--- trunk/phylmd/physiq.f 2018/09/11 12:23:47 306 +++ trunk/phylmd/physiq.f 2018/09/27 16:29:06 310 @@ -144,8 +144,10 @@ ! Radiative transfer computations are made every "radpas" call to ! "physiq". - REAL, save:: radsol(klon) ! bilan radiatif au sol calcule par code radiatif - REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction + REAL, save:: radsol(klon) + ! bilan radiatif net au sol (W/m2), positif vers le bas + + REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction, in K REAL, save:: ftsoil(klon, nsoilmx, nbsrf) ! soil temperature of surface fraction @@ -245,7 +247,10 @@ REAL cldemi(klon, llm) ! emissivite infrarouge REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface - REAL flux_t(klon, nbsrf) ! flux turbulent de chaleur à la surface + + REAL flux_t(klon, nbsrf) + ! flux de chaleur sensible (c_p T) (W / m2) (orientation positive + ! vers le bas) à la surface REAL flux_u(klon, nbsrf), flux_v(klon, nbsrf) ! tension du vent (flux turbulent de vent) à la surface, en Pa @@ -257,12 +262,11 @@ REAL, save:: cool(klon, llm) ! refroidissement infrarouge REAL, save:: cool0(klon, llm) ! refroidissement infrarouge ciel clair REAL, save:: topsw(klon), toplw(klon), solsw(klon) - REAL, save:: sollw(klon) ! rayonnement infrarouge montant \`a la surface + + REAL, save:: sollw(klon) ! surface net downward longwave flux, in W m-2 real, save:: sollwdown(klon) ! downward LW flux at surface REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon) REAL, save:: albpla(klon) - REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous-surface - REAL fsolsw(klon, nbsrf) ! flux solaire absorb\'e pour chaque sous-surface REAL conv_q(klon, llm) ! convergence de l'humidite (kg / kg / s) REAL conv_t(klon, llm) ! convergence of temperature (K / s) @@ -537,28 +541,18 @@ CALL orbite(REAL(julien), longi, dist) CALL zenang(longi, time, dtphys * radpas, mu0, fract) - albsol = sum(falbe * pctsrf, dim = 2) - - ! R\'epartition sous maille des flux longwave et shortwave - ! R\'epartition du longwave par sous-surface lin\'earis\'ee - - forall (nsrf = 1: nbsrf) - fsollw(:, nsrf) = sollw + 4. * RSIGMA * tsol**3 & - * (tsol - ftsol(:, nsrf)) - fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol) - END forall CALL pbl_surface(pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, & ftsol, cdmmax, cdhmax, ftsoil, qsol, paprs, play, fsnow, fqsurf, & - falbe, fluxlat, rain_fall, snow_fall, fsolsw, fsollw, frugs, agesno, & - rugoro, d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, flux_t, flux_q, & - flux_u, flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, coefh, t2m, & - q2m, u10m_srf, v10m_srf, pblh, capCL, oliqCL, cteiCL, pblT, therm, & - plcl, fqcalving, ffonte, run_off_lic_0) + falbe, fluxlat, rain_fall, snow_fall, frugs, agesno, rugoro, d_t_vdf, & + d_q_vdf, d_u_vdf, d_v_vdf, d_ts, flux_t, flux_q, flux_u, flux_v, & + cdragh, cdragm, q2, dflux_t, dflux_q, coefh, t2m, q2m, u10m_srf, & + v10m_srf, pblh, capCL, oliqCL, cteiCL, pblT, therm, plcl, fqcalving, & + ffonte, run_off_lic_0, albsol, sollw, solsw, tsol) ! Incr\'ementation des flux - sens = - sum(flux_t * pctsrf, dim = 2) + sens = sum(flux_t * pctsrf, dim = 2) evap = - sum(flux_q * pctsrf, dim = 2) fder = dlw + dflux_t + dflux_q @@ -858,7 +852,7 @@ ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage) DO i = 1, klon - bils(i) = radsol(i) - sens(i) + zxfluxlat(i) + bils(i) = radsol(i) + sens(i) + zxfluxlat(i) ENDDO ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille : @@ -994,10 +988,10 @@ CALL histwrite_phy("topl", toplw) CALL histwrite_phy("evap", evap) CALL histwrite_phy("sols", solsw) - CALL histwrite_phy("soll", sollw) + CALL histwrite_phy("rls", sollw) CALL histwrite_phy("solldown", sollwdown) CALL histwrite_phy("bils", bils) - CALL histwrite_phy("sens", - sens) + CALL histwrite_phy("sens", sens) CALL histwrite_phy("fder", fder) CALL histwrite_phy("dtsvdfo", d_ts(:, is_oce)) CALL histwrite_phy("dtsvdft", d_ts(:, is_ter)) @@ -1030,7 +1024,6 @@ call histwrite_phy("flat", zxfluxlat) DO nsrf = 1, nbsrf - CALL histwrite_phy("pourc_"//clnsurf(nsrf), pctsrf(:, nsrf) * 100.) CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf)) CALL histwrite_phy("sens_"//clnsurf(nsrf), flux_t(:, nsrf)) CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf))