/[lmdze]/trunk/phylmd/physiq.f90
ViewVC logotype

Contents of /trunk/phylmd/physiq.f90

Parent Directory Parent Directory | Revision Log Revision Log


Revision 344 - (show annotations)
Tue Nov 12 15:18:14 2019 UTC (4 years, 6 months ago) by guez
File size: 35527 byte(s)
Replace pi / 180 by `deg_to_rad`

In procedure etat0, rename variable tsoil to ftsoil, which is the
corresponding name in the gcm program.

In `laplacien_gam`, replace call to scopy by array assignment.

Replace pi / 180 by `deg_to_rad` in `start_init_phys`.

Encapsulate diagcld1 and orolift in modules.

Avoid duplicated computation in `interfsurf_hq`.

Promote internal function fz of procedure soil to function of module
`soil_m`.  Use `new_unit` in procedure soil.

1 module physiq_m
2
3 IMPLICIT none
4
5 contains
6
7 SUBROUTINE physiq(lafin, dayvrai, time, paprs, play, pphi, pphis, u, v, t, &
8 qx, omega, d_u, d_v, d_t, d_qx)
9
10 ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28
11 ! (subversion revision 678)
12
13 ! Author: Z. X. Li (LMD/CNRS) 1993
14
15 ! This is the main procedure for the "physics" part of the program.
16
17 ! Libraries:
18 use netcdf95, only: NF95_CLOSE
19 use nr_util, only: assert
20
21 use aaam_bud_m, only: aaam_bud
22 USE abort_gcm_m, ONLY: abort_gcm
23 use ajsec_m, only: ajsec
24 use calltherm_m, only: calltherm
25 USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ok_instan
26 USE clesphys2, ONLY: conv_emanuel, nbapp_rad, ok_orodr, ok_orolf
27 USE conf_interface_m, ONLY: conf_interface
28 USE pbl_surface_m, ONLY: pbl_surface
29 use clouds_gno_m, only: clouds_gno
30 use comconst, only: dtphys
31 USE comgeomphy, ONLY: airephy
32 USE concvl_m, ONLY: concvl
33 USE conf_gcm_m, ONLY: lmt_pas
34 USE conf_phys_m, ONLY: conf_phys
35 use conflx_m, only: conflx
36 USE ctherm_m, ONLY: iflag_thermals, ctherm
37 use diagcld1_m, only: diagcld1
38 USE dimensions, ONLY: llm, nqmx
39 USE dimphy, ONLY: klon
40 USE dimsoil, ONLY: nsoilmx
41 use drag_noro_m, only: drag_noro
42 use dynetat0_chosen_m, only: day_ref, annee_ref
43 USE fcttre, ONLY: foeew
44 use fisrtilp_m, only: fisrtilp
45 USE hgardfou_m, ONLY: hgardfou
46 USE histsync_m, ONLY: histsync
47 USE histwrite_phy_m, ONLY: histwrite_phy
48 USE indicesol, ONLY: clnsurf, epsfra, nbsrf
49 USE ini_histins_m, ONLY: ini_histins, nid_ins
50 use lift_noro_m, only: lift_noro
51 use newmicro_m, only: newmicro
52 USE orbite_m, ONLY: orbite
53 USE ozonecm_m, ONLY: ozonecm
54 USE phyetat0_m, ONLY: phyetat0
55 USE phyredem_m, ONLY: phyredem
56 USE phyredem0_m, ONLY: phyredem0
57 USE phytrac_m, ONLY: phytrac
58 use radlwsw_m, only: radlwsw
59 use yoegwd, only: sugwd
60 USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt, rmo3, md
61 use time_phylmdz, only: itap, increment_itap
62 use transp_m, only: transp
63 use transp_lay_m, only: transp_lay
64 use unit_nml_m, only: unit_nml
65 USE ymds2ju_m, ONLY: ymds2ju
66 USE yoethf_m, ONLY: r2es, rvtmp2
67 use zenang_m, only: zenang
68
69 logical, intent(in):: lafin ! dernier passage
70
71 integer, intent(in):: dayvrai
72 ! current day number, based at value 1 on January 1st of annee_ref
73
74 REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour
75
76 REAL, intent(in):: paprs(:, :) ! (klon, llm + 1)
77 ! pression pour chaque inter-couche, en Pa
78
79 REAL, intent(in):: play(:, :) ! (klon, llm)
80 ! pression pour le mileu de chaque couche (en Pa)
81
82 REAL, intent(in):: pphi(:, :) ! (klon, llm)
83 ! géopotentiel de chaque couche (référence sol)
84
85 REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol
86 REAL, intent(in):: u(:, :) ! (klon, llm) zonal wind, in m / s
87 REAL, intent(in):: v(:, :) ! (klon, llm) meridional wind, in m / s
88 REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)
89
90 REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)
91 ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)
92
93 REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa / s
94 REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)
95 REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)
96 REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K / s)
97
98 REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)
99 ! tendance physique de "qx" (s-1)
100
101 ! Local:
102
103 LOGICAL:: firstcal = .true.
104
105 ! pour phystoke avec thermiques
106 REAL fm_therm(klon, llm + 1)
107 REAL entr_therm(klon, llm)
108 real, save:: q2(klon, llm + 1, nbsrf)
109
110 INTEGER, PARAMETER:: ivap = 1 ! indice de traceur pour vapeur d'eau
111 INTEGER, PARAMETER:: iliq = 2 ! indice de traceur pour eau liquide
112
113 REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)
114 LOGICAL, save:: ancien_ok
115
116 REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K / s)
117 REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg / kg / s)
118
119 real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)
120
121 REAL, save:: swdn0(klon, llm + 1), swdn(klon, llm + 1)
122 REAL, save:: swup0(klon, llm + 1), swup(klon, llm + 1)
123
124 REAL, save:: lwdn0(klon, llm + 1), lwdn(klon, llm + 1)
125 REAL, save:: lwup0(klon, llm + 1), lwup(klon, llm + 1)
126
127 ! prw: precipitable water
128 real prw(klon)
129
130 ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg / m2)
131 ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg / kg)
132 REAL flwp(klon), fiwp(klon)
133 REAL flwc(klon, llm), fiwc(klon, llm)
134
135 ! Variables propres a la physique
136
137 INTEGER, save:: radpas
138 ! Radiative transfer computations are made every "radpas" call to
139 ! "physiq".
140
141 REAL, save:: radsol(klon)
142 ! Bilan radiatif net au sol (W/m2), positif vers le bas. Must be
143 ! saved because radlwsw is not called at every time step.
144
145 REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction, in K
146
147 REAL, save:: ftsoil(klon, nsoilmx, nbsrf)
148 ! soil temperature of surface fraction
149
150 REAL fluxlat(klon, nbsrf) ! flux de chaleur latente, en W m-2
151
152 REAL, save:: fqsurf(klon, nbsrf)
153 ! humidite de l'air au contact de la surface
154
155 REAL, save:: qsol(klon) ! column-density of water in soil, in kg m-2
156
157 REAL, save:: fsnow(klon, nbsrf)
158 ! column-density of mass of snow at the surface, in kg m-2
159
160 REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface
161
162 ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :
163 REAL, save:: zmea(klon) ! orographie moyenne
164 REAL, save:: zstd(klon) ! deviation standard de l'OESM
165 REAL, save:: zsig(klon) ! pente de l'OESM
166 REAL, save:: zgam(klon) ! anisotropie de l'OESM
167 REAL, save:: zthe(klon) ! orientation de l'OESM
168 REAL, save:: zpic(klon) ! Maximum de l'OESM
169 REAL, save:: zval(klon) ! Minimum de l'OESM
170 REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM
171 REAL zulow(klon), zvlow(klon)
172 INTEGER ktest(klon)
173
174 REAL, save:: agesno(klon, nbsrf) ! age de la neige
175 REAL, save:: run_off_lic_0(klon)
176
177 ! Variables li\'ees \`a la convection d'Emanuel :
178 REAL, save:: Ma(klon, llm) ! undilute upward mass flux
179 REAL, save:: sig1(klon, llm), w01(klon, llm)
180
181 ! Variables pour la couche limite (Alain Lahellec) :
182 REAL cdragh(klon) ! drag coefficient pour T and Q
183 REAL cdragm(klon) ! drag coefficient pour vent
184
185 REAL coefh(klon, 2:llm) ! coef d'echange pour phytrac
186
187 REAL, save:: ffonte(klon, nbsrf)
188 ! flux thermique utilise pour fondre la neige
189
190 REAL fqcalving(klon, nbsrf)
191 ! flux d'eau "perdue" par la surface et n\'ecessaire pour limiter
192 ! la hauteur de neige, en kg / m2 / s
193
194 REAL zxffonte(klon)
195
196 REAL, save:: pfrac_impa(klon, llm)! Produits des coefs lessivage impaction
197 REAL, save:: pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation
198
199 REAL, save:: pfrac_1nucl(klon, llm)
200 ! Produits des coefs lessi nucl (alpha = 1)
201
202 REAL frac_impa(klon, llm) ! fraction d'a\'erosols lessiv\'es (impaction)
203 REAL frac_nucl(klon, llm) ! idem (nucleation)
204
205 REAL, save:: rain_fall(klon)
206 ! liquid water mass flux (kg / m2 / s), positive down
207
208 REAL, save:: snow_fall(klon)
209 ! solid water mass flux (kg / m2 / s), positive down
210
211 REAL rain_tiedtke(klon), snow_tiedtke(klon)
212
213 REAL evap(klon) ! flux d'\'evaporation au sol
214 real dflux_q(klon) ! derivative of the evaporation flux at the surface
215 REAL sens(klon) ! flux de chaleur sensible au sol
216 real dflux_t(klon) ! derivee du flux de chaleur sensible au sol
217 REAL, save:: dlw(klon) ! derivative of infra-red flux
218 REAL fder(klon) ! d\'erive de flux (sensible et latente)
219 REAL ve(klon) ! integr. verticale du transport meri. de l'energie
220 REAL vq(klon) ! integr. verticale du transport meri. de l'eau
221 REAL ue(klon) ! integr. verticale du transport zonal de l'energie
222 REAL uq(klon) ! integr. verticale du transport zonal de l'eau
223
224 REAL, save:: frugs(klon, nbsrf) ! longueur de rugosite
225 REAL zxrugs(klon) ! longueur de rugosite
226
227 ! Conditions aux limites
228
229 INTEGER julien
230 REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface
231 REAL, save:: albsol(klon) ! albedo du sol total, visible, moyen par maille
232 REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU
233 real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2
234
235 real, save:: clwcon(klon, llm), rnebcon(klon, llm)
236 real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)
237
238 REAL rhcl(klon, llm) ! humidit\'e relative ciel clair
239 REAL dialiq(klon, llm) ! eau liquide nuageuse
240 REAL diafra(klon, llm) ! fraction nuageuse
241 REAL cldliq(klon, llm) ! eau liquide nuageuse
242 REAL cldfra(klon, llm) ! fraction nuageuse
243 REAL cldtau(klon, llm) ! \'epaisseur optique
244 REAL cldemi(klon, llm) ! \'emissivit\'e infrarouge
245
246 REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface
247
248 REAL flux_t(klon, nbsrf)
249 ! flux de chaleur sensible (c_p T) (W / m2) (orientation positive
250 ! vers le bas) à la surface
251
252 REAL flux_u(klon, nbsrf), flux_v(klon, nbsrf)
253 ! tension du vent (flux turbulent de vent) à la surface, en Pa
254
255 ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que
256 ! les variables soient r\'emanentes.
257 REAL, save:: heat(klon, llm) ! chauffage solaire
258 REAL, save:: heat0(klon, llm) ! chauffage solaire ciel clair
259 REAL, save:: cool(klon, llm) ! refroidissement infrarouge
260 REAL, save:: cool0(klon, llm) ! refroidissement infrarouge ciel clair
261 REAL, save:: topsw(klon), toplw(klon), solsw(klon)
262
263 REAL, save:: sollw(klon) ! surface net downward longwave flux, in W m-2
264 real, save:: sollwdown(klon) ! downwelling longwave flux at surface
265 REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)
266 REAL, save:: albpla(klon)
267
268 REAL conv_q(klon, llm) ! convergence de l'humidite (kg / kg / s)
269 REAL conv_t(klon, llm) ! convergence of temperature (K / s)
270
271 REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut
272 REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree
273
274 REAL zxfluxlat(klon)
275 REAL dist, mu0(klon), fract(klon)
276 real longi
277 REAL z_avant(klon), z_apres(klon), z_factor(klon)
278 REAL zb
279 REAL zx_qs, zcor
280 real zqsat(klon, llm)
281 INTEGER i, k, iq, nsrf
282 REAL zphi(klon, llm)
283
284 ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm)
285
286 REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite
287 REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA
288 REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite
289 REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite
290 REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite
291 REAL, SAVE:: pblt(klon, nbsrf) ! T \`a la hauteur de couche limite
292 REAL, SAVE:: therm(klon, nbsrf)
293 ! Grandeurs de sorties
294 REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)
295 REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)
296 REAL s_therm(klon)
297
298 ! Variables pour la convection de K. Emanuel :
299
300 REAL upwd(klon, llm) ! saturated updraft mass flux
301 REAL dnwd(klon, llm) ! saturated downdraft mass flux
302 REAL, save:: cape(klon)
303
304 INTEGER iflagctrl(klon) ! flag fonctionnement de convect
305
306 ! Variables du changement
307
308 ! con: convection
309 ! lsc: large scale condensation
310 ! ajs: ajustement sec
311 ! eva: \'evaporation de l'eau liquide nuageuse
312 ! vdf: vertical diffusion in boundary layer
313 REAL d_t_con(klon, llm), d_q_con(klon, llm)
314 REAL, save:: d_u_con(klon, llm), d_v_con(klon, llm)
315 REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)
316 REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)
317 REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)
318 REAL rneb(klon, llm)
319
320 REAL mfu(klon, llm), mfd(klon, llm)
321 REAL pen_u(klon, llm), pen_d(klon, llm)
322 REAL pde_u(klon, llm), pde_d(klon, llm)
323 INTEGER kcbot(klon), kctop(klon), kdtop(klon)
324 REAL pmflxr(klon, llm + 1), pmflxs(klon, llm + 1)
325 REAL prfl(klon, llm + 1), psfl(klon, llm + 1)
326
327 INTEGER, save:: ibas_con(klon), itop_con(klon)
328 real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa
329
330 REAL rain_con(klon)
331 real rain_lsc(klon)
332 REAL snow_con(klon) ! neige (mm / s)
333 real snow_lsc(klon)
334
335 REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)
336 REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)
337
338 REAL d_u_oro(klon, llm), d_v_oro(klon, llm)
339 REAL d_t_oro(klon, llm)
340 REAL d_u_lif(klon, llm), d_v_lif(klon, llm)
341 REAL d_t_lif(klon, llm)
342
343 REAL, save:: ratqs(klon, llm)
344 real ratqss(klon, llm), ratqsc(klon, llm)
345 real:: ratqsbas = 0.01, ratqshaut = 0.3
346
347 ! Param\`etres li\'es au nouveau sch\'ema de nuages :
348 real:: fact_cldcon = 0.375
349 real:: facttemps = 1.e-4
350 real facteur
351
352 integer:: iflag_cldcon = 1
353 logical ptconv(klon, llm)
354
355 ! Variables pour effectuer les appels en s\'erie :
356
357 REAL t_seri(klon, llm)
358 real q_seri(klon, llm) ! mass fraction of water vapor
359 REAL ql_seri(klon, llm)
360 REAL u_seri(klon, llm), v_seri(klon, llm) ! wind, in m s-1
361 REAL tr_seri(klon, llm, nqmx - 2)
362
363 REAL zx_rh(klon, llm)
364
365 REAL zustrdr(klon), zvstrdr(klon)
366 REAL zustrli(klon), zvstrli(klon)
367 REAL aam, torsfc
368
369 REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.
370 REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.
371 REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.
372 REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.
373
374 REAL tsol(klon)
375
376 REAL d_t_ec(klon, llm)
377 ! tendance due \`a la conversion d'\'energie cin\'etique en
378 ! énergie thermique
379
380 REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf)
381 ! temperature and humidity at 2 m
382
383 REAL, save:: u10m_srf(klon, nbsrf), v10m_srf(klon, nbsrf)
384 ! composantes du vent \`a 10 m
385
386 REAL zt2m(klon), zq2m(klon) ! température, humidité 2 m moyenne sur 1 maille
387 REAL u10m(klon), v10m(klon) ! vent \`a 10 m moyenn\' sur les sous-surfaces
388
389 ! Aerosol effects:
390
391 REAL, save:: topswad(klon), solswad(klon) ! aerosol direct effect
392 LOGICAL:: ok_ade = .false. ! apply aerosol direct effect
393
394 REAL:: bl95_b0 = 2., bl95_b1 = 0.2
395 ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus
396 ! B). They link cloud droplet number concentration to aerosol mass
397 ! concentration.
398
399 real zmasse(klon, llm)
400 ! (column-density of mass of air in a cell, in kg m-2)
401
402 integer, save:: ncid_startphy
403
404 namelist /physiq_nml/ fact_cldcon, facttemps, iflag_cldcon, ratqsbas, &
405 ratqshaut, ok_ade, bl95_b0, bl95_b1
406
407 !----------------------------------------------------------------
408
409 IF (nqmx < 2) CALL abort_gcm('physiq', &
410 'eaux vapeur et liquide sont indispensables')
411
412 test_firstcal: IF (firstcal) THEN
413 ! initialiser
414 u10m_srf = 0.
415 v10m_srf = 0.
416 t2m = 0.
417 q2m = 0.
418 ffonte = 0.
419 d_u_con = 0.
420 d_v_con = 0.
421 rnebcon0 = 0.
422 clwcon0 = 0.
423 rnebcon = 0.
424 clwcon = 0.
425 pblh =0. ! Hauteur de couche limite
426 plcl =0. ! Niveau de condensation de la CLA
427 capCL =0. ! CAPE de couche limite
428 oliqCL =0. ! eau_liqu integree de couche limite
429 cteiCL =0. ! cloud top instab. crit. couche limite
430 pblt =0.
431 therm =0.
432
433 print *, "Enter namelist 'physiq_nml'."
434 read(unit=*, nml=physiq_nml)
435 write(unit_nml, nml=physiq_nml)
436
437 call ctherm
438 call conf_phys
439
440 ! Initialiser les compteurs:
441
442 frugs = 0.
443 CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
444 rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, agesno, &
445 zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, &
446 ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01, &
447 ncid_startphy)
448
449 ! ATTENTION : il faudra a terme relire q2 dans l'etat initial
450 q2 = 1e-8
451
452 radpas = lmt_pas / nbapp_rad
453 print *, "radpas = ", radpas
454
455 ! Initialisation pour le sch\'ema de convection d'Emanuel :
456 IF (conv_emanuel) THEN
457 ibas_con = 1
458 itop_con = 1
459 ENDIF
460
461 IF (ok_orodr) THEN
462 rugoro = MAX(1e-5, zstd * zsig / 2)
463 CALL SUGWD(paprs, play)
464 else
465 rugoro = 0.
466 ENDIF
467
468 ! Initialisation des sorties
469 call ini_histins
470 CALL phyredem0
471 call conf_interface
472 ENDIF test_firstcal
473
474 ! We will modify variables *_seri and we will not touch variables
475 ! u, v, t, qx:
476 t_seri = t
477 u_seri = u
478 v_seri = v
479 q_seri = qx(:, :, ivap)
480 ql_seri = qx(:, :, iliq)
481 tr_seri = qx(:, :, 3:nqmx)
482
483 tsol = sum(ftsol * pctsrf, dim = 2)
484
485 ! Diagnostic de la tendance dynamique :
486 IF (ancien_ok) THEN
487 DO k = 1, llm
488 DO i = 1, klon
489 d_t_dyn(i, k) = (t_seri(i, k) - t_ancien(i, k)) / dtphys
490 d_q_dyn(i, k) = (q_seri(i, k) - q_ancien(i, k)) / dtphys
491 ENDDO
492 ENDDO
493 ELSE
494 DO k = 1, llm
495 DO i = 1, klon
496 d_t_dyn(i, k) = 0.
497 d_q_dyn(i, k) = 0.
498 ENDDO
499 ENDDO
500 ancien_ok = .TRUE.
501 ENDIF
502
503 ! Ajouter le geopotentiel du sol:
504 DO k = 1, llm
505 DO i = 1, klon
506 zphi(i, k) = pphi(i, k) + pphis(i)
507 ENDDO
508 ENDDO
509
510 ! Check temperatures:
511 CALL hgardfou(t_seri, ftsol)
512
513 call increment_itap
514 julien = MOD(dayvrai, 360)
515 if (julien == 0) julien = 360
516
517 forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg
518
519 ! \'Evaporation de l'eau liquide nuageuse :
520 DO k = 1, llm
521 DO i = 1, klon
522 zb = MAX(0., ql_seri(i, k))
523 t_seri(i, k) = t_seri(i, k) &
524 - zb * RLVTT / RCPD / (1. + RVTMP2 * q_seri(i, k))
525 q_seri(i, k) = q_seri(i, k) + zb
526 ENDDO
527 ENDDO
528 ql_seri = 0.
529
530 frugs = MAX(frugs, 0.000015)
531 zxrugs = sum(frugs * pctsrf, dim = 2)
532
533 ! Calculs n\'ecessaires au calcul de l'albedo dans l'interface avec
534 ! la surface.
535
536 CALL orbite(REAL(julien), longi, dist)
537 CALL zenang(longi, time, dtphys * radpas, mu0, fract)
538
539 CALL pbl_surface(pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, &
540 ftsol, cdmmax, cdhmax, ftsoil, qsol, paprs, play, fsnow, fqsurf, &
541 falbe, fluxlat, rain_fall, snow_fall, frugs, agesno, rugoro, d_t_vdf, &
542 d_q_vdf, d_u_vdf, d_v_vdf, flux_t, flux_q, flux_u, flux_v, cdragh, &
543 cdragm, q2, dflux_t, dflux_q, coefh, t2m, q2m, u10m_srf, v10m_srf, &
544 pblh, capCL, oliqCL, cteiCL, pblT, therm, plcl, fqcalving, ffonte, &
545 run_off_lic_0, albsol, sollw, solsw, tsol)
546
547 ! Incr\'ementation des flux
548
549 sens = sum(flux_t * pctsrf, dim = 2)
550 evap = - sum(flux_q * pctsrf, dim = 2)
551 fder = dlw + dflux_t + dflux_q
552
553 DO k = 1, llm
554 DO i = 1, klon
555 t_seri(i, k) = t_seri(i, k) + d_t_vdf(i, k)
556 q_seri(i, k) = q_seri(i, k) + d_q_vdf(i, k)
557 u_seri(i, k) = u_seri(i, k) + d_u_vdf(i, k)
558 v_seri(i, k) = v_seri(i, k) + d_v_vdf(i, k)
559 ENDDO
560 ENDDO
561
562 call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf')
563 tsol = sum(ftsol * pctsrf, dim = 2)
564 zxfluxlat = sum(fluxlat * pctsrf, dim = 2)
565 zt2m = sum(t2m * pctsrf, dim = 2)
566 zq2m = sum(q2m * pctsrf, dim = 2)
567 u10m = sum(u10m_srf * pctsrf, dim = 2)
568 v10m = sum(v10m_srf * pctsrf, dim = 2)
569 zxffonte = sum(ffonte * pctsrf, dim = 2)
570 s_pblh = sum(pblh * pctsrf, dim = 2)
571 s_lcl = sum(plcl * pctsrf, dim = 2)
572 s_capCL = sum(capCL * pctsrf, dim = 2)
573 s_oliqCL = sum(oliqCL * pctsrf, dim = 2)
574 s_cteiCL = sum(cteiCL * pctsrf, dim = 2)
575 s_pblT = sum(pblT * pctsrf, dim = 2)
576 s_therm = sum(therm * pctsrf, dim = 2)
577
578 ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne :
579 DO nsrf = 1, nbsrf
580 DO i = 1, klon
581 IF (pctsrf(i, nsrf) < epsfra) then
582 ftsol(i, nsrf) = tsol(i)
583 t2m(i, nsrf) = zt2m(i)
584 q2m(i, nsrf) = zq2m(i)
585 u10m_srf(i, nsrf) = u10m(i)
586 v10m_srf(i, nsrf) = v10m(i)
587 ffonte(i, nsrf) = zxffonte(i)
588 pblh(i, nsrf) = s_pblh(i)
589 plcl(i, nsrf) = s_lcl(i)
590 capCL(i, nsrf) = s_capCL(i)
591 oliqCL(i, nsrf) = s_oliqCL(i)
592 cteiCL(i, nsrf) = s_cteiCL(i)
593 pblT(i, nsrf) = s_pblT(i)
594 therm(i, nsrf) = s_therm(i)
595 end IF
596 ENDDO
597 ENDDO
598
599 dlw = - 4. * RSIGMA * tsol**3
600
601 ! Appeler la convection
602
603 if (conv_emanuel) then
604 CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, &
605 d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, &
606 upwd, dnwd, Ma, cape, iflagctrl, clwcon0, pmflxr, da, phi, mp)
607 snow_con = 0.
608 mfu = upwd + dnwd
609
610 zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play)
611 zqsat = zqsat / (1. - retv * zqsat)
612
613 ! Properties of convective clouds
614 clwcon0 = fact_cldcon * clwcon0
615 call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &
616 rnebcon0)
617
618 forall (i = 1:klon) ema_pct(i) = paprs(i, itop_con(i) + 1)
619 mfd = 0.
620 pen_u = 0.
621 pen_d = 0.
622 pde_d = 0.
623 pde_u = 0.
624 else
625 conv_q = d_q_dyn + d_q_vdf / dtphys
626 conv_t = d_t_dyn + d_t_vdf / dtphys
627 z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)
628 CALL conflx(paprs, play, t_seri(:, llm:1:- 1), q_seri(:, llm:1:- 1), &
629 conv_t, conv_q, - evap, omega, d_t_con, d_q_con, rain_con, &
630 snow_con, mfu(:, llm:1:- 1), mfd(:, llm:1:- 1), pen_u, pde_u, &
631 pen_d, pde_d, kcbot, kctop, kdtop, pmflxr, pmflxs)
632 WHERE (rain_con < 0.) rain_con = 0.
633 WHERE (snow_con < 0.) snow_con = 0.
634 ibas_con = llm + 1 - kcbot
635 itop_con = llm + 1 - kctop
636 END if
637
638 DO k = 1, llm
639 DO i = 1, klon
640 t_seri(i, k) = t_seri(i, k) + d_t_con(i, k)
641 q_seri(i, k) = q_seri(i, k) + d_q_con(i, k)
642 u_seri(i, k) = u_seri(i, k) + d_u_con(i, k)
643 v_seri(i, k) = v_seri(i, k) + d_v_con(i, k)
644 ENDDO
645 ENDDO
646
647 IF (.not. conv_emanuel) THEN
648 z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)
649 z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres
650 DO k = 1, llm
651 DO i = 1, klon
652 IF (z_factor(i) /= 1.) THEN
653 q_seri(i, k) = q_seri(i, k) * z_factor(i)
654 ENDIF
655 ENDDO
656 ENDDO
657 ENDIF
658
659 ! Convection s\`eche (thermiques ou ajustement)
660
661 d_t_ajs = 0.
662 d_u_ajs = 0.
663 d_v_ajs = 0.
664 d_q_ajs = 0.
665 fm_therm = 0.
666 entr_therm = 0.
667
668 if (iflag_thermals) then
669 call calltherm(play, paprs, pphi, u_seri, v_seri, t_seri, q_seri, &
670 d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)
671 else
672 CALL ajsec(paprs, play, t_seri, q_seri, d_t_ajs, d_q_ajs)
673 t_seri = t_seri + d_t_ajs
674 q_seri = q_seri + d_q_ajs
675 endif
676
677 ! Caclul des ratqs
678
679 if (iflag_cldcon == 1) then
680 ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q
681 ! on \'ecrase le tableau ratqsc calcul\'e par clouds_gno
682 do k = 1, llm
683 do i = 1, klon
684 if(ptconv(i, k)) then
685 ratqsc(i, k) = ratqsbas + fact_cldcon &
686 * (q_seri(i, 1) - q_seri(i, k)) / q_seri(i, k)
687 else
688 ratqsc(i, k) = 0.
689 endif
690 enddo
691 enddo
692 endif
693
694 ! ratqs stables
695 do k = 1, llm
696 do i = 1, klon
697 ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &
698 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)
699 enddo
700 enddo
701
702 ! ratqs final
703 if (iflag_cldcon == 1 .or. iflag_cldcon == 2) then
704 ! les ratqs sont une conbinaison de ratqss et ratqsc
705 ! ratqs final
706 ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de
707 ! relaxation des ratqs
708 ratqs = max(ratqs * exp(- dtphys * facttemps), ratqss)
709 ratqs = max(ratqs, ratqsc)
710 else
711 ! on ne prend que le ratqs stable pour fisrtilp
712 ratqs = ratqss
713 endif
714
715 CALL fisrtilp(paprs, play, t_seri, q_seri, ptconv, ratqs, d_t_lsc, &
716 d_q_lsc, d_ql_lsc, rneb, cldliq, rain_lsc, snow_lsc, pfrac_impa, &
717 pfrac_nucl, pfrac_1nucl, frac_impa, frac_nucl, prfl, psfl, rhcl)
718
719 WHERE (rain_lsc < 0) rain_lsc = 0.
720 WHERE (snow_lsc < 0) snow_lsc = 0.
721 DO k = 1, llm
722 DO i = 1, klon
723 t_seri(i, k) = t_seri(i, k) + d_t_lsc(i, k)
724 q_seri(i, k) = q_seri(i, k) + d_q_lsc(i, k)
725 ql_seri(i, k) = ql_seri(i, k) + d_ql_lsc(i, k)
726 cldfra(i, k) = rneb(i, k)
727 ENDDO
728 ENDDO
729
730 ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
731
732 ! 1. NUAGES CONVECTIFS
733
734 IF (iflag_cldcon <= - 1) THEN
735 ! seulement pour Tiedtke
736 snow_tiedtke = 0.
737 if (iflag_cldcon == - 1) then
738 rain_tiedtke = rain_con
739 else
740 rain_tiedtke = 0.
741 do k = 1, llm
742 do i = 1, klon
743 if (d_q_con(i, k) < 0.) then
744 rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k) / dtphys &
745 * zmasse(i, k)
746 endif
747 enddo
748 enddo
749 endif
750
751 ! Nuages diagnostiques pour Tiedtke
752 CALL diagcld1(paprs, play, rain_tiedtke, snow_tiedtke, ibas_con, &
753 itop_con, diafra, dialiq)
754 DO k = 1, llm
755 DO i = 1, klon
756 IF (diafra(i, k) > cldfra(i, k)) THEN
757 cldliq(i, k) = dialiq(i, k)
758 cldfra(i, k) = diafra(i, k)
759 ENDIF
760 ENDDO
761 ENDDO
762 ELSE IF (iflag_cldcon == 3) THEN
763 ! On prend pour les nuages convectifs le maximum du calcul de
764 ! la convection et du calcul du pas de temps pr\'ec\'edent diminu\'e
765 ! d'un facteur facttemps.
766 facteur = dtphys * facttemps
767 do k = 1, llm
768 do i = 1, klon
769 rnebcon(i, k) = rnebcon(i, k) * facteur
770 if (rnebcon0(i, k) * clwcon0(i, k) &
771 > rnebcon(i, k) * clwcon(i, k)) then
772 rnebcon(i, k) = rnebcon0(i, k)
773 clwcon(i, k) = clwcon0(i, k)
774 endif
775 enddo
776 enddo
777
778 ! On prend la somme des fractions nuageuses et des contenus en eau
779 cldfra = min(max(cldfra, rnebcon), 1.)
780 cldliq = cldliq + rnebcon * clwcon
781 ENDIF
782
783 ! Precipitation totale
784 DO i = 1, klon
785 rain_fall(i) = rain_con(i) + rain_lsc(i)
786 snow_fall(i) = snow_con(i) + snow_lsc(i)
787 ENDDO
788
789 ! Humidit\'e relative pour diagnostic :
790 DO k = 1, llm
791 DO i = 1, klon
792 zx_qs = r2es * FOEEW(t_seri(i, k), rtt >= t_seri(i, k)) / play(i, k)
793 zx_qs = MIN(0.5, zx_qs)
794 zcor = 1. / (1. - retv * zx_qs)
795 zx_qs = zx_qs * zcor
796 zx_rh(i, k) = q_seri(i, k) / zx_qs
797 zqsat(i, k) = zx_qs
798 ENDDO
799 ENDDO
800
801 ! Param\`etres optiques des nuages et quelques param\`etres pour
802 ! diagnostics :
803 CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &
804 cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc)
805
806 IF (MOD(itap - 1, radpas) == 0) THEN
807 wo = ozonecm(REAL(julien), paprs)
808 albsol = sum(falbe * pctsrf, dim = 2)
809 CALL radlwsw(dist, mu0, fract, paprs, play, tsol, albsol, t_seri, &
810 q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, &
811 radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, &
812 toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, &
813 swup0, swup, ok_ade, topswad, solswad)
814 ENDIF
815
816 ! Ajouter la tendance des rayonnements (tous les pas)
817 DO k = 1, llm
818 DO i = 1, klon
819 t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys &
820 / 86400.
821 ENDDO
822 ENDDO
823
824 ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille :
825
826 IF (ok_orodr) THEN
827 ! S\'election des points pour lesquels le sch\'ema est actif :
828 DO i = 1, klon
829 ktest(i) = 0
830 IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN
831 ktest(i) = 1
832 ENDIF
833 ENDDO
834
835 CALL drag_noro(paprs, play, zmea, zstd, zsig, zgam, zthe, zpic, zval, &
836 ktest, t_seri, u_seri, v_seri, zulow, zvlow, zustrdr, zvstrdr, &
837 d_t_oro, d_u_oro, d_v_oro)
838
839 ! ajout des tendances
840 DO k = 1, llm
841 DO i = 1, klon
842 t_seri(i, k) = t_seri(i, k) + d_t_oro(i, k)
843 u_seri(i, k) = u_seri(i, k) + d_u_oro(i, k)
844 v_seri(i, k) = v_seri(i, k) + d_v_oro(i, k)
845 ENDDO
846 ENDDO
847 ENDIF
848
849 IF (ok_orolf) THEN
850 ! S\'election des points pour lesquels le sch\'ema est actif :
851 DO i = 1, klon
852 ktest(i) = 0
853 IF (zpic(i) - zmea(i) > 100.) THEN
854 ktest(i) = 1
855 ENDIF
856 ENDDO
857
858 CALL lift_noro(paprs, play, zmea, zstd, zpic, ktest, t_seri, u_seri, &
859 v_seri, zulow, zvlow, zustrli, zvstrli, d_t_lif, d_u_lif, d_v_lif)
860
861 ! Ajout des tendances :
862 DO k = 1, llm
863 DO i = 1, klon
864 t_seri(i, k) = t_seri(i, k) + d_t_lif(i, k)
865 u_seri(i, k) = u_seri(i, k) + d_u_lif(i, k)
866 v_seri(i, k) = v_seri(i, k) + d_v_lif(i, k)
867 ENDDO
868 ENDDO
869 ENDIF
870
871 CALL aaam_bud(rg, romega, pphis, zustrdr, zustrli, &
872 sum((u_seri - u) / dtphys * zmasse, dim = 2), zvstrdr, &
873 zvstrli, sum((v_seri - v) / dtphys * zmasse, dim = 2), paprs, u, v, &
874 aam, torsfc)
875
876 ! Calcul des tendances traceurs
877 call phytrac(julien, time, firstcal, lafin, t, paprs, play, mfu, mfd, &
878 pde_u, pen_d, coefh, cdragh, fm_therm, entr_therm, u(:, 1), v(:, 1), &
879 ftsol, pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, dnwd, &
880 tr_seri, zmasse, ncid_startphy)
881
882 ! Calculer le transport de l'eau et de l'energie (diagnostique)
883 CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq)
884
885 ! diag. bilKP
886
887 CALL transp_lay(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve_lay, &
888 vq_lay, ue_lay, uq_lay)
889
890 ! Accumuler les variables a stocker dans les fichiers histoire:
891
892 ! conversion Ec en énergie thermique
893 DO k = 1, llm
894 DO i = 1, klon
895 d_t_ec(i, k) = 0.5 / (RCPD * (1. + RVTMP2 * q_seri(i, k))) &
896 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)
897 t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)
898 d_t_ec(i, k) = d_t_ec(i, k) / dtphys
899 END DO
900 END DO
901
902 ! SORTIES
903
904 ! prw = eau precipitable
905 DO i = 1, klon
906 prw(i) = 0.
907 DO k = 1, llm
908 prw(i) = prw(i) + q_seri(i, k) * zmasse(i, k)
909 ENDDO
910 ENDDO
911
912 ! Convertir les incrementations en tendances
913
914 DO k = 1, llm
915 DO i = 1, klon
916 d_u(i, k) = (u_seri(i, k) - u(i, k)) / dtphys
917 d_v(i, k) = (v_seri(i, k) - v(i, k)) / dtphys
918 d_t(i, k) = (t_seri(i, k) - t(i, k)) / dtphys
919 d_qx(i, k, ivap) = (q_seri(i, k) - qx(i, k, ivap)) / dtphys
920 d_qx(i, k, iliq) = (ql_seri(i, k) - qx(i, k, iliq)) / dtphys
921 ENDDO
922 ENDDO
923
924 DO iq = 3, nqmx
925 DO k = 1, llm
926 DO i = 1, klon
927 d_qx(i, k, iq) = (tr_seri(i, k, iq - 2) - qx(i, k, iq)) / dtphys
928 ENDDO
929 ENDDO
930 ENDDO
931
932 ! Sauvegarder les valeurs de t et q a la fin de la physique:
933 DO k = 1, llm
934 DO i = 1, klon
935 t_ancien(i, k) = t_seri(i, k)
936 q_ancien(i, k) = q_seri(i, k)
937 ENDDO
938 ENDDO
939
940 CALL histwrite_phy("phis", pphis)
941 CALL histwrite_phy("aire", airephy)
942 CALL histwrite_phy("psol", paprs(:, 1))
943 CALL histwrite_phy("precip", rain_fall + snow_fall)
944 CALL histwrite_phy("plul", rain_lsc + snow_lsc)
945 CALL histwrite_phy("pluc", rain_con + snow_con)
946 CALL histwrite_phy("tsol", tsol)
947 CALL histwrite_phy("t2m", zt2m)
948 CALL histwrite_phy("q2m", zq2m)
949 CALL histwrite_phy("u10m", u10m)
950 CALL histwrite_phy("v10m", v10m)
951 CALL histwrite_phy("snow", snow_fall)
952 CALL histwrite_phy("cdrm", cdragm)
953 CALL histwrite_phy("cdrh", cdragh)
954 CALL histwrite_phy("topl", toplw)
955 CALL histwrite_phy("evap", evap)
956 CALL histwrite_phy("sols", solsw)
957 CALL histwrite_phy("rls", sollw)
958 CALL histwrite_phy("solldown", sollwdown)
959 CALL histwrite_phy("bils", radsol + sens + zxfluxlat)
960 CALL histwrite_phy("sens", sens)
961 CALL histwrite_phy("fder", fder)
962 CALL histwrite_phy("zxfqcalving", sum(fqcalving * pctsrf, dim = 2))
963 CALL histwrite_phy("albs", albsol)
964 CALL histwrite_phy("tro3", wo * dobson_u * 1e3 / zmasse / rmo3 * md)
965 CALL histwrite_phy("rugs", zxrugs)
966 CALL histwrite_phy("s_pblh", s_pblh)
967 CALL histwrite_phy("s_pblt", s_pblt)
968 CALL histwrite_phy("s_lcl", s_lcl)
969 CALL histwrite_phy("s_capCL", s_capCL)
970 CALL histwrite_phy("s_oliqCL", s_oliqCL)
971 CALL histwrite_phy("s_cteiCL", s_cteiCL)
972 CALL histwrite_phy("s_therm", s_therm)
973 CALL histwrite_phy("temp", t_seri)
974 CALL histwrite_phy("vitu", u_seri)
975 CALL histwrite_phy("vitv", v_seri)
976 CALL histwrite_phy("geop", zphi)
977 CALL histwrite_phy("pres", play)
978 CALL histwrite_phy("dtvdf", d_t_vdf)
979 CALL histwrite_phy("dqvdf", d_q_vdf)
980 CALL histwrite_phy("rhum", zx_rh)
981 CALL histwrite_phy("d_t_ec", d_t_ec)
982 CALL histwrite_phy("dtsw0", heat0 / 86400.)
983 CALL histwrite_phy("dtlw0", - cool0 / 86400.)
984 call histwrite_phy("pmflxr", pmflxr(:, :llm))
985 CALL histwrite_phy("msnow", sum(fsnow * pctsrf, dim = 2))
986 call histwrite_phy("qsurf", sum(fqsurf * pctsrf, dim = 2))
987 call histwrite_phy("flat", zxfluxlat)
988 call histwrite_phy("rld", lwdn)
989 call histwrite_phy("rldcs", lwdn0)
990
991 DO nsrf = 1, nbsrf
992 CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf))
993 CALL histwrite_phy("sens_"//clnsurf(nsrf), flux_t(:, nsrf))
994 CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf))
995 CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf))
996 CALL histwrite_phy("taux_"//clnsurf(nsrf), flux_u(:, nsrf))
997 CALL histwrite_phy("tauy_"//clnsurf(nsrf), flux_v(:, nsrf))
998 CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf))
999 CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf))
1000 CALL histwrite_phy("u10m_"//clnsurf(nsrf), u10m_srf(:, nsrf))
1001 CALL histwrite_phy("v10m_"//clnsurf(nsrf), v10m_srf(:, nsrf))
1002 END DO
1003
1004 if (conv_emanuel) then
1005 CALL histwrite_phy("ptop", ema_pct)
1006 CALL histwrite_phy("dnwd0", - mp)
1007 end if
1008
1009 if (ok_instan) call histsync(nid_ins)
1010
1011 IF (lafin) then
1012 call NF95_CLOSE(ncid_startphy)
1013 CALL phyredem(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
1014 rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, agesno, &
1015 zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, &
1016 rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01)
1017 end IF
1018
1019 firstcal = .FALSE.
1020
1021 END SUBROUTINE physiq
1022
1023 end module physiq_m

  ViewVC Help
Powered by ViewVC 1.1.21