/[lmdze]/trunk/phylmd/physiq.f90
ViewVC logotype

Diff of /trunk/phylmd/physiq.f90

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/physiq.f90 revision 62 by guez, Thu Jul 26 14:37:37 2012 UTC trunk/phylmd/physiq.f90 revision 330 by guez, Wed Jul 31 14:55:23 2019 UTC
# Line 4  module physiq_m Line 4  module physiq_m
4    
5  contains  contains
6    
7    SUBROUTINE physiq(lafin, rdayvrai, time, dtphys, paprs, play, pphi, pphis, &    SUBROUTINE physiq(lafin, dayvrai, time, paprs, play, pphi, pphis, u, v, t, &
8         u, v, t, qx, omega, d_u, d_v, d_t, d_qx, d_ps, dudyn, PVteta)         qx, omega, d_u, d_v, d_t, d_qx)
9    
10      ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28 (SVN revision 678)      ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28
11      ! Author: Z.X. Li (LMD/CNRS) 1993      ! (subversion revision 678)
12    
13        ! Author: Z. X. Li (LMD/CNRS) 1993
14    
15      ! This is the main procedure for the "physics" part of the program.      ! This is the main procedure for the "physics" part of the program.
16    
17      use aaam_bud_m, only: aaam_bud      use aaam_bud_m, only: aaam_bud
18      USE abort_gcm_m, ONLY: abort_gcm      USE abort_gcm_m, ONLY: abort_gcm
19      use ajsec_m, only: ajsec      use ajsec_m, only: ajsec
     USE calendar, ONLY: ymds2ju  
20      use calltherm_m, only: calltherm      use calltherm_m, only: calltherm
21      USE clesphys, ONLY: cdhmax, cdmmax, co2_ppm, ecrit_hf, ecrit_ins, &      USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ok_instan
22           ecrit_mth, ecrit_reg, ecrit_tra, ksta, ksta_ter, ok_kzmin      USE clesphys2, ONLY: conv_emanuel, nbapp_rad, new_oliq, ok_orodr, ok_orolf
23      USE clesphys2, ONLY: cycle_diurne, iflag_con, nbapp_rad, new_oliq, &      USE conf_interface_m, ONLY: conf_interface
24           ok_orodr, ok_orolf, soil_model      USE pbl_surface_m, ONLY: pbl_surface
25      USE clmain_m, ONLY: clmain      use clouds_gno_m, only: clouds_gno
26      USE comgeomphy, ONLY: airephy, cuphy, cvphy      use comconst, only: dtphys
27        USE comgeomphy, ONLY: airephy
28      USE concvl_m, ONLY: concvl      USE concvl_m, ONLY: concvl
29      USE conf_gcm_m, ONLY: offline, raz_date      USE conf_gcm_m, ONLY: lmt_pas
30      USE conf_phys_m, ONLY: conf_phys      USE conf_phys_m, ONLY: conf_phys
31      use conflx_m, only: conflx      use conflx_m, only: conflx
32      USE ctherm, ONLY: iflag_thermals, nsplit_thermals      USE ctherm_m, ONLY: iflag_thermals, ctherm
33      use diagcld2_m, only: diagcld2      use diagcld2_m, only: diagcld2
34      use diagetpq_m, only: diagetpq      USE dimensions, ONLY: llm, nqmx
35      use diagphy_m, only: diagphy      USE dimphy, ONLY: klon
     USE dimens_m, ONLY: iim, jjm, llm, nqmx  
     USE dimphy, ONLY: klon, nbtr  
36      USE dimsoil, ONLY: nsoilmx      USE dimsoil, ONLY: nsoilmx
37      use drag_noro_m, only: drag_noro      use drag_noro_m, only: drag_noro
38      USE fcttre, ONLY: foeew, qsatl, qsats, thermcep      use dynetat0_chosen_m, only: day_ref, annee_ref
39        USE fcttre, ONLY: foeew
40        use fisrtilp_m, only: fisrtilp
41      USE hgardfou_m, ONLY: hgardfou      USE hgardfou_m, ONLY: hgardfou
42      USE histsync_m, ONLY: histsync      USE histsync_m, ONLY: histsync
43      USE histwrite_m, ONLY: histwrite      USE histwrite_phy_m, ONLY: histwrite_phy
44      USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &      USE indicesol, ONLY: clnsurf, epsfra, nbsrf
45           nbsrf      USE ini_histins_m, ONLY: ini_histins, nid_ins
46      USE ini_histhf_m, ONLY: ini_histhf      use lift_noro_m, only: lift_noro
47      USE ini_histday_m, ONLY: ini_histday      use netcdf95, only: NF95_CLOSE
48      USE ini_histins_m, ONLY: ini_histins      use newmicro_m, only: newmicro
49      USE oasis_m, ONLY: ok_oasis      use nr_util, only: assert
50      USE orbite_m, ONLY: orbite, zenang      use nuage_m, only: nuage
51        USE orbite_m, ONLY: orbite
52      USE ozonecm_m, ONLY: ozonecm      USE ozonecm_m, ONLY: ozonecm
53      USE phyetat0_m, ONLY: phyetat0, rlat, rlon      USE phyetat0_m, ONLY: phyetat0
54      USE phyredem_m, ONLY: phyredem      USE phyredem_m, ONLY: phyredem
55      USE phystokenc_m, ONLY: phystokenc      USE phyredem0_m, ONLY: phyredem0
56      USE phytrac_m, ONLY: phytrac      USE phytrac_m, ONLY: phytrac
     USE qcheck_m, ONLY: qcheck  
57      use radlwsw_m, only: radlwsw      use radlwsw_m, only: radlwsw
58      use sugwd_m, only: sugwd      use yoegwd, only: sugwd
59      USE suphec_m, ONLY: ra, rcpd, retv, rg, rlvtt, romega, rsigma, rtt      USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt, rmo3, md
60      USE temps, ONLY: annee_ref, day_ref, itau_phy      use time_phylmdz, only: itap, increment_itap
61        use transp_m, only: transp
62        use transp_lay_m, only: transp_lay
63        use unit_nml_m, only: unit_nml
64        USE ymds2ju_m, ONLY: ymds2ju
65      USE yoethf_m, ONLY: r2es, rvtmp2      USE yoethf_m, ONLY: r2es, rvtmp2
66        use zenang_m, only: zenang
67    
     ! Arguments:  
   
     REAL, intent(in):: rdayvrai  
     ! (elapsed time since January 1st 0h of the starting year, in days)  
   
     REAL, intent(in):: time ! heure de la journée en fraction de jour  
     REAL, intent(in):: dtphys ! pas d'integration pour la physique (seconde)  
68      logical, intent(in):: lafin ! dernier passage      logical, intent(in):: lafin ! dernier passage
69    
70      REAL, intent(in):: paprs(klon, llm + 1)      integer, intent(in):: dayvrai
71      ! (pression pour chaque inter-couche, en Pa)      ! current day number, based at value 1 on January 1st of annee_ref
72    
73      REAL, intent(in):: play(klon, llm)      REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour
     ! (input pression pour le mileu de chaque couche (en Pa))  
74    
75      REAL, intent(in):: pphi(klon, llm)      REAL, intent(in):: paprs(:, :) ! (klon, llm + 1)
76      ! (input geopotentiel de chaque couche (g z) (reference sol))      ! pression pour chaque inter-couche, en Pa
77    
78      REAL, intent(in):: pphis(klon) ! input geopotentiel du sol      REAL, intent(in):: play(:, :) ! (klon, llm)
79        ! pression pour le mileu de chaque couche (en Pa)
80    
81      REAL, intent(in):: u(klon, llm)      REAL, intent(in):: pphi(:, :) ! (klon, llm)
82      ! vitesse dans la direction X (de O a E) en m/s      ! géopotentiel de chaque couche (référence sol)
83    
84      REAL, intent(in):: v(klon, llm) ! vitesse Y (de S a N) en m/s      REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol
     REAL, intent(in):: t(klon, llm) ! input temperature (K)  
85    
86      REAL, intent(in):: qx(klon, llm, nqmx)      REAL, intent(in):: u(:, :) ! (klon, llm)
87      ! (humidité spécifique et fractions massiques des autres traceurs)      ! vitesse dans la direction X (de O a E) en m / s
88    
89      REAL omega(klon, llm) ! input vitesse verticale en Pa/s      REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m / s
90      REAL, intent(out):: d_u(klon, llm) ! tendance physique de "u" (m/s/s)      REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)
     REAL, intent(out):: d_v(klon, llm) ! tendance physique de "v" (m/s/s)  
     REAL, intent(out):: d_t(klon, llm) ! tendance physique de "t" (K/s)  
     REAL d_qx(klon, llm, nqmx) ! output tendance physique de "qx" (kg/kg/s)  
     REAL d_ps(klon) ! output tendance physique de la pression au sol  
91    
92      LOGICAL:: firstcal = .true.      REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)
93        ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)
94    
95      INTEGER nbteta      REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa / s
96      PARAMETER(nbteta = 3)      REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)
97        REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)
98        REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K / s)
99    
100      REAL PVteta(klon, nbteta)      REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)
101      ! (output vorticite potentielle a des thetas constantes)      ! tendance physique de "qx" (s-1)
102    
103      LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface      ! Local:
     PARAMETER (ok_gust = .FALSE.)  
104    
105      LOGICAL check ! Verifier la conservation du modele en eau      LOGICAL:: firstcal = .true.
     PARAMETER (check = .FALSE.)  
106    
107      LOGICAL, PARAMETER:: ok_stratus = .FALSE.      LOGICAL, PARAMETER:: ok_stratus = .FALSE.
108      ! Ajouter artificiellement les stratus      ! Ajouter artificiellement les stratus
109    
110      ! Parametres lies au coupleur OASIS:      ! pour phystoke avec thermiques
     INTEGER, SAVE:: npas, nexca  
     logical rnpb  
     parameter(rnpb = .true.)  
   
     character(len = 6), save:: ocean  
     ! (type de modèle océan à utiliser: "force" ou "slab" mais pas "couple")  
   
     logical ok_ocean  
     SAVE ok_ocean  
   
     ! "slab" ocean  
     REAL, save:: tslab(klon) ! temperature of ocean slab  
     REAL, save:: seaice(klon) ! glace de mer (kg/m2)  
     REAL fluxo(klon) ! flux turbulents ocean-glace de mer  
     REAL fluxg(klon) ! flux turbulents ocean-atmosphere  
   
     ! Modele thermique du sol, a activer pour le cycle diurne:  
     logical, save:: ok_veget  
     LOGICAL, save:: ok_journe ! sortir le fichier journalier  
   
     LOGICAL ok_mensuel ! sortir le fichier mensuel  
   
     LOGICAL ok_instan ! sortir le fichier instantane  
     save ok_instan  
   
     LOGICAL ok_region ! sortir le fichier regional  
     PARAMETER (ok_region = .FALSE.)  
   
     ! pour phsystoke avec thermiques  
111      REAL fm_therm(klon, llm + 1)      REAL fm_therm(klon, llm + 1)
112      REAL entr_therm(klon, llm)      REAL entr_therm(klon, llm)
113      real, save:: q2(klon, llm + 1, nbsrf)      real, save:: q2(klon, llm + 1, nbsrf)
114    
115      INTEGER ivap ! indice de traceurs pour vapeur d'eau      INTEGER, PARAMETER:: ivap = 1 ! indice de traceur pour vapeur d'eau
116      PARAMETER (ivap = 1)      INTEGER, PARAMETER:: iliq = 2 ! indice de traceur pour eau liquide
     INTEGER iliq ! indice de traceurs pour eau liquide  
     PARAMETER (iliq = 2)  
117    
118      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)
119      LOGICAL, save:: ancien_ok      LOGICAL, save:: ancien_ok
120    
121      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K/s)      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K / s)
122      REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg/kg/s)      REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg / kg / s)
123    
124      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)
125    
126      !IM Amip2 PV a theta constante      REAL, save:: swdn0(klon, llm + 1), swdn(klon, llm + 1)
127        REAL, save:: swup0(klon, llm + 1), swup(klon, llm + 1)
128    
129      CHARACTER(LEN = 3) ctetaSTD(nbteta)      REAL, save:: lwdn0(klon, llm + 1), lwdn(klon, llm + 1)
130      DATA ctetaSTD/'350', '380', '405'/      REAL, save:: lwup0(klon, llm + 1), lwup(klon, llm + 1)
     REAL rtetaSTD(nbteta)  
     DATA rtetaSTD/350., 380., 405./  
   
     !MI Amip2 PV a theta constante  
   
     INTEGER klevp1  
     PARAMETER(klevp1 = llm + 1)  
   
     REAL swdn0(klon, klevp1), swdn(klon, klevp1)  
     REAL swup0(klon, klevp1), swup(klon, klevp1)  
     SAVE swdn0, swdn, swup0, swup  
   
     REAL lwdn0(klon, klevp1), lwdn(klon, klevp1)  
     REAL lwup0(klon, klevp1), lwup(klon, klevp1)  
     SAVE lwdn0, lwdn, lwup0, lwup  
   
     !IM Amip2  
     ! variables a une pression donnee  
   
     integer nlevSTD  
     PARAMETER(nlevSTD = 17)  
     real rlevSTD(nlevSTD)  
     DATA rlevSTD/100000., 92500., 85000., 70000., &  
          60000., 50000., 40000., 30000., 25000., 20000., &  
          15000., 10000., 7000., 5000., 3000., 2000., 1000./  
     CHARACTER(LEN = 4) clevSTD(nlevSTD)  
     DATA clevSTD/'1000', '925 ', '850 ', '700 ', '600 ', &  
          '500 ', '400 ', '300 ', '250 ', '200 ', '150 ', '100 ', &  
          '70 ', '50 ', '30 ', '20 ', '10 '/  
131    
132      ! prw: precipitable water      ! prw: precipitable water
133      real prw(klon)      real prw(klon)
134    
135      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg/m2)      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg / m2)
136      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg/kg)      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg / kg)
137      REAL flwp(klon), fiwp(klon)      REAL flwp(klon), fiwp(klon)
138      REAL flwc(klon, llm), fiwc(klon, llm)      REAL flwc(klon, llm), fiwc(klon, llm)
139    
     INTEGER kmax, lmax  
     PARAMETER(kmax = 8, lmax = 8)  
     INTEGER kmaxm1, lmaxm1  
     PARAMETER(kmaxm1 = kmax-1, lmaxm1 = lmax-1)  
   
     REAL zx_tau(kmaxm1), zx_pc(lmaxm1)  
     DATA zx_tau/0.0, 0.3, 1.3, 3.6, 9.4, 23., 60./  
     DATA zx_pc/50., 180., 310., 440., 560., 680., 800./  
   
     ! cldtopres pression au sommet des nuages  
     REAL cldtopres(lmaxm1)  
     DATA cldtopres/50., 180., 310., 440., 560., 680., 800./  
   
     ! taulev: numero du niveau de tau dans les sorties ISCCP  
     CHARACTER(LEN = 4) taulev(kmaxm1)  
   
     DATA taulev/'tau0', 'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'/  
     CHARACTER(LEN = 3) pclev(lmaxm1)  
     DATA pclev/'pc1', 'pc2', 'pc3', 'pc4', 'pc5', 'pc6', 'pc7'/  
   
     CHARACTER(LEN = 28) cnameisccp(lmaxm1, kmaxm1)  
     DATA cnameisccp/'pc< 50hPa, tau< 0.3', 'pc= 50-180hPa, tau< 0.3', &  
          'pc= 180-310hPa, tau< 0.3', 'pc= 310-440hPa, tau< 0.3', &  
          'pc= 440-560hPa, tau< 0.3', 'pc= 560-680hPa, tau< 0.3', &  
          'pc= 680-800hPa, tau< 0.3', 'pc< 50hPa, tau= 0.3-1.3', &  
          'pc= 50-180hPa, tau= 0.3-1.3', 'pc= 180-310hPa, tau= 0.3-1.3', &  
          'pc= 310-440hPa, tau= 0.3-1.3', 'pc= 440-560hPa, tau= 0.3-1.3', &  
          'pc= 560-680hPa, tau= 0.3-1.3', 'pc= 680-800hPa, tau= 0.3-1.3', &  
          'pc< 50hPa, tau= 1.3-3.6', 'pc= 50-180hPa, tau= 1.3-3.6', &  
          'pc= 180-310hPa, tau= 1.3-3.6', 'pc= 310-440hPa, tau= 1.3-3.6', &  
          'pc= 440-560hPa, tau= 1.3-3.6', 'pc= 560-680hPa, tau= 1.3-3.6', &  
          'pc= 680-800hPa, tau= 1.3-3.6', 'pc< 50hPa, tau= 3.6-9.4', &  
          'pc= 50-180hPa, tau= 3.6-9.4', 'pc= 180-310hPa, tau= 3.6-9.4', &  
          'pc= 310-440hPa, tau= 3.6-9.4', 'pc= 440-560hPa, tau= 3.6-9.4', &  
          'pc= 560-680hPa, tau= 3.6-9.4', 'pc= 680-800hPa, tau= 3.6-9.4', &  
          'pc< 50hPa, tau= 9.4-23', 'pc= 50-180hPa, tau= 9.4-23', &  
          'pc= 180-310hPa, tau= 9.4-23', 'pc= 310-440hPa, tau= 9.4-23', &  
          'pc= 440-560hPa, tau= 9.4-23', 'pc= 560-680hPa, tau= 9.4-23', &  
          'pc= 680-800hPa, tau= 9.4-23', 'pc< 50hPa, tau= 23-60', &  
          'pc= 50-180hPa, tau= 23-60', 'pc= 180-310hPa, tau= 23-60', &  
          'pc= 310-440hPa, tau= 23-60', 'pc= 440-560hPa, tau= 23-60', &  
          'pc= 560-680hPa, tau= 23-60', 'pc= 680-800hPa, tau= 23-60', &  
          'pc< 50hPa, tau> 60.', 'pc= 50-180hPa, tau> 60.', &  
          'pc= 180-310hPa, tau> 60.', 'pc= 310-440hPa, tau> 60.', &  
          'pc= 440-560hPa, tau> 60.', 'pc= 560-680hPa, tau> 60.', &  
          'pc= 680-800hPa, tau> 60.'/  
   
     !IM ISCCP simulator v3.4  
   
     integer nid_hf, nid_hf3d  
     save nid_hf, nid_hf3d  
   
140      ! Variables propres a la physique      ! Variables propres a la physique
141    
142      INTEGER, save:: radpas      INTEGER, save:: radpas
143      ! (Radiative transfer computations are made every "radpas" call to      ! Radiative transfer computations are made every "radpas" call to
144      ! "physiq".)      ! "physiq".
145    
146      REAL radsol(klon)      REAL, save:: radsol(klon)
147      SAVE radsol ! bilan radiatif au sol calcule par code radiatif      ! Bilan radiatif net au sol (W/m2), positif vers le bas. Must be
148        ! saved because radlwsw is not called at every time step.
149      INTEGER, SAVE:: itap ! number of calls to "physiq"      
150        REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction, in K
     REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction  
151    
152      REAL, save:: ftsoil(klon, nsoilmx, nbsrf)      REAL, save:: ftsoil(klon, nsoilmx, nbsrf)
153      ! soil temperature of surface fraction      ! soil temperature of surface fraction
154    
155      REAL fevap(klon, nbsrf)      REAL fluxlat(klon, nbsrf) ! flux de chaleur latente, en W m-2
     SAVE fevap ! evaporation  
     REAL fluxlat(klon, nbsrf)  
     SAVE fluxlat  
156    
157      REAL fqsurf(klon, nbsrf)      REAL, save:: fqsurf(klon, nbsrf)
158      SAVE fqsurf ! humidite de l'air au contact de la surface      ! humidite de l'air au contact de la surface
159    
160      REAL, save:: qsol(klon) ! hauteur d'eau dans le sol      REAL, save:: qsol(klon) ! column-density of water in soil, in kg m-2
161    
162      REAL fsnow(klon, nbsrf)      REAL, save:: fsnow(klon, nbsrf)
163      SAVE fsnow ! epaisseur neigeuse      ! column-density of mass of snow at the surface, in kg m-2
164    
165      REAL falbe(klon, nbsrf)      REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface
     SAVE falbe ! albedo par type de surface  
     REAL falblw(klon, nbsrf)  
     SAVE falblw ! albedo par type de surface  
166    
167      ! Paramètres de l'orographie à l'échelle sous-maille (OESM) :      ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :
168      REAL, save:: zmea(klon) ! orographie moyenne      REAL, save:: zmea(klon) ! orographie moyenne
169      REAL, save:: zstd(klon) ! deviation standard de l'OESM      REAL, save:: zstd(klon) ! deviation standard de l'OESM
170      REAL, save:: zsig(klon) ! pente de l'OESM      REAL, save:: zsig(klon) ! pente de l'OESM
# Line 295  contains Line 173  contains
173      REAL, save:: zpic(klon) ! Maximum de l'OESM      REAL, save:: zpic(klon) ! Maximum de l'OESM
174      REAL, save:: zval(klon) ! Minimum de l'OESM      REAL, save:: zval(klon) ! Minimum de l'OESM
175      REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM      REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM
   
176      REAL zulow(klon), zvlow(klon)      REAL zulow(klon), zvlow(klon)
177        INTEGER ktest(klon)
178    
179      INTEGER igwd, idx(klon), itest(klon)      REAL, save:: agesno(klon, nbsrf) ! age de la neige
180        REAL, save:: run_off_lic_0(klon)
181    
182      REAL agesno(klon, nbsrf)      ! Variables li\'ees \`a la convection d'Emanuel :
183      SAVE agesno ! age de la neige      REAL, save:: Ma(klon, llm) ! undilute upward mass flux
184        REAL, save:: sig1(klon, llm), w01(klon, llm)
185    
186      REAL run_off_lic_0(klon)      ! Variables pour la couche limite (Alain Lahellec) :
187      SAVE run_off_lic_0      REAL cdragh(klon) ! drag coefficient pour T and Q
188      !KE43      REAL cdragm(klon) ! drag coefficient pour vent
     ! Variables liees a la convection de K. Emanuel (sb):  
189    
190      REAL bas, top ! cloud base and top levels      REAL coefh(klon, 2:llm) ! coef d'echange pour phytrac
     SAVE bas  
     SAVE top  
191    
192      REAL Ma(klon, llm) ! undilute upward mass flux      REAL, save:: ffonte(klon, nbsrf)
193      SAVE Ma      ! flux thermique utilise pour fondre la neige
     REAL qcondc(klon, llm) ! in-cld water content from convect  
     SAVE qcondc  
     REAL ema_work1(klon, llm), ema_work2(klon, llm)  
     SAVE ema_work1, ema_work2  
194    
195      REAL wd(klon) ! sb      REAL fqcalving(klon, nbsrf)
196      SAVE wd ! sb      ! flux d'eau "perdue" par la surface et n\'ecessaire pour limiter
197        ! la hauteur de neige, en kg / m2 / s
198    
199      ! Variables locales pour la couche limite (al1):      REAL zxffonte(klon)
200    
201      ! Variables locales:      REAL, save:: pfrac_impa(klon, llm)! Produits des coefs lessivage impaction
202        REAL, save:: pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation
203    
204      REAL cdragh(klon) ! drag coefficient pour T and Q      REAL, save:: pfrac_1nucl(klon, llm)
205      REAL cdragm(klon) ! drag coefficient pour vent      ! Produits des coefs lessi nucl (alpha = 1)
206    
207      !AA Pour phytrac      REAL frac_impa(klon, llm) ! fraction d'a\'erosols lessiv\'es (impaction)
     REAL ycoefh(klon, llm) ! coef d'echange pour phytrac  
     REAL yu1(klon) ! vents dans la premiere couche U  
     REAL yv1(klon) ! vents dans la premiere couche V  
     REAL ffonte(klon, nbsrf) !Flux thermique utilise pour fondre la neige  
     REAL fqcalving(klon, nbsrf) !Flux d'eau "perdue" par la surface  
     ! !et necessaire pour limiter la  
     ! !hauteur de neige, en kg/m2/s  
     REAL zxffonte(klon), zxfqcalving(klon)  
   
     REAL pfrac_impa(klon, llm)! Produits des coefs lessivage impaction  
     save pfrac_impa  
     REAL pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation  
     save pfrac_nucl  
     REAL pfrac_1nucl(klon, llm)! Produits des coefs lessi nucl (alpha = 1)  
     save pfrac_1nucl  
     REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction)  
208      REAL frac_nucl(klon, llm) ! idem (nucleation)      REAL frac_nucl(klon, llm) ! idem (nucleation)
209    
210      REAL, save:: rain_fall(klon) ! pluie      REAL, save:: rain_fall(klon)
211      REAL, save:: snow_fall(klon) ! neige      ! liquid water mass flux (kg / m2 / s), positive down
212    
213        REAL, save:: snow_fall(klon)
214        ! solid water mass flux (kg / m2 / s), positive down
215    
216      REAL rain_tiedtke(klon), snow_tiedtke(klon)      REAL rain_tiedtke(klon), snow_tiedtke(klon)
217    
218      REAL evap(klon), devap(klon) ! evaporation et sa derivee      REAL evap(klon) ! flux d'\'evaporation au sol
219      REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee      real dflux_q(klon) ! derivative of the evaporation flux at the surface
220      REAL dlw(klon) ! derivee infra rouge      REAL sens(klon) ! flux de chaleur sensible au sol
221      SAVE dlw      real dflux_t(klon) ! derivee du flux de chaleur sensible au sol
222      REAL bils(klon) ! bilan de chaleur au sol      REAL, save:: dlw(klon) ! derivative of infra-red flux
223      REAL fder(klon) ! Derive de flux (sensible et latente)      REAL fder(klon) ! d\'erive de flux (sensible et latente)
     save fder  
224      REAL ve(klon) ! integr. verticale du transport meri. de l'energie      REAL ve(klon) ! integr. verticale du transport meri. de l'energie
225      REAL vq(klon) ! integr. verticale du transport meri. de l'eau      REAL vq(klon) ! integr. verticale du transport meri. de l'eau
226      REAL ue(klon) ! integr. verticale du transport zonal de l'energie      REAL ue(klon) ! integr. verticale du transport zonal de l'energie
227      REAL uq(klon) ! integr. verticale du transport zonal de l'eau      REAL uq(klon) ! integr. verticale du transport zonal de l'eau
228    
229      REAL frugs(klon, nbsrf) ! longueur de rugosite      REAL, save:: frugs(klon, nbsrf) ! longueur de rugosite
     save frugs  
230      REAL zxrugs(klon) ! longueur de rugosite      REAL zxrugs(klon) ! longueur de rugosite
231    
232      ! Conditions aux limites      ! Conditions aux limites
233    
234      INTEGER julien      INTEGER julien
235        REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface
236      INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day      REAL, save:: albsol(klon) ! albedo du sol total, visible, moyen par maille
     REAL pctsrf(klon, nbsrf)  
     !IM  
     REAL pctsrf_new(klon, nbsrf) !pourcentage surfaces issus d'ORCHIDEE  
   
     SAVE pctsrf ! sous-fraction du sol  
     REAL albsol(klon)  
     SAVE albsol ! albedo du sol total  
     REAL albsollw(klon)  
     SAVE albsollw ! albedo du sol total  
   
237      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU
238        real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2
239    
240      ! Declaration des procedures appelees      real, save:: clwcon(klon, llm), rnebcon(klon, llm)
241        real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)
     EXTERNAL alboc ! calculer l'albedo sur ocean  
     !KE43  
     EXTERNAL conema3 ! convect4.3  
     EXTERNAL fisrtilp ! schema de condensation a grande echelle (pluie)  
     EXTERNAL nuage ! calculer les proprietes radiatives  
     EXTERNAL transp ! transport total de l'eau et de l'energie  
   
     ! Variables locales  
   
     real clwcon(klon, llm), rnebcon(klon, llm)  
     real clwcon0(klon, llm), rnebcon0(klon, llm)  
   
     save rnebcon, clwcon  
242    
243      REAL rhcl(klon, llm) ! humiditi relative ciel clair      REAL rhcl(klon, llm) ! humidit\'e relative ciel clair
244      REAL dialiq(klon, llm) ! eau liquide nuageuse      REAL dialiq(klon, llm) ! eau liquide nuageuse
245      REAL diafra(klon, llm) ! fraction nuageuse      REAL diafra(klon, llm) ! fraction nuageuse
246      REAL cldliq(klon, llm) ! eau liquide nuageuse      REAL cldliq(klon, llm) ! eau liquide nuageuse
# Line 410  contains Line 248  contains
248      REAL cldtau(klon, llm) ! epaisseur optique      REAL cldtau(klon, llm) ! epaisseur optique
249      REAL cldemi(klon, llm) ! emissivite infrarouge      REAL cldemi(klon, llm) ! emissivite infrarouge
250    
251      REAL fluxq(klon, llm, nbsrf) ! flux turbulent d'humidite      REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface
     REAL fluxt(klon, llm, nbsrf) ! flux turbulent de chaleur  
     REAL fluxu(klon, llm, nbsrf) ! flux turbulent de vitesse u  
     REAL fluxv(klon, llm, nbsrf) ! flux turbulent de vitesse v  
   
     REAL zxfluxt(klon, llm)  
     REAL zxfluxq(klon, llm)  
     REAL zxfluxu(klon, llm)  
     REAL zxfluxv(klon, llm)  
252    
253      ! Le rayonnement n'est pas calculé tous les pas, il faut donc que      REAL flux_t(klon, nbsrf)
254      ! les variables soient rémanentes.      ! flux de chaleur sensible (c_p T) (W / m2) (orientation positive
255        ! vers le bas) à la surface
256    
257        REAL flux_u(klon, nbsrf), flux_v(klon, nbsrf)
258        ! tension du vent (flux turbulent de vent) à la surface, en Pa
259    
260        ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que
261        ! les variables soient r\'emanentes.
262      REAL, save:: heat(klon, llm) ! chauffage solaire      REAL, save:: heat(klon, llm) ! chauffage solaire
263      REAL heat0(klon, llm) ! chauffage solaire ciel clair      REAL, save:: heat0(klon, llm) ! chauffage solaire ciel clair
264      REAL, save:: cool(klon, llm) ! refroidissement infrarouge      REAL, save:: cool(klon, llm) ! refroidissement infrarouge
265      REAL cool0(klon, llm) ! refroidissement infrarouge ciel clair      REAL, save:: cool0(klon, llm) ! refroidissement infrarouge ciel clair
266      REAL, save:: topsw(klon), toplw(klon), solsw(klon), sollw(klon)      REAL, save:: topsw(klon), toplw(klon), solsw(klon)
267      real sollwdown(klon) ! downward LW flux at surface  
268        REAL, save:: sollw(klon) ! surface net downward longwave flux, in W m-2
269        real, save:: sollwdown(klon) ! downwelling longwave flux at surface
270      REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)      REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)
271      REAL albpla(klon)      REAL, save:: albpla(klon)
     REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous surface  
     REAL fsolsw(klon, nbsrf) ! flux solaire absorb. pour chaque sous surface  
     SAVE albpla, sollwdown  
     SAVE heat0, cool0  
   
     INTEGER itaprad  
     SAVE itaprad  
   
     REAL conv_q(klon, llm) ! convergence de l'humidite (kg/kg/s)  
     REAL conv_t(klon, llm) ! convergence of temperature (K/s)  
   
     REAL cldl(klon), cldm(klon), cldh(klon) !nuages bas, moyen et haut  
     REAL cldt(klon), cldq(klon) !nuage total, eau liquide integree  
   
     REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon)  
   
     REAL dist, rmu0(klon), fract(klon)  
     REAL zdtime ! pas de temps du rayonnement (s)  
     real zlongi  
272    
273      REAL z_avant(klon), z_apres(klon), z_factor(klon)      REAL conv_q(klon, llm) ! convergence de l'humidite (kg / kg / s)
274      LOGICAL zx_ajustq      REAL conv_t(klon, llm) ! convergence of temperature (K / s)
275    
276        REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut
277        REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree
278    
279      REAL za, zb      REAL zxfluxlat(klon)
280      REAL zx_t, zx_qs, zdelta, zcor      REAL dist, mu0(klon), fract(klon)
281        real longi
282        REAL z_avant(klon), z_apres(klon), z_factor(klon)
283        REAL zb
284        REAL zx_qs, zcor
285      real zqsat(klon, llm)      real zqsat(klon, llm)
286      INTEGER i, k, iq, nsrf      INTEGER i, k, iq, nsrf
     REAL t_coup  
     PARAMETER (t_coup = 234.0)  
   
287      REAL zphi(klon, llm)      REAL zphi(klon, llm)
288    
289      !IM cf. AM Variables locales pour la CLA (hbtm2)      ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm)
290    
291      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite
292      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA
293      REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite      REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite
294      REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite      REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite
295      REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite      REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite
296      REAL, SAVE:: pblt(klon, nbsrf) ! T a la Hauteur de couche limite      REAL, SAVE:: pblt(klon, nbsrf) ! T \`a la hauteur de couche limite
297      REAL, SAVE:: therm(klon, nbsrf)      REAL, SAVE:: therm(klon, nbsrf)
298      REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape      ! Grandeurs de sorties
     REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition  
     REAL, SAVE:: trmb3(klon, nbsrf) ! Point Omega  
     ! Grdeurs de sorties  
299      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)
300      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)
301      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)      REAL s_therm(klon)
     REAL s_trmb3(klon)  
302    
303      ! Variables locales pour la convection de K. Emanuel :      ! Variables pour la convection de K. Emanuel :
304    
305      REAL upwd(klon, llm) ! saturated updraft mass flux      REAL upwd(klon, llm) ! saturated updraft mass flux
306      REAL dnwd(klon, llm) ! saturated downdraft mass flux      REAL dnwd(klon, llm) ! saturated downdraft mass flux
307      REAL dnwd0(klon, llm) ! unsaturated downdraft mass flux      REAL, save:: cape(klon)
308      REAL tvp(klon, llm) ! virtual temp of lifted parcel  
     REAL cape(klon) ! CAPE  
     SAVE cape  
   
     REAL pbase(klon) ! cloud base pressure  
     SAVE pbase  
     REAL bbase(klon) ! cloud base buoyancy  
     SAVE bbase  
     REAL rflag(klon) ! flag fonctionnement de convect  
309      INTEGER iflagctrl(klon) ! flag fonctionnement de convect      INTEGER iflagctrl(klon) ! flag fonctionnement de convect
     ! -- convect43:  
     INTEGER ntra ! nb traceurs pour convect4.3  
     REAL dtvpdt1(klon, llm), dtvpdq1(klon, llm)  
     REAL dplcldt(klon), dplcldr(klon)  
310    
311      ! Variables du changement      ! Variables du changement
312    
313      ! con: convection      ! con: convection
314      ! lsc: large scale condensation      ! lsc: large scale condensation
315      ! ajs: ajustement sec      ! ajs: ajustement sec
316      ! eva: évaporation de l'eau liquide nuageuse      ! eva: \'evaporation de l'eau liquide nuageuse
317      ! vdf: vertical diffusion in boundary layer      ! vdf: vertical diffusion in boundary layer
318      REAL d_t_con(klon, llm), d_q_con(klon, llm)      REAL d_t_con(klon, llm), d_q_con(klon, llm)
319      REAL d_u_con(klon, llm), d_v_con(klon, llm)      REAL, save:: d_u_con(klon, llm), d_v_con(klon, llm)
320      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)
321      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)
322      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)
323      REAL rneb(klon, llm)      REAL rneb(klon, llm)
324    
325      REAL pmfu(klon, llm), pmfd(klon, llm)      REAL mfu(klon, llm), mfd(klon, llm)
326      REAL pen_u(klon, llm), pen_d(klon, llm)      REAL pen_u(klon, llm), pen_d(klon, llm)
327      REAL pde_u(klon, llm), pde_d(klon, llm)      REAL pde_u(klon, llm), pde_d(klon, llm)
328      INTEGER kcbot(klon), kctop(klon), kdtop(klon)      INTEGER kcbot(klon), kctop(klon), kdtop(klon)
# Line 522  contains Line 330  contains
330      REAL prfl(klon, llm + 1), psfl(klon, llm + 1)      REAL prfl(klon, llm + 1), psfl(klon, llm + 1)
331    
332      INTEGER, save:: ibas_con(klon), itop_con(klon)      INTEGER, save:: ibas_con(klon), itop_con(klon)
333        real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa
334    
335      REAL rain_con(klon), rain_lsc(klon)      REAL rain_con(klon)
336      REAL snow_con(klon), snow_lsc(klon)      real rain_lsc(klon)
337      REAL d_ts(klon, nbsrf)      REAL snow_con(klon) ! neige (mm / s)
338        real snow_lsc(klon)
339    
340      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)
341      REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)      REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)
# Line 535  contains Line 345  contains
345      REAL d_u_lif(klon, llm), d_v_lif(klon, llm)      REAL d_u_lif(klon, llm), d_v_lif(klon, llm)
346      REAL d_t_lif(klon, llm)      REAL d_t_lif(klon, llm)
347    
348      REAL ratqs(klon, llm), ratqss(klon, llm), ratqsc(klon, llm)      REAL, save:: ratqs(klon, llm)
349      real ratqsbas, ratqshaut      real ratqss(klon, llm), ratqsc(klon, llm)
350      save ratqsbas, ratqshaut, ratqs      real:: ratqsbas = 0.01, ratqshaut = 0.3
351    
352      ! Parametres lies au nouveau schema de nuages (SB, PDF)      ! Parametres lies au nouveau schema de nuages (SB, PDF)
353      real, save:: fact_cldcon      real:: fact_cldcon = 0.375
354      real, save:: facttemps      real:: facttemps = 1.e-4
355      logical ok_newmicro      logical:: ok_newmicro = .true.
     save ok_newmicro  
356      real facteur      real facteur
357    
358      integer iflag_cldcon      integer:: iflag_cldcon = 1
     save iflag_cldcon  
   
359      logical ptconv(klon, llm)      logical ptconv(klon, llm)
360    
361      ! Variables locales pour effectuer les appels en série :      ! Variables pour effectuer les appels en s\'erie :
362    
363      REAL t_seri(klon, llm), q_seri(klon, llm)      REAL t_seri(klon, llm), q_seri(klon, llm)
364      REAL ql_seri(klon, llm), qs_seri(klon, llm)      REAL ql_seri(klon, llm)
365      REAL u_seri(klon, llm), v_seri(klon, llm)      REAL u_seri(klon, llm), v_seri(klon, llm)
366        REAL tr_seri(klon, llm, nqmx - 2)
     REAL tr_seri(klon, llm, nbtr)  
     REAL d_tr(klon, llm, nbtr)  
367    
368      REAL zx_rh(klon, llm)      REAL zx_rh(klon, llm)
369    
370      REAL zustrdr(klon), zvstrdr(klon)      REAL zustrdr(klon), zvstrdr(klon)
371      REAL zustrli(klon), zvstrli(klon)      REAL zustrli(klon), zvstrli(klon)
     REAL zustrph(klon), zvstrph(klon)  
372      REAL aam, torsfc      REAL aam, torsfc
373    
     REAL dudyn(iim + 1, jjm + 1, llm)  
   
     REAL zx_tmp_fi2d(klon) ! variable temporaire grille physique  
     REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm)  
   
     INTEGER, SAVE:: nid_day, nid_ins  
   
374      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.
375      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.
376      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.
377      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.
378    
379      REAL zsto      REAL tsol(klon)
380    
381        REAL d_t_ec(klon, llm)
382        ! tendance due \`a la conversion d'\'energie cin\'etique en
383        ! énergie thermique
384    
385        REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf)
386        ! temperature and humidity at 2 m
387    
388        REAL, save:: u10m_srf(klon, nbsrf), v10m_srf(klon, nbsrf)
389        ! composantes du vent \`a 10 m
390        
391        REAL zt2m(klon), zq2m(klon) ! température, humidité 2 m moyenne sur 1 maille
392        REAL u10m(klon), v10m(klon) ! vent \`a 10 m moyenn\' sur les sous-surfaces
393    
394      character(len = 20) modname      ! Aerosol effects:
     character(len = 80) abort_message  
     logical ok_sync  
     real date0  
   
     ! Variables liées au bilan d'énergie et d'enthalpie :  
     REAL ztsol(klon)  
     REAL d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec  
     REAL, SAVE:: d_h_vcol_phy  
     REAL fs_bound, fq_bound  
     REAL zero_v(klon)  
     CHARACTER(LEN = 15) tit  
     INTEGER:: ip_ebil = 0 ! print level for energy conservation diagnostics  
     INTEGER, SAVE:: if_ebil ! level for energy conservation diagnostics  
   
     REAL d_t_ec(klon, llm) ! tendance due à la conversion Ec -> E thermique  
     REAL ZRCPD  
   
     REAL t2m(klon, nbsrf), q2m(klon, nbsrf) ! temperature and humidity at 2 m  
     REAL u10m(klon, nbsrf), v10m(klon, nbsrf) !vents a 10m  
     REAL zt2m(klon), zq2m(klon) !temp., hum. 2m moyenne s/ 1 maille  
     REAL zu10m(klon), zv10m(klon) !vents a 10m moyennes s/1 maille  
     !jq Aerosol effects (Johannes Quaas, 27/11/2003)  
     REAL sulfate(klon, llm) ! SO4 aerosol concentration [ug/m3]  
   
     REAL, save:: sulfate_pi(klon, llm)  
     ! (SO4 aerosol concentration, in ug/m3, pre-industrial value)  
   
     REAL cldtaupi(klon, llm)  
     ! (Cloud optical thickness for pre-industrial (pi) aerosols)  
   
     REAL re(klon, llm) ! Cloud droplet effective radius  
     REAL fl(klon, llm) ! denominator of re  
   
     ! Aerosol optical properties  
     REAL tau_ae(klon, llm, 2), piz_ae(klon, llm, 2)  
     REAL cg_ae(klon, llm, 2)  
   
     REAL topswad(klon), solswad(klon) ! Aerosol direct effect.  
     ! ok_ade = True -ADE = topswad-topsw  
   
     REAL topswai(klon), solswai(klon) ! aerosol indirect effect  
     ! ok_aie = True ->  
     ! ok_ade = True -AIE = topswai-topswad  
     ! ok_ade = F -AIE = topswai-topsw  
   
     REAL aerindex(klon) ! POLDER aerosol index  
   
     ! Parameters  
     LOGICAL, save:: ok_ade ! apply aerosol direct effect  
     LOGICAL, save:: ok_aie ! Apply aerosol indirect effect  
     REAL bl95_b0, bl95_b1 ! Parameter in Boucher and Lohmann (1995)  
   
     SAVE bl95_b0, bl95_b1  
     SAVE u10m  
     SAVE v10m  
     SAVE t2m  
     SAVE q2m  
     SAVE ffonte  
     SAVE fqcalving  
     SAVE piz_ae  
     SAVE tau_ae  
     SAVE cg_ae  
     SAVE rain_con  
     SAVE snow_con  
     SAVE topswai  
     SAVE topswad  
     SAVE solswai  
     SAVE solswad  
     SAVE d_u_con  
     SAVE d_v_con  
     SAVE rnebcon0  
     SAVE clwcon0  
395    
396      real zmasse(klon, llm)      REAL, save:: topswad(klon), solswad(klon) ! aerosol direct effect
397        LOGICAL:: ok_ade = .false. ! apply aerosol direct effect
398    
399        REAL:: bl95_b0 = 2., bl95_b1 = 0.2
400        ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus
401        ! B). They link cloud droplet number concentration to aerosol mass
402        ! concentration.
403    
404        real zmasse(klon, llm)
405      ! (column-density of mass of air in a cell, in kg m-2)      ! (column-density of mass of air in a cell, in kg m-2)
406    
407      real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2      integer, save:: ncid_startphy
408    
409        namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, &
410             ratqsbas, ratqshaut, ok_ade, bl95_b0, bl95_b1
411    
412      !----------------------------------------------------------------      !----------------------------------------------------------------
413    
414      modname = 'physiq'      IF (nqmx < 2) CALL abort_gcm('physiq', &
415      IF (if_ebil >= 1) THEN           'eaux vapeur et liquide sont indispensables')
        DO i = 1, klon  
           zero_v(i) = 0.  
        END DO  
     END IF  
     ok_sync = .TRUE.  
     IF (nqmx < 2) THEN  
        abort_message = 'eaux vapeur et liquide sont indispensables'  
        CALL abort_gcm(modname, abort_message, 1)  
     ENDIF  
416    
417      test_firstcal: IF (firstcal) THEN      test_firstcal: IF (firstcal) THEN
418         ! initialiser         ! initialiser
419         u10m = 0.         u10m_srf = 0.
420         v10m = 0.         v10m_srf = 0.
421         t2m = 0.         t2m = 0.
422         q2m = 0.         q2m = 0.
423         ffonte = 0.         ffonte = 0.
424         fqcalving = 0.         d_u_con = 0.
425         piz_ae = 0.         d_v_con = 0.
426         tau_ae = 0.         rnebcon0 = 0.
427         cg_ae = 0.         clwcon0 = 0.
428         rain_con(:) = 0.         rnebcon = 0.
429         snow_con(:) = 0.         clwcon = 0.
        bl95_b0 = 0.  
        bl95_b1 = 0.  
        topswai(:) = 0.  
        topswad(:) = 0.  
        solswai(:) = 0.  
        solswad(:) = 0.  
   
        d_u_con = 0.0  
        d_v_con = 0.0  
        rnebcon0 = 0.0  
        clwcon0 = 0.0  
        rnebcon = 0.0  
        clwcon = 0.0  
   
430         pblh =0. ! Hauteur de couche limite         pblh =0. ! Hauteur de couche limite
431         plcl =0. ! Niveau de condensation de la CLA         plcl =0. ! Niveau de condensation de la CLA
432         capCL =0. ! CAPE de couche limite         capCL =0. ! CAPE de couche limite
433         oliqCL =0. ! eau_liqu integree de couche limite         oliqCL =0. ! eau_liqu integree de couche limite
434         cteiCL =0. ! cloud top instab. crit. couche limite         cteiCL =0. ! cloud top instab. crit. couche limite
435         pblt =0. ! T a la Hauteur de couche limite         pblt =0.
436         therm =0.         therm =0.
437         trmb1 =0. ! deep_cape  
438         trmb2 =0. ! inhibition         print *, "Enter namelist 'physiq_nml'."
439         trmb3 =0. ! Point Omega         read(unit=*, nml=physiq_nml)
440           write(unit_nml, nml=physiq_nml)
441         IF (if_ebil >= 1) d_h_vcol_phy = 0.  
442           call ctherm
443         ! Appel à la lecture du run.def physique         call conf_phys
        call conf_phys(ocean, ok_veget, ok_journe, ok_mensuel, ok_instan, &  
             fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, ratqsbas, &  
             ratqshaut, if_ebil, ok_ade, ok_aie, bl95_b0, bl95_b1, &  
             iflag_thermals, nsplit_thermals)  
444    
445         ! Initialiser les compteurs:         ! Initialiser les compteurs:
446    
447         frugs = 0.         frugs = 0.
448         itap = 0         CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
449         itaprad = 0              rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, agesno, &
450         CALL phyetat0("startphy.nc", pctsrf, ftsol, ftsoil, ocean, tslab, &              zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, &
451              seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, rain_fall, &              ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01, &
452              snow_fall, solsw, sollwdown, dlw, radsol, frugs, agesno, zmea, &              ncid_startphy)
             zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, &  
             ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0)  
453    
454         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial
455         q2 = 1.e-8         q2 = 1e-8
   
        radpas = NINT(86400. / dtphys / nbapp_rad)  
   
        ! on remet le calendrier a zero  
        IF (raz_date) itau_phy = 0  
   
        PRINT *, 'cycle_diurne = ', cycle_diurne  
   
        IF(ocean.NE.'force ') THEN  
           ok_ocean = .TRUE.  
        ENDIF  
456    
457         CALL printflag(radpas, ok_ocean, ok_oasis, ok_journe, ok_instan, &         radpas = lmt_pas / nbapp_rad
458              ok_region)         print *, "radpas = ", radpas
459    
460         IF (dtphys*REAL(radpas) > 21600..AND.cycle_diurne) THEN         ! Initialisation pour le sch\'ema de convection d'Emanuel :
461            print *, 'Nbre d appels au rayonnement insuffisant'         IF (conv_emanuel) THEN
462            print *, "Au minimum 4 appels par jour si cycle diurne"            ibas_con = 1
463            abort_message = 'Nbre d appels au rayonnement insuffisant'            itop_con = 1
           call abort_gcm(modname, abort_message, 1)  
        ENDIF  
        print *, "Clef pour la convection, iflag_con = ", iflag_con  
   
        ! Initialisation pour la convection de K.E. (sb):  
        IF (iflag_con >= 3) THEN  
           print *, "Convection de Kerry Emanuel 4.3"  
   
           DO i = 1, klon  
              ibas_con(i) = 1  
              itop_con(i) = 1  
           ENDDO  
464         ENDIF         ENDIF
465    
466         IF (ok_orodr) THEN         IF (ok_orodr) THEN
# Line 773  contains Line 470  contains
470            rugoro = 0.            rugoro = 0.
471         ENDIF         ENDIF
472    
        lmt_pas = NINT(86400. / dtphys) ! tous les jours  
        print *, 'Number of time steps of "physics" per day: ', lmt_pas  
   
        ecrit_ins = NINT(ecrit_ins/dtphys)  
        ecrit_hf = NINT(ecrit_hf/dtphys)  
        ecrit_mth = NINT(ecrit_mth/dtphys)  
        ecrit_tra = NINT(86400.*ecrit_tra/dtphys)  
        ecrit_reg = NINT(ecrit_reg/dtphys)  
   
        ! Initialiser le couplage si necessaire  
   
        npas = 0  
        nexca = 0  
   
473         ! Initialisation des sorties         ! Initialisation des sorties
474           call ini_histins(ok_newmicro)
475         call ini_histhf(dtphys, nid_hf, nid_hf3d)         CALL phyredem0
476         call ini_histday(dtphys, ok_journe, nid_day, nqmx)         call conf_interface
        call ini_histins(dtphys, ok_instan, nid_ins)  
        CALL ymds2ju(annee_ref, 1, int(day_ref), 0., date0)  
        !XXXPB Positionner date0 pour initialisation de ORCHIDEE  
        WRITE(*, *) 'physiq date0: ', date0  
477      ENDIF test_firstcal      ENDIF test_firstcal
478    
479      ! Mettre a zero des variables de sortie (pour securite)      ! We will modify variables *_seri and we will not touch variables
480        ! u, v, t, qx:
481      DO i = 1, klon      t_seri = t
482         d_ps(i) = 0.0      u_seri = u
483      ENDDO      v_seri = v
484      DO iq = 1, nqmx      q_seri = qx(:, :, ivap)
485         DO k = 1, llm      ql_seri = qx(:, :, iliq)
486            DO i = 1, klon      tr_seri = qx(:, :, 3:nqmx)
              d_qx(i, k, iq) = 0.0  
           ENDDO  
        ENDDO  
     ENDDO  
     da = 0.  
     mp = 0.  
     phi = 0.  
   
     ! Ne pas affecter les valeurs entrées de u, v, h, et q :  
   
     DO k = 1, llm  
        DO i = 1, klon  
           t_seri(i, k) = t(i, k)  
           u_seri(i, k) = u(i, k)  
           v_seri(i, k) = v(i, k)  
           q_seri(i, k) = qx(i, k, ivap)  
           ql_seri(i, k) = qx(i, k, iliq)  
           qs_seri(i, k) = 0.  
        ENDDO  
     ENDDO  
     IF (nqmx >= 3) THEN  
        tr_seri(:, :, :nqmx-2) = qx(:, :, 3:nqmx)  
     ELSE  
        tr_seri(:, :, 1) = 0.  
     ENDIF  
487    
488      DO i = 1, klon      tsol = sum(ftsol * pctsrf, dim = 2)
        ztsol(i) = 0.  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           ztsol(i) = ztsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     IF (if_ebil >= 1) THEN  
        tit = 'after dynamics'  
        CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        ! Comme les tendances de la physique sont ajoutés dans la  
        !  dynamique, la variation d'enthalpie par la dynamique devrait  
        !  être égale à la variation de la physique au pas de temps  
        !  précédent.  Donc la somme de ces 2 variations devrait être  
        !  nulle.  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol + d_h_vcol_phy, &  
             d_qt, 0., fs_bound, fq_bound)  
     END IF  
489    
490      ! Diagnostic de la tendance dynamique :      ! Diagnostic de la tendance dynamique :
491      IF (ancien_ok) THEN      IF (ancien_ok) THEN
# Line 866  contains Line 498  contains
498      ELSE      ELSE
499         DO k = 1, llm         DO k = 1, llm
500            DO i = 1, klon            DO i = 1, klon
501               d_t_dyn(i, k) = 0.0               d_t_dyn(i, k) = 0.
502               d_q_dyn(i, k) = 0.0               d_q_dyn(i, k) = 0.
503            ENDDO            ENDDO
504         ENDDO         ENDDO
505         ancien_ok = .TRUE.         ancien_ok = .TRUE.
# Line 883  contains Line 515  contains
515      ! Check temperatures:      ! Check temperatures:
516      CALL hgardfou(t_seri, ftsol)      CALL hgardfou(t_seri, ftsol)
517    
518      ! Incrementer le compteur de la physique      call increment_itap
519      itap = itap + 1      julien = MOD(dayvrai, 360)
     julien = MOD(NINT(rdayvrai), 360)  
520      if (julien == 0) julien = 360      if (julien == 0) julien = 360
521    
522      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k)-paprs(:, k + 1)) / rg      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg
   
     ! Mettre en action les conditions aux limites (albedo, sst, etc.).  
523    
524      ! Prescrire l'ozone et calculer l'albedo sur l'ocean.      ! \'Evaporation de l'eau liquide nuageuse :
     wo = ozonecm(REAL(julien), paprs)  
   
     ! Évaporation de l'eau liquide nuageuse :  
525      DO k = 1, llm      DO k = 1, llm
526         DO i = 1, klon         DO i = 1, klon
527            zb = MAX(0., ql_seri(i, k))            zb = MAX(0., ql_seri(i, k))
# Line 906  contains Line 532  contains
532      ENDDO      ENDDO
533      ql_seri = 0.      ql_seri = 0.
534    
535      IF (if_ebil >= 2) THEN      frugs = MAX(frugs, 0.000015)
536         tit = 'after reevap'      zxrugs = sum(frugs * pctsrf, dim = 2)
        CALL diagetpq(airephy, tit, ip_ebil, 2, 1, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
   
     END IF  
   
     ! Appeler la diffusion verticale (programme de couche limite)  
   
     DO i = 1, klon  
        zxrugs(i) = 0.0  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           frugs(i, nsrf) = MAX(frugs(i, nsrf), 0.000015)  
        ENDDO  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxrugs(i) = zxrugs(i) + frugs(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     ! calculs necessaires au calcul de l'albedo dans l'interface  
   
     CALL orbite(REAL(julien), zlongi, dist)  
     IF (cycle_diurne) THEN  
        zdtime = dtphys * REAL(radpas)  
        CALL zenang(zlongi, time, zdtime, rmu0, fract)  
     ELSE  
        rmu0 = -999.999  
     ENDIF  
   
     ! Calcul de l'abedo moyen par maille  
     albsol(:) = 0.  
     albsollw(:) = 0.  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           albsol(i) = albsol(i) + falbe(i, nsrf) * pctsrf(i, nsrf)  
           albsollw(i) = albsollw(i) + falblw(i, nsrf) * pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     ! Repartition sous maille des flux LW et SW  
     ! Repartition du longwave par sous-surface linearisee  
   
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           fsollw(i, nsrf) = sollw(i) &  
                + 4.0*RSIGMA*ztsol(i)**3 * (ztsol(i)-ftsol(i, nsrf))  
           fsolsw(i, nsrf) = solsw(i)*(1.-falbe(i, nsrf))/(1.-albsol(i))  
        ENDDO  
     ENDDO  
537    
538      fder = dlw      ! Calculs n\'ecessaires au calcul de l'albedo dans l'interface avec
539        ! la surface.
540    
541      ! Couche limite:      CALL orbite(REAL(julien), longi, dist)
542        CALL zenang(longi, time, dtphys * radpas, mu0, fract)
543    
544      CALL clmain(dtphys, itap, date0, pctsrf, pctsrf_new, t_seri, q_seri, &      CALL pbl_surface(pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, &
545           u_seri, v_seri, julien, rmu0, co2_ppm, ok_veget, ocean, npas, nexca, &           ftsol, cdmmax, cdhmax, ftsoil, qsol, paprs, play, fsnow, fqsurf, &
546           ftsol, soil_model, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, &           falbe, fluxlat, rain_fall, snow_fall, frugs, agesno, rugoro, d_t_vdf, &
547           qsol, paprs, play, fsnow, fqsurf, fevap, falbe, falblw, fluxlat, &           d_q_vdf, d_u_vdf, d_v_vdf, flux_t, flux_q, flux_u, flux_v, cdragh, &
548           rain_fall, snow_fall, fsolsw, fsollw, sollwdown, fder, rlon, rlat, &           cdragm, q2, dflux_t, dflux_q, coefh, t2m, q2m, u10m_srf, v10m_srf, &
549           cuphy, cvphy, frugs, firstcal, lafin, agesno, rugoro, d_t_vdf, &           pblh, capCL, oliqCL, cteiCL, pblT, therm, plcl, fqcalving, ffonte, &
550           d_q_vdf, d_u_vdf, d_v_vdf, d_ts, fluxt, fluxq, fluxu, fluxv, cdragh, &           run_off_lic_0, albsol, sollw, solsw, tsol)
551           cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, &  
552           pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, plcl, &      ! Incr\'ementation des flux
553           fqcalving, ffonte, run_off_lic_0, fluxo, fluxg, tslab, seaice)  
554        sens = sum(flux_t * pctsrf, dim = 2)
555      ! Incrémentation des flux      evap = - sum(flux_q * pctsrf, dim = 2)
556        fder = dlw + dflux_t + dflux_q
     zxfluxt = 0.  
     zxfluxq = 0.  
     zxfluxu = 0.  
     zxfluxv = 0.  
     DO nsrf = 1, nbsrf  
        DO k = 1, llm  
           DO i = 1, klon  
              zxfluxt(i, k) = zxfluxt(i, k) + &  
                   fluxt(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxq(i, k) = zxfluxq(i, k) + &  
                   fluxq(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxu(i, k) = zxfluxu(i, k) + &  
                   fluxu(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxv(i, k) = zxfluxv(i, k) + &  
                   fluxv(i, k, nsrf) * pctsrf(i, nsrf)  
           END DO  
        END DO  
     END DO  
     DO i = 1, klon  
        sens(i) = - zxfluxt(i, 1) ! flux de chaleur sensible au sol  
        evap(i) = - zxfluxq(i, 1) ! flux d'evaporation au sol  
        fder(i) = dlw(i) + dsens(i) + devap(i)  
     ENDDO  
557    
558      DO k = 1, llm      DO k = 1, llm
559         DO i = 1, klon         DO i = 1, klon
# Line 1014  contains Line 564  contains
564         ENDDO         ENDDO
565      ENDDO      ENDDO
566    
567      IF (if_ebil >= 2) THEN      call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf')
568         tit = 'after clmain'      tsol = sum(ftsol * pctsrf, dim = 2)
569         CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &      zxfluxlat = sum(fluxlat * pctsrf, dim = 2)
570              ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &      zt2m = sum(t2m * pctsrf, dim = 2)
571              d_ql, d_qs, d_ec)      zq2m = sum(q2m * pctsrf, dim = 2)
572         call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &      u10m = sum(u10m_srf * pctsrf, dim = 2)
573              sens, evap, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &      v10m = sum(v10m_srf * pctsrf, dim = 2)
574              fs_bound, fq_bound)      zxffonte = sum(ffonte * pctsrf, dim = 2)
575      END IF      s_pblh = sum(pblh * pctsrf, dim = 2)
576        s_lcl = sum(plcl * pctsrf, dim = 2)
577        s_capCL = sum(capCL * pctsrf, dim = 2)
578        s_oliqCL = sum(oliqCL * pctsrf, dim = 2)
579        s_cteiCL = sum(cteiCL * pctsrf, dim = 2)
580        s_pblT = sum(pblT * pctsrf, dim = 2)
581        s_therm = sum(therm * pctsrf, dim = 2)
582    
583      ! Update surface temperature:      ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne :
   
     DO i = 1, klon  
        zxtsol(i) = 0.0  
        zxfluxlat(i) = 0.0  
   
        zt2m(i) = 0.0  
        zq2m(i) = 0.0  
        zu10m(i) = 0.0  
        zv10m(i) = 0.0  
        zxffonte(i) = 0.0  
        zxfqcalving(i) = 0.0  
   
        s_pblh(i) = 0.0  
        s_lcl(i) = 0.0  
        s_capCL(i) = 0.0  
        s_oliqCL(i) = 0.0  
        s_cteiCL(i) = 0.0  
        s_pblT(i) = 0.0  
        s_therm(i) = 0.0  
        s_trmb1(i) = 0.0  
        s_trmb2(i) = 0.0  
        s_trmb3(i) = 0.0  
   
        IF (abs(pctsrf(i, is_ter) + pctsrf(i, is_lic) + &  
             pctsrf(i, is_oce) + pctsrf(i, is_sic) - 1.)  >  EPSFRA) &  
             THEN  
           WRITE(*, *) 'physiq : pb sous surface au point ', i, &  
                pctsrf(i, 1 : nbsrf)  
        ENDIF  
     ENDDO  
584      DO nsrf = 1, nbsrf      DO nsrf = 1, nbsrf
585         DO i = 1, klon         DO i = 1, klon
586            ftsol(i, nsrf) = ftsol(i, nsrf) + d_ts(i, nsrf)            IF (pctsrf(i, nsrf) < epsfra) then
587            zxtsol(i) = zxtsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)               ftsol(i, nsrf) = tsol(i)
588            zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf)*pctsrf(i, nsrf)               t2m(i, nsrf) = zt2m(i)
589                 q2m(i, nsrf) = zq2m(i)
590            zt2m(i) = zt2m(i) + t2m(i, nsrf)*pctsrf(i, nsrf)               u10m_srf(i, nsrf) = u10m(i)
591            zq2m(i) = zq2m(i) + q2m(i, nsrf)*pctsrf(i, nsrf)               v10m_srf(i, nsrf) = v10m(i)
592            zu10m(i) = zu10m(i) + u10m(i, nsrf)*pctsrf(i, nsrf)               ffonte(i, nsrf) = zxffonte(i)
593            zv10m(i) = zv10m(i) + v10m(i, nsrf)*pctsrf(i, nsrf)               pblh(i, nsrf) = s_pblh(i)
594            zxffonte(i) = zxffonte(i) + ffonte(i, nsrf)*pctsrf(i, nsrf)               plcl(i, nsrf) = s_lcl(i)
595            zxfqcalving(i) = zxfqcalving(i) + &               capCL(i, nsrf) = s_capCL(i)
596                 fqcalving(i, nsrf)*pctsrf(i, nsrf)               oliqCL(i, nsrf) = s_oliqCL(i)
597            s_pblh(i) = s_pblh(i) + pblh(i, nsrf)*pctsrf(i, nsrf)               cteiCL(i, nsrf) = s_cteiCL(i)
598            s_lcl(i) = s_lcl(i) + plcl(i, nsrf)*pctsrf(i, nsrf)               pblT(i, nsrf) = s_pblT(i)
599            s_capCL(i) = s_capCL(i) + capCL(i, nsrf) *pctsrf(i, nsrf)               therm(i, nsrf) = s_therm(i)
600            s_oliqCL(i) = s_oliqCL(i) + oliqCL(i, nsrf) *pctsrf(i, nsrf)            end IF
           s_cteiCL(i) = s_cteiCL(i) + cteiCL(i, nsrf) *pctsrf(i, nsrf)  
           s_pblT(i) = s_pblT(i) + pblT(i, nsrf) *pctsrf(i, nsrf)  
           s_therm(i) = s_therm(i) + therm(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb1(i) = s_trmb1(i) + trmb1(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb2(i) = s_trmb2(i) + trmb2(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb3(i) = s_trmb3(i) + trmb3(i, nsrf) *pctsrf(i, nsrf)  
601         ENDDO         ENDDO
602      ENDDO      ENDDO
603    
604      ! Si une sous-fraction n'existe pas, elle prend la temp. moyenne      dlw = - 4. * RSIGMA * tsol**3
605    
606      DO nsrf = 1, nbsrf      ! Appeler la convection
607         DO i = 1, klon  
608            IF (pctsrf(i, nsrf) < epsfra) ftsol(i, nsrf) = zxtsol(i)      if (conv_emanuel) then
609           CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, &
610            IF (pctsrf(i, nsrf) < epsfra) t2m(i, nsrf) = zt2m(i)              d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, &
611            IF (pctsrf(i, nsrf) < epsfra) q2m(i, nsrf) = zq2m(i)              upwd, dnwd, Ma, cape, iflagctrl, clwcon0, pmflxr, da, phi, mp)
612            IF (pctsrf(i, nsrf) < epsfra) u10m(i, nsrf) = zu10m(i)         snow_con = 0.
613            IF (pctsrf(i, nsrf) < epsfra) v10m(i, nsrf) = zv10m(i)         mfu = upwd + dnwd
           IF (pctsrf(i, nsrf) < epsfra) ffonte(i, nsrf) = zxffonte(i)  
           IF (pctsrf(i, nsrf) < epsfra) &  
                fqcalving(i, nsrf) = zxfqcalving(i)  
           IF (pctsrf(i, nsrf) < epsfra) pblh(i, nsrf) = s_pblh(i)  
           IF (pctsrf(i, nsrf) < epsfra) plcl(i, nsrf) = s_lcl(i)  
           IF (pctsrf(i, nsrf) < epsfra) capCL(i, nsrf) = s_capCL(i)  
           IF (pctsrf(i, nsrf) < epsfra) oliqCL(i, nsrf) = s_oliqCL(i)  
           IF (pctsrf(i, nsrf) < epsfra) cteiCL(i, nsrf) = s_cteiCL(i)  
           IF (pctsrf(i, nsrf) < epsfra) pblT(i, nsrf) = s_pblT(i)  
           IF (pctsrf(i, nsrf) < epsfra) therm(i, nsrf) = s_therm(i)  
           IF (pctsrf(i, nsrf) < epsfra) trmb1(i, nsrf) = s_trmb1(i)  
           IF (pctsrf(i, nsrf) < epsfra) trmb2(i, nsrf) = s_trmb2(i)  
           IF (pctsrf(i, nsrf) < epsfra) trmb3(i, nsrf) = s_trmb3(i)  
        ENDDO  
     ENDDO  
614    
615      ! Calculer la derive du flux infrarouge         zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play)
616           zqsat = zqsat / (1. - retv * zqsat)
617    
618      DO i = 1, klon         ! Properties of convective clouds
619         dlw(i) = - 4.0*RSIGMA*zxtsol(i)**3         clwcon0 = fact_cldcon * clwcon0
620      ENDDO         call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &
621                rnebcon0)
     ! Appeler la convection (au choix)  
   
     DO k = 1, llm  
        DO i = 1, klon  
           conv_q(i, k) = d_q_dyn(i, k) &  
                + d_q_vdf(i, k)/dtphys  
           conv_t(i, k) = d_t_dyn(i, k) &  
                + d_t_vdf(i, k)/dtphys  
        ENDDO  
     ENDDO  
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        print *, "avantcon = ", za  
     ENDIF  
     zx_ajustq = iflag_con == 2  
     IF (zx_ajustq) THEN  
        DO i = 1, klon  
           z_avant(i) = 0.0  
        ENDDO  
        DO k = 1, llm  
           DO i = 1, klon  
              z_avant(i) = z_avant(i) + (q_seri(i, k) + ql_seri(i, k)) &  
                   *zmasse(i, k)  
           ENDDO  
        ENDDO  
     ENDIF  
622    
623      select case (iflag_con)         forall (i = 1:klon) ema_pct(i) = paprs(i, itop_con(i) + 1)
624      case (2)         mfd = 0.
625         CALL conflx(dtphys, paprs, play, t_seri, q_seri, conv_t, conv_q, &         pen_u = 0.
626              zxfluxq(1, 1), omega, d_t_con, d_q_con, rain_con, snow_con, pmfu, &         pen_d = 0.
627              pmfd, pen_u, pde_u, pen_d, pde_d, kcbot, kctop, kdtop, pmflxr, &         pde_d = 0.
628              pmflxs)         pde_u = 0.
629        else
630           conv_q = d_q_dyn + d_q_vdf / dtphys
631           conv_t = d_t_dyn + d_t_vdf / dtphys
632           z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)
633           CALL conflx(paprs, play, t_seri(:, llm:1:- 1), q_seri(:, llm:1:- 1), &
634                conv_t, conv_q, - evap, omega, d_t_con, d_q_con, rain_con, &
635                snow_con, mfu(:, llm:1:- 1), mfd(:, llm:1:- 1), pen_u, pde_u, &
636                pen_d, pde_d, kcbot, kctop, kdtop, pmflxr, pmflxs)
637         WHERE (rain_con < 0.) rain_con = 0.         WHERE (rain_con < 0.) rain_con = 0.
638         WHERE (snow_con < 0.) snow_con = 0.         WHERE (snow_con < 0.) snow_con = 0.
639         DO i = 1, klon         ibas_con = llm + 1 - kcbot
640            ibas_con(i) = llm + 1 - kcbot(i)         itop_con = llm + 1 - kctop
641            itop_con(i) = llm + 1 - kctop(i)      END if
        ENDDO  
     case (3:)  
        ! number of tracers for the convection scheme of Kerry Emanuel:  
        ! la partie traceurs est faite dans phytrac  
        ! on met ntra = 1 pour limiter les appels mais on peut  
        ! supprimer les calculs / ftra.  
        ntra = 1  
        ! Schéma de convection modularisé et vectorisé :  
        ! (driver commun aux versions 3 et 4)  
   
        CALL concvl(iflag_con, dtphys, paprs, play, t_seri, q_seri, u_seri, &  
             v_seri, tr_seri, ntra, ema_work1, ema_work2, d_t_con, d_q_con, &  
             d_u_con, d_v_con, d_tr, rain_con, snow_con, ibas_con, itop_con, &  
             upwd, dnwd, dnwd0, Ma, cape, tvp, iflagctrl, pbase, bbase, &  
             dtvpdt1, dtvpdq1, dplcldt, dplcldr, qcondc, wd, pmflxr, pmflxs, &  
             da, phi, mp)  
        clwcon0 = qcondc  
        pmfu = upwd + dnwd  
   
        IF (.NOT. ok_gust) THEN  
           do i = 1, klon  
              wd(i) = 0.0  
           enddo  
        ENDIF  
   
        ! Calcul des propriétés des nuages convectifs  
   
        DO k = 1, llm  
           DO i = 1, klon  
              zx_t = t_seri(i, k)  
              IF (thermcep) THEN  
                 zdelta = MAX(0., SIGN(1., rtt-zx_t))  
                 zx_qs = r2es * FOEEW(zx_t, zdelta)/play(i, k)  
                 zx_qs = MIN(0.5, zx_qs)  
                 zcor = 1./(1.-retv*zx_qs)  
                 zx_qs = zx_qs*zcor  
              ELSE  
                 IF (zx_t < t_coup) THEN  
                    zx_qs = qsats(zx_t)/play(i, k)  
                 ELSE  
                    zx_qs = qsatl(zx_t)/play(i, k)  
                 ENDIF  
              ENDIF  
              zqsat(i, k) = zx_qs  
           ENDDO  
        ENDDO  
   
        ! calcul des proprietes des nuages convectifs  
        clwcon0 = fact_cldcon*clwcon0  
        call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &  
             rnebcon0)  
     case default  
        print *, "iflag_con non-prevu", iflag_con  
        stop 1  
     END select  
642    
643      DO k = 1, llm      DO k = 1, llm
644         DO i = 1, klon         DO i = 1, klon
# Line 1216  contains Line 649  contains
649         ENDDO         ENDDO
650      ENDDO      ENDDO
651    
652      IF (if_ebil >= 2) THEN      IF (.not. conv_emanuel) THEN
653         tit = 'after convect'         z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)
654         CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &         z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, rain_con, snow_con, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
     END IF  
   
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        print *, "aprescon = ", za  
        zx_t = 0.0  
        za = 0.0  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_con(i)+ &  
                snow_con(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtphys  
        print *, "Precip = ", zx_t  
     ENDIF  
     IF (zx_ajustq) THEN  
        DO i = 1, klon  
           z_apres(i) = 0.0  
        ENDDO  
655         DO k = 1, llm         DO k = 1, llm
656            DO i = 1, klon            DO i = 1, klon
657               z_apres(i) = z_apres(i) + (q_seri(i, k) + ql_seri(i, k)) &               IF (z_factor(i) /= 1.) THEN
                   *zmasse(i, k)  
           ENDDO  
        ENDDO  
        DO i = 1, klon  
           z_factor(i) = (z_avant(i)-(rain_con(i) + snow_con(i))*dtphys) &  
                /z_apres(i)  
        ENDDO  
        DO k = 1, llm  
           DO i = 1, klon  
              IF (z_factor(i) > 1. + 1E-8 .OR. z_factor(i) < 1. - 1E-8) THEN  
658                  q_seri(i, k) = q_seri(i, k) * z_factor(i)                  q_seri(i, k) = q_seri(i, k) * z_factor(i)
659               ENDIF               ENDIF
660            ENDDO            ENDDO
661         ENDDO         ENDDO
662      ENDIF      ENDIF
     zx_ajustq = .FALSE.  
663    
664      ! Convection sèche (thermiques ou ajustement)      ! Convection s\`eche (thermiques ou ajustement)
665    
666      d_t_ajs = 0.      d_t_ajs = 0.
667      d_u_ajs = 0.      d_u_ajs = 0.
# Line 1272  contains Line 670  contains
670      fm_therm = 0.      fm_therm = 0.
671      entr_therm = 0.      entr_therm = 0.
672    
673      if (iflag_thermals == 0) then      if (iflag_thermals) then
674         ! Ajustement sec         call calltherm(play, paprs, pphi, u_seri, v_seri, t_seri, q_seri, &
675                d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)
676        else
677         CALL ajsec(paprs, play, t_seri, q_seri, d_t_ajs, d_q_ajs)         CALL ajsec(paprs, play, t_seri, q_seri, d_t_ajs, d_q_ajs)
678         t_seri = t_seri + d_t_ajs         t_seri = t_seri + d_t_ajs
679         q_seri = q_seri + d_q_ajs         q_seri = q_seri + d_q_ajs
     else  
        ! Thermiques  
        call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, &  
             q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)  
680      endif      endif
681    
     IF (if_ebil >= 2) THEN  
        tit = 'after dry_adjust'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
     END IF  
   
682      ! Caclul des ratqs      ! Caclul des ratqs
683    
     ! ratqs convectifs a l'ancienne en fonction de q(z = 0)-q / q  
     ! on ecrase le tableau ratqsc calcule par clouds_gno  
684      if (iflag_cldcon == 1) then      if (iflag_cldcon == 1) then
685           ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q
686           ! on \'ecrase le tableau ratqsc calcul\'e par clouds_gno
687         do k = 1, llm         do k = 1, llm
688            do i = 1, klon            do i = 1, klon
689               if(ptconv(i, k)) then               if(ptconv(i, k)) then
690                  ratqsc(i, k) = ratqsbas &                  ratqsc(i, k) = ratqsbas + fact_cldcon &
691                       +fact_cldcon*(q_seri(i, 1)-q_seri(i, k))/q_seri(i, k)                       * (q_seri(i, 1) - q_seri(i, k)) / q_seri(i, k)
692               else               else
693                  ratqsc(i, k) = 0.                  ratqsc(i, k) = 0.
694               endif               endif
# Line 1310  contains Line 699  contains
699      ! ratqs stables      ! ratqs stables
700      do k = 1, llm      do k = 1, llm
701         do i = 1, klon         do i = 1, klon
702            ratqss(i, k) = ratqsbas + (ratqshaut-ratqsbas)* &            ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &
703                 min((paprs(i, 1)-play(i, k))/(paprs(i, 1)-30000.), 1.)                 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)
704         enddo         enddo
705      enddo      enddo
706    
707      ! ratqs final      ! ratqs final
708      if (iflag_cldcon == 1 .or.iflag_cldcon == 2) then      if (iflag_cldcon == 1 .or. iflag_cldcon == 2) then
709         ! les ratqs sont une conbinaison de ratqss et ratqsc         ! les ratqs sont une conbinaison de ratqss et ratqsc
710         ! ratqs final         ! ratqs final
711         ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de         ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de
712         ! relaxation des ratqs         ! relaxation des ratqs
713         facteur = exp(-dtphys*facttemps)         ratqs = max(ratqs * exp(- dtphys * facttemps), ratqss)
        ratqs = max(ratqs*facteur, ratqss)  
714         ratqs = max(ratqs, ratqsc)         ratqs = max(ratqs, ratqsc)
715      else      else
716         ! on ne prend que le ratqs stable pour fisrtilp         ! on ne prend que le ratqs stable pour fisrtilp
717         ratqs = ratqss         ratqs = ratqss
718      endif      endif
719    
720      ! Processus de condensation à grande echelle et processus de      CALL fisrtilp(paprs, play, t_seri, q_seri, ptconv, ratqs, d_t_lsc, &
721      ! précipitation :           d_q_lsc, d_ql_lsc, rneb, cldliq, rain_lsc, snow_lsc, pfrac_impa, &
722      CALL fisrtilp(dtphys, paprs, play, t_seri, q_seri, ptconv, ratqs, &           pfrac_nucl, pfrac_1nucl, frac_impa, frac_nucl, prfl, psfl, rhcl)
          d_t_lsc, d_q_lsc, d_ql_lsc, rneb, cldliq, rain_lsc, snow_lsc, &  
          pfrac_impa, pfrac_nucl, pfrac_1nucl, frac_impa, frac_nucl, prfl, &  
          psfl, rhcl)  
723    
724      WHERE (rain_lsc < 0) rain_lsc = 0.      WHERE (rain_lsc < 0) rain_lsc = 0.
725      WHERE (snow_lsc < 0) snow_lsc = 0.      WHERE (snow_lsc < 0) snow_lsc = 0.
# Line 1347  contains Line 732  contains
732            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)
733         ENDDO         ENDDO
734      ENDDO      ENDDO
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        print *, "apresilp = ", za  
        zx_t = 0.0  
        za = 0.0  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_lsc(i) &  
                + snow_lsc(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtphys  
        print *, "Precip = ", zx_t  
     ENDIF  
   
     IF (if_ebil >= 2) THEN  
        tit = 'after fisrt'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, rain_lsc, snow_lsc, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
     END IF  
735    
736      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
737    
738      ! 1. NUAGES CONVECTIFS      ! 1. NUAGES CONVECTIFS
739    
740      IF (iflag_cldcon <= -1) THEN      IF (iflag_cldcon <= - 1) THEN
741         ! seulement pour Tiedtke         ! seulement pour Tiedtke
742         snow_tiedtke = 0.         snow_tiedtke = 0.
743         if (iflag_cldcon == -1) then         if (iflag_cldcon == - 1) then
744            rain_tiedtke = rain_con            rain_tiedtke = rain_con
745         else         else
746            rain_tiedtke = 0.            rain_tiedtke = 0.
747            do k = 1, llm            do k = 1, llm
748               do i = 1, klon               do i = 1, klon
749                  if (d_q_con(i, k) < 0.) then                  if (d_q_con(i, k) < 0.) then
750                     rain_tiedtke(i) = rain_tiedtke(i)-d_q_con(i, k)/dtphys &                     rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k) / dtphys &
751                          *zmasse(i, k)                          * zmasse(i, k)
752                  endif                  endif
753               enddo               enddo
754            enddo            enddo
755         endif         endif
756    
757         ! Nuages diagnostiques pour Tiedtke         ! Nuages diagnostiques pour Tiedtke
758         CALL diagcld1(paprs, play, &         CALL diagcld1(paprs, play, rain_tiedtke, snow_tiedtke, ibas_con, &
759              rain_tiedtke, snow_tiedtke, ibas_con, itop_con, &              itop_con, diafra, dialiq)
             diafra, dialiq)  
760         DO k = 1, llm         DO k = 1, llm
761            DO i = 1, klon            DO i = 1, klon
762               IF (diafra(i, k) > cldfra(i, k)) THEN               IF (diafra(i, k) > cldfra(i, k)) THEN
# Line 1405  contains Line 766  contains
766            ENDDO            ENDDO
767         ENDDO         ENDDO
768      ELSE IF (iflag_cldcon == 3) THEN      ELSE IF (iflag_cldcon == 3) THEN
769         ! On prend pour les nuages convectifs le max du calcul de la         ! On prend pour les nuages convectifs le maximum du calcul de
770         ! convection et du calcul du pas de temps précédent diminué d'un facteur         ! la convection et du calcul du pas de temps pr\'ec\'edent diminu\'e
771         ! facttemps         ! d'un facteur facttemps.
772         facteur = dtphys *facttemps         facteur = dtphys * facttemps
773         do k = 1, llm         do k = 1, llm
774            do i = 1, klon            do i = 1, klon
775               rnebcon(i, k) = rnebcon(i, k)*facteur               rnebcon(i, k) = rnebcon(i, k) * facteur
776               if (rnebcon0(i, k)*clwcon0(i, k) > rnebcon(i, k)*clwcon(i, k)) &               if (rnebcon0(i, k) * clwcon0(i, k) &
777                    then                    > rnebcon(i, k) * clwcon(i, k)) then
778                  rnebcon(i, k) = rnebcon0(i, k)                  rnebcon(i, k) = rnebcon0(i, k)
779                  clwcon(i, k) = clwcon0(i, k)                  clwcon(i, k) = clwcon0(i, k)
780               endif               endif
# Line 1422  contains Line 783  contains
783    
784         ! On prend la somme des fractions nuageuses et des contenus en eau         ! On prend la somme des fractions nuageuses et des contenus en eau
785         cldfra = min(max(cldfra, rnebcon), 1.)         cldfra = min(max(cldfra, rnebcon), 1.)
786         cldliq = cldliq + rnebcon*clwcon         cldliq = cldliq + rnebcon * clwcon
787      ENDIF      ENDIF
788    
789      ! 2. Nuages stratiformes      ! 2. Nuages stratiformes
# Line 1445  contains Line 806  contains
806         snow_fall(i) = snow_con(i) + snow_lsc(i)         snow_fall(i) = snow_con(i) + snow_lsc(i)
807      ENDDO      ENDDO
808    
809      IF (if_ebil >= 2) CALL diagetpq(airephy, "after diagcld", ip_ebil, 2, 2, &      ! Humidit\'e relative pour diagnostic :
          dtphys, t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, &  
          d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
   
     ! Humidité relative pour diagnostic :  
810      DO k = 1, llm      DO k = 1, llm
811         DO i = 1, klon         DO i = 1, klon
812            zx_t = t_seri(i, k)            zx_qs = r2es * FOEEW(t_seri(i, k), rtt >= t_seri(i, k)) / play(i, k)
813            IF (thermcep) THEN            zx_qs = MIN(0.5, zx_qs)
814               zdelta = MAX(0., SIGN(1., rtt-zx_t))            zcor = 1. / (1. - retv * zx_qs)
815               zx_qs = r2es * FOEEW(zx_t, zdelta)/play(i, k)            zx_qs = zx_qs * zcor
816               zx_qs = MIN(0.5, zx_qs)            zx_rh(i, k) = q_seri(i, k) / zx_qs
              zcor = 1./(1.-retv*zx_qs)  
              zx_qs = zx_qs*zcor  
           ELSE  
              IF (zx_t < t_coup) THEN  
                 zx_qs = qsats(zx_t)/play(i, k)  
              ELSE  
                 zx_qs = qsatl(zx_t)/play(i, k)  
              ENDIF  
           ENDIF  
           zx_rh(i, k) = q_seri(i, k)/zx_qs  
817            zqsat(i, k) = zx_qs            zqsat(i, k) = zx_qs
818         ENDDO         ENDDO
819      ENDDO      ENDDO
820    
821      ! Introduce the aerosol direct and first indirect radiative forcings:      ! Param\`etres optiques des nuages et quelques param\`etres pour
822      ! Johannes Quaas, 27/11/2003      ! diagnostics :
     IF (ok_ade .OR. ok_aie) THEN  
        ! Get sulfate aerosol distribution  
        CALL readsulfate(rdayvrai, firstcal, sulfate)  
        CALL readsulfate_preind(rdayvrai, firstcal, sulfate_pi)  
   
        ! Calculate aerosol optical properties (Olivier Boucher)  
        CALL aeropt(play, paprs, t_seri, sulfate, rhcl, tau_ae, piz_ae, cg_ae, &  
             aerindex)  
     ELSE  
        tau_ae = 0.  
        piz_ae = 0.  
        cg_ae = 0.  
     ENDIF  
   
     ! Paramètres optiques des nuages et quelques paramètres pour diagnostics :  
823      if (ok_newmicro) then      if (ok_newmicro) then
824         CALL newmicro(paprs, play, ok_newmicro, t_seri, cldliq, cldfra, &         CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &
825              cldtau, cldemi, cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, &              cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc)
             fiwc, ok_aie, sulfate, sulfate_pi, bl95_b0, bl95_b1, cldtaupi, &  
             re, fl)  
826      else      else
827         CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &         CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &
828              cldl, cldm, cldt, cldq, ok_aie, sulfate, sulfate_pi, bl95_b0, &              cldl, cldm, cldt, cldq)
             bl95_b1, cldtaupi, re, fl)  
829      endif      endif
830    
831      ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.      IF (MOD(itap - 1, radpas) == 0) THEN
832      IF (MOD(itaprad, radpas) == 0) THEN         wo = ozonecm(REAL(julien), paprs)
833         DO i = 1, klon         albsol = sum(falbe * pctsrf, dim = 2)
834            albsol(i) = falbe(i, is_oce) * pctsrf(i, is_oce) &         CALL radlwsw(dist, mu0, fract, paprs, play, tsol, albsol, t_seri, &
835                 + falbe(i, is_lic) * pctsrf(i, is_lic) &              q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, &
836                 + falbe(i, is_ter) * pctsrf(i, is_ter) &              radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, &
837                 + falbe(i, is_sic) * pctsrf(i, is_sic)              toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, &
838            albsollw(i) = falblw(i, is_oce) * pctsrf(i, is_oce) &              swup0, swup, ok_ade, topswad, solswad)
                + falblw(i, is_lic) * pctsrf(i, is_lic) &  
                + falblw(i, is_ter) * pctsrf(i, is_ter) &  
                + falblw(i, is_sic) * pctsrf(i, is_sic)  
        ENDDO  
        ! Rayonnement (compatible Arpege-IFS) :  
        CALL radlwsw(dist, rmu0, fract, paprs, play, zxtsol, albsol, &  
             albsollw, t_seri, q_seri, wo, cldfra, cldemi, cldtau, heat, &  
             heat0, cool, cool0, radsol, albpla, topsw, toplw, solsw, sollw, &  
             sollwdown, topsw0, toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, &  
             lwup, swdn0, swdn, swup0, swup, ok_ade, ok_aie, tau_ae, piz_ae, &  
             cg_ae, topswad, solswad, cldtaupi, topswai, solswai)  
        itaprad = 0  
839      ENDIF      ENDIF
     itaprad = itaprad + 1  
840    
841      ! Ajouter la tendance des rayonnements (tous les pas)      ! Ajouter la tendance des rayonnements (tous les pas)
   
842      DO k = 1, llm      DO k = 1, llm
843         DO i = 1, klon         DO i = 1, klon
844            t_seri(i, k) = t_seri(i, k) + (heat(i, k)-cool(i, k)) * dtphys/86400.            t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys &
845         ENDDO                 / 86400.
     ENDDO  
   
     IF (if_ebil >= 2) THEN  
        tit = 'after rad'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
     END IF  
   
     ! Calculer l'hydrologie de la surface  
     DO i = 1, klon  
        zxqsurf(i) = 0.0  
        zxsnow(i) = 0.0  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxqsurf(i) = zxqsurf(i) + fqsurf(i, nsrf)*pctsrf(i, nsrf)  
           zxsnow(i) = zxsnow(i) + fsnow(i, nsrf)*pctsrf(i, nsrf)  
846         ENDDO         ENDDO
847      ENDDO      ENDDO
848    
849      ! Calculer le bilan du sol et la dérive de température (couplage)      ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille :
   
     DO i = 1, klon  
        bils(i) = radsol(i) - sens(i) + zxfluxlat(i)  
     ENDDO  
   
     ! Paramétrisation de l'orographie à l'échelle sous-maille :  
850    
851      IF (ok_orodr) THEN      IF (ok_orodr) THEN
852         ! selection des points pour lesquels le shema est actif:         ! S\'election des points pour lesquels le sch\'ema est actif :
        igwd = 0  
853         DO i = 1, klon         DO i = 1, klon
854            itest(i) = 0            ktest(i) = 0
855            IF (((zpic(i)-zmea(i)) > 100.).AND.(zstd(i) > 10.0)) THEN            IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN
856               itest(i) = 1               ktest(i) = 1
              igwd = igwd + 1  
              idx(igwd) = i  
857            ENDIF            ENDIF
858         ENDDO         ENDDO
859    
860         CALL drag_noro(klon, llm, dtphys, paprs, play, zmea, zstd, zsig, zgam, &         CALL drag_noro(paprs, play, zmea, zstd, zsig, zgam, zthe, zpic, zval, &
861              zthe, zpic, zval, igwd, idx, itest, t_seri, u_seri, v_seri, &              ktest, t_seri, u_seri, v_seri, zulow, zvlow, zustrdr, zvstrdr, &
862              zulow, zvlow, zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro)              d_t_oro, d_u_oro, d_v_oro)
863    
864         ! ajout des tendances         ! ajout des tendances
865         DO k = 1, llm         DO k = 1, llm
# Line 1587  contains Line 872  contains
872      ENDIF      ENDIF
873    
874      IF (ok_orolf) THEN      IF (ok_orolf) THEN
875         ! Sélection des points pour lesquels le schéma est actif :         ! S\'election des points pour lesquels le sch\'ema est actif :
        igwd = 0  
876         DO i = 1, klon         DO i = 1, klon
877            itest(i) = 0            ktest(i) = 0
878            IF ((zpic(i) - zmea(i)) > 100.) THEN            IF (zpic(i) - zmea(i) > 100.) THEN
879               itest(i) = 1               ktest(i) = 1
              igwd = igwd + 1  
              idx(igwd) = i  
880            ENDIF            ENDIF
881         ENDDO         ENDDO
882    
883         CALL lift_noro(klon, llm, dtphys, paprs, play, rlat, zmea, zstd, zpic, &         CALL lift_noro(paprs, play, zmea, zstd, zpic, ktest, t_seri, u_seri, &
884              itest, t_seri, u_seri, v_seri, zulow, zvlow, zustrli, zvstrli, &              v_seri, zulow, zvlow, zustrli, zvstrli, d_t_lif, d_u_lif, d_v_lif)
             d_t_lif, d_u_lif, d_v_lif)  
885    
886         ! Ajout des tendances :         ! Ajout des tendances :
887         DO k = 1, llm         DO k = 1, llm
# Line 1612  contains Line 893  contains
893         ENDDO         ENDDO
894      ENDIF      ENDIF
895    
896      ! Stress nécessaires : toute la physique      CALL aaam_bud(rg, romega, pphis, zustrdr, zustrli, &
897             sum((u_seri - u) / dtphys * zmasse, dim = 2), zvstrdr, &
898      DO i = 1, klon           zvstrli, sum((v_seri - v) / dtphys * zmasse, dim = 2), paprs, u, v, &
899         zustrph(i) = 0.           aam, torsfc)
        zvstrph(i) = 0.  
     ENDDO  
     DO k = 1, llm  
        DO i = 1, klon  
           zustrph(i) = zustrph(i) + (u_seri(i, k) - u(i, k)) / dtphys &  
                * zmasse(i, k)  
           zvstrph(i) = zvstrph(i) + (v_seri(i, k) - v(i, k)) / dtphys &  
                * zmasse(i, k)  
        ENDDO  
     ENDDO  
   
     CALL aaam_bud(ra, rg, romega, rlat, rlon, pphis, zustrdr, zustrli, &  
          zustrph, zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc)  
   
     IF (if_ebil >= 2) CALL diagetpq(airephy, 'after orography', ip_ebil, 2, &  
          2, dtphys, t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, &  
          d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
900    
901      ! Calcul des tendances traceurs      ! Calcul des tendances traceurs
902      call phytrac(rnpb, itap, lmt_pas, julien, time, firstcal, lafin, nqmx-2, &      call phytrac(julien, time, firstcal, lafin, t, paprs, play, mfu, mfd, &
903           dtphys, u, t, paprs, play, pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, &           pde_u, pen_d, coefh, cdragh, fm_therm, entr_therm, u(:, 1), v(:, 1), &
904           ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, pctsrf, frac_impa, &           ftsol, pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, dnwd, &
905           frac_nucl, pphis, albsol, rhcl, cldfra, rneb, diafra, cldliq, &           tr_seri, zmasse, ncid_startphy)
          pmflxr, pmflxs, prfl, psfl, da, phi, mp, upwd, dnwd, tr_seri, zmasse)  
   
     IF (offline) THEN  
        call phystokenc(dtphys, rlon, rlat, t, pmfu, pmfd, pen_u, pde_u, &  
             pen_d, pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, &  
             pctsrf, frac_impa, frac_nucl, pphis, airephy, dtphys, itap)  
     ENDIF  
906    
907      ! Calculer le transport de l'eau et de l'energie (diagnostique)      ! Calculer le transport de l'eau et de l'energie (diagnostique)
908      CALL transp(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, &      CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq)
          ue, uq)  
909    
910      ! diag. bilKP      ! diag. bilKP
911    
912      CALL transp_lay(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, &      CALL transp_lay(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve_lay, &
913           ve_lay, vq_lay, ue_lay, uq_lay)           vq_lay, ue_lay, uq_lay)
914    
915      ! Accumuler les variables a stocker dans les fichiers histoire:      ! Accumuler les variables a stocker dans les fichiers histoire:
916    
917      ! conversion Ec -> E thermique      ! conversion Ec en énergie thermique
918      DO k = 1, llm      DO k = 1, llm
919         DO i = 1, klon         DO i = 1, klon
920            ZRCPD = RCPD * (1. + RVTMP2 * q_seri(i, k))            d_t_ec(i, k) = 0.5 / (RCPD * (1. + RVTMP2 * q_seri(i, k))) &
           d_t_ec(i, k) = 0.5 / ZRCPD &  
921                 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)                 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)
922            t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)            t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)
923            d_t_ec(i, k) = d_t_ec(i, k) / dtphys            d_t_ec(i, k) = d_t_ec(i, k) / dtphys
924         END DO         END DO
925      END DO      END DO
926    
     IF (if_ebil >= 1) THEN  
        tit = 'after physic'  
        CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        ! Comme les tendances de la physique sont ajoute dans la dynamique,  
        ! on devrait avoir que la variation d'entalpie par la dynamique  
        ! est egale a la variation de la physique au pas de temps precedent.  
        ! Donc la somme de ces 2 variations devrait etre nulle.  
        call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, sens, &  
             evap, rain_fall, snow_fall, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
   
        d_h_vcol_phy = d_h_vcol  
   
     END IF  
   
927      ! SORTIES      ! SORTIES
928    
929      !cc prw = eau precipitable      ! prw = eau precipitable
930      DO i = 1, klon      DO i = 1, klon
931         prw(i) = 0.         prw(i) = 0.
932         DO k = 1, llm         DO k = 1, llm
933            prw(i) = prw(i) + q_seri(i, k)*zmasse(i, k)            prw(i) = prw(i) + q_seri(i, k) * zmasse(i, k)
934         ENDDO         ENDDO
935      ENDDO      ENDDO
936    
# Line 1708  contains Line 946  contains
946         ENDDO         ENDDO
947      ENDDO      ENDDO
948    
949      IF (nqmx >= 3) THEN      DO iq = 3, nqmx
950         DO iq = 3, nqmx         DO k = 1, llm
951            DO k = 1, llm            DO i = 1, klon
952               DO i = 1, klon               d_qx(i, k, iq) = (tr_seri(i, k, iq - 2) - qx(i, k, iq)) / dtphys
                 d_qx(i, k, iq) = (tr_seri(i, k, iq-2) - qx(i, k, iq)) / dtphys  
              ENDDO  
953            ENDDO            ENDDO
954         ENDDO         ENDDO
955      ENDIF      ENDDO
956    
957      ! Sauvegarder les valeurs de t et q a la fin de la physique:      ! Sauvegarder les valeurs de t et q a la fin de la physique:
958      DO k = 1, llm      DO k = 1, llm
# Line 1726  contains Line 962  contains
962         ENDDO         ENDDO
963      ENDDO      ENDDO
964    
965      ! Ecriture des sorties      CALL histwrite_phy("phis", pphis)
966      call write_histhf      CALL histwrite_phy("aire", airephy)
967      call write_histday      CALL histwrite_phy("psol", paprs(:, 1))
968      call write_histins      CALL histwrite_phy("precip", rain_fall + snow_fall)
969        CALL histwrite_phy("plul", rain_lsc + snow_lsc)
970      ! Si c'est la fin, il faut conserver l'etat de redemarrage      CALL histwrite_phy("pluc", rain_con + snow_con)
971      IF (lafin) THEN      CALL histwrite_phy("tsol", tsol)
972         itau_phy = itau_phy + itap      CALL histwrite_phy("t2m", zt2m)
973         CALL phyredem("restartphy.nc", rlat, rlon, pctsrf, ftsol, ftsoil, &      CALL histwrite_phy("q2m", zq2m)
974              tslab, seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, &      CALL histwrite_phy("u10m", u10m)
975              rain_fall, snow_fall, solsw, sollwdown, dlw, radsol, frugs, &      CALL histwrite_phy("v10m", v10m)
976              agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, &      CALL histwrite_phy("snow", snow_fall)
977              q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0)      CALL histwrite_phy("cdrm", cdragm)
978      ENDIF      CALL histwrite_phy("cdrh", cdragh)
979        CALL histwrite_phy("topl", toplw)
980      firstcal = .FALSE.      CALL histwrite_phy("evap", evap)
981        CALL histwrite_phy("sols", solsw)
982    contains      CALL histwrite_phy("rls", sollw)
983        CALL histwrite_phy("solldown", sollwdown)
984      subroutine write_histday      CALL histwrite_phy("bils", radsol + sens + zxfluxlat)
985        CALL histwrite_phy("sens", sens)
986        use gr_phy_write_3d_m, only: gr_phy_write_3d      CALL histwrite_phy("fder", fder)
987        integer itau_w ! pas de temps ecriture      CALL histwrite_phy("zxfqcalving", sum(fqcalving * pctsrf, dim = 2))
988        CALL histwrite_phy("albs", albsol)
989        !------------------------------------------------      CALL histwrite_phy("tro3", wo * dobson_u * 1e3 / zmasse / rmo3 * md)
990        CALL histwrite_phy("rugs", zxrugs)
991        if (ok_journe) THEN      CALL histwrite_phy("s_pblh", s_pblh)
992           itau_w = itau_phy + itap      CALL histwrite_phy("s_pblt", s_pblt)
993           if (nqmx <= 4) then      CALL histwrite_phy("s_lcl", s_lcl)
994              call histwrite(nid_day, "Sigma_O3_Royer", itau_w, &      CALL histwrite_phy("s_capCL", s_capCL)
995                   gr_phy_write_3d(wo) * 1e3)      CALL histwrite_phy("s_oliqCL", s_oliqCL)
996              ! (convert "wo" from kDU to DU)      CALL histwrite_phy("s_cteiCL", s_cteiCL)
997           end if      CALL histwrite_phy("s_therm", s_therm)
998           if (ok_sync) then      CALL histwrite_phy("temp", t_seri)
999              call histsync(nid_day)      CALL histwrite_phy("vitu", u_seri)
1000           endif      CALL histwrite_phy("vitv", v_seri)
1001        ENDIF      CALL histwrite_phy("geop", zphi)
1002        CALL histwrite_phy("pres", play)
1003      End subroutine write_histday      CALL histwrite_phy("dtvdf", d_t_vdf)
1004        CALL histwrite_phy("dqvdf", d_q_vdf)
1005      !****************************      CALL histwrite_phy("rhum", zx_rh)
1006        CALL histwrite_phy("d_t_ec", d_t_ec)
1007      subroutine write_histhf      CALL histwrite_phy("dtsw0", heat0 / 86400.)
1008        CALL histwrite_phy("dtlw0", - cool0 / 86400.)
1009        ! From phylmd/write_histhf.h, version 1.5 2005/05/25 13:10:09      call histwrite_phy("pmflxr", pmflxr(:, :llm))
1010        CALL histwrite_phy("msnow", sum(fsnow * pctsrf, dim = 2))
1011        !------------------------------------------------      call histwrite_phy("qsurf", sum(fqsurf * pctsrf, dim = 2))
1012        call histwrite_phy("flat", zxfluxlat)
1013    
1014        call write_histhf3d      DO nsrf = 1, nbsrf
1015           CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf))
1016        IF (ok_sync) THEN         CALL histwrite_phy("sens_"//clnsurf(nsrf), flux_t(:, nsrf))
1017           call histsync(nid_hf)         CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf))
1018        ENDIF         CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf))
1019           CALL histwrite_phy("taux_"//clnsurf(nsrf), flux_u(:, nsrf))
1020      end subroutine write_histhf         CALL histwrite_phy("tauy_"//clnsurf(nsrf), flux_v(:, nsrf))
1021           CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf))
1022      !***************************************************************         CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf))
1023           CALL histwrite_phy("u10m_"//clnsurf(nsrf), u10m_srf(:, nsrf))
1024      subroutine write_histins         CALL histwrite_phy("v10m_"//clnsurf(nsrf), v10m_srf(:, nsrf))
1025        END DO
       ! From phylmd/write_histins.h, version 1.2 2005/05/25 13:10:09  
   
       real zout  
       integer itau_w ! pas de temps ecriture  
   
       !--------------------------------------------------  
   
       IF (ok_instan) THEN  
          ! Champs 2D:  
   
          zsto = dtphys * ecrit_ins  
          zout = dtphys * ecrit_ins  
          itau_w = itau_phy + itap  
   
          i = NINT(zout/zsto)  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, pphis, zx_tmp_2d)  
          CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d)  
   
          i = NINT(zout/zsto)  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, airephy, zx_tmp_2d)  
          CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = paprs(i, 1)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "psol", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_fall(i) + snow_fall(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "precip", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_lsc(i) + snow_lsc(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "plul", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_con(i) + snow_con(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "pluc", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxtsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "tsol", itau_w, zx_tmp_2d)  
          !ccIM  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zt2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "t2m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zq2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "q2m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zu10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "u10m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zv10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "v10m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, snow_fall, zx_tmp_2d)  
          CALL histwrite(nid_ins, "snow", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrm", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrh", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, toplw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "topl", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, evap, zx_tmp_2d)  
          CALL histwrite(nid_ins, "evap", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, solsw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sols", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "soll", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollwdown, zx_tmp_2d)  
          CALL histwrite(nid_ins, "solldown", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, bils, zx_tmp_2d)  
          CALL histwrite(nid_ins, "bils", itau_w, zx_tmp_2d)  
   
          zx_tmp_fi2d(1:klon) = -1*sens(1:klon)  
          ! CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sens, zx_tmp_2d)  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sens", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, fder, zx_tmp_2d)  
          CALL histwrite(nid_ins, "fder", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_oce), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfo", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_ter), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdft", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_lic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfg", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_sic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfi", itau_w, zx_tmp_2d)  
   
          DO nsrf = 1, nbsrf  
             !XXX  
             zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf)*100.  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "pourc_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "fract_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxt(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "sens_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxlat(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "lat_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = ftsol(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tsol_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxu(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "taux_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxv(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tauy_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = frugs(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "rugs_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = falbe(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "albe_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
          END DO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albs", itau_w, zx_tmp_2d)  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albslw", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxrugs, zx_tmp_2d)  
          CALL histwrite(nid_ins, "rugs", itau_w, zx_tmp_2d)  
   
          !HBTM2  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblh", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblt, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblt", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_lcl, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_lcl", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_capCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_capCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_oliqCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_oliqCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_cteiCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_cteiCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_therm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_therm", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb1, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb1", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb2, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb2", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb3, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb3", itau_w, zx_tmp_2d)  
   
          ! Champs 3D:  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, t_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "temp", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, u_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitu", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, v_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitv", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, zphi, zx_tmp_3d)  
          CALL histwrite(nid_ins, "geop", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, play, zx_tmp_3d)  
          CALL histwrite(nid_ins, "pres", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_t_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dtvdf", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_q_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d)  
   
          if (ok_sync) then  
             call histsync(nid_ins)  
          endif  
       ENDIF  
   
     end subroutine write_histins  
   
     !****************************************************  
   
     subroutine write_histhf3d  
   
       ! From phylmd/write_histhf3d.h, version 1.2 2005/05/25 13:10:09  
   
       integer itau_w ! pas de temps ecriture  
   
       !-------------------------------------------------------  
   
       itau_w = itau_phy + itap  
   
       ! Champs 3D:  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, t_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "temp", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, qx(1, 1, ivap), zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "ovap", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, u_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitu", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, v_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitv", itau_w, zx_tmp_3d)  
   
       if (nbtr >= 3) then  
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, tr_seri(1, 1, 3), &  
               zx_tmp_3d)  
          CALL histwrite(nid_hf3d, "O3", itau_w, zx_tmp_3d)  
       end if  
1026    
1027        if (ok_sync) then      if (conv_emanuel) then
1028           call histsync(nid_hf3d)         CALL histwrite_phy("ptop", ema_pct)
1029        endif         CALL histwrite_phy("dnwd0", - mp)
1030        end if
1031    
1032        if (ok_instan) call histsync(nid_ins)
1033    
1034        IF (lafin) then
1035           call NF95_CLOSE(ncid_startphy)
1036           CALL phyredem(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
1037                rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, agesno, &
1038                zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, &
1039                rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01)
1040        end IF
1041    
1042      end subroutine write_histhf3d      firstcal = .FALSE.
1043    
1044    END SUBROUTINE physiq    END SUBROUTINE physiq
1045    

Legend:
Removed from v.62  
changed lines
  Added in v.330

  ViewVC Help
Powered by ViewVC 1.1.21