon), yq10m(klon)
174      REAL ypblh(klon)      REAL ypblh(klon)
# Line 203  contains Line 178  contains
178      REAL ycteicl(klon)      REAL ycteicl(klon)
179      REAL ypblt(klon)      REAL ypblt(klon)
180      REAL ytherm(klon)      REAL ytherm(klon)
181      REAL ytrmb1(klon)      REAL u1(klon), v1(klon)
     REAL ytrmb2(klon)  
     REAL ytrmb3(klon)  
     REAL uzon(klon), vmer(klon)  
182      REAL tair1(klon), qair1(klon), tairsol(klon)      REAL tair1(klon), qair1(klon), tairsol(klon)
183      REAL psfce(klon), patm(klon)      REAL psfce(klon), patm(klon)
184    
185      REAL qairsol(klon), zgeo1(klon)      REAL qairsol(klon), zgeo1(klon)
186      REAL rugo1(klon)      REAL rugo1(klon)
187        REAL zgeop(klon, klev)
     ! utiliser un jeu de fonctions simples                
     LOGICAL zxli  
     PARAMETER (zxli=.FALSE.)  
188    
189      !------------------------------------------------------------      !------------------------------------------------------------
190    
# Line 233  contains Line 202  contains
202      cdragm = 0.      cdragm = 0.
203      dflux_t = 0.      dflux_t = 0.
204      dflux_q = 0.      dflux_q = 0.
     zu1 = 0.  
     zv1 = 0.  
205      ypct = 0.      ypct = 0.
206      yqsurf = 0.      yqsurf = 0.
207      yrain_f = 0.      yrain_f = 0.
# Line 260  contains Line 227  contains
227      d_q = 0.      d_q = 0.
228      d_u = 0.      d_u = 0.
229      d_v = 0.      d_v = 0.
230      ycoefh = 0.      coefh = 0.
231    
232      ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on      ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on
233      ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique      ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique
# Line 304  contains Line 271  contains
271               yagesno(j) = agesno(i, nsrf)               yagesno(j) = agesno(i, nsrf)
272               yrugos(j) = frugs(i, nsrf)               yrugos(j) = frugs(i, nsrf)
273               yrugoro(j) = rugoro(i)               yrugoro(j) = rugoro(i)
              u1lay(j) = u(i, 1)  
              v1lay(j) = v(i, 1)  
274               yrads(j) = fsolsw(i, nsrf) + fsollw(i, nsrf)               yrads(j) = fsolsw(i, nsrf) + fsollw(i, nsrf)
275               ypaprs(j, klev + 1) = paprs(i, klev + 1)               ypaprs(j, klev + 1) = paprs(i, klev + 1)
276               y_run_off_lic_0(j) = run_off_lic_0(i)               y_run_off_lic_0(j) = run_off_lic_0(i)
# Line 329  contains Line 294  contains
294               END DO               END DO
295            END DO            END DO
296    
297            ! calculer Cdrag et les coefficients d'echange            ! Calculer les géopotentiels de chaque couche:
298            CALL coefkz(nsrf, ypaprs, ypplay, ksta, ksta_ter, yts(:knon), &  
299                 yrugos, yu, yv, yt, yq, yqsurf(:knon), coefm(:knon, :), &            zgeop(:knon, 1) = RD * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &
300                 coefh(:knon, :))                 + ypplay(:knon, 1))) * (ypaprs(:knon, 1) - ypplay(:knon, 1))
301    
302              DO k = 2, klev
303                 zgeop(:knon, k) = zgeop(:knon, k - 1) + RD * 0.5 &
304                      * (yt(:knon, k - 1) + yt(:knon, k)) / ypaprs(:knon, k) &
305                      * (ypplay(:knon, k - 1) - ypplay(:knon, k))
306              ENDDO
307    
308              CALL clcdrag(nsrf, yu(:knon, 1), yv(:knon, 1), yt(:knon, 1), &
309                   yq(:knon, 1), zgeop(:knon, 1), yts(:knon), yqsurf(:knon), &
310                   yrugos(:knon), ycdragm(:knon), ycdragh(:knon))
311    
312            IF (iflag_pbl == 1) THEN            IF (iflag_pbl == 1) THEN
313               CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0)               ycdragm(:knon) = max(ycdragm(:knon), 0.)
314               coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))               ycdragh(:knon) = max(ycdragh(:knon), 0.)
315               coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))            end IF
           END IF  
316    
317            ! on met un seuil pour coefm et coefh            ! on met un seuil pour ycdragm et ycdragh
318            IF (nsrf == is_oce) THEN            IF (nsrf == is_oce) THEN
319               coefm(:knon, 1) = min(coefm(:knon, 1), cdmmax)               ycdragm(:knon) = min(ycdragm(:knon), cdmmax)
320               coefh(:knon, 1) = min(coefh(:knon, 1), cdhmax)               ycdragh(:knon) = min(ycdragh(:knon), cdhmax)
321            END IF            END IF
322    
323            IF (ok_kzmin) THEN            IF (iflag_pbl >= 6) then
              ! Calcul d'une diffusion minimale pour les conditions tres stables  
              CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, &  
                   coefm(:knon, 1), ycoefm0, ycoefh0)  
              coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))  
              coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))  
           END IF  
   
           IF (iflag_pbl >= 3) THEN  
              ! Mellor et Yamada adapt\'e \`a Mars, Richard Fournier et  
              ! Fr\'ed\'eric Hourdin  
              yzlay(:knon, 1) = rd * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &  
                   + ypplay(:knon, 1))) &  
                   * (ypaprs(:knon, 1) - ypplay(:knon, 1)) / rg  
              DO k = 2, klev  
                 yzlay(1:knon, k) = yzlay(1:knon, k-1) &  
                      + rd * 0.5 * (yt(1:knon, k-1) + yt(1:knon, k)) &  
                      / ypaprs(1:knon, k) &  
                      * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg  
              END DO  
              DO k = 1, klev  
                 yteta(1:knon, k) = yt(1:knon, k) * (ypaprs(1:knon, 1) &  
                      / ypplay(1:knon, k))**rkappa * (1. + 0.61 * yq(1:knon, k))  
              END DO  
              yzlev(1:knon, 1) = 0.  
              yzlev(:knon, klev + 1) = 2. * yzlay(:knon, klev) &  
                   - yzlay(:knon, klev - 1)  
              DO k = 2, klev  
                 yzlev(1:knon, k) = 0.5 * (yzlay(1:knon, k) + yzlay(1:knon, k-1))  
              END DO  
324               DO k = 1, klev + 1               DO k = 1, klev + 1
325                  DO j = 1, knon                  DO j = 1, knon
326                     i = ni(j)                     i = ni(j)
327                     yq2(j, k) = q2(i, k, nsrf)                     yq2(j, k) = q2(i, k, nsrf)
328                  END DO                  END DO
329               END DO               END DO
330              end IF
331    
332               CALL ustarhb(knon, yu, yv, coefm(:knon, 1), yustar)            call coef_diff_turb(dtime, nsrf, ni(:knon), ypaprs(:knon, :), &
333               IF (prt_level > 9) PRINT *, 'USTAR = ', yustar                 ypplay(:knon, :), yu(:knon, :), yv(:knon, :), yq(:knon, :), &
334                   yt(:knon, :), yts(:knon), ycdragm(:knon), zgeop(:knon, :), &
335               ! iflag_pbl peut \^etre utilis\'e comme longueur de m\'elange                 ycoefm(:knon, :), ycoefh(:knon, :), yq2(:knon, :))
336    
337               IF (iflag_pbl >= 11) THEN            CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), &
338                  CALL vdif_kcay(knon, dtime, rg, ypaprs, yzlev, yzlay, yu, yv, &                 ycdragm(:knon), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), &
339                       yteta, coefm(:knon, 1), yq2, q2diag, ykmm, ykmn, yustar, &                 ypplay(:knon, :), ydelp(:knon, :), y_d_u(:knon, :), &
                      iflag_pbl)  
              ELSE  
                 CALL yamada4(knon, dtime, rg, yzlev, yzlay, yu, yv, yteta, &  
                      coefm(:knon, 1), yq2, ykmm, ykmn, ykmq, yustar, iflag_pbl)  
              END IF  
   
              coefm(:knon, 2:) = ykmm(:knon, 2:klev)  
              coefh(:knon, 2:) = ykmn(:knon, 2:klev)  
           END IF  
   
           ! calculer la diffusion des vitesses "u" et "v"  
           CALL clvent(knon, dtime, u1lay(:knon), v1lay(:knon), &  
                coefm(:knon, :), yt, yu, ypaprs, ypplay, ydelp, y_d_u, &  
340                 y_flux_u(:knon))                 y_flux_u(:knon))
341            CALL clvent(knon, dtime, u1lay(:knon), v1lay(:knon), &            CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), &
342                 coefm(:knon, :), yt, yv, ypaprs, ypplay, ydelp, y_d_v, &                 ycdragm(:knon), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), &
343                   ypplay(:knon, :), ydelp(:knon, :), y_d_v(:knon, :), &
344                 y_flux_v(:knon))                 y_flux_v(:knon))
345    
346            ! calculer la diffusion de "q" et de "h"            ! calculer la diffusion de "q" et de "h"
347            CALL clqh(dtime, julien, firstcal, nsrf, ni(:knon), &            CALL clqh(dtime, julien, firstcal, nsrf, ni(:knon), &
348                 ytsoil(:knon, :), yqsol(:knon), mu0, yrugos, yrugoro, &                 ytsoil(:knon, :), yqsol(:knon), mu0, yrugos, yrugoro, &
349                 u1lay(:knon), v1lay(:knon), coefh(:knon, :), yt, yq, &                 yu(:knon, 1), yv(:knon, 1), ycoefh(:knon, :), ycdragh(:knon), &
350                 yts(:knon), ypaprs, ypplay, ydelp, yrads(:knon), yalb(:knon), &                 yt, yq, yts(:knon), ypaprs, ypplay, ydelp, yrads(:knon), &
351                 snow(:knon), yqsurf, yrain_f, ysnow_f, yfluxlat(:knon), &                 yalb(:knon), snow(:knon), yqsurf, yrain_f, ysnow_f, &
352                 pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, y_d_ts(:knon), &                 yfluxlat(:knon), pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, &
353                 yz0_new, y_flux_t(:knon), y_flux_q(:knon), y_dflux_t(:knon), &                 y_d_ts(:knon), yz0_new, y_flux_t(:knon), y_flux_q(:knon), &
354                 y_dflux_q(:knon), y_fqcalving, y_ffonte, y_run_off_lic_0)                 y_dflux_t(:knon), y_dflux_q(:knon), y_fqcalving, y_ffonte, &
355                   y_run_off_lic_0)
356    
357            ! calculer la longueur de rugosite sur ocean            ! calculer la longueur de rugosite sur ocean
358            yrugm = 0.            yrugm = 0.
359            IF (nsrf == is_oce) THEN            IF (nsrf == is_oce) THEN
360               DO j = 1, knon               DO j = 1, knon
361                  yrugm(j) = 0.018 * coefm(j, 1) * (u1lay(j)**2 + v1lay(j)**2) &                  yrugm(j) = 0.018 * ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2) &
362                       / rg + 0.11 * 14E-6 &                       / rg + 0.11 * 14E-6 &
363                       / sqrt(coefm(j, 1) * (u1lay(j)**2 + v1lay(j)**2))                       / sqrt(ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2))
364                  yrugm(j) = max(1.5E-05, yrugm(j))                  yrugm(j) = max(1.5E-05, yrugm(j))
365               END DO               END DO
366            END IF            END IF
# Line 436  contains Line 372  contains
372            DO k = 1, klev            DO k = 1, klev
373               DO j = 1, knon               DO j = 1, knon
374                  i = ni(j)                  i = ni(j)
                 coefh(j, k) = coefh(j, k) * ypct(j)  
                 coefm(j, k) = coefm(j, k) * ypct(j)  
375                  y_d_t(j, k) = y_d_t(j, k) * ypct(j)                  y_d_t(j, k) = y_d_t(j, k) * ypct(j)
376                  y_d_q(j, k) = y_d_q(j, k) * ypct(j)                  y_d_q(j, k) = y_d_q(j, k) * ypct(j)
377                  y_d_u(j, k) = y_d_u(j, k) * ypct(j)                  y_d_u(j, k) = y_d_u(j, k) * ypct(j)
# Line 471  contains Line 405  contains
405               agesno(i, nsrf) = yagesno(j)               agesno(i, nsrf) = yagesno(j)
406               fqcalving(i, nsrf) = y_fqcalving(j)               fqcalving(i, nsrf) = y_fqcalving(j)
407               ffonte(i, nsrf) = y_ffonte(j)               ffonte(i, nsrf) = y_ffonte(j)
408               cdragh(i) = cdragh(i) + coefh(j, 1)               cdragh(i) = cdragh(i) + ycdragh(j) * ypct(j)
409               cdragm(i) = cdragm(i) + coefm(j, 1)               cdragm(i) = cdragm(i) + ycdragm(j) * ypct(j)
410               dflux_t(i) = dflux_t(i) + y_dflux_t(j)               dflux_t(i) = dflux_t(i) + y_dflux_t(j)
411               dflux_q(i) = dflux_q(i) + y_dflux_q(j)               dflux_q(i) = dflux_q(i) + y_dflux_q(j)
              zu1(i) = zu1(i) + u1lay(j) * ypct(j)  
              zv1(i) = zv1(i) + v1lay(j) * ypct(j)  
412            END DO            END DO
413            IF (nsrf == is_ter) THEN            IF (nsrf == is_ter) THEN
414               qsol(ni(:knon)) = yqsol(:knon)               qsol(ni(:knon)) = yqsol(:knon)
# Line 497  contains Line 429  contains
429                  d_q(i, k) = d_q(i, k) + y_d_q(j, k)                  d_q(i, k) = d_q(i, k) + y_d_q(j, k)
430                  d_u(i, k) = d_u(i, k) + y_d_u(j, k)                  d_u(i, k) = d_u(i, k) + y_d_u(j, k)
431                  d_v(i, k) = d_v(i, k) + y_d_v(j, k)                  d_v(i, k) = d_v(i, k) + y_d_v(j, k)
                 ycoefh(i, k) = ycoefh(i, k) + coefh(j, k)  
432               END DO               END DO
433            END DO            END DO
434    
435              forall (k = 2:klev) coefh(ni(:knon), k) &
436                   = coefh(ni(:knon), k) + ycoefh(:knon, k) * ypct(:knon)
437    
438            ! diagnostic t, q a 2m et u, v a 10m            ! diagnostic t, q a 2m et u, v a 10m
439    
440            DO j = 1, knon            DO j = 1, knon
441               i = ni(j)               i = ni(j)
442               uzon(j) = yu(j, 1) + y_d_u(j, 1)               u1(j) = yu(j, 1) + y_d_u(j, 1)
443               vmer(j) = yv(j, 1) + y_d_v(j, 1)               v1(j) = yv(j, 1) + y_d_v(j, 1)
444               tair1(j) = yt(j, 1) + y_d_t(j, 1)               tair1(j) = yt(j, 1) + y_d_t(j, 1)
445               qair1(j) = yq(j, 1) + y_d_q(j, 1)               qair1(j) = yq(j, 1) + y_d_q(j, 1)
446               zgeo1(j) = rd * tair1(j) / (0.5 * (ypaprs(j, 1) + ypplay(j, &               zgeo1(j) = rd * tair1(j) / (0.5 * (ypaprs(j, 1) + ypplay(j, &
# Line 522  contains Line 456  contains
456               qairsol(j) = yqsurf(j)               qairsol(j) = yqsurf(j)
457            END DO            END DO
458    
459            CALL stdlevvar(klon, knon, nsrf, zxli, uzon(:knon), vmer(:knon), &            CALL stdlevvar(klon, knon, nsrf, u1(:knon), v1(:knon), tair1(:knon), &
460                 tair1, qair1, zgeo1, tairsol, qairsol, rugo1, psfce, patm, &                 qair1, zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, &
461                 yt2m, yq2m, yt10m, yq10m, yu10m, yustar)                 yq2m, yt10m, yq10m, wind10m(:knon), ustar(:knon))
462    
463            DO j = 1, knon            DO j = 1, knon
464               i = ni(j)               i = ni(j)
465               t2m(i, nsrf) = yt2m(j)               t2m(i, nsrf) = yt2m(j)
466               q2m(i, nsrf) = yq2m(j)               q2m(i, nsrf) = yq2m(j)
467    
468               u10m_srf(i, nsrf) = (yu10m(j) * uzon(j)) &               u10m_srf(i, nsrf) = (wind10m(j) * u1(j)) &
469                    / sqrt(uzon(j)**2 + vmer(j)**2)                    / sqrt(u1(j)**2 + v1(j)**2)
470               v10m_srf(i, nsrf) = (yu10m(j) * vmer(j)) &               v10m_srf(i, nsrf) = (wind10m(j) * v1(j)) &
471                    / sqrt(uzon(j)**2 + vmer(j)**2)                    / sqrt(u1(j)**2 + v1(j)**2)
472            END DO            END DO
473    
474            CALL hbtm(ypaprs, ypplay, yt2m, yq2m, yustar, y_flux_t(:knon), &            CALL hbtm(ypaprs, ypplay, yt2m, yq2m, ustar(:knon), y_flux_t(:knon), &
475                 y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, &                 y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, &
476                 yoliqcl, ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)                 yoliqcl, ycteicl, ypblt, ytherm, ylcl)
477    
478            DO j = 1, knon            DO j = 1, knon
479               i = ni(j)               i = ni(j)
# Line 550  contains Line 484  contains
484               cteicl(i, nsrf) = ycteicl(j)               cteicl(i, nsrf) = ycteicl(j)
485               pblt(i, nsrf) = ypblt(j)               pblt(i, nsrf) = ypblt(j)
486               therm(i, nsrf) = ytherm(j)               therm(i, nsrf) = ytherm(j)
              trmb1(i, nsrf) = ytrmb1(j)  
              trmb2(i, nsrf) = ytrmb2(j)  
              trmb3(i, nsrf) = ytrmb3(j)  
487            END DO            END DO
488    
489            DO j = 1, knon            DO j = 1, knon

Legend:
Removed from v.225  
changed lines
  Added in v.254

  ViewVC Help
Powered by ViewVC 1.1.21