/[lmdze]/trunk/phylmd/pbl_surface.f
ViewVC logotype

Diff of /trunk/phylmd/pbl_surface.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/clmain.f90 revision 30 by guez, Thu Apr 1 09:07:28 2010 UTC trunk/phylmd/pbl_surface.f revision 272 by guez, Wed Jul 11 14:51:28 2018 UTC
# Line 1  Line 1 
1  SUBROUTINE clmain(dtime, itap, date0, pctsrf, pctsrf_new, t, q, u, v,&  module pbl_surface_m
      jour, rmu0, co2_ppm, ok_veget, ocean, npas, nexca, ts,&  
      soil_model, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil,&  
      qsol, paprs, pplay, snow, qsurf, evap, albe, alblw, fluxlat,&  
      rain_f, snow_f, solsw, sollw, sollwdown, fder, rlon, rlat, cufi,&  
      cvfi, rugos, debut, lafin, agesno, rugoro, d_t, d_q, d_u, d_v,&  
      d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, q2,&  
      dflux_t, dflux_q, zcoefh, zu1, zv1, t2m, q2m, u10m, v10m, pblh,&  
      capcl, oliqcl, cteicl, pblt, therm, trmb1, trmb2, trmb3, plcl,&  
      fqcalving, ffonte, run_off_lic_0, flux_o, flux_g, tslab, seaice)  
   
   ! From phylmd/clmain.F, v 1.6 2005/11/16 14:47:19  
   
   !AA Tout ce qui a trait au traceurs est dans phytrac maintenant  
   !AA pour l'instant le calcul de la couche limite pour les traceurs  
   !AA se fait avec cltrac et ne tient pas compte de la differentiation  
   !AA des sous-fraction de sol.  
   
   !AA Pour pouvoir extraire les coefficient d'echanges et le vent  
   !AA dans la premiere couche, 3 champs supplementaires ont ete crees  
   !AA zcoefh, zu1 et zv1. Pour l'instant nous avons moyenne les valeurs  
   !AA de ces trois champs sur les 4 subsurfaces du modele. Dans l'avenir  
   !AA si les informations des subsurfaces doivent etre prises en compte  
   !AA il faudra sortir ces memes champs en leur ajoutant une dimension,  
   !AA c'est a dire nbsrf (nbre de subsurface).  
   
   ! Auteur(s) Z.X. Li (LMD/CNRS) date: 19930818  
   ! Objet: interface de "couche limite" (diffusion verticale)  
   
   ! Arguments:  
   ! dtime----input-R- interval du temps (secondes)  
   ! itap-----input-I- numero du pas de temps  
   ! date0----input-R- jour initial  
   ! t--------input-R- temperature (K)  
   ! q--------input-R- vapeur d'eau (kg/kg)  
   ! u--------input-R- vitesse u  
   ! v--------input-R- vitesse v  
   ! ts-------input-R- temperature du sol (en Kelvin)  
   ! paprs----input-R- pression a intercouche (Pa)  
   ! pplay----input-R- pression au milieu de couche (Pa)  
   ! radsol---input-R- flux radiatif net (positif vers le sol) en W/m**2  
   ! rlat-----input-R- latitude en degree  
   ! rugos----input-R- longeur de rugosite (en m)  
   ! cufi-----input-R- resolution des mailles en x (m)  
   ! cvfi-----input-R- resolution des mailles en y (m)  
   
   ! d_t------output-R- le changement pour "t"  
   ! d_q------output-R- le changement pour "q"  
   ! d_u------output-R- le changement pour "u"  
   ! d_v------output-R- le changement pour "v"  
   ! d_ts-----output-R- le changement pour "ts"  
   ! flux_t---output-R- flux de chaleur sensible (CpT) J/m**2/s (W/m**2)  
   !                    (orientation positive vers le bas)  
   ! flux_q---output-R- flux de vapeur d'eau (kg/m**2/s)  
   ! flux_u---output-R- tension du vent X: (kg m/s)/(m**2 s) ou Pascal  
   ! flux_v---output-R- tension du vent Y: (kg m/s)/(m**2 s) ou Pascal  
   ! dflux_t derive du flux sensible  
   ! dflux_q derive du flux latent  
   !IM "slab" ocean  
   ! flux_g---output-R-  flux glace (pour OCEAN='slab  ')  
   ! flux_o---output-R-  flux ocean (pour OCEAN='slab  ')  
   ! tslab-in/output-R temperature du slab ocean (en Kelvin) ! uniqmnt pour slab  
   ! seaice---output-R-  glace de mer (kg/m2) (pour OCEAN='slab  ')  
   !cc  
   ! ffonte----Flux thermique utilise pour fondre la neige  
   ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la  
   !           hauteur de neige, en kg/m2/s  
   !AA on rajoute en output yu1 et yv1 qui sont les vents dans  
   !AA la premiere couche  
   !AA ces 4 variables sont maintenant traites dans phytrac  
   ! itr--------input-I- nombre de traceurs  
   ! tr---------input-R- q. de traceurs  
   ! flux_surf--input-R- flux de traceurs a la surface  
   ! d_tr-------output-R tendance de traceurs  
   !IM cf. AM : PBL  
   ! trmb1-------deep_cape  
   ! trmb2--------inhibition  
   ! trmb3-------Point Omega  
   ! Cape(klon)-------Cape du thermique  
   ! EauLiq(klon)-------Eau liqu integr du thermique  
   ! ctei(klon)-------Critere d'instab d'entrainmt des nuages de CL  
   ! lcl------- Niveau de condensation  
   ! pblh------- HCL  
   ! pblT------- T au nveau HCL  
   
   !$$$ PB ajout pour soil  
   
   USE histcom, ONLY : histbeg_totreg, histdef, histend, histsync  
   use histwrite_m, only: histwrite  
   use calendar, ONLY : ymds2ju  
   USE dimens_m, ONLY : iim, jjm  
   USE indicesol, ONLY : epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf  
   USE dimphy, ONLY : klev, klon, zmasq  
   USE dimsoil, ONLY : nsoilmx  
   USE temps, ONLY : annee_ref, itau_phy  
   USE dynetat0_m, ONLY : day_ini  
   USE iniprint, ONLY : prt_level  
   USE yomcst, ONLY : rd, rg, rkappa  
   USE conf_phys_m, ONLY : iflag_pbl  
   USE gath_cpl, ONLY : gath2cpl  
2    
3    IMPLICIT NONE    IMPLICIT NONE
4    
5    REAL, INTENT (IN) :: dtime  contains
   REAL date0  
   INTEGER, INTENT (IN) :: itap  
   REAL t(klon, klev), q(klon, klev)  
   REAL u(klon, klev), v(klon, klev)  
   REAL, INTENT (IN) :: paprs(klon, klev+1)  
   REAL, INTENT (IN) :: pplay(klon, klev)  
   REAL, INTENT (IN) :: rlon(klon), rlat(klon)  
   REAL cufi(klon), cvfi(klon)  
   REAL d_t(klon, klev), d_q(klon, klev)  
   REAL d_u(klon, klev), d_v(klon, klev)  
   REAL flux_t(klon, klev, nbsrf), flux_q(klon, klev, nbsrf)  
   REAL dflux_t(klon), dflux_q(klon)  
   !IM "slab" ocean  
   REAL flux_o(klon), flux_g(klon)  
   REAL y_flux_o(klon), y_flux_g(klon)  
   REAL tslab(klon), ytslab(klon)  
   REAL seaice(klon), y_seaice(klon)  
   REAL y_fqcalving(klon), y_ffonte(klon)  
   REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)  
   REAL run_off_lic_0(klon), y_run_off_lic_0(klon)  
   
   REAL flux_u(klon, klev, nbsrf), flux_v(klon, klev, nbsrf)  
   REAL rugmer(klon), agesno(klon, nbsrf)  
   REAL, INTENT (IN) :: rugoro(klon)  
   REAL cdragh(klon), cdragm(klon)  
   ! jour de l'annee en cours                  
   INTEGER jour  
   REAL rmu0(klon) ! cosinus de l'angle solaire zenithal      
   ! taux CO2 atmosphere                      
   REAL co2_ppm  
   LOGICAL, INTENT (IN) :: debut  
   LOGICAL, INTENT (IN) :: lafin  
   LOGICAL ok_veget  
   CHARACTER (len=*), INTENT (IN) :: ocean  
   INTEGER npas, nexca  
   
   REAL pctsrf(klon, nbsrf)  
   REAL ts(klon, nbsrf)  
   REAL d_ts(klon, nbsrf)  
   REAL snow(klon, nbsrf)  
   REAL qsurf(klon, nbsrf)  
   REAL evap(klon, nbsrf)  
   REAL albe(klon, nbsrf)  
   REAL alblw(klon, nbsrf)  
   
   REAL fluxlat(klon, nbsrf)  
   
   REAL rain_f(klon), snow_f(klon)  
   REAL fder(klon)  
   
   REAL sollw(klon, nbsrf), solsw(klon, nbsrf), sollwdown(klon)  
   REAL rugos(klon, nbsrf)  
   ! la nouvelle repartition des surfaces sortie de l'interface  
   REAL pctsrf_new(klon, nbsrf)  
   
   REAL zcoefh(klon, klev)  
   REAL zu1(klon)  
   REAL zv1(klon)  
   
   !$$$ PB ajout pour soil  
   LOGICAL, INTENT (IN) :: soil_model  
   !IM ajout seuils cdrm, cdrh  
   REAL cdmmax, cdhmax  
   
   REAL ksta, ksta_ter  
   LOGICAL ok_kzmin  
   
   REAL ftsoil(klon, nsoilmx, nbsrf)  
   REAL ytsoil(klon, nsoilmx)  
   REAL qsol(klon)  
   
   EXTERNAL clqh, clvent, coefkz, calbeta, cltrac  
   
   REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)  
   REAL yalb(klon)  
   REAL yalblw(klon)  
   REAL yu1(klon), yv1(klon)  
   REAL ysnow(klon), yqsurf(klon), yagesno(klon), yqsol(klon)  
   REAL yrain_f(klon), ysnow_f(klon)  
   REAL ysollw(klon), ysolsw(klon), ysollwdown(klon)  
   REAL yfder(klon), ytaux(klon), ytauy(klon)  
   REAL yrugm(klon), yrads(klon), yrugoro(klon)  
   
   REAL yfluxlat(klon)  
   
   REAL y_d_ts(klon)  
   REAL y_d_t(klon, klev), y_d_q(klon, klev)  
   REAL y_d_u(klon, klev), y_d_v(klon, klev)  
   REAL y_flux_t(klon, klev), y_flux_q(klon, klev)  
   REAL y_flux_u(klon, klev), y_flux_v(klon, klev)  
   REAL y_dflux_t(klon), y_dflux_q(klon)  
   REAL ycoefh(klon, klev), ycoefm(klon, klev)  
   REAL yu(klon, klev), yv(klon, klev)  
   REAL yt(klon, klev), yq(klon, klev)  
   REAL ypaprs(klon, klev+1), ypplay(klon, klev), ydelp(klon, klev)  
   
   LOGICAL ok_nonloc  
   PARAMETER (ok_nonloc=.FALSE.)  
   REAL ycoefm0(klon, klev), ycoefh0(klon, klev)  
   
   !IM 081204 hcl_Anne ? BEG  
   REAL yzlay(klon, klev), yzlev(klon, klev+1), yteta(klon, klev)  
   REAL ykmm(klon, klev+1), ykmn(klon, klev+1)  
   REAL ykmq(klon, klev+1)  
   REAL yq2(klon, klev+1), q2(klon, klev+1, nbsrf)  
   REAL q2diag(klon, klev+1)  
   !IM 081204 hcl_Anne ? END  
   
   REAL u1lay(klon), v1lay(klon)  
   REAL delp(klon, klev)  
   INTEGER i, k, nsrf  
   
   INTEGER ni(klon), knon, j  
   ! Introduction d'une variable "pourcentage potentiel" pour tenir compte  
   ! des eventuelles apparitions et/ou disparitions de la glace de mer  
   REAL pctsrf_pot(klon, nbsrf)  
   
   REAL zx_alf1, zx_alf2 !valeur ambiante par extrapola.  
   
   ! maf pour sorties IOISPL en cas de debugagage  
   
   CHARACTER (80) cldebug  
   SAVE cldebug  
   CHARACTER (8) cl_surf(nbsrf)  
   SAVE cl_surf  
   INTEGER nhoridbg, nidbg  
   SAVE nhoridbg, nidbg  
   INTEGER ndexbg(iim*(jjm+1))  
   REAL zx_lon(iim, jjm+1), zx_lat(iim, jjm+1), zjulian  
   REAL tabindx(klon)  
   REAL debugtab(iim, jjm+1)  
   LOGICAL first_appel  
   SAVE first_appel  
   DATA first_appel/ .TRUE./  
   LOGICAL :: debugindex = .FALSE.  
   INTEGER idayref  
   REAL t2m(klon, nbsrf), q2m(klon, nbsrf)  
   REAL u10m(klon, nbsrf), v10m(klon, nbsrf)  
   
   REAL yt2m(klon), yq2m(klon), yu10m(klon)  
   REAL yustar(klon)  
   ! -- LOOP  
   REAL yu10mx(klon)  
   REAL yu10my(klon)  
   REAL ywindsp(klon)  
   ! -- LOOP  
   
   REAL yt10m(klon), yq10m(klon)  
   !IM cf. AM : pbl, hbtm2 (Comme les autres diagnostics on cumule ds  
   ! physiq ce qui permet de sortir les grdeurs par sous surface)  
   REAL pblh(klon, nbsrf)  
   REAL plcl(klon, nbsrf)  
   REAL capcl(klon, nbsrf)  
   REAL oliqcl(klon, nbsrf)  
   REAL cteicl(klon, nbsrf)  
   REAL pblt(klon, nbsrf)  
   REAL therm(klon, nbsrf)  
   REAL trmb1(klon, nbsrf)  
   REAL trmb2(klon, nbsrf)  
   REAL trmb3(klon, nbsrf)  
   REAL ypblh(klon)  
   REAL ylcl(klon)  
   REAL ycapcl(klon)  
   REAL yoliqcl(klon)  
   REAL ycteicl(klon)  
   REAL ypblt(klon)  
   REAL ytherm(klon)  
   REAL ytrmb1(klon)  
   REAL ytrmb2(klon)  
   REAL ytrmb3(klon)  
   REAL y_cd_h(klon), y_cd_m(klon)  
   REAL uzon(klon), vmer(klon)  
   REAL tair1(klon), qair1(klon), tairsol(klon)  
   REAL psfce(klon), patm(klon)  
   
   REAL qairsol(klon), zgeo1(klon)  
   REAL rugo1(klon)  
   
   ! utiliser un jeu de fonctions simples                
   LOGICAL zxli  
   PARAMETER (zxli=.FALSE.)  
   
   REAL zt, zqs, zdelta, zcor  
   REAL t_coup  
   PARAMETER (t_coup=273.15)  
   
   CHARACTER (len=20) :: modname = 'clmain'  
   LOGICAL check  
   PARAMETER (check=.FALSE.)  
   
   !------------------------------------------------------------  
   
   ! initialisation Anne  
   ytherm = 0.  
   
   IF (check) THEN  
      PRINT *, modname, '  klon=', klon  
   END IF  
   
   IF (debugindex .AND. first_appel) THEN  
      first_appel = .FALSE.  
   
      ! initialisation sorties netcdf  
   
      idayref = day_ini  
      CALL ymds2ju(annee_ref, 1, idayref, 0.0, zjulian)  
      CALL gr_fi_ecrit(1, klon, iim, jjm+1, rlon, zx_lon)  
      DO i = 1, iim  
         zx_lon(i, 1) = rlon(i+1)  
         zx_lon(i, jjm+1) = rlon(i+1)  
      END DO  
      CALL gr_fi_ecrit(1, klon, iim, jjm+1, rlat, zx_lat)  
      cldebug = 'sous_index'  
      CALL histbeg_totreg(cldebug, zx_lon(:, 1), zx_lat(1, :), 1, &  
           iim, 1, jjm+1, itau_phy, zjulian, dtime, nhoridbg, nidbg)  
      ! no vertical axis  
      cl_surf(1) = 'ter'  
      cl_surf(2) = 'lic'  
      cl_surf(3) = 'oce'  
      cl_surf(4) = 'sic'  
      DO nsrf = 1, nbsrf  
         CALL histdef(nidbg, cl_surf(nsrf), cl_surf(nsrf), '-', iim, jjm+1, &  
              nhoridbg, 1, 1, 1, -99, 'inst', dtime, dtime)  
      END DO  
      CALL histend(nidbg)  
      CALL histsync(nidbg)  
   END IF  
   
   DO k = 1, klev ! epaisseur de couche  
      DO i = 1, klon  
         delp(i, k) = paprs(i, k) - paprs(i, k+1)  
      END DO  
   END DO  
   DO i = 1, klon ! vent de la premiere couche  
      zx_alf1 = 1.0  
      zx_alf2 = 1.0 - zx_alf1  
      u1lay(i) = u(i, 1)*zx_alf1 + u(i, 2)*zx_alf2  
      v1lay(i) = v(i, 1)*zx_alf1 + v(i, 2)*zx_alf2  
   END DO  
   
   ! initialisation:  
   
   DO i = 1, klon  
      rugmer(i) = 0.0  
      cdragh(i) = 0.0  
      cdragm(i) = 0.0  
      dflux_t(i) = 0.0  
      dflux_q(i) = 0.0  
      zu1(i) = 0.0  
      zv1(i) = 0.0  
   END DO  
   ypct = 0.0  
   yts = 0.0  
   ysnow = 0.0  
   yqsurf = 0.0  
   yalb = 0.0  
   yalblw = 0.0  
   yrain_f = 0.0  
   ysnow_f = 0.0  
   yfder = 0.0  
   ytaux = 0.0  
   ytauy = 0.0  
   ysolsw = 0.0  
   ysollw = 0.0  
   ysollwdown = 0.0  
   yrugos = 0.0  
   yu1 = 0.0  
   yv1 = 0.0  
   yrads = 0.0  
   ypaprs = 0.0  
   ypplay = 0.0  
   ydelp = 0.0  
   yu = 0.0  
   yv = 0.0  
   yt = 0.0  
   yq = 0.0  
   pctsrf_new = 0.0  
   y_flux_u = 0.0  
   y_flux_v = 0.0  
   !$$ PB  
   y_dflux_t = 0.0  
   y_dflux_q = 0.0  
   ytsoil = 999999.  
   yrugoro = 0.  
   ! -- LOOP  
   yu10mx = 0.0  
   yu10my = 0.0  
   ywindsp = 0.0  
   ! -- LOOP  
   DO nsrf = 1, nbsrf  
      DO i = 1, klon  
         d_ts(i, nsrf) = 0.0  
      END DO  
   END DO  
   !§§§ PB  
   yfluxlat = 0.  
   flux_t = 0.  
   flux_q = 0.  
   flux_u = 0.  
   flux_v = 0.  
   DO k = 1, klev  
      DO i = 1, klon  
         d_t(i, k) = 0.0  
         d_q(i, k) = 0.0  
         !$$$         flux_t(i, k) = 0.0  
         !$$$         flux_q(i, k) = 0.0  
         d_u(i, k) = 0.0  
         d_v(i, k) = 0.0  
         !$$$         flux_u(i, k) = 0.0  
         !$$$         flux_v(i, k) = 0.0  
         zcoefh(i, k) = 0.0  
      END DO  
   END DO  
   !AA      IF (itr.GE.1) THEN  
   !AA      DO it = 1, itr  
   !AA      DO k = 1, klev  
   !AA      DO i = 1, klon  
   !AA         d_tr(i, k, it) = 0.0  
   !AA      ENDDO  
   !AA      ENDDO  
   !AA      ENDDO  
   !AA      ENDIF  
   
   
   ! Boucler sur toutes les sous-fractions du sol:  
   
   ! Initialisation des "pourcentages potentiels". On considere ici qu'on  
   ! peut avoir potentiellementdela glace sur tout le domaine oceanique  
   ! (a affiner)  
   
   pctsrf_pot = pctsrf  
   pctsrf_pot(:, is_oce) = 1. - zmasq  
   pctsrf_pot(:, is_sic) = 1. - zmasq  
   
   DO nsrf = 1, nbsrf  
      ! chercher les indices:  
      ni = 0  
      knon = 0  
      DO i = 1, klon  
         ! pour determiner le domaine a traiter on utilise les surfaces  
         ! "potentielles"  
         IF (pctsrf_pot(i, nsrf) > epsfra) THEN  
            knon = knon + 1  
            ni(knon) = i  
         END IF  
      END DO  
   
      IF (check) THEN  
         PRINT *, 'CLMAIN, nsrf, knon =', nsrf, knon  
      END IF  
   
      ! variables pour avoir une sortie IOIPSL des INDEX  
      IF (debugindex) THEN  
         tabindx = 0.  
         DO i = 1, knon  
            tabindx(i) = real(i)  
         END DO  
         debugtab = 0.  
         ndexbg = 0  
         CALL gath2cpl(tabindx, debugtab, klon, knon, iim, jjm, ni)  
         CALL histwrite(nidbg, cl_surf(nsrf), itap, debugtab)  
      END IF  
   
      IF (knon==0) CYCLE  
   
      DO j = 1, knon  
         i = ni(j)  
         ypct(j) = pctsrf(i, nsrf)  
         yts(j) = ts(i, nsrf)  
         ytslab(i) = tslab(i)  
         ysnow(j) = snow(i, nsrf)  
         yqsurf(j) = qsurf(i, nsrf)  
         yalb(j) = albe(i, nsrf)  
         yalblw(j) = alblw(i, nsrf)  
         yrain_f(j) = rain_f(i)  
         ysnow_f(j) = snow_f(i)  
         yagesno(j) = agesno(i, nsrf)  
         yfder(j) = fder(i)  
         ytaux(j) = flux_u(i, 1, nsrf)  
         ytauy(j) = flux_v(i, 1, nsrf)  
         ysolsw(j) = solsw(i, nsrf)  
         ysollw(j) = sollw(i, nsrf)  
         ysollwdown(j) = sollwdown(i)  
         yrugos(j) = rugos(i, nsrf)  
         yrugoro(j) = rugoro(i)  
         yu1(j) = u1lay(i)  
         yv1(j) = v1lay(i)  
         yrads(j) = ysolsw(j) + ysollw(j)  
         ypaprs(j, klev+1) = paprs(i, klev+1)  
         y_run_off_lic_0(j) = run_off_lic_0(i)  
         yu10mx(j) = u10m(i, nsrf)  
         yu10my(j) = v10m(i, nsrf)  
         ywindsp(j) = sqrt(yu10mx(j)*yu10mx(j)+yu10my(j)*yu10my(j))  
      END DO  
   
      !     IF bucket model for continent, copy soil water content  
      IF (nsrf==is_ter .AND. .NOT. ok_veget) THEN  
         DO j = 1, knon  
            i = ni(j)  
            yqsol(j) = qsol(i)  
         END DO  
      ELSE  
         yqsol = 0.  
      END IF  
      !$$$ PB ajour pour soil  
      DO k = 1, nsoilmx  
         DO j = 1, knon  
            i = ni(j)  
            ytsoil(j, k) = ftsoil(i, k, nsrf)  
         END DO  
      END DO  
      DO k = 1, klev  
         DO j = 1, knon  
            i = ni(j)  
            ypaprs(j, k) = paprs(i, k)  
            ypplay(j, k) = pplay(i, k)  
            ydelp(j, k) = delp(i, k)  
            yu(j, k) = u(i, k)  
            yv(j, k) = v(i, k)  
            yt(j, k) = t(i, k)  
            yq(j, k) = q(i, k)  
         END DO  
      END DO  
   
      ! calculer Cdrag et les coefficients d'echange  
      CALL coefkz(nsrf, knon, ypaprs, ypplay, ksta, ksta_ter, yts,&  
           yrugos, yu, yv, yt, yq, yqsurf, ycoefm, ycoefh)  
      !IM 081204 BEG  
      !CR test  
      IF (iflag_pbl==1) THEN  
         !IM 081204 END  
         CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0)  
         DO k = 1, klev  
            DO i = 1, knon  
               ycoefm(i, k) = max(ycoefm(i, k), ycoefm0(i, k))  
               ycoefh(i, k) = max(ycoefh(i, k), ycoefh0(i, k))  
            END DO  
         END DO  
      END IF  
   
      !IM cf JLD : on seuille ycoefm et ycoefh  
      IF (nsrf==is_oce) THEN  
         DO j = 1, knon  
            !           ycoefm(j, 1)=min(ycoefm(j, 1), 1.1E-3)  
            ycoefm(j, 1) = min(ycoefm(j, 1), cdmmax)  
            !           ycoefh(j, 1)=min(ycoefh(j, 1), 1.1E-3)  
            ycoefh(j, 1) = min(ycoefh(j, 1), cdhmax)  
         END DO  
      END IF  
   
   
      !IM: 261103  
      IF (ok_kzmin) THEN  
         !IM cf FH: 201103 BEG  
         !   Calcul d'une diffusion minimale pour les conditions tres stables.  
         CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, ycoefm, ycoefm0, &  
              ycoefh0)  
         !      call dump2d(iim, jjm-1, ycoefm(2:klon-1, 2), 'KZ         ')  
         !      call dump2d(iim, jjm-1, ycoefm0(2:klon-1, 2), 'KZMIN      ')  
   
         IF (1==1) THEN  
            DO k = 1, klev  
               DO i = 1, knon  
                  ycoefm(i, k) = max(ycoefm(i, k), ycoefm0(i, k))  
                  ycoefh(i, k) = max(ycoefh(i, k), ycoefh0(i, k))  
               END DO  
            END DO  
         END IF  
         !IM cf FH: 201103 END  
         !IM: 261103  
      END IF !ok_kzmin  
   
      IF (iflag_pbl>=3) THEN  
   
         !ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc  
         ! MELLOR ET YAMADA adapte a Mars Richard Fournier et Frederic Hourdin  
         !ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc  
   
         yzlay(1:knon, 1) = rd*yt(1:knon, 1)/(0.5*(ypaprs(1:knon, &  
              1)+ypplay(1:knon, 1)))*(ypaprs(1:knon, 1)-ypplay(1:knon, 1))/rg  
         DO k = 2, klev  
            yzlay(1:knon, k) = yzlay(1:knon, k-1) &  
                 + rd*0.5*(yt(1:knon, k-1) +yt(1: knon, k)) &  
                 / ypaprs(1:knon, k) *(ypplay(1:knon, k-1)-ypplay(1:knon, k))/ &  
                 rg  
         END DO  
         DO k = 1, klev  
            yteta(1:knon, k) = yt(1:knon, k)*(ypaprs(1:knon, 1) &  
                 / ypplay(1:knon, k))**rkappa * (1.+0.61*yq(1:knon, k))  
         END DO  
         yzlev(1:knon, 1) = 0.  
         yzlev(1:knon, klev+1) = 2.*yzlay(1:knon, klev) - yzlay(1:knon, klev-1)  
         DO k = 2, klev  
            yzlev(1:knon, k) = 0.5*(yzlay(1:knon, k)+yzlay(1:knon, k-1))  
         END DO  
         DO k = 1, klev + 1  
            DO j = 1, knon  
               i = ni(j)  
               yq2(j, k) = q2(i, k, nsrf)  
            END DO  
         END DO  
   
   
         !   Bug introduit volontairement pour converger avec les resultats  
         !  du papier sur les thermiques.  
         IF (1==1) THEN  
            y_cd_m(1:knon) = ycoefm(1:knon, 1)  
            y_cd_h(1:knon) = ycoefh(1:knon, 1)  
         ELSE  
            y_cd_h(1:knon) = ycoefm(1:knon, 1)  
            y_cd_m(1:knon) = ycoefh(1:knon, 1)  
         END IF  
         CALL ustarhb(knon, yu, yv, y_cd_m, yustar)  
   
         IF (prt_level>9) THEN  
            PRINT *, 'USTAR = ', yustar  
         END IF  
   
         !   iflag_pbl peut etre utilise comme longuer de melange  
   
         IF (iflag_pbl>=11) THEN  
            CALL vdif_kcay(knon, dtime, rg, rd, ypaprs, yt, yzlev, yzlay, yu, yv, yteta, &  
                 y_cd_m, yq2, q2diag, ykmm, ykmn, yustar, iflag_pbl)  
         ELSE  
            CALL yamada4(knon, dtime, rg, rd, ypaprs, yt, yzlev, yzlay, yu, yv, yteta, &  
                 y_cd_m, yq2, ykmm, ykmn, ykmq, yustar, iflag_pbl)  
         END IF  
   
         ycoefm(1:knon, 1) = y_cd_m(1:knon)  
         ycoefh(1:knon, 1) = y_cd_h(1:knon)  
         ycoefm(1:knon, 2:klev) = ykmm(1:knon, 2:klev)  
         ycoefh(1:knon, 2:klev) = ykmn(1:knon, 2:klev)  
   
   
      END IF  
   
      !ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc  
      ! calculer la diffusion des vitesses "u" et "v"  
      !ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc  
   
      CALL clvent(knon, dtime, yu1, yv1, ycoefm, yt, yu, ypaprs, ypplay, &  
           ydelp, y_d_u, y_flux_u)  
      CALL clvent(knon, dtime, yu1, yv1, ycoefm, yt, yv, ypaprs, ypplay, &  
           ydelp, y_d_v, y_flux_v)  
   
      ! pour le couplage  
      ytaux = y_flux_u(:, 1)  
      ytauy = y_flux_v(:, 1)  
   
      ! FH modif sur le cdrag temperature  
      !$$$PB : déplace dans clcdrag  
      !$$$      do i=1, knon  
      !$$$         ycoefh(i, 1)=ycoefm(i, 1)*0.8  
      !$$$      enddo  
   
      ! calculer la diffusion de "q" et de "h"  
      CALL clqh(dtime, itap, date0, jour, debut, lafin, rlon, rlat,&  
           cufi, cvfi, knon, nsrf, ni, pctsrf, soil_model, ytsoil,&  
           yqsol, ok_veget, ocean, npas, nexca, rmu0, co2_ppm, yrugos,&  
           yrugoro, yu1, yv1, ycoefh, yt, yq, yts, ypaprs, ypplay,&  
           ydelp, yrads, yalb, yalblw, ysnow, yqsurf, yrain_f, ysnow_f, &  
           yfder, ytaux, ytauy, ywindsp, ysollw, ysollwdown, ysolsw,&  
           yfluxlat, pctsrf_new, yagesno, y_d_t, y_d_q, y_d_ts,&  
           yz0_new, y_flux_t, y_flux_q, y_dflux_t, y_dflux_q,&  
           y_fqcalving, y_ffonte, y_run_off_lic_0, y_flux_o, y_flux_g,&  
           ytslab, y_seaice)  
   
      ! calculer la longueur de rugosite sur ocean  
      yrugm = 0.  
      IF (nsrf==is_oce) THEN  
         DO j = 1, knon  
            yrugm(j) = 0.018*ycoefm(j, 1)*(yu1(j)**2+yv1(j)**2)/rg + &  
                 0.11*14E-6/sqrt(ycoefm(j, 1)*(yu1(j)**2+yv1(j)**2))  
            yrugm(j) = max(1.5E-05, yrugm(j))  
         END DO  
      END IF  
      DO j = 1, knon  
         y_dflux_t(j) = y_dflux_t(j)*ypct(j)  
         y_dflux_q(j) = y_dflux_q(j)*ypct(j)  
         yu1(j) = yu1(j)*ypct(j)  
         yv1(j) = yv1(j)*ypct(j)  
      END DO  
   
      DO k = 1, klev  
         DO j = 1, knon  
            i = ni(j)  
            ycoefh(j, k) = ycoefh(j, k)*ypct(j)  
            ycoefm(j, k) = ycoefm(j, k)*ypct(j)  
            y_d_t(j, k) = y_d_t(j, k)*ypct(j)  
            y_d_q(j, k) = y_d_q(j, k)*ypct(j)  
            !§§§ PB  
            flux_t(i, k, nsrf) = y_flux_t(j, k)  
            flux_q(i, k, nsrf) = y_flux_q(j, k)  
            flux_u(i, k, nsrf) = y_flux_u(j, k)  
            flux_v(i, k, nsrf) = y_flux_v(j, k)  
            !$$$ PB        y_flux_t(j, k) = y_flux_t(j, k) * ypct(j)  
            !$$$ PB        y_flux_q(j, k) = y_flux_q(j, k) * ypct(j)  
            y_d_u(j, k) = y_d_u(j, k)*ypct(j)  
            y_d_v(j, k) = y_d_v(j, k)*ypct(j)  
            !$$$ PB        y_flux_u(j, k) = y_flux_u(j, k) * ypct(j)  
            !$$$ PB        y_flux_v(j, k) = y_flux_v(j, k) * ypct(j)  
         END DO  
      END DO  
   
   
      evap(:, nsrf) = -flux_q(:, 1, nsrf)  
   
      albe(:, nsrf) = 0.  
      alblw(:, nsrf) = 0.  
      snow(:, nsrf) = 0.  
      qsurf(:, nsrf) = 0.  
      rugos(:, nsrf) = 0.  
      fluxlat(:, nsrf) = 0.  
      DO j = 1, knon  
         i = ni(j)  
         d_ts(i, nsrf) = y_d_ts(j)  
         albe(i, nsrf) = yalb(j)  
         alblw(i, nsrf) = yalblw(j)  
         snow(i, nsrf) = ysnow(j)  
         qsurf(i, nsrf) = yqsurf(j)  
         rugos(i, nsrf) = yz0_new(j)  
         fluxlat(i, nsrf) = yfluxlat(j)  
         !$$$ pb         rugmer(i) = yrugm(j)  
         IF (nsrf==is_oce) THEN  
            rugmer(i) = yrugm(j)  
            rugos(i, nsrf) = yrugm(j)  
         END IF  
         !IM cf JLD ??  
         agesno(i, nsrf) = yagesno(j)  
         fqcalving(i, nsrf) = y_fqcalving(j)  
         ffonte(i, nsrf) = y_ffonte(j)  
         cdragh(i) = cdragh(i) + ycoefh(j, 1)  
         cdragm(i) = cdragm(i) + ycoefm(j, 1)  
         dflux_t(i) = dflux_t(i) + y_dflux_t(j)  
         dflux_q(i) = dflux_q(i) + y_dflux_q(j)  
         zu1(i) = zu1(i) + yu1(j)  
         zv1(i) = zv1(i) + yv1(j)  
      END DO  
      IF (nsrf==is_ter) THEN  
         DO j = 1, knon  
            i = ni(j)  
            qsol(i) = yqsol(j)  
         END DO  
      END IF  
      IF (nsrf==is_lic) THEN  
         DO j = 1, knon  
            i = ni(j)  
            run_off_lic_0(i) = y_run_off_lic_0(j)  
         END DO  
      END IF  
      !$$$ PB ajout pour soil  
      ftsoil(:, :, nsrf) = 0.  
      DO k = 1, nsoilmx  
         DO j = 1, knon  
            i = ni(j)  
            ftsoil(i, k, nsrf) = ytsoil(j, k)  
         END DO  
      END DO  
   
      DO j = 1, knon  
         i = ni(j)  
         DO k = 1, klev  
            d_t(i, k) = d_t(i, k) + y_d_t(j, k)  
            d_q(i, k) = d_q(i, k) + y_d_q(j, k)  
            !$$$ PB        flux_t(i, k) = flux_t(i, k) + y_flux_t(j, k)  
            !$$$         flux_q(i, k) = flux_q(i, k) + y_flux_q(j, k)  
            d_u(i, k) = d_u(i, k) + y_d_u(j, k)  
            d_v(i, k) = d_v(i, k) + y_d_v(j, k)  
            !$$$  PB       flux_u(i, k) = flux_u(i, k) + y_flux_u(j, k)  
            !$$$         flux_v(i, k) = flux_v(i, k) + y_flux_v(j, k)  
            zcoefh(i, k) = zcoefh(i, k) + ycoefh(j, k)  
         END DO  
      END DO  
   
   
      !cc diagnostic t, q a 2m et u, v a 10m  
   
      DO j = 1, knon  
         i = ni(j)  
         uzon(j) = yu(j, 1) + y_d_u(j, 1)  
         vmer(j) = yv(j, 1) + y_d_v(j, 1)  
         tair1(j) = yt(j, 1) + y_d_t(j, 1)  
         qair1(j) = yq(j, 1) + y_d_q(j, 1)  
         zgeo1(j) = rd*tair1(j)/(0.5*(ypaprs(j, 1)+ypplay(j, &  
              1)))*(ypaprs(j, 1)-ypplay(j, 1))  
         tairsol(j) = yts(j) + y_d_ts(j)  
         rugo1(j) = yrugos(j)  
         IF (nsrf==is_oce) THEN  
            rugo1(j) = rugos(i, nsrf)  
         END IF  
         psfce(j) = ypaprs(j, 1)  
         patm(j) = ypplay(j, 1)  
   
         qairsol(j) = yqsurf(j)  
      END DO  
   
      CALL stdlevvar(klon, knon, nsrf, zxli, uzon, vmer, tair1, qair1, zgeo1, &  
           tairsol, qairsol, rugo1, psfce, patm, yt2m, yq2m, yt10m, yq10m, &  
           yu10m, yustar)  
      !IM 081204 END  
   
      DO j = 1, knon  
         i = ni(j)  
         t2m(i, nsrf) = yt2m(j)  
         q2m(i, nsrf) = yq2m(j)  
   
         ! u10m, v10m : composantes du vent a 10m sans spirale de Ekman  
         u10m(i, nsrf) = (yu10m(j)*uzon(j))/sqrt(uzon(j)**2+vmer(j)**2)  
         v10m(i, nsrf) = (yu10m(j)*vmer(j))/sqrt(uzon(j)**2+vmer(j)**2)  
   
      END DO  
   
      !IM cf AM : pbl, HBTM  
      DO i = 1, knon  
         y_cd_h(i) = ycoefh(i, 1)  
         y_cd_m(i) = ycoefm(i, 1)  
      END DO  
      !     print*, 'appel hbtm2'  
      CALL hbtm(knon, ypaprs, ypplay, yt2m, yt10m, yq2m, yq10m, yustar, y_flux_t, &  
           y_flux_q, yu, yv, yt, yq, ypblh, ycapcl, yoliqcl, ycteicl, ypblt, ytherm, &  
           ytrmb1, ytrmb2, ytrmb3, ylcl)  
      !     print*, 'fin hbtm2'  
   
      DO j = 1, knon  
         i = ni(j)  
         pblh(i, nsrf) = ypblh(j)  
         plcl(i, nsrf) = ylcl(j)  
         capcl(i, nsrf) = ycapcl(j)  
         oliqcl(i, nsrf) = yoliqcl(j)  
         cteicl(i, nsrf) = ycteicl(j)  
         pblt(i, nsrf) = ypblt(j)  
         therm(i, nsrf) = ytherm(j)  
         trmb1(i, nsrf) = ytrmb1(j)  
         trmb2(i, nsrf) = ytrmb2(j)  
         trmb3(i, nsrf) = ytrmb3(j)  
      END DO  
   
   
      DO j = 1, knon  
         DO k = 1, klev + 1  
            i = ni(j)  
            q2(i, k, nsrf) = yq2(j, k)  
         END DO  
      END DO  
      !IM "slab" ocean  
      IF (nsrf==is_oce) THEN  
         DO j = 1, knon  
            ! on projette sur la grille globale  
            i = ni(j)  
            IF (pctsrf_new(i, is_oce)>epsfra) THEN  
               flux_o(i) = y_flux_o(j)  
            ELSE  
               flux_o(i) = 0.  
            END IF  
         END DO  
      END IF  
   
      IF (nsrf==is_sic) THEN  
         DO j = 1, knon  
            i = ni(j)  
            !IM 230604 on pondere lorsque l'on fait le bilan au sol :  flux_g(i) = y_flux_g(j)*ypct(j)  
            IF (pctsrf_new(i, is_sic)>epsfra) THEN  
               flux_g(i) = y_flux_g(j)  
            ELSE  
               flux_g(i) = 0.  
            END IF  
         END DO  
   
      END IF  
      !nsrf.EQ.is_sic                                              
      IF (ocean=='slab  ') THEN  
         IF (nsrf==is_oce) THEN  
            tslab(1:klon) = ytslab(1:klon)  
            seaice(1:klon) = y_seaice(1:klon)  
            !nsrf                                                        
         END IF  
         !OCEAN                                                        
      END IF  
   END DO  
6    
7    ! On utilise les nouvelles surfaces    SUBROUTINE pbl_surface(dtime, pctsrf, t, q, u, v, julien, mu0, ftsol, &
8    ! A rajouter: conservation de l'albedo         cdmmax, cdhmax, ftsoil, qsol, paprs, pplay, fsnow, qsurf, evap, falbe, &
9           fluxlat, rain_fall, snow_f, fsolsw, fsollw, frugs, agesno, rugoro, d_t, &
10           d_q, d_u, d_v, d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, &
11           q2, dflux_t, dflux_q, coefh, t2m, q2m, u10m_srf, v10m_srf, pblh, capcl, &
12           oliqcl, cteicl, pblt, therm, plcl, fqcalving, ffonte, run_off_lic_0)
13    
14        ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19
15        ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18
16        ! Objet : interface de couche limite (diffusion verticale)
17    
18        ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul
19        ! de la couche limite pour les traceurs se fait avec "cltrac" et
20        ! ne tient pas compte de la diff\'erentiation des sous-fractions
21        ! de sol.
22    
23        use clcdrag_m, only: clcdrag
24        use clqh_m, only: clqh
25        use clvent_m, only: clvent
26        use coef_diff_turb_m, only: coef_diff_turb
27        USE conf_gcm_m, ONLY: lmt_pas
28        USE conf_phys_m, ONLY: iflag_pbl
29        USE dimphy, ONLY: klev, klon, zmasq
30        USE dimsoil, ONLY: nsoilmx
31        use hbtm_m, only: hbtm
32        USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf
33        USE interfoce_lim_m, ONLY: interfoce_lim
34        use stdlevvar_m, only: stdlevvar
35        USE suphec_m, ONLY: rd, rg
36        use time_phylmdz, only: itap
37    
38        REAL, INTENT(IN):: dtime ! interval du temps (secondes)
39    
40        REAL, INTENT(inout):: pctsrf(klon, nbsrf)
41        ! tableau des pourcentages de surface de chaque maille
42    
43        REAL, INTENT(IN):: t(klon, klev) ! temperature (K)
44        REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg / kg)
45        REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse
46        INTEGER, INTENT(IN):: julien ! jour de l'annee en cours
47        REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal    
48        REAL, INTENT(IN):: ftsol(:, :) ! (klon, nbsrf) temp\'erature du sol (en K)
49        REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh
50    
51        REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)
52        ! soil temperature of surface fraction
53    
54        REAL, INTENT(inout):: qsol(:) ! (klon)
55        ! column-density of water in soil, in kg m-2
56    
57        REAL, INTENT(IN):: paprs(klon, klev + 1) ! pression a intercouche (Pa)
58        REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa)
59        REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf) \'epaisseur neigeuse
60        REAL qsurf(klon, nbsrf)
61        REAL evap(klon, nbsrf)
62        REAL, intent(inout):: falbe(klon, nbsrf)
63        REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf)
64    
65        REAL, intent(in):: rain_fall(klon)
66        ! liquid water mass flux (kg / m2 / s), positive down
67    
68        REAL, intent(in):: snow_f(klon)
69        ! solid water mass flux (kg / m2 / s), positive down
70    
71        REAL, INTENT(IN):: fsolsw(klon, nbsrf), fsollw(klon, nbsrf)
72        REAL, intent(inout):: frugs(klon, nbsrf) ! longueur de rugosit\'e (en m)
73        real agesno(klon, nbsrf)
74        REAL, INTENT(IN):: rugoro(klon)
75    
76        REAL d_t(klon, klev), d_q(klon, klev)
77        ! d_t------output-R- le changement pour "t"
78        ! d_q------output-R- le changement pour "q"
79    
80        REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)
81        ! changement pour "u" et "v"
82    
83        REAL, intent(out):: d_ts(:, :) ! (klon, nbsrf) variation of ftsol
84    
85        REAL, intent(out):: flux_t(klon, nbsrf)
86        ! flux de chaleur sensible (Cp T) (W / m2) (orientation positive vers
87        ! le bas) à la surface
88    
89        REAL, intent(out):: flux_q(klon, nbsrf)
90        ! flux de vapeur d'eau (kg / m2 / s) à la surface
91    
92        REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf)
93        ! tension du vent (flux turbulent de vent) à la surface, en Pa
94    
95        REAL, INTENT(out):: cdragh(klon), cdragm(klon)
96        real q2(klon, klev + 1, nbsrf)
97    
98        REAL, INTENT(out):: dflux_t(klon), dflux_q(klon)
99        ! dflux_t derive du flux sensible
100        ! dflux_q derive du flux latent
101        ! IM "slab" ocean
102    
103        REAL, intent(out):: coefh(:, 2:) ! (klon, 2:klev)
104        ! Pour pouvoir extraire les coefficients d'\'echange, le champ
105        ! "coefh" a \'et\'e cr\'e\'e. Nous avons moyenn\'e les valeurs de
106        ! ce champ sur les quatre sous-surfaces du mod\`ele.
107    
108        REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf)
109    
110        REAL, INTENT(inout):: u10m_srf(:, :), v10m_srf(:, :) ! (klon, nbsrf)
111        ! composantes du vent \`a 10m sans spirale d'Ekman
112    
113        ! Ionela Musat. Cf. Anne Mathieu : planetary boundary layer, hbtm.
114        ! Comme les autres diagnostics on cumule dans physiq ce qui permet
115        ! de sortir les grandeurs par sous-surface.
116        REAL pblh(klon, nbsrf) ! height of planetary boundary layer
117        REAL capcl(klon, nbsrf)
118        REAL oliqcl(klon, nbsrf)
119        REAL cteicl(klon, nbsrf)
120        REAL, INTENT(inout):: pblt(klon, nbsrf) ! T au nveau HCL
121        REAL therm(klon, nbsrf)
122        REAL plcl(klon, nbsrf)
123        REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)
124        ! ffonte----Flux thermique utilise pour fondre la neige
125        ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la
126        !           hauteur de neige, en kg / m2 / s
127        REAL run_off_lic_0(klon)
128    
129        ! Local:
130    
131        LOGICAL:: firstcal = .true.
132    
133        ! la nouvelle repartition des surfaces sortie de l'interface
134        REAL, save:: pctsrf_new_oce(klon)
135        REAL, save:: pctsrf_new_sic(klon)
136    
137        REAL y_fqcalving(klon), y_ffonte(klon)
138        real y_run_off_lic_0(klon)
139        REAL rugmer(klon)
140        REAL ytsoil(klon, nsoilmx)
141        REAL yts(klon), ypct(klon), yz0_new(klon)
142        real yrugos(klon) ! longeur de rugosite (en m)
143        REAL yalb(klon)
144        REAL snow(klon), yqsurf(klon), yagesno(klon)
145        real yqsol(klon) ! column-density of water in soil, in kg m-2
146        REAL yrain_f(klon) ! liquid water mass flux (kg / m2 / s), positive down
147        REAL ysnow_f(klon) ! solid water mass flux (kg / m2 / s), positive down
148        REAL yrugm(klon), yrads(klon), yrugoro(klon)
149        REAL yfluxlat(klon)
150        REAL y_d_ts(klon)
151        REAL y_d_t(klon, klev), y_d_q(klon, klev)
152        REAL y_d_u(klon, klev), y_d_v(klon, klev)
153        REAL y_flux_t(klon), y_flux_q(klon)
154        REAL y_flux_u(klon), y_flux_v(klon)
155        REAL y_dflux_t(klon), y_dflux_q(klon)
156        REAL ycoefh(klon, 2:klev), ycoefm(klon, 2:klev)
157        real ycdragh(klon), ycdragm(klon)
158        REAL yu(klon, klev), yv(klon, klev)
159        REAL yt(klon, klev), yq(klon, klev)
160        REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev)
161        REAL yq2(klon, klev + 1)
162        REAL delp(klon, klev)
163        INTEGER i, k, nsrf
164        INTEGER ni(klon), knon, j
165    
166        REAL pctsrf_pot(klon, nbsrf)
167        ! "pourcentage potentiel" pour tenir compte des \'eventuelles
168        ! apparitions ou disparitions de la glace de mer
169    
170        REAL yt2m(klon), yq2m(klon), wind10m(klon)
171        REAL ustar(klon)
172    
173        REAL yt10m(klon), yq10m(klon)
174        REAL ypblh(klon)
175        REAL ylcl(klon)
176        REAL ycapcl(klon)
177        REAL yoliqcl(klon)
178        REAL ycteicl(klon)
179        REAL ypblt(klon)
180        REAL ytherm(klon)
181        REAL u1(klon), v1(klon)
182        REAL tair1(klon), qair1(klon), tairsol(klon)
183        REAL psfce(klon), patm(klon)
184    
185        REAL qairsol(klon), zgeo1(klon)
186        REAL rugo1(klon)
187        REAL zgeop(klon, klev)
188    
189        !------------------------------------------------------------
190    
191        ytherm = 0.
192    
193        DO k = 1, klev ! epaisseur de couche
194           DO i = 1, klon
195              delp(i, k) = paprs(i, k) - paprs(i, k + 1)
196           END DO
197        END DO
198    
199        ! Initialization:
200        rugmer = 0.
201        cdragh = 0.
202        cdragm = 0.
203        dflux_t = 0.
204        dflux_q = 0.
205        ypct = 0.
206        yqsurf = 0.
207        yrain_f = 0.
208        ysnow_f = 0.
209        yrugos = 0.
210        ypaprs = 0.
211        ypplay = 0.
212        ydelp = 0.
213        yu = 0.
214        yv = 0.
215        yt = 0.
216        yq = 0.
217        y_dflux_t = 0.
218        y_dflux_q = 0.
219        yrugoro = 0.
220        d_ts = 0.
221        flux_t = 0.
222        flux_q = 0.
223        flux_u = 0.
224        flux_v = 0.
225        fluxlat = 0.
226        d_t = 0.
227        d_q = 0.
228        d_u = 0.
229        d_v = 0.
230        coefh = 0.
231    
232        ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on
233        ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique
234        ! (\`a affiner)
235    
236        pctsrf_pot(:, is_ter) = pctsrf(:, is_ter)
237        pctsrf_pot(:, is_lic) = pctsrf(:, is_lic)
238        pctsrf_pot(:, is_oce) = 1. - zmasq
239        pctsrf_pot(:, is_sic) = 1. - zmasq
240    
241        ! Tester si c'est le moment de lire le fichier:
242        if (mod(itap - 1, lmt_pas) == 0) then
243           CALL interfoce_lim(julien, pctsrf_new_oce, pctsrf_new_sic)
244        endif
245    
246        ! Boucler sur toutes les sous-fractions du sol:
247    
248        loop_surface: DO nsrf = 1, nbsrf
249           ! Chercher les indices :
250           ni = 0
251           knon = 0
252           DO i = 1, klon
253              ! Pour d\'eterminer le domaine \`a traiter, on utilise les surfaces
254              ! "potentielles"
255              IF (pctsrf_pot(i, nsrf) > epsfra) THEN
256                 knon = knon + 1
257                 ni(knon) = i
258              END IF
259           END DO
260    
261           if_knon: IF (knon /= 0) then
262              DO j = 1, knon
263                 i = ni(j)
264                 ypct(j) = pctsrf(i, nsrf)
265                 yts(j) = ftsol(i, nsrf)
266                 snow(j) = fsnow(i, nsrf)
267                 yqsurf(j) = qsurf(i, nsrf)
268                 yalb(j) = falbe(i, nsrf)
269                 yrain_f(j) = rain_fall(i)
270                 ysnow_f(j) = snow_f(i)
271                 yagesno(j) = agesno(i, nsrf)
272                 yrugos(j) = frugs(i, nsrf)
273                 yrugoro(j) = rugoro(i)
274                 yrads(j) = fsolsw(i, nsrf) + fsollw(i, nsrf)
275                 ypaprs(j, klev + 1) = paprs(i, klev + 1)
276                 y_run_off_lic_0(j) = run_off_lic_0(i)
277              END DO
278    
279              ! For continent, copy soil water content
280              IF (nsrf == is_ter) yqsol(:knon) = qsol(ni(:knon))
281    
282              ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf)
283    
284              DO k = 1, klev
285                 DO j = 1, knon
286                    i = ni(j)
287                    ypaprs(j, k) = paprs(i, k)
288                    ypplay(j, k) = pplay(i, k)
289                    ydelp(j, k) = delp(i, k)
290                    yu(j, k) = u(i, k)
291                    yv(j, k) = v(i, k)
292                    yt(j, k) = t(i, k)
293                    yq(j, k) = q(i, k)
294                 END DO
295              END DO
296    
297              ! Calculer les géopotentiels de chaque couche:
298    
299              zgeop(:knon, 1) = RD * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &
300                   + ypplay(:knon, 1))) * (ypaprs(:knon, 1) - ypplay(:knon, 1))
301    
302              DO k = 2, klev
303                 zgeop(:knon, k) = zgeop(:knon, k - 1) + RD * 0.5 &
304                      * (yt(:knon, k - 1) + yt(:knon, k)) / ypaprs(:knon, k) &
305                      * (ypplay(:knon, k - 1) - ypplay(:knon, k))
306              ENDDO
307    
308              CALL clcdrag(nsrf, sqrt(yu(:knon, 1)**2 + yv(:knon, 1)**2), &
309                   yt(:knon, 1), yq(:knon, 1), zgeop(:knon, 1), ypaprs(:knon, 1), &
310                   yts(:knon), yqsurf(:knon), yrugos(:knon), ycdragm(:knon), &
311                   ycdragh(:knon))
312    
313              IF (iflag_pbl == 1) THEN
314                 ycdragm(:knon) = max(ycdragm(:knon), 0.)
315                 ycdragh(:knon) = max(ycdragh(:knon), 0.)
316              end IF
317    
318              ! on met un seuil pour ycdragm et ycdragh
319              IF (nsrf == is_oce) THEN
320                 ycdragm(:knon) = min(ycdragm(:knon), cdmmax)
321                 ycdragh(:knon) = min(ycdragh(:knon), cdhmax)
322              END IF
323    
324              IF (iflag_pbl >= 6) then
325                 DO k = 1, klev + 1
326                    DO j = 1, knon
327                       i = ni(j)
328                       yq2(j, k) = q2(i, k, nsrf)
329                    END DO
330                 END DO
331              end IF
332    
333              call coef_diff_turb(dtime, nsrf, ni(:knon), ypaprs(:knon, :), &
334                   ypplay(:knon, :), yu(:knon, :), yv(:knon, :), yq(:knon, :), &
335                   yt(:knon, :), yts(:knon), ycdragm(:knon), zgeop(:knon, :), &
336                   ycoefm(:knon, :), ycoefh(:knon, :), yq2(:knon, :))
337    
338              CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), &
339                   ycdragm(:knon), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), &
340                   ypplay(:knon, :), ydelp(:knon, :), y_d_u(:knon, :), &
341                   y_flux_u(:knon))
342              CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), &
343                   ycdragm(:knon), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), &
344                   ypplay(:knon, :), ydelp(:knon, :), y_d_v(:knon, :), &
345                   y_flux_v(:knon))
346    
347              ! calculer la diffusion de "q" et de "h"
348              CALL clqh(dtime, julien, firstcal, nsrf, ni(:knon), &
349                   ytsoil(:knon, :), yqsol(:knon), mu0, yrugos, yrugoro, &
350                   yu(:knon, 1), yv(:knon, 1), ycoefh(:knon, :), ycdragh(:knon), &
351                   yt, yq, yts(:knon), ypaprs, ypplay, ydelp, yrads(:knon), &
352                   yalb(:knon), snow(:knon), yqsurf, yrain_f, ysnow_f, &
353                   yfluxlat(:knon), pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, &
354                   y_d_ts(:knon), yz0_new, y_flux_t(:knon), y_flux_q(:knon), &
355                   y_dflux_t(:knon), y_dflux_q(:knon), y_fqcalving, y_ffonte, &
356                   y_run_off_lic_0)
357    
358              ! calculer la longueur de rugosite sur ocean
359              yrugm = 0.
360              IF (nsrf == is_oce) THEN
361                 DO j = 1, knon
362                    yrugm(j) = 0.018 * ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2) &
363                         / rg + 0.11 * 14E-6 &
364                         / sqrt(ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2))
365                    yrugm(j) = max(1.5E-05, yrugm(j))
366                 END DO
367              END IF
368              DO j = 1, knon
369                 y_dflux_t(j) = y_dflux_t(j) * ypct(j)
370                 y_dflux_q(j) = y_dflux_q(j) * ypct(j)
371              END DO
372    
373              DO k = 1, klev
374                 DO j = 1, knon
375                    i = ni(j)
376                    y_d_t(j, k) = y_d_t(j, k) * ypct(j)
377                    y_d_q(j, k) = y_d_q(j, k) * ypct(j)
378                    y_d_u(j, k) = y_d_u(j, k) * ypct(j)
379                    y_d_v(j, k) = y_d_v(j, k) * ypct(j)
380                 END DO
381              END DO
382    
383              flux_t(ni(:knon), nsrf) = y_flux_t(:knon)
384              flux_q(ni(:knon), nsrf) = y_flux_q(:knon)
385              flux_u(ni(:knon), nsrf) = y_flux_u(:knon)
386              flux_v(ni(:knon), nsrf) = y_flux_v(:knon)
387    
388              evap(:, nsrf) = -flux_q(:, nsrf)
389    
390              falbe(:, nsrf) = 0.
391              fsnow(:, nsrf) = 0.
392              qsurf(:, nsrf) = 0.
393              frugs(:, nsrf) = 0.
394              DO j = 1, knon
395                 i = ni(j)
396                 d_ts(i, nsrf) = y_d_ts(j)
397                 falbe(i, nsrf) = yalb(j)
398                 fsnow(i, nsrf) = snow(j)
399                 qsurf(i, nsrf) = yqsurf(j)
400                 frugs(i, nsrf) = yz0_new(j)
401                 fluxlat(i, nsrf) = yfluxlat(j)
402                 IF (nsrf == is_oce) THEN
403                    rugmer(i) = yrugm(j)
404                    frugs(i, nsrf) = yrugm(j)
405                 END IF
406                 agesno(i, nsrf) = yagesno(j)
407                 fqcalving(i, nsrf) = y_fqcalving(j)
408                 ffonte(i, nsrf) = y_ffonte(j)
409                 cdragh(i) = cdragh(i) + ycdragh(j) * ypct(j)
410                 cdragm(i) = cdragm(i) + ycdragm(j) * ypct(j)
411                 dflux_t(i) = dflux_t(i) + y_dflux_t(j)
412                 dflux_q(i) = dflux_q(i) + y_dflux_q(j)
413              END DO
414              IF (nsrf == is_ter) THEN
415                 qsol(ni(:knon)) = yqsol(:knon)
416              else IF (nsrf == is_lic) THEN
417                 DO j = 1, knon
418                    i = ni(j)
419                    run_off_lic_0(i) = y_run_off_lic_0(j)
420                 END DO
421              END IF
422    
423              ftsoil(:, :, nsrf) = 0.
424              ftsoil(ni(:knon), :, nsrf) = ytsoil(:knon, :)
425    
426              DO j = 1, knon
427                 i = ni(j)
428                 DO k = 1, klev
429                    d_t(i, k) = d_t(i, k) + y_d_t(j, k)
430                    d_q(i, k) = d_q(i, k) + y_d_q(j, k)
431                    d_u(i, k) = d_u(i, k) + y_d_u(j, k)
432                    d_v(i, k) = d_v(i, k) + y_d_v(j, k)
433                 END DO
434              END DO
435    
436              forall (k = 2:klev) coefh(ni(:knon), k) &
437                   = coefh(ni(:knon), k) + ycoefh(:knon, k) * ypct(:knon)
438    
439              ! diagnostic t, q a 2m et u, v a 10m
440    
441              DO j = 1, knon
442                 i = ni(j)
443                 u1(j) = yu(j, 1) + y_d_u(j, 1)
444                 v1(j) = yv(j, 1) + y_d_v(j, 1)
445                 tair1(j) = yt(j, 1) + y_d_t(j, 1)
446                 qair1(j) = yq(j, 1) + y_d_q(j, 1)
447                 zgeo1(j) = rd * tair1(j) / (0.5 * (ypaprs(j, 1) + ypplay(j, &
448                      1))) * (ypaprs(j, 1)-ypplay(j, 1))
449                 tairsol(j) = yts(j) + y_d_ts(j)
450                 rugo1(j) = yrugos(j)
451                 IF (nsrf == is_oce) THEN
452                    rugo1(j) = frugs(i, nsrf)
453                 END IF
454                 psfce(j) = ypaprs(j, 1)
455                 patm(j) = ypplay(j, 1)
456    
457                 qairsol(j) = yqsurf(j)
458              END DO
459    
460              CALL stdlevvar(nsrf, u1(:knon), v1(:knon), tair1(:knon), qair1, &
461                   zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, yq2m, yt10m, &
462                   yq10m, wind10m(:knon), ustar(:knon))
463    
464              DO j = 1, knon
465                 i = ni(j)
466                 t2m(i, nsrf) = yt2m(j)
467                 q2m(i, nsrf) = yq2m(j)
468    
469                 u10m_srf(i, nsrf) = (wind10m(j) * u1(j)) &
470                      / sqrt(u1(j)**2 + v1(j)**2)
471                 v10m_srf(i, nsrf) = (wind10m(j) * v1(j)) &
472                      / sqrt(u1(j)**2 + v1(j)**2)
473              END DO
474    
475              CALL hbtm(ypaprs, ypplay, yt2m, yq2m, ustar(:knon), y_flux_t(:knon), &
476                   y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, &
477                   yoliqcl, ycteicl, ypblt, ytherm, ylcl)
478    
479              DO j = 1, knon
480                 i = ni(j)
481                 pblh(i, nsrf) = ypblh(j)
482                 plcl(i, nsrf) = ylcl(j)
483                 capcl(i, nsrf) = ycapcl(j)
484                 oliqcl(i, nsrf) = yoliqcl(j)
485                 cteicl(i, nsrf) = ycteicl(j)
486                 pblt(i, nsrf) = ypblt(j)
487                 therm(i, nsrf) = ytherm(j)
488              END DO
489    
490              DO j = 1, knon
491                 DO k = 1, klev + 1
492                    i = ni(j)
493                    q2(i, k, nsrf) = yq2(j, k)
494                 END DO
495              END DO
496           else
497              fsnow(:, nsrf) = 0.
498           end IF if_knon
499        END DO loop_surface
500    
501        ! On utilise les nouvelles surfaces
502        frugs(:, is_oce) = rugmer
503        pctsrf(:, is_oce) = pctsrf_new_oce
504        pctsrf(:, is_sic) = pctsrf_new_sic
505    
506    rugos(:, is_oce) = rugmer      firstcal = .false.
   pctsrf = pctsrf_new  
507    
508  END SUBROUTINE clmain    END SUBROUTINE pbl_surface
509    
510    end module pbl_surface_m

Legend:
Removed from v.30  
changed lines
  Added in v.272

  ViewVC Help
Powered by ViewVC 1.1.21