/[lmdze]/trunk/phylmd/physiq.f90
ViewVC logotype

Diff of /trunk/phylmd/physiq.f90

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/Sources/phylmd/physiq.f revision 137 by guez, Wed May 6 15:51:03 2015 UTC trunk/phylmd/physiq.f90 revision 339 by guez, Thu Sep 26 17:08:42 2019 UTC
# Line 4  module physiq_m Line 4  module physiq_m
4    
5  contains  contains
6    
7    SUBROUTINE physiq(lafin, dayvrai, time, dtphys, paprs, play, pphi, pphis, &    SUBROUTINE physiq(lafin, dayvrai, time, paprs, play, pphi, pphis, u, v, t, &
8         u, v, t, qx, omega, d_u, d_v, d_t, d_qx)         qx, omega, d_u, d_v, d_t, d_qx)
9    
10      ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28      ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28
11      ! (subversion revision 678)      ! (subversion revision 678)
12    
13      ! Author: Z.X. Li (LMD/CNRS) 1993      ! Author: Z. X. Li (LMD/CNRS) 1993
14    
15      ! This is the main procedure for the "physics" part of the program.      ! This is the main procedure for the "physics" part of the program.
16    
17      use aaam_bud_m, only: aaam_bud      use aaam_bud_m, only: aaam_bud
18      USE abort_gcm_m, ONLY: abort_gcm      USE abort_gcm_m, ONLY: abort_gcm
     use aeropt_m, only: aeropt  
19      use ajsec_m, only: ajsec      use ajsec_m, only: ajsec
20      use calltherm_m, only: calltherm      use calltherm_m, only: calltherm
21      USE clesphys, ONLY: cdhmax, cdmmax, co2_ppm, ecrit_hf, ecrit_ins, &      USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ok_instan
22           ecrit_mth, ecrit_reg, ecrit_tra, ksta, ksta_ter, ok_kzmin      USE clesphys2, ONLY: conv_emanuel, nbapp_rad, new_oliq, ok_orodr, ok_orolf
23      USE clesphys2, ONLY: cycle_diurne, iflag_con, nbapp_rad, new_oliq, &      USE conf_interface_m, ONLY: conf_interface
24           ok_orodr, ok_orolf      USE pbl_surface_m, ONLY: pbl_surface
     USE clmain_m, ONLY: clmain  
25      use clouds_gno_m, only: clouds_gno      use clouds_gno_m, only: clouds_gno
26        use comconst, only: dtphys
27      USE comgeomphy, ONLY: airephy      USE comgeomphy, ONLY: airephy
28      USE concvl_m, ONLY: concvl      USE concvl_m, ONLY: concvl
29      USE conf_gcm_m, ONLY: offline, raz_date      USE conf_gcm_m, ONLY: lmt_pas
30      USE conf_phys_m, ONLY: conf_phys      USE conf_phys_m, ONLY: conf_phys
31      use conflx_m, only: conflx      use conflx_m, only: conflx
32      USE ctherm, ONLY: iflag_thermals, nsplit_thermals      USE ctherm_m, ONLY: iflag_thermals, ctherm
33      use diagcld2_m, only: diagcld2      use diagcld2_m, only: diagcld2
34      use diagetpq_m, only: diagetpq      USE dimensions, ONLY: llm, nqmx
     use diagphy_m, only: diagphy  
     USE dimens_m, ONLY: llm, nqmx  
35      USE dimphy, ONLY: klon      USE dimphy, ONLY: klon
36      USE dimsoil, ONLY: nsoilmx      USE dimsoil, ONLY: nsoilmx
37      use drag_noro_m, only: drag_noro      use drag_noro_m, only: drag_noro
38      use dynetat0_m, only: day_ref, annee_ref      use dynetat0_chosen_m, only: day_ref, annee_ref
39      USE fcttre, ONLY: foeew, qsatl, qsats, thermcep      USE fcttre, ONLY: foeew
40      use fisrtilp_m, only: fisrtilp      use fisrtilp_m, only: fisrtilp
41      USE hgardfou_m, ONLY: hgardfou      USE hgardfou_m, ONLY: hgardfou
42      USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &      USE histsync_m, ONLY: histsync
43           nbsrf      USE histwrite_phy_m, ONLY: histwrite_phy
44      USE ini_histins_m, ONLY: ini_histins      USE indicesol, ONLY: clnsurf, epsfra, nbsrf
45        USE ini_histins_m, ONLY: ini_histins, nid_ins
46        use lift_noro_m, only: lift_noro
47        use netcdf95, only: NF95_CLOSE
48      use newmicro_m, only: newmicro      use newmicro_m, only: newmicro
49        use nr_util, only: assert
50      USE orbite_m, ONLY: orbite      USE orbite_m, ONLY: orbite
51      USE ozonecm_m, ONLY: ozonecm      USE ozonecm_m, ONLY: ozonecm
52      USE phyetat0_m, ONLY: phyetat0, rlat, rlon      USE phyetat0_m, ONLY: phyetat0
53      USE phyredem_m, ONLY: phyredem      USE phyredem_m, ONLY: phyredem
54      USE phystokenc_m, ONLY: phystokenc      USE phyredem0_m, ONLY: phyredem0
55      USE phytrac_m, ONLY: phytrac      USE phytrac_m, ONLY: phytrac
     USE qcheck_m, ONLY: qcheck  
56      use radlwsw_m, only: radlwsw      use radlwsw_m, only: radlwsw
57      use readsulfate_m, only: readsulfate      use yoegwd, only: sugwd
58      use readsulfate_preind_m, only: readsulfate_preind      USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt, rmo3, md
59      use sugwd_m, only: sugwd      use time_phylmdz, only: itap, increment_itap
60      USE suphec_m, ONLY: ra, rcpd, retv, rg, rlvtt, romega, rsigma, rtt      use transp_m, only: transp
61      USE temps, ONLY: itau_phy      use transp_lay_m, only: transp_lay
62      use unit_nml_m, only: unit_nml      use unit_nml_m, only: unit_nml
63      USE ymds2ju_m, ONLY: ymds2ju      USE ymds2ju_m, ONLY: ymds2ju
64      USE yoethf_m, ONLY: r2es, rvtmp2      USE yoethf_m, ONLY: r2es, rvtmp2
# Line 70  contains Line 70  contains
70      ! current day number, based at value 1 on January 1st of annee_ref      ! current day number, based at value 1 on January 1st of annee_ref
71    
72      REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour      REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour
     REAL, intent(in):: dtphys ! pas d'integration pour la physique (seconde)  
73    
74      REAL, intent(in):: paprs(:, :) ! (klon, llm + 1)      REAL, intent(in):: paprs(:, :) ! (klon, llm + 1)
75      ! pression pour chaque inter-couche, en Pa      ! pression pour chaque inter-couche, en Pa
# Line 78  contains Line 77  contains
77      REAL, intent(in):: play(:, :) ! (klon, llm)      REAL, intent(in):: play(:, :) ! (klon, llm)
78      ! pression pour le mileu de chaque couche (en Pa)      ! pression pour le mileu de chaque couche (en Pa)
79    
80      REAL, intent(in):: pphi(:, :) ! (klon, llm)      REAL, intent(in):: pphi(:, :) ! (klon, llm)
81      ! géopotentiel de chaque couche (référence sol)      ! géopotentiel de chaque couche (référence sol)
82    
83      REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol      REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol
84    
85      REAL, intent(in):: u(:, :) ! (klon, llm)      REAL, intent(in):: u(:, :) ! (klon, llm)
86      ! vitesse dans la direction X (de O a E) en m/s      ! vitesse dans la direction X (de O a E) en m / s
87    
88      REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m/s      REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m / s
89      REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)      REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)
90    
91      REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)      REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)
92      ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)      ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)
93    
94      REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa/s      REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa / s
95      REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)      REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)
96      REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)      REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)
97      REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K/s)      REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K / s)
98    
99      REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)      REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)
100      ! tendance physique de "qx" (s-1)      ! tendance physique de "qx" (s-1)
# Line 104  contains Line 103  contains
103    
104      LOGICAL:: firstcal = .true.      LOGICAL:: firstcal = .true.
105    
     LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface  
     PARAMETER (ok_gust = .FALSE.)  
   
     LOGICAL, PARAMETER:: check = .FALSE.  
     ! Verifier la conservation du modele en eau  
   
106      LOGICAL, PARAMETER:: ok_stratus = .FALSE.      LOGICAL, PARAMETER:: ok_stratus = .FALSE.
107      ! Ajouter artificiellement les stratus      ! Ajouter artificiellement les stratus
108    
109      ! "slab" ocean      ! pour phystoke avec thermiques
     REAL, save:: tslab(klon) ! temperature of ocean slab  
     REAL, save:: seaice(klon) ! glace de mer (kg/m2)  
     REAL fluxo(klon) ! flux turbulents ocean-glace de mer  
     REAL fluxg(klon) ! flux turbulents ocean-atmosphere  
   
     logical:: ok_journe = .false., ok_mensuel = .true., ok_instan = .false.  
     ! sorties journalieres, mensuelles et instantanees dans les  
     ! fichiers histday, histmth et histins  
   
     LOGICAL ok_region ! sortir le fichier regional  
     PARAMETER (ok_region = .FALSE.)  
   
     ! pour phsystoke avec thermiques  
110      REAL fm_therm(klon, llm + 1)      REAL fm_therm(klon, llm + 1)
111      REAL entr_therm(klon, llm)      REAL entr_therm(klon, llm)
112      real, save:: q2(klon, llm + 1, nbsrf)      real, save:: q2(klon, llm + 1, nbsrf)
# Line 137  contains Line 117  contains
117      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)
118      LOGICAL, save:: ancien_ok      LOGICAL, save:: ancien_ok
119    
120      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K/s)      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K / s)
121      REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg/kg/s)      REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg / kg / s)
122    
123      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)
124    
125      REAL swdn0(klon, llm + 1), swdn(klon, llm + 1)      REAL, save:: swdn0(klon, llm + 1), swdn(klon, llm + 1)
126      REAL swup0(klon, llm + 1), swup(klon, llm + 1)      REAL, save:: swup0(klon, llm + 1), swup(klon, llm + 1)
127      SAVE swdn0, swdn, swup0, swup  
128        REAL, save:: lwdn0(klon, llm + 1), lwdn(klon, llm + 1)
129      REAL lwdn0(klon, llm + 1), lwdn(klon, llm + 1)      REAL, save:: lwup0(klon, llm + 1), lwup(klon, llm + 1)
     REAL lwup0(klon, llm + 1), lwup(klon, llm + 1)  
     SAVE lwdn0, lwdn, lwup0, lwup  
   
     ! Amip2  
     ! variables a une pression donnee  
   
     integer nlevSTD  
     PARAMETER(nlevSTD = 17)  
     real rlevSTD(nlevSTD)  
     DATA rlevSTD/100000., 92500., 85000., 70000., &  
          60000., 50000., 40000., 30000., 25000., 20000., &  
          15000., 10000., 7000., 5000., 3000., 2000., 1000./  
     CHARACTER(LEN = 4) clevSTD(nlevSTD)  
     DATA clevSTD/'1000', '925 ', '850 ', '700 ', '600 ', &  
          '500 ', '400 ', '300 ', '250 ', '200 ', '150 ', '100 ', &  
          '70 ', '50 ', '30 ', '20 ', '10 '/  
130    
131      ! prw: precipitable water      ! prw: precipitable water
132      real prw(klon)      real prw(klon)
133    
134      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg/m2)      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg / m2)
135      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg/kg)      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg / kg)
136      REAL flwp(klon), fiwp(klon)      REAL flwp(klon), fiwp(klon)
137      REAL flwc(klon, llm), fiwc(klon, llm)      REAL flwc(klon, llm), fiwc(klon, llm)
138    
     INTEGER kmax, lmax  
     PARAMETER(kmax = 8, lmax = 8)  
     INTEGER kmaxm1, lmaxm1  
     PARAMETER(kmaxm1 = kmax-1, lmaxm1 = lmax-1)  
   
     REAL zx_tau(kmaxm1), zx_pc(lmaxm1)  
     DATA zx_tau/0., 0.3, 1.3, 3.6, 9.4, 23., 60./  
     DATA zx_pc/50., 180., 310., 440., 560., 680., 800./  
   
     ! cldtopres pression au sommet des nuages  
     REAL cldtopres(lmaxm1)  
     DATA cldtopres/50., 180., 310., 440., 560., 680., 800./  
   
     ! taulev: numero du niveau de tau dans les sorties ISCCP  
     CHARACTER(LEN = 4) taulev(kmaxm1)  
   
     DATA taulev/'tau0', 'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'/  
     CHARACTER(LEN = 3) pclev(lmaxm1)  
     DATA pclev/'pc1', 'pc2', 'pc3', 'pc4', 'pc5', 'pc6', 'pc7'/  
   
     CHARACTER(LEN = 28) cnameisccp(lmaxm1, kmaxm1)  
     DATA cnameisccp/'pc< 50hPa, tau< 0.3', 'pc= 50-180hPa, tau< 0.3', &  
          'pc= 180-310hPa, tau< 0.3', 'pc= 310-440hPa, tau< 0.3', &  
          'pc= 440-560hPa, tau< 0.3', 'pc= 560-680hPa, tau< 0.3', &  
          'pc= 680-800hPa, tau< 0.3', 'pc< 50hPa, tau= 0.3-1.3', &  
          'pc= 50-180hPa, tau= 0.3-1.3', 'pc= 180-310hPa, tau= 0.3-1.3', &  
          'pc= 310-440hPa, tau= 0.3-1.3', 'pc= 440-560hPa, tau= 0.3-1.3', &  
          'pc= 560-680hPa, tau= 0.3-1.3', 'pc= 680-800hPa, tau= 0.3-1.3', &  
          'pc< 50hPa, tau= 1.3-3.6', 'pc= 50-180hPa, tau= 1.3-3.6', &  
          'pc= 180-310hPa, tau= 1.3-3.6', 'pc= 310-440hPa, tau= 1.3-3.6', &  
          'pc= 440-560hPa, tau= 1.3-3.6', 'pc= 560-680hPa, tau= 1.3-3.6', &  
          'pc= 680-800hPa, tau= 1.3-3.6', 'pc< 50hPa, tau= 3.6-9.4', &  
          'pc= 50-180hPa, tau= 3.6-9.4', 'pc= 180-310hPa, tau= 3.6-9.4', &  
          'pc= 310-440hPa, tau= 3.6-9.4', 'pc= 440-560hPa, tau= 3.6-9.4', &  
          'pc= 560-680hPa, tau= 3.6-9.4', 'pc= 680-800hPa, tau= 3.6-9.4', &  
          'pc< 50hPa, tau= 9.4-23', 'pc= 50-180hPa, tau= 9.4-23', &  
          'pc= 180-310hPa, tau= 9.4-23', 'pc= 310-440hPa, tau= 9.4-23', &  
          'pc= 440-560hPa, tau= 9.4-23', 'pc= 560-680hPa, tau= 9.4-23', &  
          'pc= 680-800hPa, tau= 9.4-23', 'pc< 50hPa, tau= 23-60', &  
          'pc= 50-180hPa, tau= 23-60', 'pc= 180-310hPa, tau= 23-60', &  
          'pc= 310-440hPa, tau= 23-60', 'pc= 440-560hPa, tau= 23-60', &  
          'pc= 560-680hPa, tau= 23-60', 'pc= 680-800hPa, tau= 23-60', &  
          'pc< 50hPa, tau> 60.', 'pc= 50-180hPa, tau> 60.', &  
          'pc= 180-310hPa, tau> 60.', 'pc= 310-440hPa, tau> 60.', &  
          'pc= 440-560hPa, tau> 60.', 'pc= 560-680hPa, tau> 60.', &  
          'pc= 680-800hPa, tau> 60.'/  
   
     ! ISCCP simulator v3.4  
   
139      ! Variables propres a la physique      ! Variables propres a la physique
140    
141      INTEGER, save:: radpas      INTEGER, save:: radpas
142      ! Radiative transfer computations are made every "radpas" call to      ! Radiative transfer computations are made every "radpas" call to
143      ! "physiq".      ! "physiq".
144    
145      REAL radsol(klon)      REAL, save:: radsol(klon)
146      SAVE radsol ! bilan radiatif au sol calcule par code radiatif      ! Bilan radiatif net au sol (W/m2), positif vers le bas. Must be
147        ! saved because radlwsw is not called at every time step.
148      INTEGER, SAVE:: itap ! number of calls to "physiq"      
149        REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction, in K
     REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction  
150    
151      REAL, save:: ftsoil(klon, nsoilmx, nbsrf)      REAL, save:: ftsoil(klon, nsoilmx, nbsrf)
152      ! soil temperature of surface fraction      ! soil temperature of surface fraction
153    
154      REAL, save:: fevap(klon, nbsrf) ! evaporation      REAL fluxlat(klon, nbsrf) ! flux de chaleur latente, en W m-2
     REAL fluxlat(klon, nbsrf)  
     SAVE fluxlat  
155    
156      REAL, save:: fqsurf(klon, nbsrf)      REAL, save:: fqsurf(klon, nbsrf)
157      ! humidite de l'air au contact de la surface      ! humidite de l'air au contact de la surface
158    
159      REAL, save:: qsol(klon)      REAL, save:: qsol(klon) ! column-density of water in soil, in kg m-2
     ! column-density of water in soil, in kg m-2  
160    
161      REAL, save:: fsnow(klon, nbsrf) ! epaisseur neigeuse      REAL, save:: fsnow(klon, nbsrf)
162      REAL, save:: falbe(klon, nbsrf) ! albedo par type de surface      ! column-density of mass of snow at the surface, in kg m-2
163      REAL, save:: falblw(klon, nbsrf) ! albedo par type de surface  
164        REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface
165    
166      ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :      ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :
167      REAL, save:: zmea(klon) ! orographie moyenne      REAL, save:: zmea(klon) ! orographie moyenne
# Line 260  contains Line 172  contains
172      REAL, save:: zpic(klon) ! Maximum de l'OESM      REAL, save:: zpic(klon) ! Maximum de l'OESM
173      REAL, save:: zval(klon) ! Minimum de l'OESM      REAL, save:: zval(klon) ! Minimum de l'OESM
174      REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM      REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM
   
175      REAL zulow(klon), zvlow(klon)      REAL zulow(klon), zvlow(klon)
176        INTEGER ktest(klon)
177    
178      INTEGER igwd, idx(klon), itest(klon)      REAL, save:: agesno(klon, nbsrf) ! age de la neige
179        REAL, save:: run_off_lic_0(klon)
180    
181      REAL agesno(klon, nbsrf)      ! Variables li\'ees \`a la convection d'Emanuel :
182      SAVE agesno ! age de la neige      REAL, save:: Ma(klon, llm) ! undilute upward mass flux
   
     REAL run_off_lic_0(klon)  
     SAVE run_off_lic_0  
     !KE43  
     ! Variables liees a la convection de K. Emanuel (sb):  
   
     REAL Ma(klon, llm) ! undilute upward mass flux  
     SAVE Ma  
     REAL qcondc(klon, llm) ! in-cld water content from convect  
     SAVE qcondc  
183      REAL, save:: sig1(klon, llm), w01(klon, llm)      REAL, save:: sig1(klon, llm), w01(klon, llm)
     REAL, save:: wd(klon)  
   
     ! Variables locales pour la couche limite (al1):  
   
     ! Variables locales:  
184    
185        ! Variables pour la couche limite (Alain Lahellec) :
186      REAL cdragh(klon) ! drag coefficient pour T and Q      REAL cdragh(klon) ! drag coefficient pour T and Q
187      REAL cdragm(klon) ! drag coefficient pour vent      REAL cdragm(klon) ! drag coefficient pour vent
188    
189      ! Pour phytrac :      REAL coefh(klon, 2:llm) ! coef d'echange pour phytrac
190      REAL ycoefh(klon, llm) ! coef d'echange pour phytrac  
191      REAL yu1(klon) ! vents dans la premiere couche U      REAL, save:: ffonte(klon, nbsrf)
192      REAL yv1(klon) ! vents dans la premiere couche V      ! flux thermique utilise pour fondre la neige
193      REAL ffonte(klon, nbsrf) !Flux thermique utilise pour fondre la neige  
194      REAL fqcalving(klon, nbsrf) !Flux d'eau "perdue" par la surface      REAL fqcalving(klon, nbsrf)
195      ! !et necessaire pour limiter la      ! flux d'eau "perdue" par la surface et n\'ecessaire pour limiter
196      ! !hauteur de neige, en kg/m2/s      ! la hauteur de neige, en kg / m2 / s
197      REAL zxffonte(klon), zxfqcalving(klon)  
198        REAL zxffonte(klon)
199      REAL pfrac_impa(klon, llm)! Produits des coefs lessivage impaction  
200      save pfrac_impa      REAL, save:: pfrac_impa(klon, llm)! Produits des coefs lessivage impaction
201      REAL pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation      REAL, save:: pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation
202      save pfrac_nucl  
203      REAL pfrac_1nucl(klon, llm)! Produits des coefs lessi nucl (alpha = 1)      REAL, save:: pfrac_1nucl(klon, llm)
204      save pfrac_1nucl      ! Produits des coefs lessi nucl (alpha = 1)
205      REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction)  
206        REAL frac_impa(klon, llm) ! fraction d'a\'erosols lessiv\'es (impaction)
207      REAL frac_nucl(klon, llm) ! idem (nucleation)      REAL frac_nucl(klon, llm) ! idem (nucleation)
208    
209      REAL, save:: rain_fall(klon)      REAL, save:: rain_fall(klon)
210      ! liquid water mass flux (kg/m2/s), positive down      ! liquid water mass flux (kg / m2 / s), positive down
211    
212      REAL, save:: snow_fall(klon)      REAL, save:: snow_fall(klon)
213      ! solid water mass flux (kg/m2/s), positive down      ! solid water mass flux (kg / m2 / s), positive down
214    
215      REAL rain_tiedtke(klon), snow_tiedtke(klon)      REAL rain_tiedtke(klon), snow_tiedtke(klon)
216    
217      REAL evap(klon), devap(klon) ! evaporation and its derivative      REAL evap(klon) ! flux d'\'evaporation au sol
218      REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee      real dflux_q(klon) ! derivative of the evaporation flux at the surface
219      REAL dlw(klon) ! derivee infra rouge      REAL sens(klon) ! flux de chaleur sensible au sol
220      SAVE dlw      real dflux_t(klon) ! derivee du flux de chaleur sensible au sol
221      REAL bils(klon) ! bilan de chaleur au sol      REAL, save:: dlw(klon) ! derivative of infra-red flux
222      REAL fder(klon) ! Derive de flux (sensible et latente)      REAL fder(klon) ! d\'erive de flux (sensible et latente)
     save fder  
223      REAL ve(klon) ! integr. verticale du transport meri. de l'energie      REAL ve(klon) ! integr. verticale du transport meri. de l'energie
224      REAL vq(klon) ! integr. verticale du transport meri. de l'eau      REAL vq(klon) ! integr. verticale du transport meri. de l'eau
225      REAL ue(klon) ! integr. verticale du transport zonal de l'energie      REAL ue(klon) ! integr. verticale du transport zonal de l'energie
# Line 332  contains Line 231  contains
231      ! Conditions aux limites      ! Conditions aux limites
232    
233      INTEGER julien      INTEGER julien
     INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day  
234      REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface      REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface
235      REAL pctsrf_new(klon, nbsrf) ! pourcentage surfaces issus d'ORCHIDEE      REAL, save:: albsol(klon) ! albedo du sol total, visible, moyen par maille
     REAL, save:: albsol(klon) ! albedo du sol total  
     REAL, save:: albsollw(klon) ! albedo du sol total  
236      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU
237        real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2
     ! Declaration des procedures appelees  
   
     EXTERNAL nuage ! calculer les proprietes radiatives  
     EXTERNAL transp ! transport total de l'eau et de l'energie  
   
     ! Variables locales  
238    
239      real, save:: clwcon(klon, llm), rnebcon(klon, llm)      real, save:: clwcon(klon, llm), rnebcon(klon, llm)
240      real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)      real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)
241    
242      REAL rhcl(klon, llm) ! humiditi relative ciel clair      REAL rhcl(klon, llm) ! humidit\'e relative ciel clair
243      REAL dialiq(klon, llm) ! eau liquide nuageuse      REAL dialiq(klon, llm) ! eau liquide nuageuse
244      REAL diafra(klon, llm) ! fraction nuageuse      REAL diafra(klon, llm) ! fraction nuageuse
245      REAL cldliq(klon, llm) ! eau liquide nuageuse      REAL cldliq(klon, llm) ! eau liquide nuageuse
246      REAL cldfra(klon, llm) ! fraction nuageuse      REAL cldfra(klon, llm) ! fraction nuageuse
247      REAL cldtau(klon, llm) ! epaisseur optique      REAL cldtau(klon, llm) ! \'epaisseur optique
248      REAL cldemi(klon, llm) ! emissivite infrarouge      REAL cldemi(klon, llm) ! \'emissivit\'e infrarouge
249    
250      REAL fluxq(klon, llm, nbsrf) ! flux turbulent d'humidite      REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface
251      REAL fluxt(klon, llm, nbsrf) ! flux turbulent de chaleur  
252      REAL fluxu(klon, llm, nbsrf) ! flux turbulent de vitesse u      REAL flux_t(klon, nbsrf)
253      REAL fluxv(klon, llm, nbsrf) ! flux turbulent de vitesse v      ! flux de chaleur sensible (c_p T) (W / m2) (orientation positive
254        ! vers le bas) à la surface
255      REAL zxfluxt(klon, llm)  
256      REAL zxfluxq(klon, llm)      REAL flux_u(klon, nbsrf), flux_v(klon, nbsrf)
257      REAL zxfluxu(klon, llm)      ! tension du vent (flux turbulent de vent) à la surface, en Pa
     REAL zxfluxv(klon, llm)  
258    
259      ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que      ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que
260      ! les variables soient r\'emanentes.      ! les variables soient r\'emanentes.
261      REAL, save:: heat(klon, llm) ! chauffage solaire      REAL, save:: heat(klon, llm) ! chauffage solaire
262      REAL heat0(klon, llm) ! chauffage solaire ciel clair      REAL, save:: heat0(klon, llm) ! chauffage solaire ciel clair
263      REAL, save:: cool(klon, llm) ! refroidissement infrarouge      REAL, save:: cool(klon, llm) ! refroidissement infrarouge
264      REAL cool0(klon, llm) ! refroidissement infrarouge ciel clair      REAL, save:: cool0(klon, llm) ! refroidissement infrarouge ciel clair
265      REAL, save:: topsw(klon), toplw(klon), solsw(klon)      REAL, save:: topsw(klon), toplw(klon), solsw(klon)
     REAL, save:: sollw(klon) ! rayonnement infrarouge montant \`a la surface  
     real, save:: sollwdown(klon) ! downward LW flux at surface  
     REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)  
     REAL albpla(klon)  
     REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous surface  
     REAL fsolsw(klon, nbsrf) ! flux solaire absorb. pour chaque sous surface  
     SAVE albpla  
     SAVE heat0, cool0  
   
     INTEGER itaprad  
     SAVE itaprad  
266    
267      REAL conv_q(klon, llm) ! convergence de l'humidite (kg/kg/s)      REAL, save:: sollw(klon) ! surface net downward longwave flux, in W m-2
268      REAL conv_t(klon, llm) ! convergence of temperature (K/s)      real, save:: sollwdown(klon) ! downwelling longwave flux at surface
269        REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)
270        REAL, save:: albpla(klon)
271    
272      REAL cldl(klon), cldm(klon), cldh(klon) !nuages bas, moyen et haut      REAL conv_q(klon, llm) ! convergence de l'humidite (kg / kg / s)
273      REAL cldt(klon), cldq(klon) !nuage total, eau liquide integree      REAL conv_t(klon, llm) ! convergence of temperature (K / s)
274    
275      REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon)      REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut
276        REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree
277    
278        REAL zxfluxlat(klon)
279      REAL dist, mu0(klon), fract(klon)      REAL dist, mu0(klon), fract(klon)
280      real longi      real longi
281      REAL z_avant(klon), z_apres(klon), z_factor(klon)      REAL z_avant(klon), z_apres(klon), z_factor(klon)
282      REAL za, zb      REAL zb
283      REAL zx_t, zx_qs, zcor      REAL zx_qs, zcor
284      real zqsat(klon, llm)      real zqsat(klon, llm)
285      INTEGER i, k, iq, nsrf      INTEGER i, k, iq, nsrf
     REAL, PARAMETER:: t_coup = 234.  
286      REAL zphi(klon, llm)      REAL zphi(klon, llm)
287    
288      ! cf. AM Variables locales pour la CLA (hbtm2)      ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm)
289    
290      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite
291      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA
292      REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite      REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite
293      REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite      REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite
294      REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite      REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite
295      REAL, SAVE:: pblt(klon, nbsrf) ! T a la Hauteur de couche limite      REAL, SAVE:: pblt(klon, nbsrf) ! T \`a la hauteur de couche limite
296      REAL, SAVE:: therm(klon, nbsrf)      REAL, SAVE:: therm(klon, nbsrf)
297      REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape      ! Grandeurs de sorties
     REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition  
     REAL, SAVE:: trmb3(klon, nbsrf) ! Point Omega  
     ! Grdeurs de sorties  
298      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)
299      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)
300      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)      REAL s_therm(klon)
     REAL s_trmb3(klon)  
301    
302      ! Variables locales pour la convection de K. Emanuel :      ! Variables pour la convection de K. Emanuel :
303    
304      REAL upwd(klon, llm) ! saturated updraft mass flux      REAL upwd(klon, llm) ! saturated updraft mass flux
305      REAL dnwd(klon, llm) ! saturated downdraft mass flux      REAL dnwd(klon, llm) ! saturated downdraft mass flux
306      REAL dnwd0(klon, llm) ! unsaturated downdraft mass flux      REAL, save:: cape(klon)
     REAL cape(klon) ! CAPE  
     SAVE cape  
307    
308      INTEGER iflagctrl(klon) ! flag fonctionnement de convect      INTEGER iflagctrl(klon) ! flag fonctionnement de convect
309    
# Line 440  contains Line 315  contains
315      ! eva: \'evaporation de l'eau liquide nuageuse      ! eva: \'evaporation de l'eau liquide nuageuse
316      ! vdf: vertical diffusion in boundary layer      ! vdf: vertical diffusion in boundary layer
317      REAL d_t_con(klon, llm), d_q_con(klon, llm)      REAL d_t_con(klon, llm), d_q_con(klon, llm)
318      REAL d_u_con(klon, llm), d_v_con(klon, llm)      REAL, save:: d_u_con(klon, llm), d_v_con(klon, llm)
319      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)
320      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)
321      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)
# Line 454  contains Line 329  contains
329      REAL prfl(klon, llm + 1), psfl(klon, llm + 1)      REAL prfl(klon, llm + 1), psfl(klon, llm + 1)
330    
331      INTEGER, save:: ibas_con(klon), itop_con(klon)      INTEGER, save:: ibas_con(klon), itop_con(klon)
332        real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa
333    
334      REAL rain_con(klon), rain_lsc(klon)      REAL rain_con(klon)
335      REAL snow_con(klon), snow_lsc(klon)      real rain_lsc(klon)
336      REAL d_ts(klon, nbsrf)      REAL snow_con(klon) ! neige (mm / s)
337        real snow_lsc(klon)
338    
339      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)
340      REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)      REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)
# Line 471  contains Line 348  contains
348      real ratqss(klon, llm), ratqsc(klon, llm)      real ratqss(klon, llm), ratqsc(klon, llm)
349      real:: ratqsbas = 0.01, ratqshaut = 0.3      real:: ratqsbas = 0.01, ratqshaut = 0.3
350    
351      ! Parametres lies au nouveau schema de nuages (SB, PDF)      ! Param\`etres li\'es au nouveau sch\'ema de nuages :
352      real:: fact_cldcon = 0.375      real:: fact_cldcon = 0.375
353      real:: facttemps = 1.e-4      real:: facttemps = 1.e-4
     logical:: ok_newmicro = .true.  
354      real facteur      real facteur
355    
356      integer:: iflag_cldcon = 1      integer:: iflag_cldcon = 1
357      logical ptconv(klon, llm)      logical ptconv(klon, llm)
358    
359      ! Variables locales pour effectuer les appels en s\'erie :      ! Variables pour effectuer les appels en s\'erie :
360    
361      REAL t_seri(klon, llm), q_seri(klon, llm)      REAL t_seri(klon, llm), q_seri(klon, llm)
362      REAL ql_seri(klon, llm)      REAL ql_seri(klon, llm)
# Line 491  contains Line 367  contains
367    
368      REAL zustrdr(klon), zvstrdr(klon)      REAL zustrdr(klon), zvstrdr(klon)
369      REAL zustrli(klon), zvstrli(klon)      REAL zustrli(klon), zvstrli(klon)
     REAL zustrph(klon), zvstrph(klon)  
370      REAL aam, torsfc      REAL aam, torsfc
371    
     REAL zx_tmp_fi2d(klon) ! variable temporaire grille physique  
   
     INTEGER, SAVE:: nid_ins  
   
372      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.
373      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.
374      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.
375      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.
376    
377      REAL zsto      REAL tsol(klon)
     real date0  
378    
379      ! Variables li\'ees au bilan d'\'energie et d'enthalpie :      REAL d_t_ec(klon, llm)
380      REAL ztsol(klon)      ! tendance due \`a la conversion d'\'energie cin\'etique en
381      REAL d_h_vcol, d_qt, d_ec      ! énergie thermique
382      REAL, SAVE:: d_h_vcol_phy  
383      REAL zero_v(klon)      REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf)
384      CHARACTER(LEN = 20) tit      ! temperature and humidity at 2 m
385      INTEGER:: ip_ebil = 0 ! print level for energy conservation diagnostics  
386      INTEGER:: if_ebil = 0 ! verbosity for diagnostics of energy conservation      REAL, save:: u10m_srf(klon, nbsrf), v10m_srf(klon, nbsrf)
387        ! composantes du vent \`a 10 m
388      REAL d_t_ec(klon, llm) ! tendance due \`a la conversion Ec -> E thermique      
389      REAL ZRCPD      REAL zt2m(klon), zq2m(klon) ! température, humidité 2 m moyenne sur 1 maille
390        REAL u10m(klon), v10m(klon) ! vent \`a 10 m moyenn\' sur les sous-surfaces
     REAL t2m(klon, nbsrf), q2m(klon, nbsrf) ! temperature and humidity at 2 m  
     REAL u10m(klon, nbsrf), v10m(klon, nbsrf) ! vents a 10 m  
     REAL zt2m(klon), zq2m(klon) ! temp., hum. 2 m moyenne s/ 1 maille  
     REAL zu10m(klon), zv10m(klon) ! vents a 10 m moyennes s/1 maille  
391    
392      ! Aerosol effects:      ! Aerosol effects:
393    
394      REAL sulfate(klon, llm) ! SO4 aerosol concentration (micro g/m3)      REAL, save:: topswad(klon), solswad(klon) ! aerosol direct effect
   
     REAL, save:: sulfate_pi(klon, llm)  
     ! SO4 aerosol concentration, in micro g/m3, pre-industrial value  
   
     REAL cldtaupi(klon, llm)  
     ! cloud optical thickness for pre-industrial (pi) aerosols  
   
     REAL re(klon, llm) ! Cloud droplet effective radius  
     REAL fl(klon, llm) ! denominator of re  
   
     ! Aerosol optical properties  
     REAL, save:: tau_ae(klon, llm, 2), piz_ae(klon, llm, 2)  
     REAL, save:: cg_ae(klon, llm, 2)  
   
     REAL topswad(klon), solswad(klon) ! aerosol direct effect  
     REAL topswai(klon), solswai(klon) ! aerosol indirect effect  
   
     REAL aerindex(klon) ! POLDER aerosol index  
   
395      LOGICAL:: ok_ade = .false. ! apply aerosol direct effect      LOGICAL:: ok_ade = .false. ! apply aerosol direct effect
     LOGICAL:: ok_aie = .false. ! apply aerosol indirect effect  
396    
397      REAL:: bl95_b0 = 2., bl95_b1 = 0.2      REAL:: bl95_b0 = 2., bl95_b1 = 0.2
398      ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus      ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus
399      ! B). They link cloud droplet number concentration to aerosol mass      ! B). They link cloud droplet number concentration to aerosol mass
400      ! concentration.      ! concentration.
401    
402      SAVE u10m      real zmasse(klon, llm)
     SAVE v10m  
     SAVE t2m  
     SAVE q2m  
     SAVE ffonte  
     SAVE fqcalving  
     SAVE rain_con  
     SAVE snow_con  
     SAVE topswai  
     SAVE topswad  
     SAVE solswai  
     SAVE solswad  
     SAVE d_u_con  
     SAVE d_v_con  
   
     real zmasse(klon, llm)  
403      ! (column-density of mass of air in a cell, in kg m-2)      ! (column-density of mass of air in a cell, in kg m-2)
404    
405      real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2      integer, save:: ncid_startphy
406    
407      namelist /physiq_nml/ ok_journe, ok_mensuel, ok_instan, fact_cldcon, &      namelist /physiq_nml/ fact_cldcon, facttemps, iflag_cldcon, ratqsbas, &
408           facttemps, ok_newmicro, iflag_cldcon, ratqsbas, ratqshaut, if_ebil, &           ratqshaut, ok_ade, bl95_b0, bl95_b1
          ok_ade, ok_aie, bl95_b0, bl95_b1, iflag_thermals, nsplit_thermals  
409    
410      !----------------------------------------------------------------      !----------------------------------------------------------------
411    
     IF (if_ebil >= 1) zero_v = 0.  
412      IF (nqmx < 2) CALL abort_gcm('physiq', &      IF (nqmx < 2) CALL abort_gcm('physiq', &
413           'eaux vapeur et liquide sont indispensables', 1)           'eaux vapeur et liquide sont indispensables')
414    
415      test_firstcal: IF (firstcal) THEN      test_firstcal: IF (firstcal) THEN
416         ! initialiser         ! initialiser
417         u10m = 0.         u10m_srf = 0.
418         v10m = 0.         v10m_srf = 0.
419         t2m = 0.         t2m = 0.
420         q2m = 0.         q2m = 0.
421         ffonte = 0.         ffonte = 0.
        fqcalving = 0.  
        piz_ae = 0.  
        tau_ae = 0.  
        cg_ae = 0.  
        rain_con = 0.  
        snow_con = 0.  
        topswai = 0.  
        topswad = 0.  
        solswai = 0.  
        solswad = 0.  
   
422         d_u_con = 0.         d_u_con = 0.
423         d_v_con = 0.         d_v_con = 0.
424         rnebcon0 = 0.         rnebcon0 = 0.
425         clwcon0 = 0.         clwcon0 = 0.
426         rnebcon = 0.         rnebcon = 0.
427         clwcon = 0.         clwcon = 0.
   
428         pblh =0. ! Hauteur de couche limite         pblh =0. ! Hauteur de couche limite
429         plcl =0. ! Niveau de condensation de la CLA         plcl =0. ! Niveau de condensation de la CLA
430         capCL =0. ! CAPE de couche limite         capCL =0. ! CAPE de couche limite
431         oliqCL =0. ! eau_liqu integree de couche limite         oliqCL =0. ! eau_liqu integree de couche limite
432         cteiCL =0. ! cloud top instab. crit. couche limite         cteiCL =0. ! cloud top instab. crit. couche limite
433         pblt =0. ! T a la Hauteur de couche limite         pblt =0.
434         therm =0.         therm =0.
        trmb1 =0. ! deep_cape  
        trmb2 =0. ! inhibition  
        trmb3 =0. ! Point Omega  
435    
        IF (if_ebil >= 1) d_h_vcol_phy = 0.  
   
        iflag_thermals = 0  
        nsplit_thermals = 1  
436         print *, "Enter namelist 'physiq_nml'."         print *, "Enter namelist 'physiq_nml'."
437         read(unit=*, nml=physiq_nml)         read(unit=*, nml=physiq_nml)
438         write(unit_nml, nml=physiq_nml)         write(unit_nml, nml=physiq_nml)
439    
440           call ctherm
441         call conf_phys         call conf_phys
442    
443         ! Initialiser les compteurs:         ! Initialiser les compteurs:
444    
445         frugs = 0.         frugs = 0.
446         itap = 0         CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
447         itaprad = 0              rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, agesno, &
448         CALL phyetat0(pctsrf, ftsol, ftsoil, tslab, seaice, fqsurf, qsol, &              zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, &
449              fsnow, falbe, falblw, fevap, rain_fall, snow_fall, solsw, sollw, &              ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01, &
450              dlw, radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, &              ncid_startphy)
             zval, t_ancien, q_ancien, ancien_ok, rnebcon, ratqs, clwcon, &  
             run_off_lic_0, sig1, w01)  
451    
452         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial
453         q2 = 1e-8         q2 = 1e-8
454    
455         radpas = NINT(86400. / dtphys / nbapp_rad)         radpas = lmt_pas / nbapp_rad
456           print *, "radpas = ", radpas
        ! on remet le calendrier a zero  
        IF (raz_date) itau_phy = 0  
   
        CALL printflag(radpas, ok_journe, ok_instan, ok_region)  
   
        IF (dtphys * radpas > 21600. .AND. cycle_diurne) THEN  
           print *, "Au minimum 4 appels par jour si cycle diurne"  
           call abort_gcm('physiq', &  
                "Nombre d'appels au rayonnement insuffisant", 1)  
        ENDIF  
457    
458         ! Initialisation pour le sch\'ema de convection d'Emanuel :         ! Initialisation pour le sch\'ema de convection d'Emanuel :
459         IF (iflag_con >= 3) THEN         IF (conv_emanuel) THEN
460            ibas_con = 1            ibas_con = 1
461            itop_con = 1            itop_con = 1
462         ENDIF         ENDIF
# Line 669  contains Line 468  contains
468            rugoro = 0.            rugoro = 0.
469         ENDIF         ENDIF
470    
        lmt_pas = NINT(86400. / dtphys) ! tous les jours  
        print *, 'Number of time steps of "physics" per day: ', lmt_pas  
   
        ecrit_ins = NINT(ecrit_ins/dtphys)  
        ecrit_hf = NINT(ecrit_hf/dtphys)  
        ecrit_mth = NINT(ecrit_mth/dtphys)  
        ecrit_tra = NINT(86400.*ecrit_tra/dtphys)  
        ecrit_reg = NINT(ecrit_reg/dtphys)  
   
471         ! Initialisation des sorties         ! Initialisation des sorties
472           call ini_histins
473         call ini_histins(dtphys, ok_instan, nid_ins)         CALL phyredem0
474         CALL ymds2ju(annee_ref, 1, day_ref, 0., date0)         call conf_interface
        ! Positionner date0 pour initialisation de ORCHIDEE  
        print *, 'physiq date0: ', date0  
475      ENDIF test_firstcal      ENDIF test_firstcal
476    
477      ! We will modify variables *_seri and we will not touch variables      ! We will modify variables *_seri and we will not touch variables
# Line 693  contains Line 481  contains
481      v_seri = v      v_seri = v
482      q_seri = qx(:, :, ivap)      q_seri = qx(:, :, ivap)
483      ql_seri = qx(:, :, iliq)      ql_seri = qx(:, :, iliq)
484      tr_seri = qx(:, :, 3: nqmx)      tr_seri = qx(:, :, 3:nqmx)
485    
486      ztsol = sum(ftsol * pctsrf, dim = 2)      tsol = sum(ftsol * pctsrf, dim = 2)
   
     IF (if_ebil >= 1) THEN  
        tit = 'after dynamics'  
        CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &  
             ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)  
        ! Comme les tendances de la physique sont ajout\'es dans la  
        !  dynamique, la variation d'enthalpie par la dynamique devrait  
        !  \^etre \'egale \`a la variation de la physique au pas de temps  
        !  pr\'ec\'edent.  Donc la somme de ces 2 variations devrait \^etre  
        !  nulle.  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol + d_h_vcol_phy, &  
             d_qt, 0.)  
     END IF  
487    
488      ! Diagnostic de la tendance dynamique :      ! Diagnostic de la tendance dynamique :
489      IF (ancien_ok) THEN      IF (ancien_ok) THEN
# Line 739  contains Line 513  contains
513      ! Check temperatures:      ! Check temperatures:
514      CALL hgardfou(t_seri, ftsol)      CALL hgardfou(t_seri, ftsol)
515    
516      ! Incrémenter le compteur de la physique      call increment_itap
     itap = itap + 1  
517      julien = MOD(dayvrai, 360)      julien = MOD(dayvrai, 360)
518      if (julien == 0) julien = 360      if (julien == 0) julien = 360
519    
520      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg
521    
     ! Prescrire l'ozone :  
     wo = ozonecm(REAL(julien), paprs)  
   
522      ! \'Evaporation de l'eau liquide nuageuse :      ! \'Evaporation de l'eau liquide nuageuse :
523      DO k = 1, llm      DO k = 1, llm
524         DO i = 1, klon         DO i = 1, klon
# Line 760  contains Line 530  contains
530      ENDDO      ENDDO
531      ql_seri = 0.      ql_seri = 0.
532    
     IF (if_ebil >= 2) THEN  
        tit = 'after reevap'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 1, dtphys, t_seri, q_seri, &  
             ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec)  
     END IF  
   
533      frugs = MAX(frugs, 0.000015)      frugs = MAX(frugs, 0.000015)
534      zxrugs = sum(frugs * pctsrf, dim = 2)      zxrugs = sum(frugs * pctsrf, dim = 2)
535    
536      ! Calculs nécessaires au calcul de l'albedo dans l'interface avec      ! Calculs n\'ecessaires au calcul de l'albedo dans l'interface avec
537      ! la surface.      ! la surface.
538    
539      CALL orbite(REAL(julien), longi, dist)      CALL orbite(REAL(julien), longi, dist)
540      IF (cycle_diurne) THEN      CALL zenang(longi, time, dtphys * radpas, mu0, fract)
        CALL zenang(longi, time, dtphys * radpas, mu0, fract)  
     ELSE  
        mu0 = -999.999  
     ENDIF  
541    
542      ! Calcul de l'abedo moyen par maille      CALL pbl_surface(pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, &
543      albsol = sum(falbe * pctsrf, dim = 2)           ftsol, cdmmax, cdhmax, ftsoil, qsol, paprs, play, fsnow, fqsurf, &
544      albsollw = sum(falblw * pctsrf, dim = 2)           falbe, fluxlat, rain_fall, snow_fall, frugs, agesno, rugoro, d_t_vdf, &
545             d_q_vdf, d_u_vdf, d_v_vdf, flux_t, flux_q, flux_u, flux_v, cdragh, &
546      ! R\'epartition sous maille des flux longwave et shortwave           cdragm, q2, dflux_t, dflux_q, coefh, t2m, q2m, u10m_srf, v10m_srf, &
547      ! R\'epartition du longwave par sous-surface lin\'earis\'ee           pblh, capCL, oliqCL, cteiCL, pblT, therm, plcl, fqcalving, ffonte, &
548             run_off_lic_0, albsol, sollw, solsw, tsol)
     forall (nsrf = 1: nbsrf)  
        fsollw(:, nsrf) = sollw + 4. * RSIGMA * ztsol**3 &  
             * (ztsol - ftsol(:, nsrf))  
        fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol)  
     END forall  
   
     fder = dlw  
   
     ! Couche limite:  
   
     CALL clmain(dtphys, itap, pctsrf, pctsrf_new, t_seri, q_seri, u_seri, &  
          v_seri, julien, mu0, co2_ppm, ftsol, cdmmax, cdhmax, &  
          ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, play, fsnow, fqsurf, &  
          fevap, falbe, falblw, fluxlat, rain_fall, snow_fall, fsolsw, fsollw, &  
          fder, rlat, frugs, firstcal, agesno, rugoro, d_t_vdf, d_q_vdf, &  
          d_u_vdf, d_v_vdf, d_ts, fluxt, fluxq, fluxu, fluxv, cdragh, cdragm, &  
          q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, pblh, &  
          capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, plcl, &  
          fqcalving, ffonte, run_off_lic_0, fluxo, fluxg, tslab)  
549    
550      ! Incr\'ementation des flux      ! Incr\'ementation des flux
551    
552      zxfluxt = 0.      sens = sum(flux_t * pctsrf, dim = 2)
553      zxfluxq = 0.      evap = - sum(flux_q * pctsrf, dim = 2)
554      zxfluxu = 0.      fder = dlw + dflux_t + dflux_q
     zxfluxv = 0.  
     DO nsrf = 1, nbsrf  
        DO k = 1, llm  
           DO i = 1, klon  
              zxfluxt(i, k) = zxfluxt(i, k) + fluxt(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxq(i, k) = zxfluxq(i, k) + fluxq(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxu(i, k) = zxfluxu(i, k) + fluxu(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxv(i, k) = zxfluxv(i, k) + fluxv(i, k, nsrf) * pctsrf(i, nsrf)  
           END DO  
        END DO  
     END DO  
     DO i = 1, klon  
        sens(i) = - zxfluxt(i, 1) ! flux de chaleur sensible au sol  
        evap(i) = - zxfluxq(i, 1) ! flux d'\'evaporation au sol  
        fder(i) = dlw(i) + dsens(i) + devap(i)  
     ENDDO  
555    
556      DO k = 1, llm      DO k = 1, llm
557         DO i = 1, klon         DO i = 1, klon
# Line 839  contains Line 562  contains
562         ENDDO         ENDDO
563      ENDDO      ENDDO
564    
565      IF (if_ebil >= 2) THEN      call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf')
566         tit = 'after clmain'      tsol = sum(ftsol * pctsrf, dim = 2)
567         CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &      zxfluxlat = sum(fluxlat * pctsrf, dim = 2)
568              ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)      zt2m = sum(t2m * pctsrf, dim = 2)
569         call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &      zq2m = sum(q2m * pctsrf, dim = 2)
570              sens, evap, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec)      u10m = sum(u10m_srf * pctsrf, dim = 2)
571      END IF      v10m = sum(v10m_srf * pctsrf, dim = 2)
572        zxffonte = sum(ffonte * pctsrf, dim = 2)
573        s_pblh = sum(pblh * pctsrf, dim = 2)
574        s_lcl = sum(plcl * pctsrf, dim = 2)
575        s_capCL = sum(capCL * pctsrf, dim = 2)
576        s_oliqCL = sum(oliqCL * pctsrf, dim = 2)
577        s_cteiCL = sum(cteiCL * pctsrf, dim = 2)
578        s_pblT = sum(pblT * pctsrf, dim = 2)
579        s_therm = sum(therm * pctsrf, dim = 2)
580    
581      ! Update surface temperature:      ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne :
   
     DO i = 1, klon  
        zxtsol(i) = 0.  
        zxfluxlat(i) = 0.  
   
        zt2m(i) = 0.  
        zq2m(i) = 0.  
        zu10m(i) = 0.  
        zv10m(i) = 0.  
        zxffonte(i) = 0.  
        zxfqcalving(i) = 0.  
   
        s_pblh(i) = 0.  
        s_lcl(i) = 0.  
        s_capCL(i) = 0.  
        s_oliqCL(i) = 0.  
        s_cteiCL(i) = 0.  
        s_pblT(i) = 0.  
        s_therm(i) = 0.  
        s_trmb1(i) = 0.  
        s_trmb2(i) = 0.  
        s_trmb3(i) = 0.  
   
        IF (abs(pctsrf(i, is_ter) + pctsrf(i, is_lic) + pctsrf(i, is_oce) &  
             + pctsrf(i, is_sic) - 1.)  >  EPSFRA) print *, &  
             'physiq : probl\`eme sous surface au point ', i, &  
             pctsrf(i, 1 : nbsrf)  
     ENDDO  
582      DO nsrf = 1, nbsrf      DO nsrf = 1, nbsrf
583         DO i = 1, klon         DO i = 1, klon
584            ftsol(i, nsrf) = ftsol(i, nsrf) + d_ts(i, nsrf)            IF (pctsrf(i, nsrf) < epsfra) then
585            zxtsol(i) = zxtsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)               ftsol(i, nsrf) = tsol(i)
586            zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf)*pctsrf(i, nsrf)               t2m(i, nsrf) = zt2m(i)
587                 q2m(i, nsrf) = zq2m(i)
588            zt2m(i) = zt2m(i) + t2m(i, nsrf)*pctsrf(i, nsrf)               u10m_srf(i, nsrf) = u10m(i)
589            zq2m(i) = zq2m(i) + q2m(i, nsrf)*pctsrf(i, nsrf)               v10m_srf(i, nsrf) = v10m(i)
590            zu10m(i) = zu10m(i) + u10m(i, nsrf)*pctsrf(i, nsrf)               ffonte(i, nsrf) = zxffonte(i)
591            zv10m(i) = zv10m(i) + v10m(i, nsrf)*pctsrf(i, nsrf)               pblh(i, nsrf) = s_pblh(i)
592            zxffonte(i) = zxffonte(i) + ffonte(i, nsrf)*pctsrf(i, nsrf)               plcl(i, nsrf) = s_lcl(i)
593            zxfqcalving(i) = zxfqcalving(i) + &               capCL(i, nsrf) = s_capCL(i)
594                 fqcalving(i, nsrf)*pctsrf(i, nsrf)               oliqCL(i, nsrf) = s_oliqCL(i)
595            s_pblh(i) = s_pblh(i) + pblh(i, nsrf)*pctsrf(i, nsrf)               cteiCL(i, nsrf) = s_cteiCL(i)
596            s_lcl(i) = s_lcl(i) + plcl(i, nsrf)*pctsrf(i, nsrf)               pblT(i, nsrf) = s_pblT(i)
597            s_capCL(i) = s_capCL(i) + capCL(i, nsrf) *pctsrf(i, nsrf)               therm(i, nsrf) = s_therm(i)
598            s_oliqCL(i) = s_oliqCL(i) + oliqCL(i, nsrf) *pctsrf(i, nsrf)            end IF
           s_cteiCL(i) = s_cteiCL(i) + cteiCL(i, nsrf) *pctsrf(i, nsrf)  
           s_pblT(i) = s_pblT(i) + pblT(i, nsrf) *pctsrf(i, nsrf)  
           s_therm(i) = s_therm(i) + therm(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb1(i) = s_trmb1(i) + trmb1(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb2(i) = s_trmb2(i) + trmb2(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb3(i) = s_trmb3(i) + trmb3(i, nsrf) *pctsrf(i, nsrf)  
599         ENDDO         ENDDO
600      ENDDO      ENDDO
601    
602      ! Si une sous-fraction n'existe pas, elle prend la température moyenne :      dlw = - 4. * RSIGMA * tsol**3
603      DO nsrf = 1, nbsrf  
604         DO i = 1, klon      ! Appeler la convection
605            IF (pctsrf(i, nsrf) < epsfra) ftsol(i, nsrf) = zxtsol(i)  
606        if (conv_emanuel) then
607            IF (pctsrf(i, nsrf) < epsfra) t2m(i, nsrf) = zt2m(i)         CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, &
608            IF (pctsrf(i, nsrf) < epsfra) q2m(i, nsrf) = zq2m(i)              d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, &
609            IF (pctsrf(i, nsrf) < epsfra) u10m(i, nsrf) = zu10m(i)              upwd, dnwd, Ma, cape, iflagctrl, clwcon0, pmflxr, da, phi, mp)
610            IF (pctsrf(i, nsrf) < epsfra) v10m(i, nsrf) = zv10m(i)         snow_con = 0.
           IF (pctsrf(i, nsrf) < epsfra) ffonte(i, nsrf) = zxffonte(i)  
           IF (pctsrf(i, nsrf) < epsfra) &  
                fqcalving(i, nsrf) = zxfqcalving(i)  
           IF (pctsrf(i, nsrf) < epsfra) pblh(i, nsrf) = s_pblh(i)  
           IF (pctsrf(i, nsrf) < epsfra) plcl(i, nsrf) = s_lcl(i)  
           IF (pctsrf(i, nsrf) < epsfra) capCL(i, nsrf) = s_capCL(i)  
           IF (pctsrf(i, nsrf) < epsfra) oliqCL(i, nsrf) = s_oliqCL(i)  
           IF (pctsrf(i, nsrf) < epsfra) cteiCL(i, nsrf) = s_cteiCL(i)  
           IF (pctsrf(i, nsrf) < epsfra) pblT(i, nsrf) = s_pblT(i)  
           IF (pctsrf(i, nsrf) < epsfra) therm(i, nsrf) = s_therm(i)  
           IF (pctsrf(i, nsrf) < epsfra) trmb1(i, nsrf) = s_trmb1(i)  
           IF (pctsrf(i, nsrf) < epsfra) trmb2(i, nsrf) = s_trmb2(i)  
           IF (pctsrf(i, nsrf) < epsfra) trmb3(i, nsrf) = s_trmb3(i)  
        ENDDO  
     ENDDO  
   
     ! Calculer la dérive du flux infrarouge  
   
     DO i = 1, klon  
        dlw(i) = - 4. * RSIGMA * zxtsol(i)**3  
     ENDDO  
   
     IF (check) print *, "avantcon = ", qcheck(paprs, q_seri, ql_seri)  
   
     ! Appeler la convection (au choix)  
   
     if (iflag_con == 2) then  
        conv_q = d_q_dyn + d_q_vdf / dtphys  
        conv_t = d_t_dyn + d_t_vdf / dtphys  
        z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)  
        CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:-1), &  
             q_seri(:, llm:1:-1), conv_t, conv_q, zxfluxq(:, 1), omega, &  
             d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:-1), &  
             mfd(:, llm:1:-1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, &  
             kdtop, pmflxr, pmflxs)  
        WHERE (rain_con < 0.) rain_con = 0.  
        WHERE (snow_con < 0.) snow_con = 0.  
        ibas_con = llm + 1 - kcbot  
        itop_con = llm + 1 - kctop  
     else  
        ! iflag_con >= 3  
   
        da = 0.  
        mp = 0.  
        phi = 0.  
        CALL concvl(dtphys, paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, &  
             w01, d_t_con, d_q_con, d_u_con, d_v_con, rain_con, snow_con, &  
             ibas_con, itop_con, upwd, dnwd, dnwd0, Ma, cape, iflagctrl, &  
             qcondc, wd, pmflxr, pmflxs, da, phi, mp)  
        clwcon0 = qcondc  
611         mfu = upwd + dnwd         mfu = upwd + dnwd
        IF (.NOT. ok_gust) wd = 0.  
612    
613         IF (thermcep) THEN         zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play)
614            zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play)         zqsat = zqsat / (1. - retv * zqsat)
           zqsat = zqsat / (1. - retv * zqsat)  
        ELSE  
           zqsat = merge(qsats(t_seri), qsatl(t_seri), t_seri < t_coup) / play  
        ENDIF  
615    
616         ! Properties of convective clouds         ! Properties of convective clouds
617         clwcon0 = fact_cldcon * clwcon0         clwcon0 = fact_cldcon * clwcon0
618         call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &         call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &
619              rnebcon0)              rnebcon0)
620    
621           forall (i = 1:klon) ema_pct(i) = paprs(i, itop_con(i) + 1)
622         mfd = 0.         mfd = 0.
623         pen_u = 0.         pen_u = 0.
624         pen_d = 0.         pen_d = 0.
625         pde_d = 0.         pde_d = 0.
626         pde_u = 0.         pde_u = 0.
627        else
628           conv_q = d_q_dyn + d_q_vdf / dtphys
629           conv_t = d_t_dyn + d_t_vdf / dtphys
630           z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)
631           CALL conflx(paprs, play, t_seri(:, llm:1:- 1), q_seri(:, llm:1:- 1), &
632                conv_t, conv_q, - evap, omega, d_t_con, d_q_con, rain_con, &
633                snow_con, mfu(:, llm:1:- 1), mfd(:, llm:1:- 1), pen_u, pde_u, &
634                pen_d, pde_d, kcbot, kctop, kdtop, pmflxr, pmflxs)
635           WHERE (rain_con < 0.) rain_con = 0.
636           WHERE (snow_con < 0.) snow_con = 0.
637           ibas_con = llm + 1 - kcbot
638           itop_con = llm + 1 - kctop
639      END if      END if
640    
641      DO k = 1, llm      DO k = 1, llm
# Line 992  contains Line 647  contains
647         ENDDO         ENDDO
648      ENDDO      ENDDO
649    
650      IF (if_ebil >= 2) THEN      IF (.not. conv_emanuel) THEN
        tit = 'after convect'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, rain_con, snow_con, ztsol, d_h_vcol, d_qt, d_ec)  
     END IF  
   
     IF (check) THEN  
        za = qcheck(paprs, q_seri, ql_seri)  
        print *, "aprescon = ", za  
        zx_t = 0.  
        za = 0.  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_con(i)+ &  
                snow_con(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtphys  
        print *, "Precip = ", zx_t  
     ENDIF  
   
     IF (iflag_con == 2) THEN  
651         z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)         z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)
652         z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres         z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres
653         DO k = 1, llm         DO k = 1, llm
654            DO i = 1, klon            DO i = 1, klon
655               IF (z_factor(i) > 1. + 1E-8 .OR. z_factor(i) < 1. - 1E-8) THEN               IF (z_factor(i) /= 1.) THEN
656                  q_seri(i, k) = q_seri(i, k) * z_factor(i)                  q_seri(i, k) = q_seri(i, k) * z_factor(i)
657               ENDIF               ENDIF
658            ENDDO            ENDDO
# Line 1035  contains Line 668  contains
668      fm_therm = 0.      fm_therm = 0.
669      entr_therm = 0.      entr_therm = 0.
670    
671      if (iflag_thermals == 0) then      if (iflag_thermals) then
672         ! Ajustement sec         call calltherm(play, paprs, pphi, u_seri, v_seri, t_seri, q_seri, &
673                d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)
674        else
675         CALL ajsec(paprs, play, t_seri, q_seri, d_t_ajs, d_q_ajs)         CALL ajsec(paprs, play, t_seri, q_seri, d_t_ajs, d_q_ajs)
676         t_seri = t_seri + d_t_ajs         t_seri = t_seri + d_t_ajs
677         q_seri = q_seri + d_q_ajs         q_seri = q_seri + d_q_ajs
     else  
        ! Thermiques  
        call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, &  
             q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)  
678      endif      endif
679    
     IF (if_ebil >= 2) THEN  
        tit = 'after dry_adjust'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)  
     END IF  
   
680      ! Caclul des ratqs      ! Caclul des ratqs
681    
     ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q  
     ! on \'ecrase le tableau ratqsc calcul\'e par clouds_gno  
682      if (iflag_cldcon == 1) then      if (iflag_cldcon == 1) then
683           ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q
684           ! on \'ecrase le tableau ratqsc calcul\'e par clouds_gno
685         do k = 1, llm         do k = 1, llm
686            do i = 1, klon            do i = 1, klon
687               if(ptconv(i, k)) then               if(ptconv(i, k)) then
# Line 1073  contains Line 698  contains
698      do k = 1, llm      do k = 1, llm
699         do i = 1, klon         do i = 1, klon
700            ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &            ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &
701                 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)                 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)
702         enddo         enddo
703      enddo      enddo
704    
# Line 1090  contains Line 715  contains
715         ratqs = ratqss         ratqs = ratqss
716      endif      endif
717    
718      CALL fisrtilp(dtphys, paprs, play, t_seri, q_seri, ptconv, ratqs, &      CALL fisrtilp(paprs, play, t_seri, q_seri, ptconv, ratqs, d_t_lsc, &
719           d_t_lsc, d_q_lsc, d_ql_lsc, rneb, cldliq, rain_lsc, snow_lsc, &           d_q_lsc, d_ql_lsc, rneb, cldliq, rain_lsc, snow_lsc, pfrac_impa, &
720           pfrac_impa, pfrac_nucl, pfrac_1nucl, frac_impa, frac_nucl, prfl, &           pfrac_nucl, pfrac_1nucl, frac_impa, frac_nucl, prfl, psfl, rhcl)
          psfl, rhcl)  
721    
722      WHERE (rain_lsc < 0) rain_lsc = 0.      WHERE (rain_lsc < 0) rain_lsc = 0.
723      WHERE (snow_lsc < 0) snow_lsc = 0.      WHERE (snow_lsc < 0) snow_lsc = 0.
# Line 1103  contains Line 727  contains
727            q_seri(i, k) = q_seri(i, k) + d_q_lsc(i, k)            q_seri(i, k) = q_seri(i, k) + d_q_lsc(i, k)
728            ql_seri(i, k) = ql_seri(i, k) + d_ql_lsc(i, k)            ql_seri(i, k) = ql_seri(i, k) + d_ql_lsc(i, k)
729            cldfra(i, k) = rneb(i, k)            cldfra(i, k) = rneb(i, k)
730            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)            IF (.NOT. new_oliq) cldliq(i, k) = ql_seri(i, k)
731         ENDDO         ENDDO
732      ENDDO      ENDDO
     IF (check) THEN  
        za = qcheck(paprs, q_seri, ql_seri)  
        print *, "apresilp = ", za  
        zx_t = 0.  
        za = 0.  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_lsc(i) &  
                + snow_lsc(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtphys  
        print *, "Precip = ", zx_t  
     ENDIF  
   
     IF (if_ebil >= 2) THEN  
        tit = 'after fisrt'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, rain_lsc, snow_lsc, ztsol, d_h_vcol, d_qt, d_ec)  
     END IF  
733    
734      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
735    
736      ! 1. NUAGES CONVECTIFS      ! 1. NUAGES CONVECTIFS
737    
738      IF (iflag_cldcon <= -1) THEN      IF (iflag_cldcon <= - 1) THEN
739         ! seulement pour Tiedtke         ! seulement pour Tiedtke
740         snow_tiedtke = 0.         snow_tiedtke = 0.
741         if (iflag_cldcon == -1) then         if (iflag_cldcon == - 1) then
742            rain_tiedtke = rain_con            rain_tiedtke = rain_con
743         else         else
744            rain_tiedtke = 0.            rain_tiedtke = 0.
745            do k = 1, llm            do k = 1, llm
746               do i = 1, klon               do i = 1, klon
747                  if (d_q_con(i, k) < 0.) then                  if (d_q_con(i, k) < 0.) then
748                     rain_tiedtke(i) = rain_tiedtke(i)-d_q_con(i, k)/dtphys &                     rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k) / dtphys &
749                          *zmasse(i, k)                          * zmasse(i, k)
750                  endif                  endif
751               enddo               enddo
752            enddo            enddo
# Line 1178  contains Line 781  contains
781    
782         ! On prend la somme des fractions nuageuses et des contenus en eau         ! On prend la somme des fractions nuageuses et des contenus en eau
783         cldfra = min(max(cldfra, rnebcon), 1.)         cldfra = min(max(cldfra, rnebcon), 1.)
784         cldliq = cldliq + rnebcon*clwcon         cldliq = cldliq + rnebcon * clwcon
785      ENDIF      ENDIF
786    
787      ! 2. Nuages stratiformes      ! 2. Nuages stratiformes
# Line 1201  contains Line 804  contains
804         snow_fall(i) = snow_con(i) + snow_lsc(i)         snow_fall(i) = snow_con(i) + snow_lsc(i)
805      ENDDO      ENDDO
806    
     IF (if_ebil >= 2) CALL diagetpq(airephy, "after diagcld", ip_ebil, 2, 2, &  
          dtphys, t_seri, q_seri, ql_seri, u_seri, v_seri, paprs, d_h_vcol, &  
          d_qt, d_ec)  
   
807      ! Humidit\'e relative pour diagnostic :      ! Humidit\'e relative pour diagnostic :
808      DO k = 1, llm      DO k = 1, llm
809         DO i = 1, klon         DO i = 1, klon
810            zx_t = t_seri(i, k)            zx_qs = r2es * FOEEW(t_seri(i, k), rtt >= t_seri(i, k)) / play(i, k)
811            IF (thermcep) THEN            zx_qs = MIN(0.5, zx_qs)
812               zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t)/play(i, k)            zcor = 1. / (1. - retv * zx_qs)
813               zx_qs = MIN(0.5, zx_qs)            zx_qs = zx_qs * zcor
814               zcor = 1./(1.-retv*zx_qs)            zx_rh(i, k) = q_seri(i, k) / zx_qs
              zx_qs = zx_qs*zcor  
           ELSE  
              IF (zx_t < t_coup) THEN  
                 zx_qs = qsats(zx_t)/play(i, k)  
              ELSE  
                 zx_qs = qsatl(zx_t)/play(i, k)  
              ENDIF  
           ENDIF  
           zx_rh(i, k) = q_seri(i, k)/zx_qs  
815            zqsat(i, k) = zx_qs            zqsat(i, k) = zx_qs
816         ENDDO         ENDDO
817      ENDDO      ENDDO
818    
     ! Introduce the aerosol direct and first indirect radiative forcings:  
     IF (ok_ade .OR. ok_aie) THEN  
        ! Get sulfate aerosol distribution :  
        CALL readsulfate(dayvrai, time, firstcal, sulfate)  
        CALL readsulfate_preind(dayvrai, time, firstcal, sulfate_pi)  
   
        CALL aeropt(play, paprs, t_seri, sulfate, rhcl, tau_ae, piz_ae, cg_ae, &  
             aerindex)  
     ELSE  
        tau_ae = 0.  
        piz_ae = 0.  
        cg_ae = 0.  
     ENDIF  
   
819      ! Param\`etres optiques des nuages et quelques param\`etres pour      ! Param\`etres optiques des nuages et quelques param\`etres pour
820      ! diagnostics :      ! diagnostics :
821      if (ok_newmicro) then      CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &
822         CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &           cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc)
             cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc, ok_aie, &  
             sulfate, sulfate_pi, bl95_b0, bl95_b1, cldtaupi, re, fl)  
     else  
        CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &  
             cldl, cldm, cldt, cldq, ok_aie, sulfate, sulfate_pi, bl95_b0, &  
             bl95_b1, cldtaupi, re, fl)  
     endif  
823    
824      IF (MOD(itaprad, radpas) == 0) THEN      IF (MOD(itap - 1, radpas) == 0) THEN
825         ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.         wo = ozonecm(REAL(julien), paprs)
826         DO i = 1, klon         albsol = sum(falbe * pctsrf, dim = 2)
827            albsol(i) = falbe(i, is_oce) * pctsrf(i, is_oce) &         CALL radlwsw(dist, mu0, fract, paprs, play, tsol, albsol, t_seri, &
828                 + falbe(i, is_lic) * pctsrf(i, is_lic) &              q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, &
829                 + falbe(i, is_ter) * pctsrf(i, is_ter) &              radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, &
830                 + falbe(i, is_sic) * pctsrf(i, is_sic)              toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, &
831            albsollw(i) = falblw(i, is_oce) * pctsrf(i, is_oce) &              swup0, swup, ok_ade, topswad, solswad)
                + falblw(i, is_lic) * pctsrf(i, is_lic) &  
                + falblw(i, is_ter) * pctsrf(i, is_ter) &  
                + falblw(i, is_sic) * pctsrf(i, is_sic)  
        ENDDO  
        ! Rayonnement (compatible Arpege-IFS) :  
        CALL radlwsw(dist, mu0, fract, paprs, play, zxtsol, albsol, &  
             albsollw, t_seri, q_seri, wo, cldfra, cldemi, cldtau, heat, &  
             heat0, cool, cool0, radsol, albpla, topsw, toplw, solsw, sollw, &  
             sollwdown, topsw0, toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, &  
             lwup, swdn0, swdn, swup0, swup, ok_ade, ok_aie, tau_ae, piz_ae, &  
             cg_ae, topswad, solswad, cldtaupi, topswai, solswai)  
        itaprad = 0  
832      ENDIF      ENDIF
833    
     itaprad = itaprad + 1  
   
834      ! Ajouter la tendance des rayonnements (tous les pas)      ! Ajouter la tendance des rayonnements (tous les pas)
   
835      DO k = 1, llm      DO k = 1, llm
836         DO i = 1, klon         DO i = 1, klon
837            t_seri(i, k) = t_seri(i, k) + (heat(i, k)-cool(i, k)) * dtphys/86400.            t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys &
838                   / 86400.
839         ENDDO         ENDDO
840      ENDDO      ENDDO
841    
     IF (if_ebil >= 2) THEN  
        tit = 'after rad'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)  
        call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec)  
     END IF  
   
     ! Calculer l'hydrologie de la surface  
     DO i = 1, klon  
        zxqsurf(i) = 0.  
        zxsnow(i) = 0.  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxqsurf(i) = zxqsurf(i) + fqsurf(i, nsrf)*pctsrf(i, nsrf)  
           zxsnow(i) = zxsnow(i) + fsnow(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage)  
   
     DO i = 1, klon  
        bils(i) = radsol(i) - sens(i) + zxfluxlat(i)  
     ENDDO  
   
842      ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille :      ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille :
843    
844      IF (ok_orodr) THEN      IF (ok_orodr) THEN
845         ! selection des points pour lesquels le shema est actif:         ! S\'election des points pour lesquels le sch\'ema est actif :
        igwd = 0  
846         DO i = 1, klon         DO i = 1, klon
847            itest(i) = 0            ktest(i) = 0
848            IF (((zpic(i)-zmea(i)) > 100.).AND.(zstd(i) > 10.)) THEN            IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN
849               itest(i) = 1               ktest(i) = 1
              igwd = igwd + 1  
              idx(igwd) = i  
850            ENDIF            ENDIF
851         ENDDO         ENDDO
852    
853         CALL drag_noro(klon, llm, dtphys, paprs, play, zmea, zstd, zsig, zgam, &         CALL drag_noro(paprs, play, zmea, zstd, zsig, zgam, zthe, zpic, zval, &
854              zthe, zpic, zval, igwd, idx, itest, t_seri, u_seri, v_seri, &              ktest, t_seri, u_seri, v_seri, zulow, zvlow, zustrdr, zvstrdr, &
855              zulow, zvlow, zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro)              d_t_oro, d_u_oro, d_v_oro)
856    
857         ! ajout des tendances         ! ajout des tendances
858         DO k = 1, llm         DO k = 1, llm
# Line 1340  contains Line 866  contains
866    
867      IF (ok_orolf) THEN      IF (ok_orolf) THEN
868         ! S\'election des points pour lesquels le sch\'ema est actif :         ! S\'election des points pour lesquels le sch\'ema est actif :
        igwd = 0  
869         DO i = 1, klon         DO i = 1, klon
870            itest(i) = 0            ktest(i) = 0
871            IF ((zpic(i) - zmea(i)) > 100.) THEN            IF (zpic(i) - zmea(i) > 100.) THEN
872               itest(i) = 1               ktest(i) = 1
              igwd = igwd + 1  
              idx(igwd) = i  
873            ENDIF            ENDIF
874         ENDDO         ENDDO
875    
876         CALL lift_noro(klon, llm, dtphys, paprs, play, rlat, zmea, zstd, zpic, &         CALL lift_noro(paprs, play, zmea, zstd, zpic, ktest, t_seri, u_seri, &
877              itest, t_seri, u_seri, v_seri, zulow, zvlow, zustrli, zvstrli, &              v_seri, zulow, zvlow, zustrli, zvstrli, d_t_lif, d_u_lif, d_v_lif)
             d_t_lif, d_u_lif, d_v_lif)  
878    
879         ! Ajout des tendances :         ! Ajout des tendances :
880         DO k = 1, llm         DO k = 1, llm
# Line 1364  contains Line 886  contains
886         ENDDO         ENDDO
887      ENDIF      ENDIF
888    
889      ! Stress n\'ecessaires : toute la physique      CALL aaam_bud(rg, romega, pphis, zustrdr, zustrli, &
890             sum((u_seri - u) / dtphys * zmasse, dim = 2), zvstrdr, &
891      DO i = 1, klon           zvstrli, sum((v_seri - v) / dtphys * zmasse, dim = 2), paprs, u, v, &
892         zustrph(i) = 0.           aam, torsfc)
        zvstrph(i) = 0.  
     ENDDO  
     DO k = 1, llm  
        DO i = 1, klon  
           zustrph(i) = zustrph(i) + (u_seri(i, k) - u(i, k)) / dtphys &  
                * zmasse(i, k)  
           zvstrph(i) = zvstrph(i) + (v_seri(i, k) - v(i, k)) / dtphys &  
                * zmasse(i, k)  
        ENDDO  
     ENDDO  
   
     CALL aaam_bud(ra, rg, romega, rlat, rlon, pphis, zustrdr, zustrli, &  
          zustrph, zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc)  
   
     IF (if_ebil >= 2) CALL diagetpq(airephy, 'after orography', ip_ebil, 2, &  
          2, dtphys, t_seri, q_seri, ql_seri, u_seri, v_seri, paprs, d_h_vcol, &  
          d_qt, d_ec)  
893    
894      ! Calcul des tendances traceurs      ! Calcul des tendances traceurs
895      call phytrac(itap, lmt_pas, julien, time, firstcal, lafin, dtphys, t, &      call phytrac(julien, time, firstcal, lafin, t, paprs, play, mfu, mfd, &
896           paprs, play, mfu, mfd, pde_u, pen_d, ycoefh, fm_therm, entr_therm, &           pde_u, pen_d, coefh, cdragh, fm_therm, entr_therm, u(:, 1), v(:, 1), &
897           yu1, yv1, ftsol, pctsrf, frac_impa, frac_nucl, pphis, da, phi, mp, &           ftsol, pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, dnwd, &
898           upwd, dnwd, tr_seri, zmasse)           tr_seri, zmasse, ncid_startphy)
   
     IF (offline) call phystokenc(dtphys, rlon, rlat, t, mfu, mfd, pen_u, &  
          pde_u, pen_d, pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, &  
          pctsrf, frac_impa, frac_nucl, pphis, airephy, dtphys, itap)  
899    
900      ! Calculer le transport de l'eau et de l'energie (diagnostique)      ! Calculer le transport de l'eau et de l'energie (diagnostique)
901      CALL transp(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, &      CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq)
          ue, uq)  
902    
903      ! diag. bilKP      ! diag. bilKP
904    
905      CALL transp_lay(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, &      CALL transp_lay(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve_lay, &
906           ve_lay, vq_lay, ue_lay, uq_lay)           vq_lay, ue_lay, uq_lay)
907    
908      ! Accumuler les variables a stocker dans les fichiers histoire:      ! Accumuler les variables a stocker dans les fichiers histoire:
909    
910      ! conversion Ec -> E thermique      ! conversion Ec en énergie thermique
911      DO k = 1, llm      DO k = 1, llm
912         DO i = 1, klon         DO i = 1, klon
913            ZRCPD = RCPD * (1. + RVTMP2 * q_seri(i, k))            d_t_ec(i, k) = 0.5 / (RCPD * (1. + RVTMP2 * q_seri(i, k))) &
           d_t_ec(i, k) = 0.5 / ZRCPD &  
914                 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)                 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)
915            t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)            t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)
916            d_t_ec(i, k) = d_t_ec(i, k) / dtphys            d_t_ec(i, k) = d_t_ec(i, k) / dtphys
917         END DO         END DO
918      END DO      END DO
919    
     IF (if_ebil >= 1) THEN  
        tit = 'after physic'  
        CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &  
             ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)  
        ! Comme les tendances de la physique sont ajoute dans la dynamique,  
        ! on devrait avoir que la variation d'entalpie par la dynamique  
        ! est egale a la variation de la physique au pas de temps precedent.  
        ! Donc la somme de ces 2 variations devrait etre nulle.  
        call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, sens, &  
             evap, rain_fall, snow_fall, ztsol, d_h_vcol, d_qt, d_ec)  
        d_h_vcol_phy = d_h_vcol  
     END IF  
   
920      ! SORTIES      ! SORTIES
921    
922      ! prw = eau precipitable      ! prw = eau precipitable
923      DO i = 1, klon      DO i = 1, klon
924         prw(i) = 0.         prw(i) = 0.
925         DO k = 1, llm         DO k = 1, llm
926            prw(i) = prw(i) + q_seri(i, k)*zmasse(i, k)            prw(i) = prw(i) + q_seri(i, k) * zmasse(i, k)
927         ENDDO         ENDDO
928      ENDDO      ENDDO
929    
# Line 1456  contains Line 942  contains
942      DO iq = 3, nqmx      DO iq = 3, nqmx
943         DO k = 1, llm         DO k = 1, llm
944            DO i = 1, klon            DO i = 1, klon
945               d_qx(i, k, iq) = (tr_seri(i, k, iq-2) - qx(i, k, iq)) / dtphys               d_qx(i, k, iq) = (tr_seri(i, k, iq - 2) - qx(i, k, iq)) / dtphys
946            ENDDO            ENDDO
947         ENDDO         ENDDO
948      ENDDO      ENDDO
# Line 1469  contains Line 955  contains
955         ENDDO         ENDDO
956      ENDDO      ENDDO
957    
958      ! Ecriture des sorties      CALL histwrite_phy("phis", pphis)
959      call write_histins      CALL histwrite_phy("aire", airephy)
960        CALL histwrite_phy("psol", paprs(:, 1))
961      ! Si c'est la fin, il faut conserver l'etat de redemarrage      CALL histwrite_phy("precip", rain_fall + snow_fall)
962      IF (lafin) THEN      CALL histwrite_phy("plul", rain_lsc + snow_lsc)
963         itau_phy = itau_phy + itap      CALL histwrite_phy("pluc", rain_con + snow_con)
964         CALL phyredem("restartphy.nc", rlat, rlon, pctsrf, ftsol, ftsoil, &      CALL histwrite_phy("tsol", tsol)
965              tslab, seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, &      CALL histwrite_phy("t2m", zt2m)
966              rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, &      CALL histwrite_phy("q2m", zq2m)
967              agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, &      CALL histwrite_phy("u10m", u10m)
968              q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01)      CALL histwrite_phy("v10m", v10m)
969      ENDIF      CALL histwrite_phy("snow", snow_fall)
970        CALL histwrite_phy("cdrm", cdragm)
971      firstcal = .FALSE.      CALL histwrite_phy("cdrh", cdragh)
972        CALL histwrite_phy("topl", toplw)
973    contains      CALL histwrite_phy("evap", evap)
974        CALL histwrite_phy("sols", solsw)
975      subroutine write_histins      CALL histwrite_phy("rls", sollw)
976        CALL histwrite_phy("solldown", sollwdown)
977        ! From phylmd/write_histins.h, version 1.2 2005/05/25 13:10:09      CALL histwrite_phy("bils", radsol + sens + zxfluxlat)
978        CALL histwrite_phy("sens", sens)
979        use dimens_m, only: iim, jjm      CALL histwrite_phy("fder", fder)
980        USE histsync_m, ONLY: histsync      CALL histwrite_phy("zxfqcalving", sum(fqcalving * pctsrf, dim = 2))
981        USE histwrite_m, ONLY: histwrite      CALL histwrite_phy("albs", albsol)
982        CALL histwrite_phy("tro3", wo * dobson_u * 1e3 / zmasse / rmo3 * md)
983        real zout      CALL histwrite_phy("rugs", zxrugs)
984        integer itau_w ! pas de temps ecriture      CALL histwrite_phy("s_pblh", s_pblh)
985        REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm)      CALL histwrite_phy("s_pblt", s_pblt)
986        CALL histwrite_phy("s_lcl", s_lcl)
987        !--------------------------------------------------      CALL histwrite_phy("s_capCL", s_capCL)
988        CALL histwrite_phy("s_oliqCL", s_oliqCL)
989        IF (ok_instan) THEN      CALL histwrite_phy("s_cteiCL", s_cteiCL)
990           ! Champs 2D:      CALL histwrite_phy("s_therm", s_therm)
991        CALL histwrite_phy("temp", t_seri)
992           zsto = dtphys * ecrit_ins      CALL histwrite_phy("vitu", u_seri)
993           zout = dtphys * ecrit_ins      CALL histwrite_phy("vitv", v_seri)
994           itau_w = itau_phy + itap      CALL histwrite_phy("geop", zphi)
995        CALL histwrite_phy("pres", play)
996           i = NINT(zout/zsto)      CALL histwrite_phy("dtvdf", d_t_vdf)
997           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, pphis, zx_tmp_2d)      CALL histwrite_phy("dqvdf", d_q_vdf)
998           CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d)      CALL histwrite_phy("rhum", zx_rh)
999        CALL histwrite_phy("d_t_ec", d_t_ec)
1000           i = NINT(zout/zsto)      CALL histwrite_phy("dtsw0", heat0 / 86400.)
1001           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, airephy, zx_tmp_2d)      CALL histwrite_phy("dtlw0", - cool0 / 86400.)
1002           CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d)      call histwrite_phy("pmflxr", pmflxr(:, :llm))
1003        CALL histwrite_phy("msnow", sum(fsnow * pctsrf, dim = 2))
1004           DO i = 1, klon      call histwrite_phy("qsurf", sum(fqsurf * pctsrf, dim = 2))
1005              zx_tmp_fi2d(i) = paprs(i, 1)      call histwrite_phy("flat", zxfluxlat)
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "psol", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_fall(i) + snow_fall(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "precip", itau_w, zx_tmp_2d)  
1006    
1007           DO i = 1, klon      DO nsrf = 1, nbsrf
1008              zx_tmp_fi2d(i) = rain_lsc(i) + snow_lsc(i)         CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf))
1009           ENDDO         CALL histwrite_phy("sens_"//clnsurf(nsrf), flux_t(:, nsrf))
1010           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)         CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf))
1011           CALL histwrite(nid_ins, "plul", itau_w, zx_tmp_2d)         CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf))
1012           CALL histwrite_phy("taux_"//clnsurf(nsrf), flux_u(:, nsrf))
1013           DO i = 1, klon         CALL histwrite_phy("tauy_"//clnsurf(nsrf), flux_v(:, nsrf))
1014              zx_tmp_fi2d(i) = rain_con(i) + snow_con(i)         CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf))
1015           ENDDO         CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf))
1016           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)         CALL histwrite_phy("u10m_"//clnsurf(nsrf), u10m_srf(:, nsrf))
1017           CALL histwrite(nid_ins, "pluc", itau_w, zx_tmp_2d)         CALL histwrite_phy("v10m_"//clnsurf(nsrf), v10m_srf(:, nsrf))
1018        END DO
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxtsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "tsol", itau_w, zx_tmp_2d)  
          !ccIM  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zt2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "t2m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zq2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "q2m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zu10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "u10m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zv10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "v10m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, snow_fall, zx_tmp_2d)  
          CALL histwrite(nid_ins, "snow", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrm", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrh", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, toplw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "topl", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, evap, zx_tmp_2d)  
          CALL histwrite(nid_ins, "evap", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, solsw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sols", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "soll", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollwdown, zx_tmp_2d)  
          CALL histwrite(nid_ins, "solldown", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, bils, zx_tmp_2d)  
          CALL histwrite(nid_ins, "bils", itau_w, zx_tmp_2d)  
   
          zx_tmp_fi2d(1:klon) = -1*sens(1:klon)  
          ! CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sens, zx_tmp_2d)  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sens", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, fder, zx_tmp_2d)  
          CALL histwrite(nid_ins, "fder", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_oce), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfo", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_ter), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdft", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_lic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfg", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_sic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfi", itau_w, zx_tmp_2d)  
   
          DO nsrf = 1, nbsrf  
             !XXX  
             zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf)*100.  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "pourc_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "fract_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxt(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "sens_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxlat(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "lat_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = ftsol(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tsol_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxu(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "taux_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxv(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tauy_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = frugs(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "rugs_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = falbe(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "albe_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
          END DO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albs", itau_w, zx_tmp_2d)  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albslw", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxrugs, zx_tmp_2d)  
          CALL histwrite(nid_ins, "rugs", itau_w, zx_tmp_2d)  
   
          !HBTM2  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblh", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblt, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblt", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_lcl, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_lcl", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_capCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_capCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_oliqCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_oliqCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_cteiCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_cteiCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_therm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_therm", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb1, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb1", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb2, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb2", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb3, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb3", itau_w, zx_tmp_2d)  
   
          ! Champs 3D:  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, t_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "temp", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, u_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitu", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, v_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitv", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, zphi, zx_tmp_3d)  
          CALL histwrite(nid_ins, "geop", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, play, zx_tmp_3d)  
          CALL histwrite(nid_ins, "pres", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_t_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dtvdf", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_q_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d)  
1019    
1020           call histsync(nid_ins)      if (conv_emanuel) then
1021        ENDIF         CALL histwrite_phy("ptop", ema_pct)
1022           CALL histwrite_phy("dnwd0", - mp)
1023        end if
1024    
1025        if (ok_instan) call histsync(nid_ins)
1026    
1027        IF (lafin) then
1028           call NF95_CLOSE(ncid_startphy)
1029           CALL phyredem(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
1030                rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, agesno, &
1031                zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, &
1032                rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01)
1033        end IF
1034    
1035      end subroutine write_histins      firstcal = .FALSE.
1036    
1037    END SUBROUTINE physiq    END SUBROUTINE physiq
1038    

Legend:
Removed from v.137  
changed lines
  Added in v.339

  ViewVC Help
Powered by ViewVC 1.1.21