/[lmdze]/trunk/phylmd/physiq.f90
ViewVC logotype

Diff of /trunk/phylmd/physiq.f90

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/phylmd/physiq.f90 revision 76 by guez, Fri Nov 15 18:45:49 2013 UTC trunk/phylmd/physiq.f revision 326 by guez, Mon Jun 10 00:29:10 2019 UTC
# Line 4  module physiq_m Line 4  module physiq_m
4    
5  contains  contains
6    
7    SUBROUTINE physiq(lafin, rdayvrai, time, dtphys, paprs, play, pphi, pphis, &    SUBROUTINE physiq(lafin, dayvrai, time, paprs, play, pphi, pphis, u, v, t, &
8         u, v, t, qx, omega, d_u, d_v, d_t, d_qx, d_ps, dudyn, PVteta)         qx, omega, d_u, d_v, d_t, d_qx)
9    
10      ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28      ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28
11      ! (subversion revision 678)      ! (subversion revision 678)
12    
13      ! Author: Z.X. Li (LMD/CNRS) 1993      ! Author: Z. X. Li (LMD/CNRS) 1993
14    
15      ! This is the main procedure for the "physics" part of the program.      ! This is the main procedure for the "physics" part of the program.
16    
17      use aaam_bud_m, only: aaam_bud      use aaam_bud_m, only: aaam_bud
18      USE abort_gcm_m, ONLY: abort_gcm      USE abort_gcm_m, ONLY: abort_gcm
     use aeropt_m, only: aeropt  
19      use ajsec_m, only: ajsec      use ajsec_m, only: ajsec
     USE calendar, ONLY: ymds2ju  
20      use calltherm_m, only: calltherm      use calltherm_m, only: calltherm
21      USE clesphys, ONLY: cdhmax, cdmmax, co2_ppm, ecrit_hf, ecrit_ins, &      USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ok_instan
22           ecrit_mth, ecrit_reg, ecrit_tra, ksta, ksta_ter, ok_kzmin      USE clesphys2, ONLY: conv_emanuel, nbapp_rad, new_oliq, ok_orodr, ok_orolf
23      USE clesphys2, ONLY: cycle_diurne, iflag_con, nbapp_rad, new_oliq, &      USE conf_interface_m, ONLY: conf_interface
24           ok_orodr, ok_orolf, soil_model      USE pbl_surface_m, ONLY: pbl_surface
     USE clmain_m, ONLY: clmain  
25      use clouds_gno_m, only: clouds_gno      use clouds_gno_m, only: clouds_gno
26      USE comgeomphy, ONLY: airephy, cuphy, cvphy      use comconst, only: dtphys
27        USE comgeomphy, ONLY: airephy
28      USE concvl_m, ONLY: concvl      USE concvl_m, ONLY: concvl
29      USE conf_gcm_m, ONLY: offline, raz_date      USE conf_gcm_m, ONLY: lmt_pas
30      USE conf_phys_m, ONLY: conf_phys      USE conf_phys_m, ONLY: conf_phys
31      use conflx_m, only: conflx      use conflx_m, only: conflx
32      USE ctherm, ONLY: iflag_thermals, nsplit_thermals      USE ctherm_m, ONLY: iflag_thermals, ctherm
33      use diagcld2_m, only: diagcld2      use diagcld2_m, only: diagcld2
34      use diagetpq_m, only: diagetpq      USE dimensions, ONLY: llm, nqmx
35      use diagphy_m, only: diagphy      USE dimphy, ONLY: klon
     USE dimens_m, ONLY: iim, jjm, llm, nqmx  
     USE dimphy, ONLY: klon, nbtr  
36      USE dimsoil, ONLY: nsoilmx      USE dimsoil, ONLY: nsoilmx
37      use drag_noro_m, only: drag_noro      use drag_noro_m, only: drag_noro
38      USE fcttre, ONLY: foeew, qsatl, qsats, thermcep      use dynetat0_chosen_m, only: day_ref, annee_ref
39        USE fcttre, ONLY: foeew
40      use fisrtilp_m, only: fisrtilp      use fisrtilp_m, only: fisrtilp
41      USE hgardfou_m, ONLY: hgardfou      USE hgardfou_m, ONLY: hgardfou
42      USE histsync_m, ONLY: histsync      USE histsync_m, ONLY: histsync
43      USE histwrite_m, ONLY: histwrite      USE histwrite_phy_m, ONLY: histwrite_phy
44      USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &      USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &
45           nbsrf           nbsrf
46      USE ini_histhf_m, ONLY: ini_histhf      USE ini_histins_m, ONLY: ini_histins, nid_ins
47      USE ini_histday_m, ONLY: ini_histday      use lift_noro_m, only: lift_noro
48      USE ini_histins_m, ONLY: ini_histins      use netcdf95, only: NF95_CLOSE
49      use newmicro_m, only: newmicro      use newmicro_m, only: newmicro
50      USE oasis_m, ONLY: ok_oasis      use nr_util, only: assert
51      USE orbite_m, ONLY: orbite, zenang      use nuage_m, only: nuage
52        USE orbite_m, ONLY: orbite
53      USE ozonecm_m, ONLY: ozonecm      USE ozonecm_m, ONLY: ozonecm
54      USE phyetat0_m, ONLY: phyetat0, rlat, rlon      USE phyetat0_m, ONLY: phyetat0
55      USE phyredem_m, ONLY: phyredem      USE phyredem_m, ONLY: phyredem
56      USE phystokenc_m, ONLY: phystokenc      USE phyredem0_m, ONLY: phyredem0
57      USE phytrac_m, ONLY: phytrac      USE phytrac_m, ONLY: phytrac
     USE qcheck_m, ONLY: qcheck  
58      use radlwsw_m, only: radlwsw      use radlwsw_m, only: radlwsw
59      use readsulfate_m, only: readsulfate      use yoegwd, only: sugwd
60      use sugwd_m, only: sugwd      USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt, rmo3, md
61      USE suphec_m, ONLY: ra, rcpd, retv, rg, rlvtt, romega, rsigma, rtt      use time_phylmdz, only: itap, increment_itap
62      USE temps, ONLY: annee_ref, day_ref, itau_phy      use transp_m, only: transp
63        use transp_lay_m, only: transp_lay
64      use unit_nml_m, only: unit_nml      use unit_nml_m, only: unit_nml
65        USE ymds2ju_m, ONLY: ymds2ju
66      USE yoethf_m, ONLY: r2es, rvtmp2      USE yoethf_m, ONLY: r2es, rvtmp2
67        use zenang_m, only: zenang
68    
     ! Arguments:  
   
     REAL, intent(in):: rdayvrai  
     ! (elapsed time since January 1st 0h of the starting year, in days)  
   
     REAL, intent(in):: time ! heure de la journée en fraction de jour  
     REAL, intent(in):: dtphys ! pas d'integration pour la physique (seconde)  
69      logical, intent(in):: lafin ! dernier passage      logical, intent(in):: lafin ! dernier passage
70    
71      REAL, intent(in):: paprs(klon, llm + 1)      integer, intent(in):: dayvrai
72      ! (pression pour chaque inter-couche, en Pa)      ! current day number, based at value 1 on January 1st of annee_ref
73    
74      REAL, intent(in):: play(klon, llm)      REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour
     ! (input pression pour le mileu de chaque couche (en Pa))  
75    
76      REAL, intent(in):: pphi(klon, llm)      REAL, intent(in):: paprs(:, :) ! (klon, llm + 1)
77      ! (input geopotentiel de chaque couche (g z) (reference sol))      ! pression pour chaque inter-couche, en Pa
78    
79      REAL, intent(in):: pphis(klon) ! input geopotentiel du sol      REAL, intent(in):: play(:, :) ! (klon, llm)
80        ! pression pour le mileu de chaque couche (en Pa)
81    
82      REAL, intent(in):: u(klon, llm)      REAL, intent(in):: pphi(:, :) ! (klon, llm)
83      ! vitesse dans la direction X (de O a E) en m/s      ! géopotentiel de chaque couche (référence sol)
84    
85      REAL, intent(in):: v(klon, llm) ! vitesse Y (de S a N) en m/s      REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol
     REAL, intent(in):: t(klon, llm) ! input temperature (K)  
86    
87      REAL, intent(in):: qx(klon, llm, nqmx)      REAL, intent(in):: u(:, :) ! (klon, llm)
88      ! (humidité spécifique et fractions massiques des autres traceurs)      ! vitesse dans la direction X (de O a E) en m / s
89    
90      REAL omega(klon, llm) ! input vitesse verticale en Pa/s      REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m / s
91      REAL, intent(out):: d_u(klon, llm) ! tendance physique de "u" (m/s/s)      REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)
     REAL, intent(out):: d_v(klon, llm) ! tendance physique de "v" (m/s/s)  
     REAL, intent(out):: d_t(klon, llm) ! tendance physique de "t" (K/s)  
     REAL d_qx(klon, llm, nqmx) ! output tendance physique de "qx" (kg/kg/s)  
     REAL d_ps(klon) ! output tendance physique de la pression au sol  
92    
93      LOGICAL:: firstcal = .true.      REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)
94        ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)
95    
96      INTEGER nbteta      REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa / s
97      PARAMETER(nbteta = 3)      REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)
98        REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)
99        REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K / s)
100    
101      REAL PVteta(klon, nbteta)      REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)
102      ! (output vorticite potentielle a des thetas constantes)      ! tendance physique de "qx" (s-1)
103    
104      LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface      ! Local:
     PARAMETER (ok_gust = .FALSE.)  
105    
106      LOGICAL check ! Verifier la conservation du modele en eau      LOGICAL:: firstcal = .true.
     PARAMETER (check = .FALSE.)  
107    
108      LOGICAL, PARAMETER:: ok_stratus = .FALSE.      LOGICAL, PARAMETER:: ok_stratus = .FALSE.
109      ! Ajouter artificiellement les stratus      ! Ajouter artificiellement les stratus
110    
111      ! Parametres lies au coupleur OASIS:      ! pour phystoke avec thermiques
     INTEGER, SAVE:: npas, nexca  
     logical rnpb  
     parameter(rnpb = .true.)  
   
     character(len = 6):: ocean = 'force '  
     ! (type de modèle océan à utiliser: "force" ou "slab" mais pas "couple")  
   
     ! "slab" ocean  
     REAL, save:: tslab(klon) ! temperature of ocean slab  
     REAL, save:: seaice(klon) ! glace de mer (kg/m2)  
     REAL fluxo(klon) ! flux turbulents ocean-glace de mer  
     REAL fluxg(klon) ! flux turbulents ocean-atmosphere  
   
     ! Modele thermique du sol, a activer pour le cycle diurne:  
     logical:: ok_veget = .false. ! type de modele de vegetation utilise  
   
     logical:: ok_journe = .false., ok_mensuel = .true., ok_instan = .false.  
     ! sorties journalieres, mensuelles et instantanees dans les  
     ! fichiers histday, histmth et histins  
   
     LOGICAL ok_region ! sortir le fichier regional  
     PARAMETER (ok_region = .FALSE.)  
   
     ! pour phsystoke avec thermiques  
112      REAL fm_therm(klon, llm + 1)      REAL fm_therm(klon, llm + 1)
113      REAL entr_therm(klon, llm)      REAL entr_therm(klon, llm)
114      real, save:: q2(klon, llm + 1, nbsrf)      real, save:: q2(klon, llm + 1, nbsrf)
115    
116      INTEGER ivap ! indice de traceurs pour vapeur d'eau      INTEGER, PARAMETER:: ivap = 1 ! indice de traceur pour vapeur d'eau
117      PARAMETER (ivap = 1)      INTEGER, PARAMETER:: iliq = 2 ! indice de traceur pour eau liquide
     INTEGER iliq ! indice de traceurs pour eau liquide  
     PARAMETER (iliq = 2)  
118    
119      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)
120      LOGICAL, save:: ancien_ok      LOGICAL, save:: ancien_ok
121    
122      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K/s)      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K / s)
123      REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg/kg/s)      REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg / kg / s)
124    
125      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)
126    
127      !IM Amip2 PV a theta constante      REAL, save:: swdn0(klon, llm + 1), swdn(klon, llm + 1)
128        REAL, save:: swup0(klon, llm + 1), swup(klon, llm + 1)
129    
130      CHARACTER(LEN = 3) ctetaSTD(nbteta)      REAL, save:: lwdn0(klon, llm + 1), lwdn(klon, llm + 1)
131      DATA ctetaSTD/'350', '380', '405'/      REAL, save:: lwup0(klon, llm + 1), lwup(klon, llm + 1)
     REAL rtetaSTD(nbteta)  
     DATA rtetaSTD/350., 380., 405./  
   
     !MI Amip2 PV a theta constante  
   
     REAL swdn0(klon, llm + 1), swdn(klon, llm + 1)  
     REAL swup0(klon, llm + 1), swup(klon, llm + 1)  
     SAVE swdn0, swdn, swup0, swup  
   
     REAL lwdn0(klon, llm + 1), lwdn(klon, llm + 1)  
     REAL lwup0(klon, llm + 1), lwup(klon, llm + 1)  
     SAVE lwdn0, lwdn, lwup0, lwup  
   
     !IM Amip2  
     ! variables a une pression donnee  
   
     integer nlevSTD  
     PARAMETER(nlevSTD = 17)  
     real rlevSTD(nlevSTD)  
     DATA rlevSTD/100000., 92500., 85000., 70000., &  
          60000., 50000., 40000., 30000., 25000., 20000., &  
          15000., 10000., 7000., 5000., 3000., 2000., 1000./  
     CHARACTER(LEN = 4) clevSTD(nlevSTD)  
     DATA clevSTD/'1000', '925 ', '850 ', '700 ', '600 ', &  
          '500 ', '400 ', '300 ', '250 ', '200 ', '150 ', '100 ', &  
          '70 ', '50 ', '30 ', '20 ', '10 '/  
132    
133      ! prw: precipitable water      ! prw: precipitable water
134      real prw(klon)      real prw(klon)
135    
136      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg/m2)      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg / m2)
137      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg/kg)      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg / kg)
138      REAL flwp(klon), fiwp(klon)      REAL flwp(klon), fiwp(klon)
139      REAL flwc(klon, llm), fiwc(klon, llm)      REAL flwc(klon, llm), fiwc(klon, llm)
140    
     INTEGER kmax, lmax  
     PARAMETER(kmax = 8, lmax = 8)  
     INTEGER kmaxm1, lmaxm1  
     PARAMETER(kmaxm1 = kmax-1, lmaxm1 = lmax-1)  
   
     REAL zx_tau(kmaxm1), zx_pc(lmaxm1)  
     DATA zx_tau/0., 0.3, 1.3, 3.6, 9.4, 23., 60./  
     DATA zx_pc/50., 180., 310., 440., 560., 680., 800./  
   
     ! cldtopres pression au sommet des nuages  
     REAL cldtopres(lmaxm1)  
     DATA cldtopres/50., 180., 310., 440., 560., 680., 800./  
   
     ! taulev: numero du niveau de tau dans les sorties ISCCP  
     CHARACTER(LEN = 4) taulev(kmaxm1)  
   
     DATA taulev/'tau0', 'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'/  
     CHARACTER(LEN = 3) pclev(lmaxm1)  
     DATA pclev/'pc1', 'pc2', 'pc3', 'pc4', 'pc5', 'pc6', 'pc7'/  
   
     CHARACTER(LEN = 28) cnameisccp(lmaxm1, kmaxm1)  
     DATA cnameisccp/'pc< 50hPa, tau< 0.3', 'pc= 50-180hPa, tau< 0.3', &  
          'pc= 180-310hPa, tau< 0.3', 'pc= 310-440hPa, tau< 0.3', &  
          'pc= 440-560hPa, tau< 0.3', 'pc= 560-680hPa, tau< 0.3', &  
          'pc= 680-800hPa, tau< 0.3', 'pc< 50hPa, tau= 0.3-1.3', &  
          'pc= 50-180hPa, tau= 0.3-1.3', 'pc= 180-310hPa, tau= 0.3-1.3', &  
          'pc= 310-440hPa, tau= 0.3-1.3', 'pc= 440-560hPa, tau= 0.3-1.3', &  
          'pc= 560-680hPa, tau= 0.3-1.3', 'pc= 680-800hPa, tau= 0.3-1.3', &  
          'pc< 50hPa, tau= 1.3-3.6', 'pc= 50-180hPa, tau= 1.3-3.6', &  
          'pc= 180-310hPa, tau= 1.3-3.6', 'pc= 310-440hPa, tau= 1.3-3.6', &  
          'pc= 440-560hPa, tau= 1.3-3.6', 'pc= 560-680hPa, tau= 1.3-3.6', &  
          'pc= 680-800hPa, tau= 1.3-3.6', 'pc< 50hPa, tau= 3.6-9.4', &  
          'pc= 50-180hPa, tau= 3.6-9.4', 'pc= 180-310hPa, tau= 3.6-9.4', &  
          'pc= 310-440hPa, tau= 3.6-9.4', 'pc= 440-560hPa, tau= 3.6-9.4', &  
          'pc= 560-680hPa, tau= 3.6-9.4', 'pc= 680-800hPa, tau= 3.6-9.4', &  
          'pc< 50hPa, tau= 9.4-23', 'pc= 50-180hPa, tau= 9.4-23', &  
          'pc= 180-310hPa, tau= 9.4-23', 'pc= 310-440hPa, tau= 9.4-23', &  
          'pc= 440-560hPa, tau= 9.4-23', 'pc= 560-680hPa, tau= 9.4-23', &  
          'pc= 680-800hPa, tau= 9.4-23', 'pc< 50hPa, tau= 23-60', &  
          'pc= 50-180hPa, tau= 23-60', 'pc= 180-310hPa, tau= 23-60', &  
          'pc= 310-440hPa, tau= 23-60', 'pc= 440-560hPa, tau= 23-60', &  
          'pc= 560-680hPa, tau= 23-60', 'pc= 680-800hPa, tau= 23-60', &  
          'pc< 50hPa, tau> 60.', 'pc= 50-180hPa, tau> 60.', &  
          'pc= 180-310hPa, tau> 60.', 'pc= 310-440hPa, tau> 60.', &  
          'pc= 440-560hPa, tau> 60.', 'pc= 560-680hPa, tau> 60.', &  
          'pc= 680-800hPa, tau> 60.'/  
   
     !IM ISCCP simulator v3.4  
   
     integer nid_hf, nid_hf3d  
     save nid_hf, nid_hf3d  
   
141      ! Variables propres a la physique      ! Variables propres a la physique
142    
143      INTEGER, save:: radpas      INTEGER, save:: radpas
144      ! (Radiative transfer computations are made every "radpas" call to      ! Radiative transfer computations are made every "radpas" call to
145      ! "physiq".)      ! "physiq".
   
     REAL radsol(klon)  
     SAVE radsol ! bilan radiatif au sol calcule par code radiatif  
146    
147      INTEGER, SAVE:: itap ! number of calls to "physiq"      REAL, save:: radsol(klon)
148        ! Bilan radiatif net au sol (W/m2), positif vers le bas. Must be
149      REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction      ! saved because radlwsw is not called at every time step.
150        
151        REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction, in K
152    
153      REAL, save:: ftsoil(klon, nsoilmx, nbsrf)      REAL, save:: ftsoil(klon, nsoilmx, nbsrf)
154      ! soil temperature of surface fraction      ! soil temperature of surface fraction
155    
156      REAL, save:: fevap(klon, nbsrf) ! evaporation      REAL fluxlat(klon, nbsrf) ! flux de chaleur latente, en W m-2
     REAL fluxlat(klon, nbsrf)  
     SAVE fluxlat  
   
     REAL fqsurf(klon, nbsrf)  
     SAVE fqsurf ! humidite de l'air au contact de la surface  
   
     REAL, save:: qsol(klon) ! hauteur d'eau dans le sol  
157    
158      REAL fsnow(klon, nbsrf)      REAL, save:: fqsurf(klon, nbsrf)
159      SAVE fsnow ! epaisseur neigeuse      ! humidite de l'air au contact de la surface
160    
161      REAL falbe(klon, nbsrf)      REAL, save:: qsol(klon) ! column-density of water in soil, in kg m-2
162      SAVE falbe ! albedo par type de surface      REAL, save:: fsnow(klon, nbsrf) ! \'epaisseur neigeuse
163      REAL falblw(klon, nbsrf)      REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface
     SAVE falblw ! albedo par type de surface  
164    
165      ! Paramètres de l'orographie à l'échelle sous-maille (OESM) :      ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :
166      REAL, save:: zmea(klon) ! orographie moyenne      REAL, save:: zmea(klon) ! orographie moyenne
167      REAL, save:: zstd(klon) ! deviation standard de l'OESM      REAL, save:: zstd(klon) ! deviation standard de l'OESM
168      REAL, save:: zsig(klon) ! pente de l'OESM      REAL, save:: zsig(klon) ! pente de l'OESM
# Line 294  contains Line 171  contains
171      REAL, save:: zpic(klon) ! Maximum de l'OESM      REAL, save:: zpic(klon) ! Maximum de l'OESM
172      REAL, save:: zval(klon) ! Minimum de l'OESM      REAL, save:: zval(klon) ! Minimum de l'OESM
173      REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM      REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM
   
174      REAL zulow(klon), zvlow(klon)      REAL zulow(klon), zvlow(klon)
175        INTEGER ktest(klon)
176    
177      INTEGER igwd, idx(klon), itest(klon)      REAL, save:: agesno(klon, nbsrf) ! age de la neige
178        REAL, save:: run_off_lic_0(klon)
     REAL agesno(klon, nbsrf)  
     SAVE agesno ! age de la neige  
179    
180      REAL run_off_lic_0(klon)      ! Variables li\'ees \`a la convection d'Emanuel :
181      SAVE run_off_lic_0      REAL, save:: Ma(klon, llm) ! undilute upward mass flux
     !KE43  
     ! Variables liees a la convection de K. Emanuel (sb):  
   
     REAL bas, top ! cloud base and top levels  
     SAVE bas  
     SAVE top  
   
     REAL Ma(klon, llm) ! undilute upward mass flux  
     SAVE Ma  
     REAL qcondc(klon, llm) ! in-cld water content from convect  
     SAVE qcondc  
182      REAL, save:: sig1(klon, llm), w01(klon, llm)      REAL, save:: sig1(klon, llm), w01(klon, llm)
     REAL, save:: wd(klon)  
   
     ! Variables locales pour la couche limite (al1):  
   
     ! Variables locales:  
183    
184        ! Variables pour la couche limite (Alain Lahellec) :
185      REAL cdragh(klon) ! drag coefficient pour T and Q      REAL cdragh(klon) ! drag coefficient pour T and Q
186      REAL cdragm(klon) ! drag coefficient pour vent      REAL cdragm(klon) ! drag coefficient pour vent
187    
188      ! Pour phytrac :      REAL coefh(klon, 2:llm) ! coef d'echange pour phytrac
189      REAL ycoefh(klon, llm) ! coef d'echange pour phytrac  
190      REAL yu1(klon) ! vents dans la premiere couche U      REAL, save:: ffonte(klon, nbsrf)
191      REAL yv1(klon) ! vents dans la premiere couche V      ! flux thermique utilise pour fondre la neige
192      REAL ffonte(klon, nbsrf) !Flux thermique utilise pour fondre la neige  
193      REAL fqcalving(klon, nbsrf) !Flux d'eau "perdue" par la surface      REAL fqcalving(klon, nbsrf)
194      ! !et necessaire pour limiter la      ! flux d'eau "perdue" par la surface et n\'ecessaire pour limiter
195      ! !hauteur de neige, en kg/m2/s      ! la hauteur de neige, en kg / m2 / s
196      REAL zxffonte(klon), zxfqcalving(klon)  
197        REAL zxffonte(klon)
198      REAL pfrac_impa(klon, llm)! Produits des coefs lessivage impaction  
199      save pfrac_impa      REAL, save:: pfrac_impa(klon, llm)! Produits des coefs lessivage impaction
200      REAL pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation      REAL, save:: pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation
201      save pfrac_nucl  
202      REAL pfrac_1nucl(klon, llm)! Produits des coefs lessi nucl (alpha = 1)      REAL, save:: pfrac_1nucl(klon, llm)
203      save pfrac_1nucl      ! Produits des coefs lessi nucl (alpha = 1)
204      REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction)  
205        REAL frac_impa(klon, llm) ! fraction d'a\'erosols lessiv\'es (impaction)
206      REAL frac_nucl(klon, llm) ! idem (nucleation)      REAL frac_nucl(klon, llm) ! idem (nucleation)
207    
208      REAL, save:: rain_fall(klon) ! pluie      REAL, save:: rain_fall(klon)
209      REAL, save:: snow_fall(klon) ! neige      ! liquid water mass flux (kg / m2 / s), positive down
210    
211        REAL, save:: snow_fall(klon)
212        ! solid water mass flux (kg / m2 / s), positive down
213    
214      REAL rain_tiedtke(klon), snow_tiedtke(klon)      REAL rain_tiedtke(klon), snow_tiedtke(klon)
215    
216      REAL evap(klon), devap(klon) ! evaporation and its derivative      REAL evap(klon) ! flux d'\'evaporation au sol
217      REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee      real dflux_q(klon) ! derivative of the evaporation flux at the surface
218      REAL dlw(klon) ! derivee infra rouge      REAL sens(klon) ! flux de chaleur sensible au sol
219      SAVE dlw      real dflux_t(klon) ! derivee du flux de chaleur sensible au sol
220        REAL, save:: dlw(klon) ! derivative of infra-red flux
221      REAL bils(klon) ! bilan de chaleur au sol      REAL bils(klon) ! bilan de chaleur au sol
222      REAL fder(klon) ! Derive de flux (sensible et latente)      REAL fder(klon) ! d\'erive de flux (sensible et latente)
     save fder  
223      REAL ve(klon) ! integr. verticale du transport meri. de l'energie      REAL ve(klon) ! integr. verticale du transport meri. de l'energie
224      REAL vq(klon) ! integr. verticale du transport meri. de l'eau      REAL vq(klon) ! integr. verticale du transport meri. de l'eau
225      REAL ue(klon) ! integr. verticale du transport zonal de l'energie      REAL ue(klon) ! integr. verticale du transport zonal de l'energie
226      REAL uq(klon) ! integr. verticale du transport zonal de l'eau      REAL uq(klon) ! integr. verticale du transport zonal de l'eau
227    
228      REAL frugs(klon, nbsrf) ! longueur de rugosite      REAL, save:: frugs(klon, nbsrf) ! longueur de rugosite
     save frugs  
229      REAL zxrugs(klon) ! longueur de rugosite      REAL zxrugs(klon) ! longueur de rugosite
230    
231      ! Conditions aux limites      ! Conditions aux limites
232    
233      INTEGER julien      INTEGER julien
   
     INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day  
234      REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface      REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface
235      REAL pctsrf_new(klon, nbsrf) ! pourcentage surfaces issus d'ORCHIDEE      REAL, save:: albsol(klon) ! albedo du sol total, visible, moyen par maille
   
     REAL albsol(klon)  
     SAVE albsol ! albedo du sol total  
     REAL albsollw(klon)  
     SAVE albsollw ! albedo du sol total  
   
236      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU
237        real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2
     ! Declaration des procedures appelees  
   
     EXTERNAL alboc ! calculer l'albedo sur ocean  
     !KE43  
     EXTERNAL conema3 ! convect4.3  
     EXTERNAL nuage ! calculer les proprietes radiatives  
     EXTERNAL transp ! transport total de l'eau et de l'energie  
   
     ! Variables locales  
238    
239      real, save:: clwcon(klon, llm), rnebcon(klon, llm)      real, save:: clwcon(klon, llm), rnebcon(klon, llm)
240      real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)      real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)
241    
242      REAL rhcl(klon, llm) ! humiditi relative ciel clair      REAL rhcl(klon, llm) ! humidit\'e relative ciel clair
243      REAL dialiq(klon, llm) ! eau liquide nuageuse      REAL dialiq(klon, llm) ! eau liquide nuageuse
244      REAL diafra(klon, llm) ! fraction nuageuse      REAL diafra(klon, llm) ! fraction nuageuse
245      REAL cldliq(klon, llm) ! eau liquide nuageuse      REAL cldliq(klon, llm) ! eau liquide nuageuse
# Line 401  contains Line 247  contains
247      REAL cldtau(klon, llm) ! epaisseur optique      REAL cldtau(klon, llm) ! epaisseur optique
248      REAL cldemi(klon, llm) ! emissivite infrarouge      REAL cldemi(klon, llm) ! emissivite infrarouge
249    
250      REAL fluxq(klon, llm, nbsrf) ! flux turbulent d'humidite      REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface
251      REAL fluxt(klon, llm, nbsrf) ! flux turbulent de chaleur  
252      REAL fluxu(klon, llm, nbsrf) ! flux turbulent de vitesse u      REAL flux_t(klon, nbsrf)
253      REAL fluxv(klon, llm, nbsrf) ! flux turbulent de vitesse v      ! flux de chaleur sensible (c_p T) (W / m2) (orientation positive
254        ! vers le bas) à la surface
255      REAL zxfluxt(klon, llm)  
256      REAL zxfluxq(klon, llm)      REAL flux_u(klon, nbsrf), flux_v(klon, nbsrf)
257      REAL zxfluxu(klon, llm)      ! tension du vent (flux turbulent de vent) à la surface, en Pa
     REAL zxfluxv(klon, llm)  
258    
259      ! Le rayonnement n'est pas calculé tous les pas, il faut donc que      ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que
260      ! les variables soient rémanentes.      ! les variables soient r\'emanentes.
261      REAL, save:: heat(klon, llm) ! chauffage solaire      REAL, save:: heat(klon, llm) ! chauffage solaire
262      REAL heat0(klon, llm) ! chauffage solaire ciel clair      REAL, save:: heat0(klon, llm) ! chauffage solaire ciel clair
263      REAL, save:: cool(klon, llm) ! refroidissement infrarouge      REAL, save:: cool(klon, llm) ! refroidissement infrarouge
264      REAL cool0(klon, llm) ! refroidissement infrarouge ciel clair      REAL, save:: cool0(klon, llm) ! refroidissement infrarouge ciel clair
265      REAL, save:: topsw(klon), toplw(klon), solsw(klon)      REAL, save:: topsw(klon), toplw(klon), solsw(klon)
266      REAL, save:: sollw(klon) ! rayonnement infrarouge montant à la surface  
267      real, save:: sollwdown(klon) ! downward LW flux at surface      REAL, save:: sollw(klon) ! surface net downward longwave flux, in W m-2
268        real, save:: sollwdown(klon) ! downwelling longwave flux at surface
269      REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)      REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)
270      REAL albpla(klon)      REAL, save:: albpla(klon)
271      REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous surface  
272      REAL fsolsw(klon, nbsrf) ! flux solaire absorb. pour chaque sous surface      REAL conv_q(klon, llm) ! convergence de l'humidite (kg / kg / s)
273      SAVE albpla      REAL conv_t(klon, llm) ! convergence of temperature (K / s)
274      SAVE heat0, cool0  
275        REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut
276      INTEGER itaprad      REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree
277      SAVE itaprad  
278        REAL zxfluxlat(klon)
279      REAL conv_q(klon, llm) ! convergence de l'humidite (kg/kg/s)      REAL dist, mu0(klon), fract(klon)
280      REAL conv_t(klon, llm) ! convergence of temperature (K/s)      real longi
   
     REAL cldl(klon), cldm(klon), cldh(klon) !nuages bas, moyen et haut  
     REAL cldt(klon), cldq(klon) !nuage total, eau liquide integree  
   
     REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon)  
   
     REAL dist, rmu0(klon), fract(klon)  
     REAL zdtime ! pas de temps du rayonnement (s)  
     real zlongi  
281      REAL z_avant(klon), z_apres(klon), z_factor(klon)      REAL z_avant(klon), z_apres(klon), z_factor(klon)
282      REAL za, zb      REAL zb
283      REAL zx_t, zx_qs, zdelta, zcor      REAL zx_qs, zcor
284      real zqsat(klon, llm)      real zqsat(klon, llm)
285      INTEGER i, k, iq, nsrf      INTEGER i, k, iq, nsrf
     REAL, PARAMETER:: t_coup = 234.  
286      REAL zphi(klon, llm)      REAL zphi(klon, llm)
287    
288      !IM cf. AM Variables locales pour la CLA (hbtm2)      ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm)
289    
290      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite
291      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA
292      REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite      REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite
293      REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite      REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite
294      REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite      REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite
295      REAL, SAVE:: pblt(klon, nbsrf) ! T a la Hauteur de couche limite      REAL, SAVE:: pblt(klon, nbsrf) ! T \`a la hauteur de couche limite
296      REAL, SAVE:: therm(klon, nbsrf)      REAL, SAVE:: therm(klon, nbsrf)
297      REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape      ! Grandeurs de sorties
     REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition  
     REAL, SAVE:: trmb3(klon, nbsrf) ! Point Omega  
     ! Grdeurs de sorties  
298      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)
299      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)
300      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)      REAL s_therm(klon)
     REAL s_trmb3(klon)  
301    
302      ! Variables locales pour la convection de K. Emanuel :      ! Variables pour la convection de K. Emanuel :
303    
304      REAL upwd(klon, llm) ! saturated updraft mass flux      REAL upwd(klon, llm) ! saturated updraft mass flux
305      REAL dnwd(klon, llm) ! saturated downdraft mass flux      REAL dnwd(klon, llm) ! saturated downdraft mass flux
306      REAL dnwd0(klon, llm) ! unsaturated downdraft mass flux      REAL, save:: cape(klon)
307      REAL tvp(klon, llm) ! virtual temp of lifted parcel  
     REAL cape(klon) ! CAPE  
     SAVE cape  
   
     REAL pbase(klon) ! cloud base pressure  
     SAVE pbase  
     REAL bbase(klon) ! cloud base buoyancy  
     SAVE bbase  
     REAL rflag(klon) ! flag fonctionnement de convect  
308      INTEGER iflagctrl(klon) ! flag fonctionnement de convect      INTEGER iflagctrl(klon) ! flag fonctionnement de convect
     ! -- convect43:  
     REAL dtvpdt1(klon, llm), dtvpdq1(klon, llm)  
     REAL dplcldt(klon), dplcldr(klon)  
309    
310      ! Variables du changement      ! Variables du changement
311    
312      ! con: convection      ! con: convection
313      ! lsc: large scale condensation      ! lsc: large scale condensation
314      ! ajs: ajustement sec      ! ajs: ajustement sec
315      ! eva: évaporation de l'eau liquide nuageuse      ! eva: \'evaporation de l'eau liquide nuageuse
316      ! vdf: vertical diffusion in boundary layer      ! vdf: vertical diffusion in boundary layer
317      REAL d_t_con(klon, llm), d_q_con(klon, llm)      REAL d_t_con(klon, llm), d_q_con(klon, llm)
318      REAL d_u_con(klon, llm), d_v_con(klon, llm)      REAL, save:: d_u_con(klon, llm), d_v_con(klon, llm)
319      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)
320      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)
321      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)
# Line 508  contains Line 329  contains
329      REAL prfl(klon, llm + 1), psfl(klon, llm + 1)      REAL prfl(klon, llm + 1), psfl(klon, llm + 1)
330    
331      INTEGER, save:: ibas_con(klon), itop_con(klon)      INTEGER, save:: ibas_con(klon), itop_con(klon)
332        real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa
333    
334      REAL rain_con(klon), rain_lsc(klon)      REAL rain_con(klon)
335      REAL snow_con(klon), snow_lsc(klon)      real rain_lsc(klon)
336      REAL d_ts(klon, nbsrf)      REAL snow_con(klon) ! neige (mm / s)
337        real snow_lsc(klon)
338        REAL d_ts(klon, nbsrf) ! variation of ftsol
339    
340      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)
341      REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)      REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)
# Line 534  contains Line 358  contains
358      integer:: iflag_cldcon = 1      integer:: iflag_cldcon = 1
359      logical ptconv(klon, llm)      logical ptconv(klon, llm)
360    
361      ! Variables locales pour effectuer les appels en série :      ! Variables pour effectuer les appels en s\'erie :
362    
363      REAL t_seri(klon, llm), q_seri(klon, llm)      REAL t_seri(klon, llm), q_seri(klon, llm)
364      REAL ql_seri(klon, llm), qs_seri(klon, llm)      REAL ql_seri(klon, llm)
365      REAL u_seri(klon, llm), v_seri(klon, llm)      REAL u_seri(klon, llm), v_seri(klon, llm)
366        REAL tr_seri(klon, llm, nqmx - 2)
     REAL tr_seri(klon, llm, nbtr)  
     REAL d_tr(klon, llm, nbtr)  
367    
368      REAL zx_rh(klon, llm)      REAL zx_rh(klon, llm)
369    
370      REAL zustrdr(klon), zvstrdr(klon)      REAL zustrdr(klon), zvstrdr(klon)
371      REAL zustrli(klon), zvstrli(klon)      REAL zustrli(klon), zvstrli(klon)
     REAL zustrph(klon), zvstrph(klon)  
372      REAL aam, torsfc      REAL aam, torsfc
373    
     REAL dudyn(iim + 1, jjm + 1, llm)  
   
     REAL zx_tmp_fi2d(klon) ! variable temporaire grille physique  
     REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm)  
   
     INTEGER, SAVE:: nid_day, nid_ins  
   
374      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.
375      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.
376      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.
377      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.
378    
379      REAL zsto      REAL tsol(klon)
380    
381      logical ok_sync      REAL d_t_ec(klon, llm)
382      real date0      ! tendance due \`a la conversion d'\'energie cin\'etique en
383        ! énergie thermique
384      ! Variables liées au bilan d'énergie et d'enthalpie :  
385      REAL ztsol(klon)      REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf)
386      REAL d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec      ! temperature and humidity at 2 m
387      REAL, SAVE:: d_h_vcol_phy  
388      REAL fs_bound, fq_bound      REAL, save:: u10m_srf(klon, nbsrf), v10m_srf(klon, nbsrf)
389      REAL zero_v(klon)      ! composantes du vent \`a 10 m
390      CHARACTER(LEN = 15) tit      
391      INTEGER:: ip_ebil = 0 ! print level for energy conservation diagnostics      REAL zt2m(klon), zq2m(klon) ! température, humidité 2 m moyenne sur 1 maille
392      INTEGER:: if_ebil = 0 ! verbosity for diagnostics of energy conservation      REAL u10m(klon), v10m(klon) ! vent \`a 10 m moyenn\' sur les sous-surfaces
   
     REAL d_t_ec(klon, llm) ! tendance due à la conversion Ec -> E thermique  
     REAL ZRCPD  
   
     REAL t2m(klon, nbsrf), q2m(klon, nbsrf) ! temperature and humidity at 2 m  
     REAL u10m(klon, nbsrf), v10m(klon, nbsrf) ! vents a 10 m  
     REAL zt2m(klon), zq2m(klon) ! temp., hum. 2 m moyenne s/ 1 maille  
     REAL zu10m(klon), zv10m(klon) ! vents a 10 m moyennes s/1 maille  
393    
394      ! Aerosol effects:      ! Aerosol effects:
395    
396      REAL sulfate(klon, llm) ! SO4 aerosol concentration (micro g/m3)      REAL, save:: topswad(klon), solswad(klon) ! aerosol direct effect
   
     REAL, save:: sulfate_pi(klon, llm)  
     ! SO4 aerosol concentration, in micro g/m3, pre-industrial value  
   
     REAL cldtaupi(klon, llm)  
     ! cloud optical thickness for pre-industrial (pi) aerosols  
   
     REAL re(klon, llm) ! Cloud droplet effective radius  
     REAL fl(klon, llm) ! denominator of re  
   
     ! Aerosol optical properties  
     REAL, save:: tau_ae(klon, llm, 2), piz_ae(klon, llm, 2)  
     REAL, save:: cg_ae(klon, llm, 2)  
   
     REAL topswad(klon), solswad(klon) ! aerosol direct effect  
     REAL topswai(klon), solswai(klon) ! aerosol indirect effect  
   
     REAL aerindex(klon) ! POLDER aerosol index  
   
397      LOGICAL:: ok_ade = .false. ! apply aerosol direct effect      LOGICAL:: ok_ade = .false. ! apply aerosol direct effect
     LOGICAL:: ok_aie = .false. ! apply aerosol indirect effect  
398    
399      REAL:: bl95_b0 = 2., bl95_b1 = 0.2      REAL:: bl95_b0 = 2., bl95_b1 = 0.2
400      ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus      ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus
401      ! B). They link cloud droplet number concentration to aerosol mass      ! B). They link cloud droplet number concentration to aerosol mass
402      ! concentration.      ! concentration.
403    
404      SAVE u10m      real zmasse(klon, llm)
     SAVE v10m  
     SAVE t2m  
     SAVE q2m  
     SAVE ffonte  
     SAVE fqcalving  
     SAVE rain_con  
     SAVE snow_con  
     SAVE topswai  
     SAVE topswad  
     SAVE solswai  
     SAVE solswad  
     SAVE d_u_con  
     SAVE d_v_con  
   
     real zmasse(klon, llm)  
405      ! (column-density of mass of air in a cell, in kg m-2)      ! (column-density of mass of air in a cell, in kg m-2)
406    
407      real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2      integer, save:: ncid_startphy
408    
409      namelist /physiq_nml/ ocean, ok_veget, ok_journe, ok_mensuel, ok_instan, &      namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, &
410           fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, ratqsbas, &           ratqsbas, ratqshaut, ok_ade, bl95_b0, bl95_b1
          ratqshaut, if_ebil, ok_ade, ok_aie, bl95_b0, bl95_b1, iflag_thermals, &  
          nsplit_thermals  
411    
412      !----------------------------------------------------------------      !----------------------------------------------------------------
413    
     IF (if_ebil >= 1) zero_v = 0.  
     ok_sync = .TRUE.  
414      IF (nqmx < 2) CALL abort_gcm('physiq', &      IF (nqmx < 2) CALL abort_gcm('physiq', &
415           'eaux vapeur et liquide sont indispensables', 1)           'eaux vapeur et liquide sont indispensables')
416    
417      test_firstcal: IF (firstcal) THEN      test_firstcal: IF (firstcal) THEN
418         ! initialiser         ! initialiser
419         u10m = 0.         u10m_srf = 0.
420         v10m = 0.         v10m_srf = 0.
421         t2m = 0.         t2m = 0.
422         q2m = 0.         q2m = 0.
423         ffonte = 0.         ffonte = 0.
        fqcalving = 0.  
        piz_ae = 0.  
        tau_ae = 0.  
        cg_ae = 0.  
        rain_con(:) = 0.  
        snow_con(:) = 0.  
        topswai(:) = 0.  
        topswad(:) = 0.  
        solswai(:) = 0.  
        solswad(:) = 0.  
   
424         d_u_con = 0.         d_u_con = 0.
425         d_v_con = 0.         d_v_con = 0.
426         rnebcon0 = 0.         rnebcon0 = 0.
427         clwcon0 = 0.         clwcon0 = 0.
428         rnebcon = 0.         rnebcon = 0.
429         clwcon = 0.         clwcon = 0.
   
430         pblh =0. ! Hauteur de couche limite         pblh =0. ! Hauteur de couche limite
431         plcl =0. ! Niveau de condensation de la CLA         plcl =0. ! Niveau de condensation de la CLA
432         capCL =0. ! CAPE de couche limite         capCL =0. ! CAPE de couche limite
433         oliqCL =0. ! eau_liqu integree de couche limite         oliqCL =0. ! eau_liqu integree de couche limite
434         cteiCL =0. ! cloud top instab. crit. couche limite         cteiCL =0. ! cloud top instab. crit. couche limite
435         pblt =0. ! T a la Hauteur de couche limite         pblt =0.
436         therm =0.         therm =0.
        trmb1 =0. ! deep_cape  
        trmb2 =0. ! inhibition  
        trmb3 =0. ! Point Omega  
437    
        IF (if_ebil >= 1) d_h_vcol_phy = 0.  
   
        iflag_thermals = 0  
        nsplit_thermals = 1  
438         print *, "Enter namelist 'physiq_nml'."         print *, "Enter namelist 'physiq_nml'."
439         read(unit=*, nml=physiq_nml)         read(unit=*, nml=physiq_nml)
440         write(unit_nml, nml=physiq_nml)         write(unit_nml, nml=physiq_nml)
441    
442           call ctherm
443         call conf_phys         call conf_phys
444    
445         ! Initialiser les compteurs:         ! Initialiser les compteurs:
446    
447         frugs = 0.         frugs = 0.
448         itap = 0         CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
449         itaprad = 0              rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, agesno, &
450         CALL phyetat0("startphy.nc", pctsrf, ftsol, ftsoil, ocean, tslab, &              zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, &
451              seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, rain_fall, &              ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01, &
452              snow_fall, solsw, sollw, dlw, radsol, frugs, agesno, zmea, &              ncid_startphy)
             zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, &  
             ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01)  
453    
454         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial
455         q2 = 1e-8         q2 = 1e-8
456    
457         radpas = NINT(86400. / dtphys / nbapp_rad)         radpas = lmt_pas / nbapp_rad
458           print *, "radpas = ", radpas
        ! on remet le calendrier a zero  
        IF (raz_date) itau_phy = 0  
   
        PRINT *, 'cycle_diurne = ', cycle_diurne  
        CALL printflag(radpas, ocean /= 'force', ok_oasis, ok_journe, &  
             ok_instan, ok_region)  
   
        IF (dtphys * REAL(radpas) > 21600. .AND. cycle_diurne) THEN  
           print *, "Au minimum 4 appels par jour si cycle diurne"  
           call abort_gcm('physiq', &  
                "Nombre d'appels au rayonnement insuffisant", 1)  
        ENDIF  
459    
460         ! Initialisation pour le schéma de convection d'Emanuel :         ! Initialisation pour le sch\'ema de convection d'Emanuel :
461         IF (iflag_con >= 3) THEN         IF (conv_emanuel) THEN
462            ibas_con = 1            ibas_con = 1
463            itop_con = 1            itop_con = 1
464         ENDIF         ENDIF
# Line 735  contains Line 470  contains
470            rugoro = 0.            rugoro = 0.
471         ENDIF         ENDIF
472    
        lmt_pas = NINT(86400. / dtphys) ! tous les jours  
        print *, 'Number of time steps of "physics" per day: ', lmt_pas  
   
        ecrit_ins = NINT(ecrit_ins/dtphys)  
        ecrit_hf = NINT(ecrit_hf/dtphys)  
        ecrit_mth = NINT(ecrit_mth/dtphys)  
        ecrit_tra = NINT(86400.*ecrit_tra/dtphys)  
        ecrit_reg = NINT(ecrit_reg/dtphys)  
   
        ! Initialiser le couplage si necessaire  
   
        npas = 0  
        nexca = 0  
   
473         ! Initialisation des sorties         ! Initialisation des sorties
474           call ini_histins(ok_newmicro)
475         call ini_histhf(dtphys, nid_hf, nid_hf3d)         CALL phyredem0
476         call ini_histday(dtphys, ok_journe, nid_day, nqmx)         call conf_interface
        call ini_histins(dtphys, ok_instan, nid_ins)  
        CALL ymds2ju(annee_ref, 1, int(day_ref), 0., date0)  
        ! Positionner date0 pour initialisation de ORCHIDEE  
        print *, 'physiq date0: ', date0  
477      ENDIF test_firstcal      ENDIF test_firstcal
478    
479      ! Mettre a zero des variables de sortie (pour securite)      ! We will modify variables *_seri and we will not touch variables
480        ! u, v, t, qx:
481        t_seri = t
482        u_seri = u
483        v_seri = v
484        q_seri = qx(:, :, ivap)
485        ql_seri = qx(:, :, iliq)
486        tr_seri = qx(:, :, 3:nqmx)
487    
488      DO i = 1, klon      tsol = sum(ftsol * pctsrf, dim = 2)
        d_ps(i) = 0.  
     ENDDO  
     DO iq = 1, nqmx  
        DO k = 1, llm  
           DO i = 1, klon  
              d_qx(i, k, iq) = 0.  
           ENDDO  
        ENDDO  
     ENDDO  
     da = 0.  
     mp = 0.  
     phi = 0.  
   
     ! Ne pas affecter les valeurs entrées de u, v, h, et q :  
   
     DO k = 1, llm  
        DO i = 1, klon  
           t_seri(i, k) = t(i, k)  
           u_seri(i, k) = u(i, k)  
           v_seri(i, k) = v(i, k)  
           q_seri(i, k) = qx(i, k, ivap)  
           ql_seri(i, k) = qx(i, k, iliq)  
           qs_seri(i, k) = 0.  
        ENDDO  
     ENDDO  
     IF (nqmx >= 3) THEN  
        tr_seri(:, :, :nqmx-2) = qx(:, :, 3:nqmx)  
     ELSE  
        tr_seri(:, :, 1) = 0.  
     ENDIF  
   
     DO i = 1, klon  
        ztsol(i) = 0.  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           ztsol(i) = ztsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     IF (if_ebil >= 1) THEN  
        tit = 'after dynamics'  
        CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        ! Comme les tendances de la physique sont ajoutés dans la  
        !  dynamique, la variation d'enthalpie par la dynamique devrait  
        !  être égale à la variation de la physique au pas de temps  
        !  précédent.  Donc la somme de ces 2 variations devrait être  
        !  nulle.  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol + d_h_vcol_phy, &  
             d_qt, 0., fs_bound, fq_bound)  
     END IF  
489    
490      ! Diagnostic de la tendance dynamique :      ! Diagnostic de la tendance dynamique :
491      IF (ancien_ok) THEN      IF (ancien_ok) THEN
# Line 845  contains Line 515  contains
515      ! Check temperatures:      ! Check temperatures:
516      CALL hgardfou(t_seri, ftsol)      CALL hgardfou(t_seri, ftsol)
517    
518      ! Incrementer le compteur de la physique      call increment_itap
519      itap = itap + 1      julien = MOD(dayvrai, 360)
     julien = MOD(NINT(rdayvrai), 360)  
520      if (julien == 0) julien = 360      if (julien == 0) julien = 360
521    
522      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k)-paprs(:, k + 1)) / rg      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg
   
     ! Mettre en action les conditions aux limites (albedo, sst etc.).  
523    
524      ! Prescrire l'ozone et calculer l'albedo sur l'ocean.      ! \'Evaporation de l'eau liquide nuageuse :
     wo = ozonecm(REAL(julien), paprs)  
   
     ! Évaporation de l'eau liquide nuageuse :  
525      DO k = 1, llm      DO k = 1, llm
526         DO i = 1, klon         DO i = 1, klon
527            zb = MAX(0., ql_seri(i, k))            zb = MAX(0., ql_seri(i, k))
# Line 868  contains Line 532  contains
532      ENDDO      ENDDO
533      ql_seri = 0.      ql_seri = 0.
534    
535      IF (if_ebil >= 2) THEN      frugs = MAX(frugs, 0.000015)
536         tit = 'after reevap'      zxrugs = sum(frugs * pctsrf, dim = 2)
        CALL diagetpq(airephy, tit, ip_ebil, 2, 1, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
   
     END IF  
   
     ! Appeler la diffusion verticale (programme de couche limite)  
   
     DO i = 1, klon  
        zxrugs(i) = 0.  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           frugs(i, nsrf) = MAX(frugs(i, nsrf), 0.000015)  
        ENDDO  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxrugs(i) = zxrugs(i) + frugs(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     ! calculs necessaires au calcul de l'albedo dans l'interface  
   
     CALL orbite(REAL(julien), zlongi, dist)  
     IF (cycle_diurne) THEN  
        zdtime = dtphys * REAL(radpas)  
        CALL zenang(zlongi, time, zdtime, rmu0, fract)  
     ELSE  
        rmu0 = -999.999  
     ENDIF  
   
     ! Calcul de l'abedo moyen par maille  
     albsol(:) = 0.  
     albsollw(:) = 0.  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           albsol(i) = albsol(i) + falbe(i, nsrf) * pctsrf(i, nsrf)  
           albsollw(i) = albsollw(i) + falblw(i, nsrf) * pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     ! Répartition sous maille des flux longwave et shortwave  
     ! Répartition du longwave par sous-surface linéarisée  
   
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           fsollw(i, nsrf) = sollw(i) &  
                + 4. * RSIGMA * ztsol(i)**3 * (ztsol(i) - ftsol(i, nsrf))  
           fsolsw(i, nsrf) = solsw(i) * (1. - falbe(i, nsrf)) / (1. - albsol(i))  
        ENDDO  
     ENDDO  
537    
538      fder = dlw      ! Calculs n\'ecessaires au calcul de l'albedo dans l'interface avec
539        ! la surface.
540    
541      ! Couche limite:      CALL orbite(REAL(julien), longi, dist)
542        CALL zenang(longi, time, dtphys * radpas, mu0, fract)
543    
544      CALL clmain(dtphys, itap, pctsrf, pctsrf_new, t_seri, q_seri, &      CALL pbl_surface(pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, &
545           u_seri, v_seri, julien, rmu0, co2_ppm, ok_veget, ocean, &           ftsol, cdmmax, cdhmax, ftsoil, qsol, paprs, play, fsnow, fqsurf, &
546           ftsol, soil_model, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, &           falbe, fluxlat, rain_fall, snow_fall, frugs, agesno, rugoro, d_t_vdf, &
547           qsol, paprs, play, fsnow, fqsurf, fevap, falbe, falblw, fluxlat, &           d_q_vdf, d_u_vdf, d_v_vdf, d_ts, flux_t, flux_q, flux_u, flux_v, &
548           rain_fall, snow_fall, fsolsw, fsollw, fder, rlon, rlat, &           cdragh, cdragm, q2, dflux_t, dflux_q, coefh, t2m, q2m, u10m_srf, &
549           frugs, firstcal, agesno, rugoro, d_t_vdf, &           v10m_srf, pblh, capCL, oliqCL, cteiCL, pblT, therm, plcl, fqcalving, &
550           d_q_vdf, d_u_vdf, d_v_vdf, d_ts, fluxt, fluxq, fluxu, fluxv, cdragh, &           ffonte, run_off_lic_0, albsol, sollw, solsw, tsol)
551           cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, &  
552           pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, plcl, &      ! Incr\'ementation des flux
553           fqcalving, ffonte, run_off_lic_0, fluxo, fluxg, tslab, seaice)  
554        sens = sum(flux_t * pctsrf, dim = 2)
555      ! Incrémentation des flux      evap = - sum(flux_q * pctsrf, dim = 2)
556        fder = dlw + dflux_t + dflux_q
     zxfluxt = 0.  
     zxfluxq = 0.  
     zxfluxu = 0.  
     zxfluxv = 0.  
     DO nsrf = 1, nbsrf  
        DO k = 1, llm  
           DO i = 1, klon  
              zxfluxt(i, k) = zxfluxt(i, k) + fluxt(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxq(i, k) = zxfluxq(i, k) + fluxq(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxu(i, k) = zxfluxu(i, k) + fluxu(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxv(i, k) = zxfluxv(i, k) + fluxv(i, k, nsrf) * pctsrf(i, nsrf)  
           END DO  
        END DO  
     END DO  
     DO i = 1, klon  
        sens(i) = - zxfluxt(i, 1) ! flux de chaleur sensible au sol  
        evap(i) = - zxfluxq(i, 1) ! flux d'évaporation au sol  
        fder(i) = dlw(i) + dsens(i) + devap(i)  
     ENDDO  
557    
558      DO k = 1, llm      DO k = 1, llm
559         DO i = 1, klon         DO i = 1, klon
# Line 972  contains Line 564  contains
564         ENDDO         ENDDO
565      ENDDO      ENDDO
566    
567      IF (if_ebil >= 2) THEN      call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf')
568         tit = 'after clmain'      ftsol = ftsol + d_ts ! update surface temperature
569         CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &      tsol = sum(ftsol * pctsrf, dim = 2)
570              ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &      zxfluxlat = sum(fluxlat * pctsrf, dim = 2)
571              d_ql, d_qs, d_ec)      zt2m = sum(t2m * pctsrf, dim = 2)
572         call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &      zq2m = sum(q2m * pctsrf, dim = 2)
573              sens, evap, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &      u10m = sum(u10m_srf * pctsrf, dim = 2)
574              fs_bound, fq_bound)      v10m = sum(v10m_srf * pctsrf, dim = 2)
575      END IF      zxffonte = sum(ffonte * pctsrf, dim = 2)
576        s_pblh = sum(pblh * pctsrf, dim = 2)
577        s_lcl = sum(plcl * pctsrf, dim = 2)
578        s_capCL = sum(capCL * pctsrf, dim = 2)
579        s_oliqCL = sum(oliqCL * pctsrf, dim = 2)
580        s_cteiCL = sum(cteiCL * pctsrf, dim = 2)
581        s_pblT = sum(pblT * pctsrf, dim = 2)
582        s_therm = sum(therm * pctsrf, dim = 2)
583    
584      ! Update surface temperature:      ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne :
   
     DO i = 1, klon  
        zxtsol(i) = 0.  
        zxfluxlat(i) = 0.  
   
        zt2m(i) = 0.  
        zq2m(i) = 0.  
        zu10m(i) = 0.  
        zv10m(i) = 0.  
        zxffonte(i) = 0.  
        zxfqcalving(i) = 0.  
   
        s_pblh(i) = 0.  
        s_lcl(i) = 0.  
        s_capCL(i) = 0.  
        s_oliqCL(i) = 0.  
        s_cteiCL(i) = 0.  
        s_pblT(i) = 0.  
        s_therm(i) = 0.  
        s_trmb1(i) = 0.  
        s_trmb2(i) = 0.  
        s_trmb3(i) = 0.  
   
        IF (abs(pctsrf(i, is_ter) + pctsrf(i, is_lic) + pctsrf(i, is_oce) &  
             + pctsrf(i, is_sic) - 1.)  >  EPSFRA) print *, &  
             'physiq : problème sous surface au point ', i, pctsrf(i, 1 : nbsrf)  
     ENDDO  
585      DO nsrf = 1, nbsrf      DO nsrf = 1, nbsrf
586         DO i = 1, klon         DO i = 1, klon
587            ftsol(i, nsrf) = ftsol(i, nsrf) + d_ts(i, nsrf)            IF (pctsrf(i, nsrf) < epsfra) then
588            zxtsol(i) = zxtsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)               ftsol(i, nsrf) = tsol(i)
589            zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf)*pctsrf(i, nsrf)               t2m(i, nsrf) = zt2m(i)
590                 q2m(i, nsrf) = zq2m(i)
591            zt2m(i) = zt2m(i) + t2m(i, nsrf)*pctsrf(i, nsrf)               u10m_srf(i, nsrf) = u10m(i)
592            zq2m(i) = zq2m(i) + q2m(i, nsrf)*pctsrf(i, nsrf)               v10m_srf(i, nsrf) = v10m(i)
593            zu10m(i) = zu10m(i) + u10m(i, nsrf)*pctsrf(i, nsrf)               ffonte(i, nsrf) = zxffonte(i)
594            zv10m(i) = zv10m(i) + v10m(i, nsrf)*pctsrf(i, nsrf)               pblh(i, nsrf) = s_pblh(i)
595            zxffonte(i) = zxffonte(i) + ffonte(i, nsrf)*pctsrf(i, nsrf)               plcl(i, nsrf) = s_lcl(i)
596            zxfqcalving(i) = zxfqcalving(i) + &               capCL(i, nsrf) = s_capCL(i)
597                 fqcalving(i, nsrf)*pctsrf(i, nsrf)               oliqCL(i, nsrf) = s_oliqCL(i)
598            s_pblh(i) = s_pblh(i) + pblh(i, nsrf)*pctsrf(i, nsrf)               cteiCL(i, nsrf) = s_cteiCL(i)
599            s_lcl(i) = s_lcl(i) + plcl(i, nsrf)*pctsrf(i, nsrf)               pblT(i, nsrf) = s_pblT(i)
600            s_capCL(i) = s_capCL(i) + capCL(i, nsrf) *pctsrf(i, nsrf)               therm(i, nsrf) = s_therm(i)
601            s_oliqCL(i) = s_oliqCL(i) + oliqCL(i, nsrf) *pctsrf(i, nsrf)            end IF
           s_cteiCL(i) = s_cteiCL(i) + cteiCL(i, nsrf) *pctsrf(i, nsrf)  
           s_pblT(i) = s_pblT(i) + pblT(i, nsrf) *pctsrf(i, nsrf)  
           s_therm(i) = s_therm(i) + therm(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb1(i) = s_trmb1(i) + trmb1(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb2(i) = s_trmb2(i) + trmb2(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb3(i) = s_trmb3(i) + trmb3(i, nsrf) *pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     ! Si une sous-fraction n'existe pas, elle prend la temp. moyenne  
   
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           IF (pctsrf(i, nsrf) < epsfra) ftsol(i, nsrf) = zxtsol(i)  
   
           IF (pctsrf(i, nsrf) < epsfra) t2m(i, nsrf) = zt2m(i)  
           IF (pctsrf(i, nsrf) < epsfra) q2m(i, nsrf) = zq2m(i)  
           IF (pctsrf(i, nsrf) < epsfra) u10m(i, nsrf) = zu10m(i)  
           IF (pctsrf(i, nsrf) < epsfra) v10m(i, nsrf) = zv10m(i)  
           IF (pctsrf(i, nsrf) < epsfra) ffonte(i, nsrf) = zxffonte(i)  
           IF (pctsrf(i, nsrf) < epsfra) &  
                fqcalving(i, nsrf) = zxfqcalving(i)  
           IF (pctsrf(i, nsrf) < epsfra) pblh(i, nsrf) = s_pblh(i)  
           IF (pctsrf(i, nsrf) < epsfra) plcl(i, nsrf) = s_lcl(i)  
           IF (pctsrf(i, nsrf) < epsfra) capCL(i, nsrf) = s_capCL(i)  
           IF (pctsrf(i, nsrf) < epsfra) oliqCL(i, nsrf) = s_oliqCL(i)  
           IF (pctsrf(i, nsrf) < epsfra) cteiCL(i, nsrf) = s_cteiCL(i)  
           IF (pctsrf(i, nsrf) < epsfra) pblT(i, nsrf) = s_pblT(i)  
           IF (pctsrf(i, nsrf) < epsfra) therm(i, nsrf) = s_therm(i)  
           IF (pctsrf(i, nsrf) < epsfra) trmb1(i, nsrf) = s_trmb1(i)  
           IF (pctsrf(i, nsrf) < epsfra) trmb2(i, nsrf) = s_trmb2(i)  
           IF (pctsrf(i, nsrf) < epsfra) trmb3(i, nsrf) = s_trmb3(i)  
        ENDDO  
     ENDDO  
   
     ! Calculer la derive du flux infrarouge  
   
     DO i = 1, klon  
        dlw(i) = - 4. * RSIGMA * zxtsol(i)**3  
     ENDDO  
   
     ! Appeler la convection (au choix)  
   
     DO k = 1, llm  
        DO i = 1, klon  
           conv_q(i, k) = d_q_dyn(i, k) + d_q_vdf(i, k)/dtphys  
           conv_t(i, k) = d_t_dyn(i, k) + d_t_vdf(i, k)/dtphys  
602         ENDDO         ENDDO
603      ENDDO      ENDDO
604    
605      IF (check) THEN      dlw = - 4. * RSIGMA * tsol**3
606         za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
607         print *, "avantcon = ", za      ! Appeler la convection
608      ENDIF  
609        if (conv_emanuel) then
610      if (iflag_con == 2) then         CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, &
611         z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)              d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, &
612         CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:-1), &              upwd, dnwd, Ma, cape, iflagctrl, clwcon0, pmflxr, da, phi, mp)
613              q_seri(:, llm:1:-1), conv_t, conv_q, zxfluxq(:, 1), omega, &         snow_con = 0.
             d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:-1), &  
             mfd(:, llm:1:-1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, &  
             kdtop, pmflxr, pmflxs)  
        WHERE (rain_con < 0.) rain_con = 0.  
        WHERE (snow_con < 0.) snow_con = 0.  
        ibas_con = llm + 1 - kcbot  
        itop_con = llm + 1 - kctop  
     else  
        ! iflag_con >= 3  
   
        CALL concvl(dtphys, paprs, play, t_seri, q_seri, u_seri, &  
             v_seri, tr_seri, sig1, w01, d_t_con, d_q_con, &  
             d_u_con, d_v_con, d_tr, rain_con, snow_con, ibas_con, &  
             itop_con, upwd, dnwd, dnwd0, Ma, cape, tvp, iflagctrl, &  
             pbase, bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr, qcondc, &  
             wd, pmflxr, pmflxs, da, phi, mp, ntra=1)  
        ! (number of tracers for the convection scheme of Kerry Emanuel:  
        ! la partie traceurs est faite dans phytrac  
        ! on met ntra = 1 pour limiter les appels mais on peut  
        ! supprimer les calculs / ftra.)  
   
        clwcon0 = qcondc  
614         mfu = upwd + dnwd         mfu = upwd + dnwd
        IF (.NOT. ok_gust) wd = 0.  
   
        ! Calcul des propriétés des nuages convectifs  
615    
616         DO k = 1, llm         zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play)
617            DO i = 1, klon         zqsat = zqsat / (1. - retv * zqsat)
              zx_t = t_seri(i, k)  
              IF (thermcep) THEN  
                 zdelta = MAX(0., SIGN(1., rtt-zx_t))  
                 zx_qs = r2es * FOEEW(zx_t, zdelta) / play(i, k)  
                 zx_qs = MIN(0.5, zx_qs)  
                 zcor = 1./(1.-retv*zx_qs)  
                 zx_qs = zx_qs*zcor  
              ELSE  
                 IF (zx_t < t_coup) THEN  
                    zx_qs = qsats(zx_t)/play(i, k)  
                 ELSE  
                    zx_qs = qsatl(zx_t)/play(i, k)  
                 ENDIF  
              ENDIF  
              zqsat(i, k) = zx_qs  
           ENDDO  
        ENDDO  
618    
619         ! calcul des proprietes des nuages convectifs         ! Properties of convective clouds
620         clwcon0 = fact_cldcon * clwcon0         clwcon0 = fact_cldcon * clwcon0
621         call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &         call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &
622              rnebcon0)              rnebcon0)
623    
624           forall (i = 1:klon) ema_pct(i) = paprs(i, itop_con(i) + 1)
625         mfd = 0.         mfd = 0.
626         pen_u = 0.         pen_u = 0.
627         pen_d = 0.         pen_d = 0.
628         pde_d = 0.         pde_d = 0.
629         pde_u = 0.         pde_u = 0.
630        else
631           conv_q = d_q_dyn + d_q_vdf / dtphys
632           conv_t = d_t_dyn + d_t_vdf / dtphys
633           z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)
634           CALL conflx(paprs, play, t_seri(:, llm:1:- 1), q_seri(:, llm:1:- 1), &
635                conv_t, conv_q, - evap, omega, d_t_con, d_q_con, rain_con, &
636                snow_con, mfu(:, llm:1:- 1), mfd(:, llm:1:- 1), pen_u, pde_u, &
637                pen_d, pde_d, kcbot, kctop, kdtop, pmflxr, pmflxs)
638           WHERE (rain_con < 0.) rain_con = 0.
639           WHERE (snow_con < 0.) snow_con = 0.
640           ibas_con = llm + 1 - kcbot
641           itop_con = llm + 1 - kctop
642      END if      END if
643    
644      DO k = 1, llm      DO k = 1, llm
# Line 1154  contains Line 650  contains
650         ENDDO         ENDDO
651      ENDDO      ENDDO
652    
653      IF (if_ebil >= 2) THEN      IF (.not. conv_emanuel) THEN
        tit = 'after convect'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, rain_con, snow_con, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
     END IF  
   
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        print *, "aprescon = ", za  
        zx_t = 0.  
        za = 0.  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_con(i)+ &  
                snow_con(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtphys  
        print *, "Precip = ", zx_t  
     ENDIF  
   
     IF (iflag_con == 2) THEN  
654         z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)         z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)
655         z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres         z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres
656         DO k = 1, llm         DO k = 1, llm
657            DO i = 1, klon            DO i = 1, klon
658               IF (z_factor(i) > 1. + 1E-8 .OR. z_factor(i) < 1. - 1E-8) THEN               IF (z_factor(i) /= 1.) THEN
659                  q_seri(i, k) = q_seri(i, k) * z_factor(i)                  q_seri(i, k) = q_seri(i, k) * z_factor(i)
660               ENDIF               ENDIF
661            ENDDO            ENDDO
662         ENDDO         ENDDO
663      ENDIF      ENDIF
664    
665      ! Convection sèche (thermiques ou ajustement)      ! Convection s\`eche (thermiques ou ajustement)
666    
667      d_t_ajs = 0.      d_t_ajs = 0.
668      d_u_ajs = 0.      d_u_ajs = 0.
# Line 1199  contains Line 671  contains
671      fm_therm = 0.      fm_therm = 0.
672      entr_therm = 0.      entr_therm = 0.
673    
674      if (iflag_thermals == 0) then      if (iflag_thermals) then
675         ! Ajustement sec         call calltherm(play, paprs, pphi, u_seri, v_seri, t_seri, q_seri, &
676                d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)
677        else
678         CALL ajsec(paprs, play, t_seri, q_seri, d_t_ajs, d_q_ajs)         CALL ajsec(paprs, play, t_seri, q_seri, d_t_ajs, d_q_ajs)
679         t_seri = t_seri + d_t_ajs         t_seri = t_seri + d_t_ajs
680         q_seri = q_seri + d_q_ajs         q_seri = q_seri + d_q_ajs
     else  
        ! Thermiques  
        call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, &  
             q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)  
681      endif      endif
682    
     IF (if_ebil >= 2) THEN  
        tit = 'after dry_adjust'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
     END IF  
   
683      ! Caclul des ratqs      ! Caclul des ratqs
684    
     ! ratqs convectifs à l'ancienne en fonction de (q(z = 0) - q) / q  
     ! on écrase le tableau ratqsc calculé par clouds_gno  
685      if (iflag_cldcon == 1) then      if (iflag_cldcon == 1) then
686           ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q
687           ! on \'ecrase le tableau ratqsc calcul\'e par clouds_gno
688         do k = 1, llm         do k = 1, llm
689            do i = 1, klon            do i = 1, klon
690               if(ptconv(i, k)) then               if(ptconv(i, k)) then
# Line 1238  contains Line 701  contains
701      do k = 1, llm      do k = 1, llm
702         do i = 1, klon         do i = 1, klon
703            ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &            ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &
704                 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)                 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)
705         enddo         enddo
706      enddo      enddo
707    
# Line 1255  contains Line 718  contains
718         ratqs = ratqss         ratqs = ratqss
719      endif      endif
720    
721      CALL fisrtilp(dtphys, paprs, play, t_seri, q_seri, ptconv, ratqs, &      CALL fisrtilp(paprs, play, t_seri, q_seri, ptconv, ratqs, d_t_lsc, &
722           d_t_lsc, d_q_lsc, d_ql_lsc, rneb, cldliq, rain_lsc, snow_lsc, &           d_q_lsc, d_ql_lsc, rneb, cldliq, rain_lsc, snow_lsc, pfrac_impa, &
723           pfrac_impa, pfrac_nucl, pfrac_1nucl, frac_impa, frac_nucl, prfl, &           pfrac_nucl, pfrac_1nucl, frac_impa, frac_nucl, prfl, psfl, rhcl)
          psfl, rhcl)  
724    
725      WHERE (rain_lsc < 0) rain_lsc = 0.      WHERE (rain_lsc < 0) rain_lsc = 0.
726      WHERE (snow_lsc < 0) snow_lsc = 0.      WHERE (snow_lsc < 0) snow_lsc = 0.
# Line 1271  contains Line 733  contains
733            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)
734         ENDDO         ENDDO
735      ENDDO      ENDDO
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        print *, "apresilp = ", za  
        zx_t = 0.  
        za = 0.  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_lsc(i) &  
                + snow_lsc(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtphys  
        print *, "Precip = ", zx_t  
     ENDIF  
   
     IF (if_ebil >= 2) THEN  
        tit = 'after fisrt'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, rain_lsc, snow_lsc, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
     END IF  
736    
737      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
738    
739      ! 1. NUAGES CONVECTIFS      ! 1. NUAGES CONVECTIFS
740    
741      IF (iflag_cldcon <= -1) THEN      IF (iflag_cldcon <= - 1) THEN
742         ! seulement pour Tiedtke         ! seulement pour Tiedtke
743         snow_tiedtke = 0.         snow_tiedtke = 0.
744         if (iflag_cldcon == -1) then         if (iflag_cldcon == - 1) then
745            rain_tiedtke = rain_con            rain_tiedtke = rain_con
746         else         else
747            rain_tiedtke = 0.            rain_tiedtke = 0.
748            do k = 1, llm            do k = 1, llm
749               do i = 1, klon               do i = 1, klon
750                  if (d_q_con(i, k) < 0.) then                  if (d_q_con(i, k) < 0.) then
751                     rain_tiedtke(i) = rain_tiedtke(i)-d_q_con(i, k)/dtphys &                     rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k) / dtphys &
752                          *zmasse(i, k)                          * zmasse(i, k)
753                  endif                  endif
754               enddo               enddo
755            enddo            enddo
# Line 1329  contains Line 768  contains
768         ENDDO         ENDDO
769      ELSE IF (iflag_cldcon == 3) THEN      ELSE IF (iflag_cldcon == 3) THEN
770         ! On prend pour les nuages convectifs le maximum du calcul de         ! On prend pour les nuages convectifs le maximum du calcul de
771         ! la convection et du calcul du pas de temps précédent diminué         ! la convection et du calcul du pas de temps pr\'ec\'edent diminu\'e
772         ! d'un facteur facttemps.         ! d'un facteur facttemps.
773         facteur = dtphys * facttemps         facteur = dtphys * facttemps
774         do k = 1, llm         do k = 1, llm
# Line 1345  contains Line 784  contains
784    
785         ! On prend la somme des fractions nuageuses et des contenus en eau         ! On prend la somme des fractions nuageuses et des contenus en eau
786         cldfra = min(max(cldfra, rnebcon), 1.)         cldfra = min(max(cldfra, rnebcon), 1.)
787         cldliq = cldliq + rnebcon*clwcon         cldliq = cldliq + rnebcon * clwcon
788      ENDIF      ENDIF
789    
790      ! 2. Nuages stratiformes      ! 2. Nuages stratiformes
# Line 1368  contains Line 807  contains
807         snow_fall(i) = snow_con(i) + snow_lsc(i)         snow_fall(i) = snow_con(i) + snow_lsc(i)
808      ENDDO      ENDDO
809    
810      IF (if_ebil >= 2) CALL diagetpq(airephy, "after diagcld", ip_ebil, 2, 2, &      ! Humidit\'e relative pour diagnostic :
          dtphys, t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, &  
          d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
   
     ! Humidité relative pour diagnostic :  
811      DO k = 1, llm      DO k = 1, llm
812         DO i = 1, klon         DO i = 1, klon
813            zx_t = t_seri(i, k)            zx_qs = r2es * FOEEW(t_seri(i, k), rtt >= t_seri(i, k)) / play(i, k)
814            IF (thermcep) THEN            zx_qs = MIN(0.5, zx_qs)
815               zdelta = MAX(0., SIGN(1., rtt-zx_t))            zcor = 1. / (1. - retv * zx_qs)
816               zx_qs = r2es * FOEEW(zx_t, zdelta)/play(i, k)            zx_qs = zx_qs * zcor
817               zx_qs = MIN(0.5, zx_qs)            zx_rh(i, k) = q_seri(i, k) / zx_qs
              zcor = 1./(1.-retv*zx_qs)  
              zx_qs = zx_qs*zcor  
           ELSE  
              IF (zx_t < t_coup) THEN  
                 zx_qs = qsats(zx_t)/play(i, k)  
              ELSE  
                 zx_qs = qsatl(zx_t)/play(i, k)  
              ENDIF  
           ENDIF  
           zx_rh(i, k) = q_seri(i, k)/zx_qs  
818            zqsat(i, k) = zx_qs            zqsat(i, k) = zx_qs
819         ENDDO         ENDDO
820      ENDDO      ENDDO
821    
822      ! Introduce the aerosol direct and first indirect radiative forcings:      ! Param\`etres optiques des nuages et quelques param\`etres pour
823      IF (ok_ade .OR. ok_aie) THEN      ! diagnostics :
        ! Get sulfate aerosol distribution :  
        CALL readsulfate(rdayvrai, firstcal, sulfate)  
        CALL readsulfate_preind(rdayvrai, firstcal, sulfate_pi)  
   
        CALL aeropt(play, paprs, t_seri, sulfate, rhcl, tau_ae, piz_ae, cg_ae, &  
             aerindex)  
     ELSE  
        tau_ae = 0.  
        piz_ae = 0.  
        cg_ae = 0.  
     ENDIF  
   
     ! Paramètres optiques des nuages et quelques paramètres pour diagnostics :  
824      if (ok_newmicro) then      if (ok_newmicro) then
825         CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &         CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &
826              cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc, ok_aie, &              cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc)
             sulfate, sulfate_pi, bl95_b0, bl95_b1, cldtaupi, re, fl)  
827      else      else
828         CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &         CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &
829              cldl, cldm, cldt, cldq, ok_aie, sulfate, sulfate_pi, bl95_b0, &              cldl, cldm, cldt, cldq)
             bl95_b1, cldtaupi, re, fl)  
830      endif      endif
831    
832      ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.      IF (MOD(itap - 1, radpas) == 0) THEN
833      IF (MOD(itaprad, radpas) == 0) THEN         wo = ozonecm(REAL(julien), paprs)
834         DO i = 1, klon         albsol = sum(falbe * pctsrf, dim = 2)
835            albsol(i) = falbe(i, is_oce) * pctsrf(i, is_oce) &         CALL radlwsw(dist, mu0, fract, paprs, play, tsol, albsol, t_seri, &
836                 + falbe(i, is_lic) * pctsrf(i, is_lic) &              q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, &
837                 + falbe(i, is_ter) * pctsrf(i, is_ter) &              radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, &
838                 + falbe(i, is_sic) * pctsrf(i, is_sic)              toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, &
839            albsollw(i) = falblw(i, is_oce) * pctsrf(i, is_oce) &              swup0, swup, ok_ade, topswad, solswad)
                + falblw(i, is_lic) * pctsrf(i, is_lic) &  
                + falblw(i, is_ter) * pctsrf(i, is_ter) &  
                + falblw(i, is_sic) * pctsrf(i, is_sic)  
        ENDDO  
        ! Rayonnement (compatible Arpege-IFS) :  
        CALL radlwsw(dist, rmu0, fract, paprs, play, zxtsol, albsol, &  
             albsollw, t_seri, q_seri, wo, cldfra, cldemi, cldtau, heat, &  
             heat0, cool, cool0, radsol, albpla, topsw, toplw, solsw, sollw, &  
             sollwdown, topsw0, toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, &  
             lwup, swdn0, swdn, swup0, swup, ok_ade, ok_aie, tau_ae, piz_ae, &  
             cg_ae, topswad, solswad, cldtaupi, topswai, solswai)  
        itaprad = 0  
840      ENDIF      ENDIF
     itaprad = itaprad + 1  
841    
842      ! Ajouter la tendance des rayonnements (tous les pas)      ! Ajouter la tendance des rayonnements (tous les pas)
   
843      DO k = 1, llm      DO k = 1, llm
844         DO i = 1, klon         DO i = 1, klon
845            t_seri(i, k) = t_seri(i, k) + (heat(i, k)-cool(i, k)) * dtphys/86400.            t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys &
846                   / 86400.
847         ENDDO         ENDDO
848      ENDDO      ENDDO
849    
850      IF (if_ebil >= 2) THEN      ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage)
        tit = 'after rad'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
     END IF  
   
     ! Calculer l'hydrologie de la surface  
851      DO i = 1, klon      DO i = 1, klon
852         zxqsurf(i) = 0.         bils(i) = radsol(i) + sens(i) + zxfluxlat(i)
        zxsnow(i) = 0.  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxqsurf(i) = zxqsurf(i) + fqsurf(i, nsrf)*pctsrf(i, nsrf)  
           zxsnow(i) = zxsnow(i) + fsnow(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
853      ENDDO      ENDDO
854    
855      ! Calculer le bilan du sol et la dérive de température (couplage)      ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille :
   
     DO i = 1, klon  
        bils(i) = radsol(i) - sens(i) + zxfluxlat(i)  
     ENDDO  
   
     ! Paramétrisation de l'orographie à l'échelle sous-maille :  
856    
857      IF (ok_orodr) THEN      IF (ok_orodr) THEN
858         ! selection des points pour lesquels le shema est actif:         ! S\'election des points pour lesquels le sch\'ema est actif :
        igwd = 0  
859         DO i = 1, klon         DO i = 1, klon
860            itest(i) = 0            ktest(i) = 0
861            IF (((zpic(i)-zmea(i)) > 100.).AND.(zstd(i) > 10.)) THEN            IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN
862               itest(i) = 1               ktest(i) = 1
              igwd = igwd + 1  
              idx(igwd) = i  
863            ENDIF            ENDIF
864         ENDDO         ENDDO
865    
866         CALL drag_noro(klon, llm, dtphys, paprs, play, zmea, zstd, zsig, zgam, &         CALL drag_noro(paprs, play, zmea, zstd, zsig, zgam, zthe, zpic, zval, &
867              zthe, zpic, zval, igwd, idx, itest, t_seri, u_seri, v_seri, &              ktest, t_seri, u_seri, v_seri, zulow, zvlow, zustrdr, zvstrdr, &
868              zulow, zvlow, zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro)              d_t_oro, d_u_oro, d_v_oro)
869    
870         ! ajout des tendances         ! ajout des tendances
871         DO k = 1, llm         DO k = 1, llm
# Line 1507  contains Line 878  contains
878      ENDIF      ENDIF
879    
880      IF (ok_orolf) THEN      IF (ok_orolf) THEN
881         ! Sélection des points pour lesquels le schéma est actif :         ! S\'election des points pour lesquels le sch\'ema est actif :
        igwd = 0  
882         DO i = 1, klon         DO i = 1, klon
883            itest(i) = 0            ktest(i) = 0
884            IF ((zpic(i) - zmea(i)) > 100.) THEN            IF (zpic(i) - zmea(i) > 100.) THEN
885               itest(i) = 1               ktest(i) = 1
              igwd = igwd + 1  
              idx(igwd) = i  
886            ENDIF            ENDIF
887         ENDDO         ENDDO
888    
889         CALL lift_noro(klon, llm, dtphys, paprs, play, rlat, zmea, zstd, zpic, &         CALL lift_noro(paprs, play, zmea, zstd, zpic, ktest, t_seri, u_seri, &
890              itest, t_seri, u_seri, v_seri, zulow, zvlow, zustrli, zvstrli, &              v_seri, zulow, zvlow, zustrli, zvstrli, d_t_lif, d_u_lif, d_v_lif)
             d_t_lif, d_u_lif, d_v_lif)  
891    
892         ! Ajout des tendances :         ! Ajout des tendances :
893         DO k = 1, llm         DO k = 1, llm
# Line 1532  contains Line 899  contains
899         ENDDO         ENDDO
900      ENDIF      ENDIF
901    
902      ! Stress nécessaires : toute la physique      CALL aaam_bud(rg, romega, pphis, zustrdr, zustrli, &
903             sum((u_seri - u) / dtphys * zmasse, dim = 2), zvstrdr, &
904      DO i = 1, klon           zvstrli, sum((v_seri - v) / dtphys * zmasse, dim = 2), paprs, u, v, &
905         zustrph(i) = 0.           aam, torsfc)
        zvstrph(i) = 0.  
     ENDDO  
     DO k = 1, llm  
        DO i = 1, klon  
           zustrph(i) = zustrph(i) + (u_seri(i, k) - u(i, k)) / dtphys &  
                * zmasse(i, k)  
           zvstrph(i) = zvstrph(i) + (v_seri(i, k) - v(i, k)) / dtphys &  
                * zmasse(i, k)  
        ENDDO  
     ENDDO  
   
     CALL aaam_bud(ra, rg, romega, rlat, rlon, pphis, zustrdr, zustrli, &  
          zustrph, zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc)  
   
     IF (if_ebil >= 2) CALL diagetpq(airephy, 'after orography', ip_ebil, 2, &  
          2, dtphys, t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, &  
          d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
906    
907      ! Calcul des tendances traceurs      ! Calcul des tendances traceurs
908      call phytrac(rnpb, itap, lmt_pas, julien, time, firstcal, lafin, nqmx-2, &      call phytrac(julien, time, firstcal, lafin, t, paprs, play, mfu, mfd, &
909           dtphys, u, t, paprs, play, mfu, mfd, pen_u, pde_u, pen_d, pde_d, &           pde_u, pen_d, coefh, cdragh, fm_therm, entr_therm, u(:, 1), v(:, 1), &
910           ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, pctsrf, frac_impa, &           ftsol, pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, dnwd, &
911           frac_nucl, pphis, albsol, rhcl, cldfra, rneb, diafra, cldliq, &           tr_seri, zmasse, ncid_startphy)
          pmflxr, pmflxs, prfl, psfl, da, phi, mp, upwd, dnwd, tr_seri, zmasse)  
   
     IF (offline) THEN  
        call phystokenc(dtphys, rlon, rlat, t, mfu, mfd, pen_u, pde_u, &  
             pen_d, pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, &  
             pctsrf, frac_impa, frac_nucl, pphis, airephy, dtphys, itap)  
     ENDIF  
912    
913      ! Calculer le transport de l'eau et de l'energie (diagnostique)      ! Calculer le transport de l'eau et de l'energie (diagnostique)
914      CALL transp(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, &      CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq)
          ue, uq)  
915    
916      ! diag. bilKP      ! diag. bilKP
917    
918      CALL transp_lay(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, &      CALL transp_lay(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve_lay, &
919           ve_lay, vq_lay, ue_lay, uq_lay)           vq_lay, ue_lay, uq_lay)
920    
921      ! Accumuler les variables a stocker dans les fichiers histoire:      ! Accumuler les variables a stocker dans les fichiers histoire:
922    
923      ! conversion Ec -> E thermique      ! conversion Ec en énergie thermique
924      DO k = 1, llm      DO k = 1, llm
925         DO i = 1, klon         DO i = 1, klon
926            ZRCPD = RCPD * (1. + RVTMP2 * q_seri(i, k))            d_t_ec(i, k) = 0.5 / (RCPD * (1. + RVTMP2 * q_seri(i, k))) &
           d_t_ec(i, k) = 0.5 / ZRCPD &  
927                 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)                 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)
928            t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)            t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)
929            d_t_ec(i, k) = d_t_ec(i, k) / dtphys            d_t_ec(i, k) = d_t_ec(i, k) / dtphys
930         END DO         END DO
931      END DO      END DO
932    
     IF (if_ebil >= 1) THEN  
        tit = 'after physic'  
        CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        ! Comme les tendances de la physique sont ajoute dans la dynamique,  
        ! on devrait avoir que la variation d'entalpie par la dynamique  
        ! est egale a la variation de la physique au pas de temps precedent.  
        ! Donc la somme de ces 2 variations devrait etre nulle.  
        call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, sens, &  
             evap, rain_fall, snow_fall, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
   
        d_h_vcol_phy = d_h_vcol  
   
     END IF  
   
933      ! SORTIES      ! SORTIES
934    
935      ! prw = eau precipitable      ! prw = eau precipitable
936      DO i = 1, klon      DO i = 1, klon
937         prw(i) = 0.         prw(i) = 0.
938         DO k = 1, llm         DO k = 1, llm
939            prw(i) = prw(i) + q_seri(i, k)*zmasse(i, k)            prw(i) = prw(i) + q_seri(i, k) * zmasse(i, k)
940         ENDDO         ENDDO
941      ENDDO      ENDDO
942    
# Line 1628  contains Line 952  contains
952         ENDDO         ENDDO
953      ENDDO      ENDDO
954    
955      IF (nqmx >= 3) THEN      DO iq = 3, nqmx
956         DO iq = 3, nqmx         DO k = 1, llm
957            DO k = 1, llm            DO i = 1, klon
958               DO i = 1, klon               d_qx(i, k, iq) = (tr_seri(i, k, iq - 2) - qx(i, k, iq)) / dtphys
                 d_qx(i, k, iq) = (tr_seri(i, k, iq-2) - qx(i, k, iq)) / dtphys  
              ENDDO  
959            ENDDO            ENDDO
960         ENDDO         ENDDO
961      ENDIF      ENDDO
962    
963      ! Sauvegarder les valeurs de t et q a la fin de la physique:      ! Sauvegarder les valeurs de t et q a la fin de la physique:
964      DO k = 1, llm      DO k = 1, llm
# Line 1646  contains Line 968  contains
968         ENDDO         ENDDO
969      ENDDO      ENDDO
970    
971      ! Ecriture des sorties      CALL histwrite_phy("phis", pphis)
972      call write_histhf      CALL histwrite_phy("aire", airephy)
973      call write_histday      CALL histwrite_phy("psol", paprs(:, 1))
974      call write_histins      CALL histwrite_phy("precip", rain_fall + snow_fall)
975        CALL histwrite_phy("plul", rain_lsc + snow_lsc)
976      ! Si c'est la fin, il faut conserver l'etat de redemarrage      CALL histwrite_phy("pluc", rain_con + snow_con)
977      IF (lafin) THEN      CALL histwrite_phy("tsol", tsol)
978         itau_phy = itau_phy + itap      CALL histwrite_phy("t2m", zt2m)
979         CALL phyredem("restartphy.nc", rlat, rlon, pctsrf, ftsol, ftsoil, &      CALL histwrite_phy("q2m", zq2m)
980              tslab, seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, &      CALL histwrite_phy("u10m", u10m)
981              rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, &      CALL histwrite_phy("v10m", v10m)
982              agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, &      CALL histwrite_phy("snow", snow_fall)
983              q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01)      CALL histwrite_phy("cdrm", cdragm)
984      ENDIF      CALL histwrite_phy("cdrh", cdragh)
985        CALL histwrite_phy("topl", toplw)
986      firstcal = .FALSE.      CALL histwrite_phy("evap", evap)
987        CALL histwrite_phy("sols", solsw)
988    contains      CALL histwrite_phy("rls", sollw)
989        CALL histwrite_phy("solldown", sollwdown)
990      subroutine write_histday      CALL histwrite_phy("bils", bils)
991        CALL histwrite_phy("sens", sens)
992        use gr_phy_write_3d_m, only: gr_phy_write_3d      CALL histwrite_phy("fder", fder)
993        integer itau_w ! pas de temps ecriture      CALL histwrite_phy("dtsvdfo", d_ts(:, is_oce))
994        CALL histwrite_phy("dtsvdft", d_ts(:, is_ter))
995        !------------------------------------------------      CALL histwrite_phy("dtsvdfg", d_ts(:, is_lic))
996        CALL histwrite_phy("dtsvdfi", d_ts(:, is_sic))
997        if (ok_journe) THEN      CALL histwrite_phy("zxfqcalving", sum(fqcalving * pctsrf, dim = 2))
998           itau_w = itau_phy + itap      CALL histwrite_phy("albs", albsol)
999           if (nqmx <= 4) then      CALL histwrite_phy("tro3", wo * dobson_u * 1e3 / zmasse / rmo3 * md)
1000              call histwrite(nid_day, "Sigma_O3_Royer", itau_w, &      CALL histwrite_phy("rugs", zxrugs)
1001                   gr_phy_write_3d(wo) * 1e3)      CALL histwrite_phy("s_pblh", s_pblh)
1002              ! (convert "wo" from kDU to DU)      CALL histwrite_phy("s_pblt", s_pblt)
1003           end if      CALL histwrite_phy("s_lcl", s_lcl)
1004           if (ok_sync) then      CALL histwrite_phy("s_capCL", s_capCL)
1005              call histsync(nid_day)      CALL histwrite_phy("s_oliqCL", s_oliqCL)
1006           endif      CALL histwrite_phy("s_cteiCL", s_cteiCL)
1007        ENDIF      CALL histwrite_phy("s_therm", s_therm)
1008        CALL histwrite_phy("temp", t_seri)
1009      End subroutine write_histday      CALL histwrite_phy("vitu", u_seri)
1010        CALL histwrite_phy("vitv", v_seri)
1011      !****************************      CALL histwrite_phy("geop", zphi)
1012        CALL histwrite_phy("pres", play)
1013      subroutine write_histhf      CALL histwrite_phy("dtvdf", d_t_vdf)
1014        CALL histwrite_phy("dqvdf", d_q_vdf)
1015        ! From phylmd/write_histhf.h, version 1.5 2005/05/25 13:10:09      CALL histwrite_phy("rhum", zx_rh)
1016        CALL histwrite_phy("d_t_ec", d_t_ec)
1017        !------------------------------------------------      CALL histwrite_phy("dtsw0", heat0 / 86400.)
1018        CALL histwrite_phy("dtlw0", - cool0 / 86400.)
1019        call write_histhf3d      call histwrite_phy("pmflxr", pmflxr(:, :llm))
1020        CALL histwrite_phy("msnow", sum(fsnow * pctsrf, dim = 2))
1021        IF (ok_sync) THEN      call histwrite_phy("qsurf", sum(fqsurf * pctsrf, dim = 2))
1022           call histsync(nid_hf)      call histwrite_phy("flat", zxfluxlat)
       ENDIF  
   
     end subroutine write_histhf  
   
     !***************************************************************  
   
     subroutine write_histins  
1023    
1024        ! From phylmd/write_histins.h, version 1.2 2005/05/25 13:10:09      DO nsrf = 1, nbsrf
1025           CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf))
1026        real zout         CALL histwrite_phy("sens_"//clnsurf(nsrf), flux_t(:, nsrf))
1027        integer itau_w ! pas de temps ecriture         CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf))
1028           CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf))
1029        !--------------------------------------------------         CALL histwrite_phy("taux_"//clnsurf(nsrf), flux_u(:, nsrf))
1030           CALL histwrite_phy("tauy_"//clnsurf(nsrf), flux_v(:, nsrf))
1031        IF (ok_instan) THEN         CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf))
1032           ! Champs 2D:         CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf))
1033           CALL histwrite_phy("u10m_"//clnsurf(nsrf), u10m_srf(:, nsrf))
1034           zsto = dtphys * ecrit_ins         CALL histwrite_phy("v10m_"//clnsurf(nsrf), v10m_srf(:, nsrf))
1035           zout = dtphys * ecrit_ins      END DO
          itau_w = itau_phy + itap  
   
          i = NINT(zout/zsto)  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, pphis, zx_tmp_2d)  
          CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d)  
   
          i = NINT(zout/zsto)  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, airephy, zx_tmp_2d)  
          CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = paprs(i, 1)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "psol", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_fall(i) + snow_fall(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "precip", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_lsc(i) + snow_lsc(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "plul", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_con(i) + snow_con(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "pluc", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxtsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "tsol", itau_w, zx_tmp_2d)  
          !ccIM  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zt2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "t2m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zq2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "q2m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zu10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "u10m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zv10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "v10m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, snow_fall, zx_tmp_2d)  
          CALL histwrite(nid_ins, "snow", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrm", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrh", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, toplw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "topl", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, evap, zx_tmp_2d)  
          CALL histwrite(nid_ins, "evap", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, solsw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sols", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "soll", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollwdown, zx_tmp_2d)  
          CALL histwrite(nid_ins, "solldown", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, bils, zx_tmp_2d)  
          CALL histwrite(nid_ins, "bils", itau_w, zx_tmp_2d)  
   
          zx_tmp_fi2d(1:klon) = -1*sens(1:klon)  
          ! CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sens, zx_tmp_2d)  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sens", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, fder, zx_tmp_2d)  
          CALL histwrite(nid_ins, "fder", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_oce), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfo", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_ter), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdft", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_lic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfg", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_sic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfi", itau_w, zx_tmp_2d)  
   
          DO nsrf = 1, nbsrf  
             !XXX  
             zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf)*100.  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "pourc_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "fract_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxt(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "sens_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxlat(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "lat_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = ftsol(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tsol_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxu(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "taux_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxv(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tauy_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = frugs(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "rugs_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = falbe(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "albe_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
          END DO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albs", itau_w, zx_tmp_2d)  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albslw", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxrugs, zx_tmp_2d)  
          CALL histwrite(nid_ins, "rugs", itau_w, zx_tmp_2d)  
   
          !HBTM2  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblh", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblt, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblt", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_lcl, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_lcl", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_capCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_capCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_oliqCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_oliqCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_cteiCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_cteiCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_therm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_therm", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb1, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb1", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb2, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb2", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb3, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb3", itau_w, zx_tmp_2d)  
   
          ! Champs 3D:  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, t_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "temp", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, u_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitu", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, v_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitv", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, zphi, zx_tmp_3d)  
          CALL histwrite(nid_ins, "geop", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, play, zx_tmp_3d)  
          CALL histwrite(nid_ins, "pres", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_t_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dtvdf", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_q_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d)  
   
          if (ok_sync) then  
             call histsync(nid_ins)  
          endif  
       ENDIF  
   
     end subroutine write_histins  
   
     !****************************************************  
   
     subroutine write_histhf3d  
   
       ! From phylmd/write_histhf3d.h, version 1.2 2005/05/25 13:10:09  
   
       integer itau_w ! pas de temps ecriture  
   
       !-------------------------------------------------------  
   
       itau_w = itau_phy + itap  
   
       ! Champs 3D:  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, t_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "temp", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, qx(1, 1, ivap), zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "ovap", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, u_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitu", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, v_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitv", itau_w, zx_tmp_3d)  
   
       if (nbtr >= 3) then  
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, tr_seri(1, 1, 3), &  
               zx_tmp_3d)  
          CALL histwrite(nid_hf3d, "O3", itau_w, zx_tmp_3d)  
       end if  
1036    
1037        if (ok_sync) then      if (conv_emanuel) then
1038           call histsync(nid_hf3d)         CALL histwrite_phy("ptop", ema_pct)
1039        endif         CALL histwrite_phy("dnwd0", - mp)
1040        end if
1041    
1042        if (ok_instan) call histsync(nid_ins)
1043    
1044        IF (lafin) then
1045           call NF95_CLOSE(ncid_startphy)
1046           CALL phyredem(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
1047                rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, agesno, &
1048                zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, &
1049                rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01)
1050        end IF
1051    
1052      end subroutine write_histhf3d      firstcal = .FALSE.
1053    
1054    END SUBROUTINE physiq    END SUBROUTINE physiq
1055    

Legend:
Removed from v.76  
changed lines
  Added in v.326

  ViewVC Help
Powered by ViewVC 1.1.21