/[lmdze]/trunk/phylmd/physiq.f
ViewVC logotype

Diff of /trunk/phylmd/physiq.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/physiq.f90 revision 51 by guez, Tue Sep 20 09:14:34 2011 UTC trunk/phylmd/physiq.f revision 101 by guez, Mon Jul 7 17:45:21 2014 UTC
# Line 5  module physiq_m Line 5  module physiq_m
5  contains  contains
6    
7    SUBROUTINE physiq(lafin, rdayvrai, time, dtphys, paprs, play, pphi, pphis, &    SUBROUTINE physiq(lafin, rdayvrai, time, dtphys, paprs, play, pphi, pphis, &
8         u, v, t, qx, omega, d_u, d_v, d_t, d_qx, d_ps, dudyn, PVteta)         u, v, t, qx, omega, d_u, d_v, d_t, d_qx)
9    
10        ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28
11        ! (subversion revision 678)
12    
     ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28 (SVN revision 678)  
13      ! Author: Z.X. Li (LMD/CNRS) 1993      ! Author: Z.X. Li (LMD/CNRS) 1993
14    
15      ! This is the main procedure for the "physics" part of the program.      ! This is the main procedure for the "physics" part of the program.
16    
17        use aaam_bud_m, only: aaam_bud
18      USE abort_gcm_m, ONLY: abort_gcm      USE abort_gcm_m, ONLY: abort_gcm
19      USE calendar, ONLY: ymds2ju      use aeropt_m, only: aeropt
20        use ajsec_m, only: ajsec
21        use calltherm_m, only: calltherm
22      USE clesphys, ONLY: cdhmax, cdmmax, co2_ppm, ecrit_hf, ecrit_ins, &      USE clesphys, ONLY: cdhmax, cdmmax, co2_ppm, ecrit_hf, ecrit_ins, &
23           ecrit_mth, ecrit_reg, ecrit_tra, ksta, ksta_ter, ok_kzmin           ecrit_mth, ecrit_reg, ecrit_tra, ksta, ksta_ter, ok_kzmin
24      USE clesphys2, ONLY: cycle_diurne, iflag_con, nbapp_rad, new_oliq, &      USE clesphys2, ONLY: cycle_diurne, iflag_con, nbapp_rad, new_oliq, &
25           ok_orodr, ok_orolf, soil_model           ok_orodr, ok_orolf
26      USE clmain_m, ONLY: clmain      USE clmain_m, ONLY: clmain
27        use clouds_gno_m, only: clouds_gno
28      USE comgeomphy, ONLY: airephy, cuphy, cvphy      USE comgeomphy, ONLY: airephy, cuphy, cvphy
29      USE concvl_m, ONLY: concvl      USE concvl_m, ONLY: concvl
30      USE conf_gcm_m, ONLY: offline, raz_date      USE conf_gcm_m, ONLY: offline, raz_date
31      USE conf_phys_m, ONLY: conf_phys      USE conf_phys_m, ONLY: conf_phys
32        use conflx_m, only: conflx
33      USE ctherm, ONLY: iflag_thermals, nsplit_thermals      USE ctherm, ONLY: iflag_thermals, nsplit_thermals
34        use diagcld2_m, only: diagcld2
35      use diagetpq_m, only: diagetpq      use diagetpq_m, only: diagetpq
36      USE dimens_m, ONLY: iim, jjm, llm, nqmx      use diagphy_m, only: diagphy
37      USE dimphy, ONLY: klon, nbtr      USE dimens_m, ONLY: llm, nqmx
38        USE dimphy, ONLY: klon
39      USE dimsoil, ONLY: nsoilmx      USE dimsoil, ONLY: nsoilmx
40        use drag_noro_m, only: drag_noro
41      USE fcttre, ONLY: foeew, qsatl, qsats, thermcep      USE fcttre, ONLY: foeew, qsatl, qsats, thermcep
42        use fisrtilp_m, only: fisrtilp
43      USE hgardfou_m, ONLY: hgardfou      USE hgardfou_m, ONLY: hgardfou
     USE histcom, ONLY: histsync  
     USE histwrite_m, ONLY: histwrite  
44      USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &      USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &
45           nbsrf           nbsrf
     USE ini_histhf_m, ONLY: ini_histhf  
     USE ini_histday_m, ONLY: ini_histday  
46      USE ini_histins_m, ONLY: ini_histins      USE ini_histins_m, ONLY: ini_histins
47      USE oasis_m, ONLY: ok_oasis      use newmicro_m, only: newmicro
48      USE orbite_m, ONLY: orbite, zenang      USE orbite_m, ONLY: orbite
49      USE ozonecm_m, ONLY: ozonecm      USE ozonecm_m, ONLY: ozonecm
50      USE phyetat0_m, ONLY: phyetat0, rlat, rlon      USE phyetat0_m, ONLY: phyetat0, rlat, rlon
51      USE phyredem_m, ONLY: phyredem      USE phyredem_m, ONLY: phyredem
52      USE phystokenc_m, ONLY: phystokenc      USE phystokenc_m, ONLY: phystokenc
53      USE phytrac_m, ONLY: phytrac      USE phytrac_m, ONLY: phytrac
54      USE qcheck_m, ONLY: qcheck      USE qcheck_m, ONLY: qcheck
55        use radlwsw_m, only: radlwsw
56        use readsulfate_m, only: readsulfate
57        use sugwd_m, only: sugwd
58      USE suphec_m, ONLY: ra, rcpd, retv, rg, rlvtt, romega, rsigma, rtt      USE suphec_m, ONLY: ra, rcpd, retv, rg, rlvtt, romega, rsigma, rtt
59      USE temps, ONLY: annee_ref, day_ref, itau_phy      USE temps, ONLY: annee_ref, day_ref, itau_phy
60        use unit_nml_m, only: unit_nml
61        USE ymds2ju_m, ONLY: ymds2ju
62      USE yoethf_m, ONLY: r2es, rvtmp2      USE yoethf_m, ONLY: r2es, rvtmp2
63        use zenang_m, only: zenang
64    
65      ! Arguments:      logical, intent(in):: lafin ! dernier passage
66    
67      REAL, intent(in):: rdayvrai      REAL, intent(in):: rdayvrai
68      ! (elapsed time since January 1st 0h of the starting year, in days)      ! (elapsed time since January 1st 0h of the starting year, in days)
69    
70      REAL, intent(in):: time ! heure de la journée en fraction de jour      REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour
71      REAL, intent(in):: dtphys ! pas d'integration pour la physique (seconde)      REAL, intent(in):: dtphys ! pas d'integration pour la physique (seconde)
     logical, intent(in):: lafin ! dernier passage  
72    
73      REAL, intent(in):: paprs(klon, llm + 1)      REAL, intent(in):: paprs(:, :) ! (klon, llm + 1)
74      ! (pression pour chaque inter-couche, en Pa)      ! pression pour chaque inter-couche, en Pa
75    
76      REAL, intent(in):: play(klon, llm)      REAL, intent(in):: play(:, :) ! (klon, llm)
77      ! (input pression pour le mileu de chaque couche (en Pa))      ! pression pour le mileu de chaque couche (en Pa)
78    
79      REAL, intent(in):: pphi(klon, llm)      REAL, intent(in):: pphi(:, :) ! (klon, llm)
80      ! (input geopotentiel de chaque couche (g z) (reference sol))      ! géopotentiel de chaque couche (référence sol)
81    
82      REAL, intent(in):: pphis(klon) ! input geopotentiel du sol      REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol
83    
84      REAL, intent(in):: u(klon, llm)      REAL, intent(in):: u(:, :) ! (klon, llm)
85      ! vitesse dans la direction X (de O a E) en m/s      ! vitesse dans la direction X (de O a E) en m/s
86    
87      REAL, intent(in):: v(klon, llm) ! vitesse Y (de S a N) en m/s      REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m/s
88      REAL, intent(in):: t(klon, llm) ! input temperature (K)      REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)
89    
90      REAL, intent(in):: qx(klon, llm, nqmx)      REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)
91      ! (humidité spécifique et fractions massiques des autres traceurs)      ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)
92    
93      REAL omega(klon, llm) ! input vitesse verticale en Pa/s      REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa/s
94      REAL, intent(out):: d_u(klon, llm) ! tendance physique de "u" (m/s/s)      REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)
95      REAL, intent(out):: d_v(klon, llm) ! tendance physique de "v" (m/s/s)      REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)
96      REAL, intent(out):: d_t(klon, llm) ! tendance physique de "t" (K/s)      REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K/s)
     REAL d_qx(klon, llm, nqmx) ! output tendance physique de "qx" (kg/kg/s)  
     REAL d_ps(klon) ! output tendance physique de la pression au sol  
97    
98      LOGICAL:: firstcal = .true.      REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)
99        ! tendance physique de "qx" (s-1)
100    
101      INTEGER nbteta      ! Local:
     PARAMETER(nbteta = 3)  
102    
103      REAL PVteta(klon, nbteta)      LOGICAL:: firstcal = .true.
     ! (output vorticite potentielle a des thetas constantes)  
104    
     LOGICAL ok_cvl ! pour activer le nouveau driver pour convection KE  
     PARAMETER (ok_cvl = .TRUE.)  
105      LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface      LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface
106      PARAMETER (ok_gust = .FALSE.)      PARAMETER (ok_gust = .FALSE.)
107    
108      LOGICAL check ! Verifier la conservation du modele en eau      LOGICAL, PARAMETER:: check = .FALSE.
109      PARAMETER (check = .FALSE.)      ! Verifier la conservation du modele en eau
110    
111      LOGICAL, PARAMETER:: ok_stratus = .FALSE.      LOGICAL, PARAMETER:: ok_stratus = .FALSE.
112      ! Ajouter artificiellement les stratus      ! Ajouter artificiellement les stratus
113    
     ! Parametres lies au coupleur OASIS:  
     INTEGER, SAVE:: npas, nexca  
     logical rnpb  
     parameter(rnpb = .true.)  
   
     character(len = 6), save:: ocean  
     ! (type de modèle océan à utiliser: "force" ou "slab" mais pas "couple")  
   
     logical ok_ocean  
     SAVE ok_ocean  
   
114      ! "slab" ocean      ! "slab" ocean
115      REAL, save:: tslab(klon) ! temperature of ocean slab      REAL, save:: tslab(klon) ! temperature of ocean slab
116      REAL, save:: seaice(klon) ! glace de mer (kg/m2)      REAL, save:: seaice(klon) ! glace de mer (kg/m2)
117      REAL fluxo(klon) ! flux turbulents ocean-glace de mer      REAL fluxo(klon) ! flux turbulents ocean-glace de mer
118      REAL fluxg(klon) ! flux turbulents ocean-atmosphere      REAL fluxg(klon) ! flux turbulents ocean-atmosphere
119    
120      ! Modele thermique du sol, a activer pour le cycle diurne:      logical:: ok_journe = .false., ok_mensuel = .true., ok_instan = .false.
121      logical, save:: ok_veget      ! sorties journalieres, mensuelles et instantanees dans les
122      LOGICAL, save:: ok_journe ! sortir le fichier journalier      ! fichiers histday, histmth et histins
   
     LOGICAL ok_mensuel ! sortir le fichier mensuel  
   
     LOGICAL ok_instan ! sortir le fichier instantane  
     save ok_instan  
123    
124      LOGICAL ok_region ! sortir le fichier regional      LOGICAL ok_region ! sortir le fichier regional
125      PARAMETER (ok_region = .FALSE.)      PARAMETER (ok_region = .FALSE.)
# Line 138  contains Line 129  contains
129      REAL entr_therm(klon, llm)      REAL entr_therm(klon, llm)
130      real, save:: q2(klon, llm + 1, nbsrf)      real, save:: q2(klon, llm + 1, nbsrf)
131    
132      INTEGER ivap ! indice de traceurs pour vapeur d'eau      INTEGER, PARAMETER:: ivap = 1 ! indice de traceur pour vapeur d'eau
133      PARAMETER (ivap = 1)      INTEGER, PARAMETER:: iliq = 2 ! indice de traceur pour eau liquide
     INTEGER iliq ! indice de traceurs pour eau liquide  
     PARAMETER (iliq = 2)  
134    
135      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)
136      LOGICAL, save:: ancien_ok      LOGICAL, save:: ancien_ok
# Line 151  contains Line 140  contains
140    
141      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)
142    
143      !IM Amip2 PV a theta constante      REAL swdn0(klon, llm + 1), swdn(klon, llm + 1)
144        REAL swup0(klon, llm + 1), swup(klon, llm + 1)
     CHARACTER(LEN = 3) ctetaSTD(nbteta)  
     DATA ctetaSTD/'350', '380', '405'/  
     REAL rtetaSTD(nbteta)  
     DATA rtetaSTD/350., 380., 405./  
   
     !MI Amip2 PV a theta constante  
   
     INTEGER klevp1  
     PARAMETER(klevp1 = llm + 1)  
   
     REAL swdn0(klon, klevp1), swdn(klon, klevp1)  
     REAL swup0(klon, klevp1), swup(klon, klevp1)  
145      SAVE swdn0, swdn, swup0, swup      SAVE swdn0, swdn, swup0, swup
146    
147      REAL lwdn0(klon, klevp1), lwdn(klon, klevp1)      REAL lwdn0(klon, llm + 1), lwdn(klon, llm + 1)
148      REAL lwup0(klon, klevp1), lwup(klon, klevp1)      REAL lwup0(klon, llm + 1), lwup(klon, llm + 1)
149      SAVE lwdn0, lwdn, lwup0, lwup      SAVE lwdn0, lwdn, lwup0, lwup
150    
151      !IM Amip2      ! Amip2
152      ! variables a une pression donnee      ! variables a une pression donnee
153    
154      integer nlevSTD      integer nlevSTD
# Line 199  contains Line 176  contains
176      PARAMETER(kmaxm1 = kmax-1, lmaxm1 = lmax-1)      PARAMETER(kmaxm1 = kmax-1, lmaxm1 = lmax-1)
177    
178      REAL zx_tau(kmaxm1), zx_pc(lmaxm1)      REAL zx_tau(kmaxm1), zx_pc(lmaxm1)
179      DATA zx_tau/0.0, 0.3, 1.3, 3.6, 9.4, 23., 60./      DATA zx_tau/0., 0.3, 1.3, 3.6, 9.4, 23., 60./
180      DATA zx_pc/50., 180., 310., 440., 560., 680., 800./      DATA zx_pc/50., 180., 310., 440., 560., 680., 800./
181    
182      ! cldtopres pression au sommet des nuages      ! cldtopres pression au sommet des nuages
# Line 240  contains Line 217  contains
217           'pc= 440-560hPa, tau> 60.', 'pc= 560-680hPa, tau> 60.', &           'pc= 440-560hPa, tau> 60.', 'pc= 560-680hPa, tau> 60.', &
218           'pc= 680-800hPa, tau> 60.'/           'pc= 680-800hPa, tau> 60.'/
219    
220      !IM ISCCP simulator v3.4      ! ISCCP simulator v3.4
   
     integer nid_hf, nid_hf3d  
     save nid_hf, nid_hf3d  
221    
222      ! Variables propres a la physique      ! Variables propres a la physique
223    
# Line 261  contains Line 235  contains
235      REAL, save:: ftsoil(klon, nsoilmx, nbsrf)      REAL, save:: ftsoil(klon, nsoilmx, nbsrf)
236      ! soil temperature of surface fraction      ! soil temperature of surface fraction
237    
238      REAL fevap(klon, nbsrf)      REAL, save:: fevap(klon, nbsrf) ! evaporation
     SAVE fevap ! evaporation  
239      REAL fluxlat(klon, nbsrf)      REAL fluxlat(klon, nbsrf)
240      SAVE fluxlat      SAVE fluxlat
241    
242      REAL fqsurf(klon, nbsrf)      REAL, save:: fqsurf(klon, nbsrf)
243      SAVE fqsurf ! humidite de l'air au contact de la surface      ! humidite de l'air au contact de la surface
244    
245      REAL, save:: qsol(klon) ! hauteur d'eau dans le sol      REAL, save:: qsol(klon)
246        ! column-density of water in soil, in kg m-2
247    
248      REAL fsnow(klon, nbsrf)      REAL, save:: fsnow(klon, nbsrf) ! epaisseur neigeuse
249      SAVE fsnow ! epaisseur neigeuse      REAL, save:: falbe(klon, nbsrf) ! albedo par type de surface
250        REAL, save:: falblw(klon, nbsrf) ! albedo par type de surface
251    
252      REAL falbe(klon, nbsrf)      ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :
     SAVE falbe ! albedo par type de surface  
     REAL falblw(klon, nbsrf)  
     SAVE falblw ! albedo par type de surface  
   
     ! Paramètres de l'orographie à l'échelle sous-maille (OESM) :  
253      REAL, save:: zmea(klon) ! orographie moyenne      REAL, save:: zmea(klon) ! orographie moyenne
254      REAL, save:: zstd(klon) ! deviation standard de l'OESM      REAL, save:: zstd(klon) ! deviation standard de l'OESM
255      REAL, save:: zsig(klon) ! pente de l'OESM      REAL, save:: zsig(klon) ! pente de l'OESM
# Line 301  contains Line 271  contains
271      !KE43      !KE43
272      ! Variables liees a la convection de K. Emanuel (sb):      ! Variables liees a la convection de K. Emanuel (sb):
273    
     REAL bas, top ! cloud base and top levels  
     SAVE bas  
     SAVE top  
   
274      REAL Ma(klon, llm) ! undilute upward mass flux      REAL Ma(klon, llm) ! undilute upward mass flux
275      SAVE Ma      SAVE Ma
276      REAL qcondc(klon, llm) ! in-cld water content from convect      REAL qcondc(klon, llm) ! in-cld water content from convect
277      SAVE qcondc      SAVE qcondc
278      REAL ema_work1(klon, llm), ema_work2(klon, llm)      REAL, save:: sig1(klon, llm), w01(klon, llm)
279      SAVE ema_work1, ema_work2      REAL, save:: wd(klon)
   
     REAL wd(klon) ! sb  
     SAVE wd ! sb  
280    
281      ! Variables locales pour la couche limite (al1):      ! Variables locales pour la couche limite (al1):
282    
# Line 322  contains Line 285  contains
285      REAL cdragh(klon) ! drag coefficient pour T and Q      REAL cdragh(klon) ! drag coefficient pour T and Q
286      REAL cdragm(klon) ! drag coefficient pour vent      REAL cdragm(klon) ! drag coefficient pour vent
287    
288      !AA Pour phytrac      ! Pour phytrac :
289      REAL ycoefh(klon, llm) ! coef d'echange pour phytrac      REAL ycoefh(klon, llm) ! coef d'echange pour phytrac
290      REAL yu1(klon) ! vents dans la premiere couche U      REAL yu1(klon) ! vents dans la premiere couche U
291      REAL yv1(klon) ! vents dans la premiere couche V      REAL yv1(klon) ! vents dans la premiere couche V
# Line 341  contains Line 304  contains
304      REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction)      REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction)
305      REAL frac_nucl(klon, llm) ! idem (nucleation)      REAL frac_nucl(klon, llm) ! idem (nucleation)
306    
307      !AA      REAL, save:: rain_fall(klon)
308      REAL rain_fall(klon) ! pluie      ! liquid water mass flux (kg/m2/s), positive down
309      REAL snow_fall(klon) ! neige  
310      save snow_fall, rain_fall      REAL, save:: snow_fall(klon)
311      !IM cf FH pour Tiedtke 080604      ! solid water mass flux (kg/m2/s), positive down
312    
313      REAL rain_tiedtke(klon), snow_tiedtke(klon)      REAL rain_tiedtke(klon), snow_tiedtke(klon)
314    
315      REAL evap(klon), devap(klon) ! evaporation et sa derivee      REAL evap(klon), devap(klon) ! evaporation and its derivative
316      REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee      REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee
317      REAL dlw(klon) ! derivee infra rouge      REAL dlw(klon) ! derivee infra rouge
318      SAVE dlw      SAVE dlw
# Line 360  contains Line 324  contains
324      REAL ue(klon) ! integr. verticale du transport zonal de l'energie      REAL ue(klon) ! integr. verticale du transport zonal de l'energie
325      REAL uq(klon) ! integr. verticale du transport zonal de l'eau      REAL uq(klon) ! integr. verticale du transport zonal de l'eau
326    
327      REAL frugs(klon, nbsrf) ! longueur de rugosite      REAL, save:: frugs(klon, nbsrf) ! longueur de rugosite
     save frugs  
328      REAL zxrugs(klon) ! longueur de rugosite      REAL zxrugs(klon) ! longueur de rugosite
329    
330      ! Conditions aux limites      ! Conditions aux limites
331    
332      INTEGER julien      INTEGER julien
   
333      INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day      INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day
334      REAL pctsrf(klon, nbsrf)      REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface
335      !IM      REAL pctsrf_new(klon, nbsrf) ! pourcentage surfaces issus d'ORCHIDEE
336      REAL pctsrf_new(klon, nbsrf) !pourcentage surfaces issus d'ORCHIDEE      REAL, save:: albsol(klon) ! albedo du sol total
337        REAL, save:: albsollw(klon) ! albedo du sol total
     SAVE pctsrf ! sous-fraction du sol  
     REAL albsol(klon)  
     SAVE albsol ! albedo du sol total  
     REAL albsollw(klon)  
     SAVE albsollw ! albedo du sol total  
   
338      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU
339    
340      ! Declaration des procedures appelees      ! Declaration des procedures appelees
341    
     EXTERNAL alboc ! calculer l'albedo sur ocean  
     EXTERNAL ajsec ! ajustement sec  
     !KE43  
     EXTERNAL conema3 ! convect4.3  
     EXTERNAL fisrtilp ! schema de condensation a grande echelle (pluie)  
342      EXTERNAL nuage ! calculer les proprietes radiatives      EXTERNAL nuage ! calculer les proprietes radiatives
     EXTERNAL radlwsw ! rayonnements solaire et infrarouge  
343      EXTERNAL transp ! transport total de l'eau et de l'energie      EXTERNAL transp ! transport total de l'eau et de l'energie
344    
345      ! Variables locales      ! Variables locales
346    
347      real clwcon(klon, llm), rnebcon(klon, llm)      real, save:: clwcon(klon, llm), rnebcon(klon, llm)
348      real clwcon0(klon, llm), rnebcon0(klon, llm)      real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)
   
     save rnebcon, clwcon  
349    
350      REAL rhcl(klon, llm) ! humiditi relative ciel clair      REAL rhcl(klon, llm) ! humiditi relative ciel clair
351      REAL dialiq(klon, llm) ! eau liquide nuageuse      REAL dialiq(klon, llm) ! eau liquide nuageuse
# Line 417  contains Line 365  contains
365      REAL zxfluxu(klon, llm)      REAL zxfluxu(klon, llm)
366      REAL zxfluxv(klon, llm)      REAL zxfluxv(klon, llm)
367    
368      REAL heat(klon, llm) ! chauffage solaire      ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que
369        ! les variables soient r\'emanentes.
370        REAL, save:: heat(klon, llm) ! chauffage solaire
371      REAL heat0(klon, llm) ! chauffage solaire ciel clair      REAL heat0(klon, llm) ! chauffage solaire ciel clair
372      REAL cool(klon, llm) ! refroidissement infrarouge      REAL, save:: cool(klon, llm) ! refroidissement infrarouge
373      REAL cool0(klon, llm) ! refroidissement infrarouge ciel clair      REAL cool0(klon, llm) ! refroidissement infrarouge ciel clair
374      REAL topsw(klon), toplw(klon), solsw(klon), sollw(klon)      REAL, save:: topsw(klon), toplw(klon), solsw(klon)
375      real sollwdown(klon) ! downward LW flux at surface      REAL, save:: sollw(klon) ! rayonnement infrarouge montant \`a la surface
376      REAL topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)      real, save:: sollwdown(klon) ! downward LW flux at surface
377        REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)
378      REAL albpla(klon)      REAL albpla(klon)
379      REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous surface      REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous surface
380      REAL fsolsw(klon, nbsrf) ! flux solaire absorb. pour chaque sous surface      REAL fsolsw(klon, nbsrf) ! flux solaire absorb. pour chaque sous surface
381      ! Le rayonnement n'est pas calcule tous les pas, il faut donc      SAVE albpla
382      ! sauvegarder les sorties du rayonnement      SAVE heat0, cool0
     SAVE heat, cool, albpla, topsw, toplw, solsw, sollw, sollwdown  
     SAVE topsw0, toplw0, solsw0, sollw0, heat0, cool0  
383    
384      INTEGER itaprad      INTEGER itaprad
385      SAVE itaprad      SAVE itaprad
# Line 444  contains Line 393  contains
393      REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon)      REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon)
394    
395      REAL dist, rmu0(klon), fract(klon)      REAL dist, rmu0(klon), fract(klon)
     REAL zdtime ! pas de temps du rayonnement (s)  
396      real zlongi      real zlongi
   
397      REAL z_avant(klon), z_apres(klon), z_factor(klon)      REAL z_avant(klon), z_apres(klon), z_factor(klon)
     LOGICAL zx_ajustq  
   
398      REAL za, zb      REAL za, zb
399      REAL zx_t, zx_qs, zdelta, zcor      REAL zx_t, zx_qs, zdelta, zcor
400      real zqsat(klon, llm)      real zqsat(klon, llm)
401      INTEGER i, k, iq, nsrf      INTEGER i, k, iq, nsrf
402      REAL t_coup      REAL, PARAMETER:: t_coup = 234.
     PARAMETER (t_coup = 234.0)  
   
403      REAL zphi(klon, llm)      REAL zphi(klon, llm)
404    
405      !IM cf. AM Variables locales pour la CLA (hbtm2)      ! cf. AM Variables locales pour la CLA (hbtm2)
406    
407      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite
408      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA
# Line 477  contains Line 420  contains
420      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)
421      REAL s_trmb3(klon)      REAL s_trmb3(klon)
422    
423      ! Variables locales pour la convection de K. Emanuel (sb):      ! Variables locales pour la convection de K. Emanuel :
424    
425      REAL upwd(klon, llm) ! saturated updraft mass flux      REAL upwd(klon, llm) ! saturated updraft mass flux
426      REAL dnwd(klon, llm) ! saturated downdraft mass flux      REAL dnwd(klon, llm) ! saturated downdraft mass flux
427      REAL dnwd0(klon, llm) ! unsaturated downdraft mass flux      REAL dnwd0(klon, llm) ! unsaturated downdraft mass flux
     REAL tvp(klon, llm) ! virtual temp of lifted parcel  
428      REAL cape(klon) ! CAPE      REAL cape(klon) ! CAPE
429      SAVE cape      SAVE cape
430    
     REAL pbase(klon) ! cloud base pressure  
     SAVE pbase  
     REAL bbase(klon) ! cloud base buoyancy  
     SAVE bbase  
     REAL rflag(klon) ! flag fonctionnement de convect  
431      INTEGER iflagctrl(klon) ! flag fonctionnement de convect      INTEGER iflagctrl(klon) ! flag fonctionnement de convect
     ! -- convect43:  
     INTEGER ntra ! nb traceurs pour convect4.3  
     REAL dtvpdt1(klon, llm), dtvpdq1(klon, llm)  
     REAL dplcldt(klon), dplcldr(klon)  
432    
433      ! Variables du changement      ! Variables du changement
434    
435      ! con: convection      ! con: convection
436      ! lsc: large scale condensation      ! lsc: large scale condensation
437      ! ajs: ajustement sec      ! ajs: ajustement sec
438      ! eva: évaporation de l'eau liquide nuageuse      ! eva: \'evaporation de l'eau liquide nuageuse
439      ! vdf: vertical diffusion in boundary layer      ! vdf: vertical diffusion in boundary layer
440      REAL d_t_con(klon, llm), d_q_con(klon, llm)      REAL d_t_con(klon, llm), d_q_con(klon, llm)
441      REAL d_u_con(klon, llm), d_v_con(klon, llm)      REAL d_u_con(klon, llm), d_v_con(klon, llm)
# Line 511  contains Line 444  contains
444      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)
445      REAL rneb(klon, llm)      REAL rneb(klon, llm)
446    
447      REAL pmfu(klon, llm), pmfd(klon, llm)      REAL mfu(klon, llm), mfd(klon, llm)
448      REAL pen_u(klon, llm), pen_d(klon, llm)      REAL pen_u(klon, llm), pen_d(klon, llm)
449      REAL pde_u(klon, llm), pde_d(klon, llm)      REAL pde_u(klon, llm), pde_d(klon, llm)
450      INTEGER kcbot(klon), kctop(klon), kdtop(klon)      INTEGER kcbot(klon), kctop(klon), kdtop(klon)
451      REAL pmflxr(klon, llm + 1), pmflxs(klon, llm + 1)      REAL pmflxr(klon, llm + 1), pmflxs(klon, llm + 1)
452      REAL prfl(klon, llm + 1), psfl(klon, llm + 1)      REAL prfl(klon, llm + 1), psfl(klon, llm + 1)
453    
454      INTEGER,save:: ibas_con(klon), itop_con(klon)      INTEGER, save:: ibas_con(klon), itop_con(klon)
455    
456      REAL rain_con(klon), rain_lsc(klon)      REAL rain_con(klon), rain_lsc(klon)
457      REAL snow_con(klon), snow_lsc(klon)      REAL snow_con(klon), snow_lsc(klon)
# Line 532  contains Line 465  contains
465      REAL d_u_lif(klon, llm), d_v_lif(klon, llm)      REAL d_u_lif(klon, llm), d_v_lif(klon, llm)
466      REAL d_t_lif(klon, llm)      REAL d_t_lif(klon, llm)
467    
468      REAL ratqs(klon, llm), ratqss(klon, llm), ratqsc(klon, llm)      REAL, save:: ratqs(klon, llm)
469      real ratqsbas, ratqshaut      real ratqss(klon, llm), ratqsc(klon, llm)
470      save ratqsbas, ratqshaut, ratqs      real:: ratqsbas = 0.01, ratqshaut = 0.3
471    
472      ! Parametres lies au nouveau schema de nuages (SB, PDF)      ! Parametres lies au nouveau schema de nuages (SB, PDF)
473      real, save:: fact_cldcon      real:: fact_cldcon = 0.375
474      real, save:: facttemps      real:: facttemps = 1.e-4
475      logical ok_newmicro      logical:: ok_newmicro = .true.
     save ok_newmicro  
476      real facteur      real facteur
477    
478      integer iflag_cldcon      integer:: iflag_cldcon = 1
     save iflag_cldcon  
   
479      logical ptconv(klon, llm)      logical ptconv(klon, llm)
480    
481      ! Variables locales pour effectuer les appels en série :      ! Variables locales pour effectuer les appels en s\'erie :
482    
483      REAL t_seri(klon, llm), q_seri(klon, llm)      REAL t_seri(klon, llm), q_seri(klon, llm)
484      REAL ql_seri(klon, llm), qs_seri(klon, llm)      REAL ql_seri(klon, llm)
485      REAL u_seri(klon, llm), v_seri(klon, llm)      REAL u_seri(klon, llm), v_seri(klon, llm)
486        REAL tr_seri(klon, llm, nqmx - 2)
     REAL tr_seri(klon, llm, nbtr)  
     REAL d_tr(klon, llm, nbtr)  
487    
488      REAL zx_rh(klon, llm)      REAL zx_rh(klon, llm)
489    
# Line 564  contains Line 492  contains
492      REAL zustrph(klon), zvstrph(klon)      REAL zustrph(klon), zvstrph(klon)
493      REAL aam, torsfc      REAL aam, torsfc
494    
     REAL dudyn(iim + 1, jjm + 1, llm)  
   
495      REAL zx_tmp_fi2d(klon) ! variable temporaire grille physique      REAL zx_tmp_fi2d(klon) ! variable temporaire grille physique
     REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm)  
496    
497      INTEGER, SAVE:: nid_day, nid_ins      INTEGER, SAVE:: nid_ins
498    
499      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.
500      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.
# Line 577  contains Line 502  contains
502      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.
503    
504      REAL zsto      REAL zsto
   
     character(len = 20) modname  
     character(len = 80) abort_message  
     logical ok_sync  
505      real date0      real date0
506    
507      ! Variables liées au bilan d'énergie et d'enthalpie :      ! Variables li\'ees au bilan d'\'energie et d'enthalpie :
508      REAL ztsol(klon)      REAL ztsol(klon)
509      REAL d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec      REAL d_h_vcol, d_qt, d_ec
510      REAL, SAVE:: d_h_vcol_phy      REAL, SAVE:: d_h_vcol_phy
     REAL fs_bound, fq_bound  
511      REAL zero_v(klon)      REAL zero_v(klon)
512      CHARACTER(LEN = 15) ztit      CHARACTER(LEN = 20) tit
513      INTEGER:: ip_ebil = 0 ! print level for energy conservation diagnostics      INTEGER:: ip_ebil = 0 ! print level for energy conservation diagnostics
514      INTEGER, SAVE:: if_ebil ! level for energy conservation diagnostics      INTEGER:: if_ebil = 0 ! verbosity for diagnostics of energy conservation
515    
516      REAL d_t_ec(klon, llm) ! tendance due à la conversion Ec -> E thermique      REAL d_t_ec(klon, llm) ! tendance due \`a la conversion Ec -> E thermique
517      REAL ZRCPD      REAL ZRCPD
518    
519      REAL t2m(klon, nbsrf), q2m(klon, nbsrf) ! temperature and humidity at 2 m      REAL t2m(klon, nbsrf), q2m(klon, nbsrf) ! temperature and humidity at 2 m
520      REAL u10m(klon, nbsrf), v10m(klon, nbsrf) !vents a 10m      REAL u10m(klon, nbsrf), v10m(klon, nbsrf) ! vents a 10 m
521      REAL zt2m(klon), zq2m(klon) !temp., hum. 2m moyenne s/ 1 maille      REAL zt2m(klon), zq2m(klon) ! temp., hum. 2 m moyenne s/ 1 maille
522      REAL zu10m(klon), zv10m(klon) !vents a 10m moyennes s/1 maille      REAL zu10m(klon), zv10m(klon) ! vents a 10 m moyennes s/1 maille
523      !jq Aerosol effects (Johannes Quaas, 27/11/2003)  
524      REAL sulfate(klon, llm) ! SO4 aerosol concentration [ug/m3]      ! Aerosol effects:
525    
526        REAL sulfate(klon, llm) ! SO4 aerosol concentration (micro g/m3)
527    
528      REAL, save:: sulfate_pi(klon, llm)      REAL, save:: sulfate_pi(klon, llm)
529      ! (SO4 aerosol concentration, in ug/m3, pre-industrial value)      ! SO4 aerosol concentration, in micro g/m3, pre-industrial value
530    
531      REAL cldtaupi(klon, llm)      REAL cldtaupi(klon, llm)
532      ! (Cloud optical thickness for pre-industrial (pi) aerosols)      ! cloud optical thickness for pre-industrial (pi) aerosols
533    
534      REAL re(klon, llm) ! Cloud droplet effective radius      REAL re(klon, llm) ! Cloud droplet effective radius
535      REAL fl(klon, llm) ! denominator of re      REAL fl(klon, llm) ! denominator of re
536    
537      ! Aerosol optical properties      ! Aerosol optical properties
538      REAL tau_ae(klon, llm, 2), piz_ae(klon, llm, 2)      REAL, save:: tau_ae(klon, llm, 2), piz_ae(klon, llm, 2)
539      REAL cg_ae(klon, llm, 2)      REAL, save:: cg_ae(klon, llm, 2)
   
     REAL topswad(klon), solswad(klon) ! Aerosol direct effect.  
     ! ok_ade = True -ADE = topswad-topsw  
540    
541      REAL topswai(klon), solswai(klon) ! Aerosol indirect effect.      REAL topswad(klon), solswad(klon) ! aerosol direct effect
542      ! ok_aie = True ->      REAL topswai(klon), solswai(klon) ! aerosol indirect effect
     ! ok_ade = True -AIE = topswai-topswad  
     ! ok_ade = F -AIE = topswai-topsw  
543    
544      REAL aerindex(klon) ! POLDER aerosol index      REAL aerindex(klon) ! POLDER aerosol index
545    
546      ! Parameters      LOGICAL:: ok_ade = .false. ! apply aerosol direct effect
547      LOGICAL ok_ade, ok_aie ! Apply aerosol (in)direct effects or not      LOGICAL:: ok_aie = .false. ! apply aerosol indirect effect
548      REAL bl95_b0, bl95_b1 ! Parameter in Boucher and Lohmann (1995)  
549        REAL:: bl95_b0 = 2., bl95_b1 = 0.2
550        ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus
551        ! B). They link cloud droplet number concentration to aerosol mass
552        ! concentration.
553    
     SAVE ok_ade, ok_aie, bl95_b0, bl95_b1  
554      SAVE u10m      SAVE u10m
555      SAVE v10m      SAVE v10m
556      SAVE t2m      SAVE t2m
557      SAVE q2m      SAVE q2m
558      SAVE ffonte      SAVE ffonte
559      SAVE fqcalving      SAVE fqcalving
     SAVE piz_ae  
     SAVE tau_ae  
     SAVE cg_ae  
560      SAVE rain_con      SAVE rain_con
561      SAVE snow_con      SAVE snow_con
562      SAVE topswai      SAVE topswai
# Line 648  contains Line 565  contains
565      SAVE solswad      SAVE solswad
566      SAVE d_u_con      SAVE d_u_con
567      SAVE d_v_con      SAVE d_v_con
     SAVE rnebcon0  
     SAVE clwcon0  
568    
569      real zmasse(klon, llm)      real zmasse(klon, llm)
570      ! (column-density of mass of air in a cell, in kg m-2)      ! (column-density of mass of air in a cell, in kg m-2)
571    
572      real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2      real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2
573    
574        namelist /physiq_nml/ ok_journe, ok_mensuel, ok_instan, fact_cldcon, &
575             facttemps, ok_newmicro, iflag_cldcon, ratqsbas, ratqshaut, if_ebil, &
576             ok_ade, ok_aie, bl95_b0, bl95_b1, iflag_thermals, nsplit_thermals
577    
578      !----------------------------------------------------------------      !----------------------------------------------------------------
579    
580      modname = 'physiq'      IF (if_ebil >= 1) zero_v = 0.
581      IF (if_ebil >= 1) THEN      IF (nqmx < 2) CALL abort_gcm('physiq', &
582         DO i = 1, klon           'eaux vapeur et liquide sont indispensables', 1)
           zero_v(i) = 0.  
        END DO  
     END IF  
     ok_sync = .TRUE.  
     IF (nqmx < 2) THEN  
        abort_message = 'eaux vapeur et liquide sont indispensables'  
        CALL abort_gcm(modname, abort_message, 1)  
     ENDIF  
583    
584      test_firstcal: IF (firstcal) THEN      test_firstcal: IF (firstcal) THEN
585         ! initialiser         ! initialiser
# Line 681  contains Line 592  contains
592         piz_ae = 0.         piz_ae = 0.
593         tau_ae = 0.         tau_ae = 0.
594         cg_ae = 0.         cg_ae = 0.
595         rain_con(:) = 0.         rain_con = 0.
596         snow_con(:) = 0.         snow_con = 0.
597         bl95_b0 = 0.         topswai = 0.
598         bl95_b1 = 0.         topswad = 0.
599         topswai(:) = 0.         solswai = 0.
600         topswad(:) = 0.         solswad = 0.
601         solswai(:) = 0.  
602         solswad(:) = 0.         d_u_con = 0.
603           d_v_con = 0.
604         d_u_con = 0.0         rnebcon0 = 0.
605         d_v_con = 0.0         clwcon0 = 0.
606         rnebcon0 = 0.0         rnebcon = 0.
607         clwcon0 = 0.0         clwcon = 0.
        rnebcon = 0.0  
        clwcon = 0.0  
608    
609         pblh =0. ! Hauteur de couche limite         pblh =0. ! Hauteur de couche limite
610         plcl =0. ! Niveau de condensation de la CLA         plcl =0. ! Niveau de condensation de la CLA
# Line 710  contains Line 619  contains
619    
620         IF (if_ebil >= 1) d_h_vcol_phy = 0.         IF (if_ebil >= 1) d_h_vcol_phy = 0.
621    
622         ! appel a la lecture du run.def physique         iflag_thermals = 0
623           nsplit_thermals = 1
624           print *, "Enter namelist 'physiq_nml'."
625           read(unit=*, nml=physiq_nml)
626           write(unit_nml, nml=physiq_nml)
627    
628         call conf_phys(ocean, ok_veget, ok_journe, ok_mensuel, &         call conf_phys
             ok_instan, fact_cldcon, facttemps, ok_newmicro, &  
             iflag_cldcon, ratqsbas, ratqshaut, if_ebil, &  
             ok_ade, ok_aie, &  
             bl95_b0, bl95_b1, &  
             iflag_thermals, nsplit_thermals)  
629    
630         ! Initialiser les compteurs:         ! Initialiser les compteurs:
631    
632         frugs = 0.         frugs = 0.
633         itap = 0         itap = 0
634         itaprad = 0         itaprad = 0
635         CALL phyetat0("startphy.nc", pctsrf, ftsol, ftsoil, ocean, tslab, &         CALL phyetat0(pctsrf, ftsol, ftsoil, tslab, seaice, fqsurf, qsol, &
636              seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, rain_fall, &              fsnow, falbe, falblw, fevap, rain_fall, snow_fall, solsw, sollw, &
637              snow_fall, solsw, sollwdown, dlw, radsol, frugs, agesno, zmea, &              dlw, radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, &
638              zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, &              zval, t_ancien, q_ancien, ancien_ok, rnebcon, ratqs, clwcon, &
639              ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0)              run_off_lic_0, sig1, w01)
640    
641         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial
642         q2 = 1.e-8         q2 = 1e-8
643    
644         radpas = NINT(86400. / dtphys / nbapp_rad)         radpas = NINT(86400. / dtphys / nbapp_rad)
645    
# Line 739  contains Line 647  contains
647         IF (raz_date) itau_phy = 0         IF (raz_date) itau_phy = 0
648    
649         PRINT *, 'cycle_diurne = ', cycle_diurne         PRINT *, 'cycle_diurne = ', cycle_diurne
650           CALL printflag(radpas, ok_journe, ok_instan, ok_region)
651    
652         IF(ocean.NE.'force ') THEN         IF (dtphys * REAL(radpas) > 21600. .AND. cycle_diurne) THEN
653            ok_ocean = .TRUE.            print *, "Au minimum 4 appels par jour si cycle diurne"
654              call abort_gcm('physiq', &
655                   "Nombre d'appels au rayonnement insuffisant", 1)
656         ENDIF         ENDIF
657    
658         CALL printflag(radpas, ok_ocean, ok_oasis, ok_journe, ok_instan, &         ! Initialisation pour le sch\'ema de convection d'Emanuel :
             ok_region)  
   
        IF (dtphys*REAL(radpas) > 21600..AND.cycle_diurne) THEN  
           print *,'Nbre d appels au rayonnement insuffisant'  
           print *,"Au minimum 4 appels par jour si cycle diurne"  
           abort_message = 'Nbre d appels au rayonnement insuffisant'  
           call abort_gcm(modname, abort_message, 1)  
        ENDIF  
        print *,"Clef pour la convection, iflag_con = ", iflag_con  
        print *,"Clef pour le driver de la convection, ok_cvl = ", &  
             ok_cvl  
   
        ! Initialisation pour la convection de K.E. (sb):  
659         IF (iflag_con >= 3) THEN         IF (iflag_con >= 3) THEN
660              ibas_con = 1
661            print *,"*** Convection de Kerry Emanuel 4.3 "            itop_con = 1
   
           !IM15/11/02 rajout initialisation ibas_con, itop_con cf. SB =>BEG  
           DO i = 1, klon  
              ibas_con(i) = 1  
              itop_con(i) = 1  
           ENDDO  
           !IM15/11/02 rajout initialisation ibas_con, itop_con cf. SB =>END  
   
662         ENDIF         ENDIF
663    
664         IF (ok_orodr) THEN         IF (ok_orodr) THEN
665            rugoro = MAX(1e-5, zstd * zsig / 2)            rugoro = MAX(1e-5, zstd * zsig / 2)
666            CALL SUGWD(klon, llm, paprs, play)            CALL SUGWD(paprs, play)
667         else         else
668            rugoro = 0.            rugoro = 0.
669         ENDIF         ENDIF
# Line 787  contains Line 677  contains
677         ecrit_tra = NINT(86400.*ecrit_tra/dtphys)         ecrit_tra = NINT(86400.*ecrit_tra/dtphys)
678         ecrit_reg = NINT(ecrit_reg/dtphys)         ecrit_reg = NINT(ecrit_reg/dtphys)
679    
        ! Initialiser le couplage si necessaire  
   
        npas = 0  
        nexca = 0  
   
        print *,'AVANT HIST IFLAG_CON = ', iflag_con  
   
680         ! Initialisation des sorties         ! Initialisation des sorties
681    
        call ini_histhf(dtphys, nid_hf, nid_hf3d)  
        call ini_histday(dtphys, ok_journe, nid_day, nqmx)  
682         call ini_histins(dtphys, ok_instan, nid_ins)         call ini_histins(dtphys, ok_instan, nid_ins)
683         CALL ymds2ju(annee_ref, 1, int(day_ref), 0., date0)         CALL ymds2ju(annee_ref, 1, int(day_ref), 0., date0)
684         !XXXPB Positionner date0 pour initialisation de ORCHIDEE         ! Positionner date0 pour initialisation de ORCHIDEE
685         WRITE(*, *) 'physiq date0: ', date0         print *, 'physiq date0: ', date0
686      ENDIF test_firstcal      ENDIF test_firstcal
687    
688      ! Mettre a zero des variables de sortie (pour securite)      ! We will modify variables *_seri and we will not touch variables
689        ! u, v, t, qx:
690      DO i = 1, klon      t_seri = t
691         d_ps(i) = 0.0      u_seri = u
692      ENDDO      v_seri = v
693      DO iq = 1, nqmx      q_seri = qx(:, :, ivap)
694         DO k = 1, llm      ql_seri = qx(:, :, iliq)
695            DO i = 1, klon      tr_seri = qx(:, :, 3: nqmx)
              d_qx(i, k, iq) = 0.0  
           ENDDO  
        ENDDO  
     ENDDO  
     da = 0.  
     mp = 0.  
     phi = 0.  
   
     ! Ne pas affecter les valeurs entrées de u, v, h, et q :  
   
     DO k = 1, llm  
        DO i = 1, klon  
           t_seri(i, k) = t(i, k)  
           u_seri(i, k) = u(i, k)  
           v_seri(i, k) = v(i, k)  
           q_seri(i, k) = qx(i, k, ivap)  
           ql_seri(i, k) = qx(i, k, iliq)  
           qs_seri(i, k) = 0.  
        ENDDO  
     ENDDO  
     IF (nqmx >= 3) THEN  
        tr_seri(:, :, :nqmx-2) = qx(:, :, 3:nqmx)  
     ELSE  
        tr_seri(:, :, 1) = 0.  
     ENDIF  
696    
697      DO i = 1, klon      ztsol = sum(ftsol * pctsrf, dim = 2)
        ztsol(i) = 0.  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           ztsol(i) = ztsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
698    
699      IF (if_ebil >= 1) THEN      IF (if_ebil >= 1) THEN
700         ztit = 'after dynamics'         tit = 'after dynamics'
701         CALL diagetpq(airephy, ztit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &         CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &
702              ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &              ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)
703              d_ql, d_qs, d_ec)         ! Comme les tendances de la physique sont ajout\'es dans la
        ! Comme les tendances de la physique sont ajoutés dans la  
704         !  dynamique, la variation d'enthalpie par la dynamique devrait         !  dynamique, la variation d'enthalpie par la dynamique devrait
705         !  être égale à la variation de la physique au pas de temps         !  \^etre \'egale \`a la variation de la physique au pas de temps
706         !  précédent.  Donc la somme de ces 2 variations devrait être         !  pr\'ec\'edent.  Donc la somme de ces 2 variations devrait \^etre
707         !  nulle.         !  nulle.
708         call diagphy(airephy, ztit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &         call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &
709              zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol + d_h_vcol_phy, &              zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol + d_h_vcol_phy, &
710              d_qt, 0., fs_bound, fq_bound)              d_qt, 0.)
711      END IF      END IF
712    
713      ! Diagnostic de la tendance dynamique :      ! Diagnostic de la tendance dynamique :
# Line 873  contains Line 721  contains
721      ELSE      ELSE
722         DO k = 1, llm         DO k = 1, llm
723            DO i = 1, klon            DO i = 1, klon
724               d_t_dyn(i, k) = 0.0               d_t_dyn(i, k) = 0.
725               d_q_dyn(i, k) = 0.0               d_q_dyn(i, k) = 0.
726            ENDDO            ENDDO
727         ENDDO         ENDDO
728         ancien_ok = .TRUE.         ancien_ok = .TRUE.
# Line 890  contains Line 738  contains
738      ! Check temperatures:      ! Check temperatures:
739      CALL hgardfou(t_seri, ftsol)      CALL hgardfou(t_seri, ftsol)
740    
741      ! Incrementer le compteur de la physique      ! Incrémenter le compteur de la physique
742      itap = itap + 1      itap = itap + 1
743      julien = MOD(NINT(rdayvrai), 360)      julien = MOD(NINT(rdayvrai), 360)
744      if (julien == 0) julien = 360      if (julien == 0) julien = 360
745    
746      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k)-paprs(:, k + 1)) / rg      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k)-paprs(:, k + 1)) / rg
747    
748      ! Mettre en action les conditions aux limites (albedo, sst, etc.).      ! Prescrire l'ozone :
749        wo = ozonecm(REAL(julien), paprs)
750    
751      ! Prescrire l'ozone et calculer l'albedo sur l'ocean.      ! \'Evaporation de l'eau liquide nuageuse :
     if (nqmx >= 5) then  
        wo = qx(:, :, 5) * zmasse / dobson_u / 1e3  
     else IF (MOD(itap - 1, lmt_pas) == 0) THEN  
        wo = ozonecm(REAL(julien), paprs)  
     ENDIF  
   
     ! Évaporation de l'eau liquide nuageuse :  
752      DO k = 1, llm      DO k = 1, llm
753         DO i = 1, klon         DO i = 1, klon
754            zb = MAX(0., ql_seri(i, k))            zb = MAX(0., ql_seri(i, k))
# Line 918  contains Line 760  contains
760      ql_seri = 0.      ql_seri = 0.
761    
762      IF (if_ebil >= 2) THEN      IF (if_ebil >= 2) THEN
763         ztit = 'after reevap'         tit = 'after reevap'
764         CALL diagetpq(airephy, ztit, ip_ebil, 2, 1, dtphys, t_seri, q_seri, &         CALL diagetpq(airephy, tit, ip_ebil, 2, 1, dtphys, t_seri, q_seri, &
765              ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &              ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)
766              d_ql, d_qs, d_ec)         call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &
767         call diagphy(airephy, ztit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &              zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec)
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
   
768      END IF      END IF
769    
770      ! Appeler la diffusion verticale (programme de couche limite)      frugs = MAX(frugs, 0.000015)
771        zxrugs = sum(frugs * pctsrf, dim = 2)
     DO i = 1, klon  
        zxrugs(i) = 0.0  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           frugs(i, nsrf) = MAX(frugs(i, nsrf), 0.000015)  
        ENDDO  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxrugs(i) = zxrugs(i) + frugs(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
772    
773      ! calculs necessaires au calcul de l'albedo dans l'interface      ! Calculs nécessaires au calcul de l'albedo dans l'interface
774    
775      CALL orbite(REAL(julien), zlongi, dist)      CALL orbite(REAL(julien), zlongi, dist)
776      IF (cycle_diurne) THEN      IF (cycle_diurne) THEN
777         zdtime = dtphys * REAL(radpas)         CALL zenang(zlongi, time, dtphys * REAL(radpas), rmu0, fract)
        CALL zenang(zlongi, time, zdtime, rmu0, fract)  
778      ELSE      ELSE
779         rmu0 = -999.999         rmu0 = -999.999
780      ENDIF      ENDIF
781    
782      ! Calcul de l'abedo moyen par maille      ! Calcul de l'abedo moyen par maille
783      albsol(:) = 0.      albsol = sum(falbe * pctsrf, dim = 2)
784      albsollw(:) = 0.      albsollw = sum(falblw * pctsrf, dim = 2)
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           albsol(i) = albsol(i) + falbe(i, nsrf) * pctsrf(i, nsrf)  
           albsollw(i) = albsollw(i) + falblw(i, nsrf) * pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
785    
786      ! Repartition sous maille des flux LW et SW      ! R\'epartition sous maille des flux longwave et shortwave
787      ! Repartition du longwave par sous-surface linearisee      ! R\'epartition du longwave par sous-surface lin\'earis\'ee
788    
789      DO nsrf = 1, nbsrf      forall (nsrf = 1: nbsrf)
790         DO i = 1, klon         fsollw(:, nsrf) = sollw + 4. * RSIGMA * ztsol**3 &
791            fsollw(i, nsrf) = sollw(i) &              * (ztsol - ftsol(:, nsrf))
792                 + 4.0*RSIGMA*ztsol(i)**3 * (ztsol(i)-ftsol(i, nsrf))         fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol)
793            fsolsw(i, nsrf) = solsw(i)*(1.-falbe(i, nsrf))/(1.-albsol(i))      END forall
        ENDDO  
     ENDDO  
794    
795      fder = dlw      fder = dlw
796    
797      ! Couche limite:      ! Couche limite:
798    
799      CALL clmain(dtphys, itap, date0, pctsrf, pctsrf_new, t_seri, q_seri, &      CALL clmain(dtphys, itap, pctsrf, pctsrf_new, t_seri, q_seri, u_seri, &
800           u_seri, v_seri, julien, rmu0, co2_ppm, ok_veget, ocean, npas, nexca, &           v_seri, julien, rmu0, co2_ppm, ftsol, cdmmax, cdhmax, &
801           ftsol, soil_model, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, &           ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, play, fsnow, fqsurf, &
802           qsol, paprs, play, fsnow, fqsurf, fevap, falbe, falblw, fluxlat, &           fevap, falbe, falblw, fluxlat, rain_fall, snow_fall, fsolsw, fsollw, &
803           rain_fall, snow_fall, fsolsw, fsollw, sollwdown, fder, rlon, rlat, &           fder, rlat, frugs, firstcal, agesno, rugoro, d_t_vdf, d_q_vdf, &
804           cuphy, cvphy, frugs, firstcal, lafin, agesno, rugoro, d_t_vdf, &           d_u_vdf, d_v_vdf, d_ts, fluxt, fluxq, fluxu, fluxv, cdragh, cdragm, &
805           d_q_vdf, d_u_vdf, d_v_vdf, d_ts, fluxt, fluxq, fluxu, fluxv, cdragh, &           q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, pblh, &
806           cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, &           capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, plcl, &
807           pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, plcl, &           fqcalving, ffonte, run_off_lic_0, fluxo, fluxg, tslab)
          fqcalving, ffonte, run_off_lic_0, fluxo, fluxg, tslab, seaice)  
808    
809      ! Incrémentation des flux      ! Incr\'ementation des flux
810    
811      zxfluxt = 0.      zxfluxt = 0.
812      zxfluxq = 0.      zxfluxq = 0.
# Line 999  contains Line 815  contains
815      DO nsrf = 1, nbsrf      DO nsrf = 1, nbsrf
816         DO k = 1, llm         DO k = 1, llm
817            DO i = 1, klon            DO i = 1, klon
818               zxfluxt(i, k) = zxfluxt(i, k) + &               zxfluxt(i, k) = zxfluxt(i, k) + fluxt(i, k, nsrf) * pctsrf(i, nsrf)
819                    fluxt(i, k, nsrf) * pctsrf(i, nsrf)               zxfluxq(i, k) = zxfluxq(i, k) + fluxq(i, k, nsrf) * pctsrf(i, nsrf)
820               zxfluxq(i, k) = zxfluxq(i, k) + &               zxfluxu(i, k) = zxfluxu(i, k) + fluxu(i, k, nsrf) * pctsrf(i, nsrf)
821                    fluxq(i, k, nsrf) * pctsrf(i, nsrf)               zxfluxv(i, k) = zxfluxv(i, k) + fluxv(i, k, nsrf) * pctsrf(i, nsrf)
              zxfluxu(i, k) = zxfluxu(i, k) + &  
                   fluxu(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxv(i, k) = zxfluxv(i, k) + &  
                   fluxv(i, k, nsrf) * pctsrf(i, nsrf)  
822            END DO            END DO
823         END DO         END DO
824      END DO      END DO
825      DO i = 1, klon      DO i = 1, klon
826         sens(i) = - zxfluxt(i, 1) ! flux de chaleur sensible au sol         sens(i) = - zxfluxt(i, 1) ! flux de chaleur sensible au sol
827         evap(i) = - zxfluxq(i, 1) ! flux d'evaporation au sol         evap(i) = - zxfluxq(i, 1) ! flux d'\'evaporation au sol
828         fder(i) = dlw(i) + dsens(i) + devap(i)         fder(i) = dlw(i) + dsens(i) + devap(i)
829      ENDDO      ENDDO
830    
# Line 1026  contains Line 838  contains
838      ENDDO      ENDDO
839    
840      IF (if_ebil >= 2) THEN      IF (if_ebil >= 2) THEN
841         ztit = 'after clmain'         tit = 'after clmain'
842         CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &         CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &
843              ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &              ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)
844              d_ql, d_qs, d_ec)         call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &
845         call diagphy(airephy, ztit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &              sens, evap, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec)
             sens, evap, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
846      END IF      END IF
847    
848      ! Update surface temperature:      ! Update surface temperature:
849    
850      DO i = 1, klon      DO i = 1, klon
851         zxtsol(i) = 0.0         zxtsol(i) = 0.
852         zxfluxlat(i) = 0.0         zxfluxlat(i) = 0.
853    
854         zt2m(i) = 0.0         zt2m(i) = 0.
855         zq2m(i) = 0.0         zq2m(i) = 0.
856         zu10m(i) = 0.0         zu10m(i) = 0.
857         zv10m(i) = 0.0         zv10m(i) = 0.
858         zxffonte(i) = 0.0         zxffonte(i) = 0.
859         zxfqcalving(i) = 0.0         zxfqcalving(i) = 0.
860    
861         s_pblh(i) = 0.0         s_pblh(i) = 0.
862         s_lcl(i) = 0.0         s_lcl(i) = 0.
863         s_capCL(i) = 0.0         s_capCL(i) = 0.
864         s_oliqCL(i) = 0.0         s_oliqCL(i) = 0.
865         s_cteiCL(i) = 0.0         s_cteiCL(i) = 0.
866         s_pblT(i) = 0.0         s_pblT(i) = 0.
867         s_therm(i) = 0.0         s_therm(i) = 0.
868         s_trmb1(i) = 0.0         s_trmb1(i) = 0.
869         s_trmb2(i) = 0.0         s_trmb2(i) = 0.
870         s_trmb3(i) = 0.0         s_trmb3(i) = 0.
871    
872         IF (abs(pctsrf(i, is_ter) + pctsrf(i, is_lic) + &         IF (abs(pctsrf(i, is_ter) + pctsrf(i, is_lic) + pctsrf(i, is_oce) &
873              pctsrf(i, is_oce) + pctsrf(i, is_sic) - 1.)  >  EPSFRA) &              + pctsrf(i, is_sic) - 1.)  >  EPSFRA) print *, &
874              THEN              'physiq : probl\`eme sous surface au point ', i, &
875            WRITE(*, *) 'physiq : pb sous surface au point ', i, &              pctsrf(i, 1 : nbsrf)
                pctsrf(i, 1 : nbsrf)  
        ENDIF  
876      ENDDO      ENDDO
877      DO nsrf = 1, nbsrf      DO nsrf = 1, nbsrf
878         DO i = 1, klon         DO i = 1, klon
# Line 1092  contains Line 900  contains
900         ENDDO         ENDDO
901      ENDDO      ENDDO
902    
903      ! Si une sous-fraction n'existe pas, elle prend la temp. moyenne      ! Si une sous-fraction n'existe pas, elle prend la température moyenne :
   
904      DO nsrf = 1, nbsrf      DO nsrf = 1, nbsrf
905         DO i = 1, klon         DO i = 1, klon
906            IF (pctsrf(i, nsrf) < epsfra) ftsol(i, nsrf) = zxtsol(i)            IF (pctsrf(i, nsrf) < epsfra) ftsol(i, nsrf) = zxtsol(i)
# Line 1118  contains Line 925  contains
925         ENDDO         ENDDO
926      ENDDO      ENDDO
927    
928      ! Calculer la derive du flux infrarouge      ! Calculer la dérive du flux infrarouge
929    
930      DO i = 1, klon      DO i = 1, klon
931         dlw(i) = - 4.0*RSIGMA*zxtsol(i)**3         dlw(i) = - 4. * RSIGMA * zxtsol(i)**3
932      ENDDO      ENDDO
933    
934      ! Appeler la convection (au choix)      ! Appeler la convection (au choix)
935    
936      DO k = 1, llm      DO k = 1, llm
937         DO i = 1, klon         DO i = 1, klon
938            conv_q(i, k) = d_q_dyn(i, k) &            conv_q(i, k) = d_q_dyn(i, k) + d_q_vdf(i, k) / dtphys
939                 + d_q_vdf(i, k)/dtphys            conv_t(i, k) = d_t_dyn(i, k) + d_t_vdf(i, k) / dtphys
           conv_t(i, k) = d_t_dyn(i, k) &  
                + d_t_vdf(i, k)/dtphys  
940         ENDDO         ENDDO
941      ENDDO      ENDDO
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        print *, "avantcon = ", za  
     ENDIF  
     zx_ajustq = .FALSE.  
     IF (iflag_con == 2) zx_ajustq = .TRUE.  
     IF (zx_ajustq) THEN  
        DO i = 1, klon  
           z_avant(i) = 0.0  
        ENDDO  
        DO k = 1, llm  
           DO i = 1, klon  
              z_avant(i) = z_avant(i) + (q_seri(i, k) + ql_seri(i, k)) &  
                   *zmasse(i, k)  
           ENDDO  
        ENDDO  
     ENDIF  
942    
943      select case (iflag_con)      IF (check) print *, "avantcon = ", qcheck(paprs, q_seri, ql_seri)
944      case (1)  
945         print *, 'Réactiver l''appel à "conlmd" dans "physiq.F".'      if (iflag_con == 2) then
946         stop 1         z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)
947      case (2)         CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:-1), &
948         CALL conflx(dtphys, paprs, play, t_seri, q_seri, conv_t, conv_q, &              q_seri(:, llm:1:-1), conv_t, conv_q, zxfluxq(:, 1), omega, &
949              zxfluxq(1, 1), omega, d_t_con, d_q_con, rain_con, snow_con, pmfu, &              d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:-1), &
950              pmfd, pen_u, pde_u, pen_d, pde_d, kcbot, kctop, kdtop, pmflxr, &              mfd(:, llm:1:-1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, &
951              pmflxs)              kdtop, pmflxr, pmflxs)
952         WHERE (rain_con < 0.) rain_con = 0.         WHERE (rain_con < 0.) rain_con = 0.
953         WHERE (snow_con < 0.) snow_con = 0.         WHERE (snow_con < 0.) snow_con = 0.
954         DO i = 1, klon         ibas_con = llm + 1 - kcbot
955            ibas_con(i) = llm + 1 - kcbot(i)         itop_con = llm + 1 - kctop
956            itop_con(i) = llm + 1 - kctop(i)      else
957         ENDDO         ! iflag_con >= 3
     case (3:)  
        ! number of tracers for the Kerry-Emanuel convection:  
        ! la partie traceurs est faite dans phytrac  
        ! on met ntra = 1 pour limiter les appels mais on peut  
        ! supprimer les calculs / ftra.  
        ntra = 1  
        ! Schéma de convection modularisé et vectorisé :  
        ! (driver commun aux versions 3 et 4)  
   
        IF (ok_cvl) THEN  
           ! new driver for convectL  
           CALL concvl(iflag_con, dtphys, paprs, play, t_seri, q_seri, &  
                u_seri, v_seri, tr_seri, ntra, ema_work1, ema_work2, d_t_con, &  
                d_q_con, d_u_con, d_v_con, d_tr, rain_con, snow_con, ibas_con, &  
                itop_con, upwd, dnwd, dnwd0, Ma, cape, tvp, iflagctrl, pbase, &  
                bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr, qcondc, wd, pmflxr, &  
                pmflxs, da, phi, mp)  
           clwcon0 = qcondc  
           pmfu = upwd + dnwd  
        ELSE  
           ! conema3 ne contient pas les traceurs  
           CALL conema3 (dtphys, paprs, play, t_seri, q_seri, u_seri, v_seri, &  
                tr_seri, ntra, ema_work1, ema_work2, d_t_con, d_q_con, &  
                d_u_con, d_v_con, d_tr, rain_con, snow_con, ibas_con, &  
                itop_con, upwd, dnwd, dnwd0, bas, top, Ma, cape, tvp, rflag, &  
                pbase, bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr, clwcon0)  
        ENDIF  
958    
959         IF (.NOT. ok_gust) THEN         da = 0.
960            do i = 1, klon         mp = 0.
961               wd(i) = 0.0         phi = 0.
962            enddo         CALL concvl(dtphys, paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, &
963         ENDIF              w01, d_t_con, d_q_con, d_u_con, d_v_con, rain_con, snow_con, &
964                ibas_con, itop_con, upwd, dnwd, dnwd0, Ma, cape, iflagctrl, &
965                qcondc, wd, pmflxr, pmflxs, da, phi, mp)
966           clwcon0 = qcondc
967           mfu = upwd + dnwd
968           IF (.NOT. ok_gust) wd = 0.
969    
970         ! Calcul des propriétés des nuages convectifs         ! Calcul des propri\'et\'es des nuages convectifs
971    
972         DO k = 1, llm         DO k = 1, llm
973            DO i = 1, klon            DO i = 1, klon
              zx_t = t_seri(i, k)  
974               IF (thermcep) THEN               IF (thermcep) THEN
975                  zdelta = MAX(0., SIGN(1., rtt-zx_t))                  zdelta = MAX(0., SIGN(1., rtt - t_seri(i, k)))
976                  zx_qs = r2es * FOEEW(zx_t, zdelta)/play(i, k)                  zqsat(i, k) = r2es * FOEEW(t_seri(i, k), zdelta) / play(i, k)
977                  zx_qs = MIN(0.5, zx_qs)                  zqsat(i, k) = MIN(0.5, zqsat(i, k))
978                  zcor = 1./(1.-retv*zx_qs)                  zqsat(i, k) = zqsat(i, k) / (1.-retv*zqsat(i, k))
                 zx_qs = zx_qs*zcor  
979               ELSE               ELSE
980                  IF (zx_t < t_coup) THEN                  IF (t_seri(i, k) < t_coup) THEN
981                     zx_qs = qsats(zx_t)/play(i, k)                     zqsat(i, k) = qsats(t_seri(i, k))/play(i, k)
982                  ELSE                  ELSE
983                     zx_qs = qsatl(zx_t)/play(i, k)                     zqsat(i, k) = qsatl(t_seri(i, k))/play(i, k)
984                  ENDIF                  ENDIF
985               ENDIF               ENDIF
              zqsat(i, k) = zx_qs  
986            ENDDO            ENDDO
987         ENDDO         ENDDO
988    
989         ! calcul des proprietes des nuages convectifs         ! calcul des proprietes des nuages convectifs
990         clwcon0 = fact_cldcon*clwcon0         clwcon0 = fact_cldcon * clwcon0
991         call clouds_gno &         call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &
992              (klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, rnebcon0)              rnebcon0)
993      case default  
994         print *, "iflag_con non-prevu", iflag_con         mfd = 0.
995         stop 1         pen_u = 0.
996      END select         pen_d = 0.
997           pde_d = 0.
998           pde_u = 0.
999        END if
1000    
1001      DO k = 1, llm      DO k = 1, llm
1002         DO i = 1, klon         DO i = 1, klon
# Line 1242  contains Line 1008  contains
1008      ENDDO      ENDDO
1009    
1010      IF (if_ebil >= 2) THEN      IF (if_ebil >= 2) THEN
1011         ztit = 'after convect'         tit = 'after convect'
1012         CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &         CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &
1013              ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &              ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)
1014              d_ql, d_qs, d_ec)         call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &
1015         call diagphy(airephy, ztit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &              zero_v, zero_v, rain_con, snow_con, ztsol, d_h_vcol, d_qt, d_ec)
             zero_v, zero_v, rain_con, snow_con, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
1016      END IF      END IF
1017    
1018      IF (check) THEN      IF (check) THEN
1019         za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)         za = qcheck(paprs, q_seri, ql_seri)
1020         print *,"aprescon = ", za         print *, "aprescon = ", za
1021         zx_t = 0.0         zx_t = 0.
1022         za = 0.0         za = 0.
1023         DO i = 1, klon         DO i = 1, klon
1024            za = za + airephy(i)/REAL(klon)            za = za + airephy(i)/REAL(klon)
1025            zx_t = zx_t + (rain_con(i)+ &            zx_t = zx_t + (rain_con(i)+ &
1026                 snow_con(i))*airephy(i)/REAL(klon)                 snow_con(i))*airephy(i)/REAL(klon)
1027         ENDDO         ENDDO
1028         zx_t = zx_t/za*dtphys         zx_t = zx_t/za*dtphys
1029         print *,"Precip = ", zx_t         print *, "Precip = ", zx_t
1030      ENDIF      ENDIF
1031      IF (zx_ajustq) THEN  
1032         DO i = 1, klon      IF (iflag_con == 2) THEN
1033            z_apres(i) = 0.0         z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)
1034         ENDDO         z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres
        DO k = 1, llm  
           DO i = 1, klon  
              z_apres(i) = z_apres(i) + (q_seri(i, k) + ql_seri(i, k)) &  
                   *zmasse(i, k)  
           ENDDO  
        ENDDO  
        DO i = 1, klon  
           z_factor(i) = (z_avant(i)-(rain_con(i) + snow_con(i))*dtphys) &  
                /z_apres(i)  
        ENDDO  
1035         DO k = 1, llm         DO k = 1, llm
1036            DO i = 1, klon            DO i = 1, klon
1037               IF (z_factor(i) > (1.0 + 1.0E-08) .OR. &               IF (z_factor(i) > 1. + 1E-8 .OR. z_factor(i) < 1. - 1E-8) THEN
                   z_factor(i) < (1.0-1.0E-08)) THEN  
1038                  q_seri(i, k) = q_seri(i, k) * z_factor(i)                  q_seri(i, k) = q_seri(i, k) * z_factor(i)
1039               ENDIF               ENDIF
1040            ENDDO            ENDDO
1041         ENDDO         ENDDO
1042      ENDIF      ENDIF
     zx_ajustq = .FALSE.  
1043    
1044      ! Convection sèche (thermiques ou ajustement)      ! Convection s\`eche (thermiques ou ajustement)
1045    
1046      d_t_ajs = 0.      d_t_ajs = 0.
1047      d_u_ajs = 0.      d_u_ajs = 0.
# Line 1310  contains Line 1062  contains
1062      endif      endif
1063    
1064      IF (if_ebil >= 2) THEN      IF (if_ebil >= 2) THEN
1065         ztit = 'after dry_adjust'         tit = 'after dry_adjust'
1066         CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &         CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &
1067              ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &              ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)
             d_ql, d_qs, d_ec)  
1068      END IF      END IF
1069    
1070      ! Caclul des ratqs      ! Caclul des ratqs
1071    
1072      ! ratqs convectifs a l'ancienne en fonction de q(z = 0)-q / q      ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q
1073      ! on ecrase le tableau ratqsc calcule par clouds_gno      ! on \'ecrase le tableau ratqsc calcul\'e par clouds_gno
1074      if (iflag_cldcon == 1) then      if (iflag_cldcon == 1) then
1075         do k = 1, llm         do k = 1, llm
1076            do i = 1, klon            do i = 1, klon
1077               if(ptconv(i, k)) then               if(ptconv(i, k)) then
1078                  ratqsc(i, k) = ratqsbas &                  ratqsc(i, k) = ratqsbas + fact_cldcon &
1079                       +fact_cldcon*(q_seri(i, 1)-q_seri(i, k))/q_seri(i, k)                       * (q_seri(i, 1) - q_seri(i, k)) / q_seri(i, k)
1080               else               else
1081                  ratqsc(i, k) = 0.                  ratqsc(i, k) = 0.
1082               endif               endif
# Line 1336  contains Line 1087  contains
1087      ! ratqs stables      ! ratqs stables
1088      do k = 1, llm      do k = 1, llm
1089         do i = 1, klon         do i = 1, klon
1090            ratqss(i, k) = ratqsbas + (ratqshaut-ratqsbas)* &            ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &
1091                 min((paprs(i, 1)-play(i, k))/(paprs(i, 1)-30000.), 1.)                 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)
1092         enddo         enddo
1093      enddo      enddo
1094    
1095      ! ratqs final      ! ratqs final
1096      if (iflag_cldcon == 1 .or.iflag_cldcon == 2) then      if (iflag_cldcon == 1 .or. iflag_cldcon == 2) then
1097         ! les ratqs sont une conbinaison de ratqss et ratqsc         ! les ratqs sont une conbinaison de ratqss et ratqsc
1098         ! ratqs final         ! ratqs final
1099         ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de         ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de
1100         ! relaxation des ratqs         ! relaxation des ratqs
1101         facteur = exp(-dtphys*facttemps)         ratqs = max(ratqs * exp(- dtphys * facttemps), ratqss)
        ratqs = max(ratqs*facteur, ratqss)  
1102         ratqs = max(ratqs, ratqsc)         ratqs = max(ratqs, ratqsc)
1103      else      else
1104         ! on ne prend que le ratqs stable pour fisrtilp         ! on ne prend que le ratqs stable pour fisrtilp
1105         ratqs = ratqss         ratqs = ratqss
1106      endif      endif
1107    
     ! Processus de condensation à grande echelle et processus de  
     ! précipitation :  
1108      CALL fisrtilp(dtphys, paprs, play, t_seri, q_seri, ptconv, ratqs, &      CALL fisrtilp(dtphys, paprs, play, t_seri, q_seri, ptconv, ratqs, &
1109           d_t_lsc, d_q_lsc, d_ql_lsc, rneb, cldliq, rain_lsc, snow_lsc, &           d_t_lsc, d_q_lsc, d_ql_lsc, rneb, cldliq, rain_lsc, snow_lsc, &
1110           pfrac_impa, pfrac_nucl, pfrac_1nucl, frac_impa, frac_nucl, prfl, &           pfrac_impa, pfrac_nucl, pfrac_1nucl, frac_impa, frac_nucl, prfl, &
# Line 1374  contains Line 1122  contains
1122         ENDDO         ENDDO
1123      ENDDO      ENDDO
1124      IF (check) THEN      IF (check) THEN
1125         za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)         za = qcheck(paprs, q_seri, ql_seri)
1126         print *,"apresilp = ", za         print *, "apresilp = ", za
1127         zx_t = 0.0         zx_t = 0.
1128         za = 0.0         za = 0.
1129         DO i = 1, klon         DO i = 1, klon
1130            za = za + airephy(i)/REAL(klon)            za = za + airephy(i)/REAL(klon)
1131            zx_t = zx_t + (rain_lsc(i) &            zx_t = zx_t + (rain_lsc(i) &
1132                 + snow_lsc(i))*airephy(i)/REAL(klon)                 + snow_lsc(i))*airephy(i)/REAL(klon)
1133         ENDDO         ENDDO
1134         zx_t = zx_t/za*dtphys         zx_t = zx_t/za*dtphys
1135         print *,"Precip = ", zx_t         print *, "Precip = ", zx_t
1136      ENDIF      ENDIF
1137    
1138      IF (if_ebil >= 2) THEN      IF (if_ebil >= 2) THEN
1139         ztit = 'after fisrt'         tit = 'after fisrt'
1140         CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &         CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &
1141              ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &              ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)
1142              d_ql, d_qs, d_ec)         call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &
1143         call diagphy(airephy, ztit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &              zero_v, zero_v, rain_lsc, snow_lsc, ztsol, d_h_vcol, d_qt, d_ec)
             zero_v, zero_v, rain_lsc, snow_lsc, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
1144      END IF      END IF
1145    
1146      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
1147    
1148      ! 1. NUAGES CONVECTIFS      ! 1. NUAGES CONVECTIFS
1149    
1150      IF (iflag_cldcon.le.-1) THEN ! seulement pour Tiedtke      IF (iflag_cldcon <= -1) THEN
1151           ! seulement pour Tiedtke
1152         snow_tiedtke = 0.         snow_tiedtke = 0.
1153         if (iflag_cldcon == -1) then         if (iflag_cldcon == -1) then
1154            rain_tiedtke = rain_con            rain_tiedtke = rain_con
# Line 1418  contains Line 1165  contains
1165         endif         endif
1166    
1167         ! Nuages diagnostiques pour Tiedtke         ! Nuages diagnostiques pour Tiedtke
1168         CALL diagcld1(paprs, play, &         CALL diagcld1(paprs, play, rain_tiedtke, snow_tiedtke, ibas_con, &
1169              rain_tiedtke, snow_tiedtke, ibas_con, itop_con, &              itop_con, diafra, dialiq)
             diafra, dialiq)  
1170         DO k = 1, llm         DO k = 1, llm
1171            DO i = 1, klon            DO i = 1, klon
1172               IF (diafra(i, k) > cldfra(i, k)) THEN               IF (diafra(i, k) > cldfra(i, k)) THEN
# Line 1430  contains Line 1176  contains
1176            ENDDO            ENDDO
1177         ENDDO         ENDDO
1178      ELSE IF (iflag_cldcon == 3) THEN      ELSE IF (iflag_cldcon == 3) THEN
1179         ! On prend pour les nuages convectifs le max du calcul de la         ! On prend pour les nuages convectifs le maximum du calcul de
1180         ! convection et du calcul du pas de temps précédent diminué d'un facteur         ! la convection et du calcul du pas de temps pr\'ec\'edent diminu\'e
1181         ! facttemps         ! d'un facteur facttemps.
1182         facteur = dtphys *facttemps         facteur = dtphys * facttemps
1183         do k = 1, llm         do k = 1, llm
1184            do i = 1, klon            do i = 1, klon
1185               rnebcon(i, k) = rnebcon(i, k)*facteur               rnebcon(i, k) = rnebcon(i, k) * facteur
1186               if (rnebcon0(i, k)*clwcon0(i, k) > rnebcon(i, k)*clwcon(i, k)) &               if (rnebcon0(i, k) * clwcon0(i, k) &
1187                    then                    > rnebcon(i, k) * clwcon(i, k)) then
1188                  rnebcon(i, k) = rnebcon0(i, k)                  rnebcon(i, k) = rnebcon0(i, k)
1189                  clwcon(i, k) = clwcon0(i, k)                  clwcon(i, k) = clwcon0(i, k)
1190               endif               endif
# Line 1465  contains Line 1211  contains
1211      ENDIF      ENDIF
1212    
1213      ! Precipitation totale      ! Precipitation totale
   
1214      DO i = 1, klon      DO i = 1, klon
1215         rain_fall(i) = rain_con(i) + rain_lsc(i)         rain_fall(i) = rain_con(i) + rain_lsc(i)
1216         snow_fall(i) = snow_con(i) + snow_lsc(i)         snow_fall(i) = snow_con(i) + snow_lsc(i)
1217      ENDDO      ENDDO
1218    
1219      IF (if_ebil >= 2) THEN      IF (if_ebil >= 2) CALL diagetpq(airephy, "after diagcld", ip_ebil, 2, 2, &
1220         ztit = "after diagcld"           dtphys, t_seri, q_seri, ql_seri, u_seri, v_seri, paprs, d_h_vcol, &
1221         CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &           d_qt, d_ec)
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
     END IF  
   
     ! Calculer l'humidite relative pour diagnostique  
1222    
1223        ! Humidit\'e relative pour diagnostic :
1224      DO k = 1, llm      DO k = 1, llm
1225         DO i = 1, klon         DO i = 1, klon
1226            zx_t = t_seri(i, k)            zx_t = t_seri(i, k)
# Line 1500  contains Line 1241  contains
1241            zqsat(i, k) = zx_qs            zqsat(i, k) = zx_qs
1242         ENDDO         ENDDO
1243      ENDDO      ENDDO
1244      !jq - introduce the aerosol direct and first indirect radiative forcings  
1245      !jq - Johannes Quaas, 27/11/2003 (quaas@lmd.jussieu.fr)      ! Introduce the aerosol direct and first indirect radiative forcings:
1246      IF (ok_ade.OR.ok_aie) THEN      IF (ok_ade .OR. ok_aie) THEN
1247         ! Get sulfate aerosol distribution         ! Get sulfate aerosol distribution :
1248         CALL readsulfate(rdayvrai, firstcal, sulfate)         CALL readsulfate(rdayvrai, firstcal, sulfate)
1249         CALL readsulfate_preind(rdayvrai, firstcal, sulfate_pi)         CALL readsulfate_preind(rdayvrai, firstcal, sulfate_pi)
1250    
1251         ! Calculate aerosol optical properties (Olivier Boucher)         CALL aeropt(play, paprs, t_seri, sulfate, rhcl, tau_ae, piz_ae, cg_ae, &
1252         CALL aeropt(play, paprs, t_seri, sulfate, rhcl, &              aerindex)
             tau_ae, piz_ae, cg_ae, aerindex)  
1253      ELSE      ELSE
1254         tau_ae = 0.0         tau_ae = 0.
1255         piz_ae = 0.0         piz_ae = 0.
1256         cg_ae = 0.0         cg_ae = 0.
1257      ENDIF      ENDIF
1258    
1259      ! Calculer les parametres optiques des nuages et quelques      ! Param\`etres optiques des nuages et quelques param\`etres pour
1260      ! parametres pour diagnostiques:      ! diagnostics :
   
1261      if (ok_newmicro) then      if (ok_newmicro) then
1262         CALL newmicro (paprs, play, ok_newmicro, &         CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &
1263              t_seri, cldliq, cldfra, cldtau, cldemi, &              cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc, ok_aie, &
1264              cldh, cldl, cldm, cldt, cldq, &              sulfate, sulfate_pi, bl95_b0, bl95_b1, cldtaupi, re, fl)
             flwp, fiwp, flwc, fiwc, &  
             ok_aie, &  
             sulfate, sulfate_pi, &  
             bl95_b0, bl95_b1, &  
             cldtaupi, re, fl)  
1265      else      else
1266         CALL nuage (paprs, play, &         CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &
1267              t_seri, cldliq, cldfra, cldtau, cldemi, &              cldl, cldm, cldt, cldq, ok_aie, sulfate, sulfate_pi, bl95_b0, &
1268              cldh, cldl, cldm, cldt, cldq, &              bl95_b1, cldtaupi, re, fl)
             ok_aie, &  
             sulfate, sulfate_pi, &  
             bl95_b0, bl95_b1, &  
             cldtaupi, re, fl)  
   
1269      endif      endif
1270    
1271      ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.      ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.
   
1272      IF (MOD(itaprad, radpas) == 0) THEN      IF (MOD(itaprad, radpas) == 0) THEN
1273         DO i = 1, klon         DO i = 1, klon
1274            albsol(i) = falbe(i, is_oce) * pctsrf(i, is_oce) &            albsol(i) = falbe(i, is_oce) * pctsrf(i, is_oce) &
# Line 1552  contains Line 1280  contains
1280                 + falblw(i, is_ter) * pctsrf(i, is_ter) &                 + falblw(i, is_ter) * pctsrf(i, is_ter) &
1281                 + falblw(i, is_sic) * pctsrf(i, is_sic)                 + falblw(i, is_sic) * pctsrf(i, is_sic)
1282         ENDDO         ENDDO
1283         ! nouveau rayonnement (compatible Arpege-IFS):         ! Rayonnement (compatible Arpege-IFS) :
1284         CALL radlwsw(dist, rmu0, fract, paprs, play, zxtsol, albsol, &         CALL radlwsw(dist, rmu0, fract, paprs, play, zxtsol, albsol, &
1285              albsollw, t_seri, q_seri, wo, cldfra, cldemi, cldtau, heat, &              albsollw, t_seri, q_seri, wo, cldfra, cldemi, cldtau, heat, &
1286              heat0, cool, cool0, radsol, albpla, topsw, toplw, solsw, sollw, &              heat0, cool, cool0, radsol, albpla, topsw, toplw, solsw, sollw, &
# Line 1567  contains Line 1295  contains
1295    
1296      DO k = 1, llm      DO k = 1, llm
1297         DO i = 1, klon         DO i = 1, klon
1298            t_seri(i, k) = t_seri(i, k) &            t_seri(i, k) = t_seri(i, k) + (heat(i, k)-cool(i, k)) * dtphys/86400.
                + (heat(i, k)-cool(i, k)) * dtphys/86400.  
1299         ENDDO         ENDDO
1300      ENDDO      ENDDO
1301    
1302      IF (if_ebil >= 2) THEN      IF (if_ebil >= 2) THEN
1303         ztit = 'after rad'         tit = 'after rad'
1304         CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &         CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &
1305              ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &              ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)
1306              d_ql, d_qs, d_ec)         call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, &
1307         call diagphy(airephy, ztit, ip_ebil, topsw, toplw, solsw, sollw, &              zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec)
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
1308      END IF      END IF
1309    
1310      ! Calculer l'hydrologie de la surface      ! Calculer l'hydrologie de la surface
1311      DO i = 1, klon      DO i = 1, klon
1312         zxqsurf(i) = 0.0         zxqsurf(i) = 0.
1313         zxsnow(i) = 0.0         zxsnow(i) = 0.
1314      ENDDO      ENDDO
1315      DO nsrf = 1, nbsrf      DO nsrf = 1, nbsrf
1316         DO i = 1, klon         DO i = 1, klon
# Line 1594  contains Line 1319  contains
1319         ENDDO         ENDDO
1320      ENDDO      ENDDO
1321    
1322      ! Calculer le bilan du sol et la dérive de température (couplage)      ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage)
1323    
1324      DO i = 1, klon      DO i = 1, klon
1325         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)
1326      ENDDO      ENDDO
1327    
1328      ! Paramétrisation de l'orographie à l'échelle sous-maille :      ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille :
1329    
1330      IF (ok_orodr) THEN      IF (ok_orodr) THEN
1331         ! selection des points pour lesquels le shema est actif:         ! selection des points pour lesquels le shema est actif:
1332         igwd = 0         igwd = 0
1333         DO i = 1, klon         DO i = 1, klon
1334            itest(i) = 0            itest(i) = 0
1335            IF (((zpic(i)-zmea(i)) > 100.).AND.(zstd(i) > 10.0)) THEN            IF (((zpic(i)-zmea(i)) > 100.).AND.(zstd(i) > 10.)) THEN
1336               itest(i) = 1               itest(i) = 1
1337               igwd = igwd + 1               igwd = igwd + 1
1338               idx(igwd) = i               idx(igwd) = i
# Line 1629  contains Line 1354  contains
1354      ENDIF      ENDIF
1355    
1356      IF (ok_orolf) THEN      IF (ok_orolf) THEN
1357         ! Sélection des points pour lesquels le schéma est actif :         ! S\'election des points pour lesquels le sch\'ema est actif :
1358         igwd = 0         igwd = 0
1359         DO i = 1, klon         DO i = 1, klon
1360            itest(i) = 0            itest(i) = 0
# Line 1654  contains Line 1379  contains
1379         ENDDO         ENDDO
1380      ENDIF      ENDIF
1381    
1382      ! STRESS NECESSAIRES: TOUTE LA PHYSIQUE      ! Stress n\'ecessaires : toute la physique
1383    
1384      DO i = 1, klon      DO i = 1, klon
1385         zustrph(i) = 0.         zustrph(i) = 0.
# Line 1662  contains Line 1387  contains
1387      ENDDO      ENDDO
1388      DO k = 1, llm      DO k = 1, llm
1389         DO i = 1, klon         DO i = 1, klon
1390            zustrph(i) = zustrph(i) + (u_seri(i, k)-u(i, k))/dtphys* zmasse(i, k)            zustrph(i) = zustrph(i) + (u_seri(i, k) - u(i, k)) / dtphys &
1391            zvstrph(i) = zvstrph(i) + (v_seri(i, k)-v(i, k))/dtphys* zmasse(i, k)                 * zmasse(i, k)
1392              zvstrph(i) = zvstrph(i) + (v_seri(i, k) - v(i, k)) / dtphys &
1393                   * zmasse(i, k)
1394         ENDDO         ENDDO
1395      ENDDO      ENDDO
1396    
1397      !IM calcul composantes axiales du moment angulaire et couple des montagnes      CALL aaam_bud(ra, rg, romega, rlat, rlon, pphis, zustrdr, zustrli, &
1398             zustrph, zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc)
     CALL aaam_bud(27, klon, llm, time, ra, rg, romega, rlat, rlon, pphis, &  
          zustrdr, zustrli, zustrph, zvstrdr, zvstrli, zvstrph, paprs, u, v, &  
          aam, torsfc)  
1399    
1400      IF (if_ebil >= 2) THEN      IF (if_ebil >= 2) CALL diagetpq(airephy, 'after orography', ip_ebil, 2, &
1401         ztit = 'after orography'           2, dtphys, t_seri, q_seri, ql_seri, u_seri, v_seri, paprs, d_h_vcol, &
1402         CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &           d_qt, d_ec)
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
     END IF  
1403    
1404      ! Calcul des tendances traceurs      ! Calcul des tendances traceurs
1405      call phytrac(rnpb, itap, lmt_pas, julien, time, firstcal, lafin, &      call phytrac(itap, lmt_pas, julien, time, firstcal, lafin, dtphys, u, t, &
1406           nqmx-2, dtphys, u, t, paprs, play, pmfu, pmfd, pen_u, pde_u, &           paprs, play, mfu, mfd, pde_u, pen_d, ycoefh, fm_therm, entr_therm, &
1407           pen_d, pde_d, ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, pctsrf, &           yu1, yv1, ftsol, pctsrf, frac_impa, frac_nucl, pphis, albsol, rhcl, &
1408           frac_impa, frac_nucl, pphis, albsol, rhcl, cldfra, rneb, &           cldfra, rneb, diafra, cldliq, pmflxr, pmflxs, prfl, psfl, da, phi, &
1409           diafra, cldliq, pmflxr, pmflxs, prfl, psfl, da, phi, mp, upwd, dnwd, &           mp, upwd, dnwd, tr_seri, zmasse)
1410           tr_seri, zmasse)  
1411        IF (offline) call phystokenc(dtphys, rlon, rlat, t, mfu, mfd, pen_u, &
1412      IF (offline) THEN           pde_u, pen_d, pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, &
1413         call phystokenc(dtphys, rlon, rlat, t, pmfu, pmfd, pen_u, pde_u, &           pctsrf, frac_impa, frac_nucl, pphis, airephy, dtphys, itap)
             pen_d, pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, &  
             pctsrf, frac_impa, frac_nucl, pphis, airephy, dtphys, itap)  
     ENDIF  
1414    
1415      ! Calculer le transport de l'eau et de l'energie (diagnostique)      ! Calculer le transport de l'eau et de l'energie (diagnostique)
1416      CALL transp(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, &      CALL transp(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, &
# Line 1700  contains Line 1418  contains
1418    
1419      ! diag. bilKP      ! diag. bilKP
1420    
1421      CALL transp_lay (paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, &      CALL transp_lay(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, &
1422           ve_lay, vq_lay, ue_lay, uq_lay)           ve_lay, vq_lay, ue_lay, uq_lay)
1423    
1424      ! Accumuler les variables a stocker dans les fichiers histoire:      ! Accumuler les variables a stocker dans les fichiers histoire:
# Line 1717  contains Line 1435  contains
1435      END DO      END DO
1436    
1437      IF (if_ebil >= 1) THEN      IF (if_ebil >= 1) THEN
1438         ztit = 'after physic'         tit = 'after physic'
1439         CALL diagetpq(airephy, ztit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &         CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &
1440              ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &              ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)
             d_ql, d_qs, d_ec)  
1441         ! Comme les tendances de la physique sont ajoute dans la dynamique,         ! Comme les tendances de la physique sont ajoute dans la dynamique,
1442         ! on devrait avoir que la variation d'entalpie par la dynamique         ! on devrait avoir que la variation d'entalpie par la dynamique
1443         ! est egale a la variation de la physique au pas de temps precedent.         ! est egale a la variation de la physique au pas de temps precedent.
1444         ! Donc la somme de ces 2 variations devrait etre nulle.         ! Donc la somme de ces 2 variations devrait etre nulle.
1445         call diagphy(airephy, ztit, ip_ebil, topsw, toplw, solsw, sollw, sens, &         call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, sens, &
1446              evap, rain_fall, snow_fall, ztsol, d_h_vcol, d_qt, d_ec, &              evap, rain_fall, snow_fall, ztsol, d_h_vcol, d_qt, d_ec)
             fs_bound, fq_bound)  
   
1447         d_h_vcol_phy = d_h_vcol         d_h_vcol_phy = d_h_vcol
   
1448      END IF      END IF
1449    
1450      ! SORTIES      ! SORTIES
1451    
1452      !cc prw = eau precipitable      ! prw = eau precipitable
1453      DO i = 1, klon      DO i = 1, klon
1454         prw(i) = 0.         prw(i) = 0.
1455         DO k = 1, llm         DO k = 1, llm
# Line 1755  contains Line 1469  contains
1469         ENDDO         ENDDO
1470      ENDDO      ENDDO
1471    
1472      IF (nqmx >= 3) THEN      DO iq = 3, nqmx
1473         DO iq = 3, nqmx         DO k = 1, llm
1474            DO k = 1, llm            DO i = 1, klon
1475               DO i = 1, klon               d_qx(i, k, iq) = (tr_seri(i, k, iq-2) - qx(i, k, iq)) / dtphys
                 d_qx(i, k, iq) = (tr_seri(i, k, iq-2) - qx(i, k, iq)) / dtphys  
              ENDDO  
1476            ENDDO            ENDDO
1477         ENDDO         ENDDO
1478      ENDIF      ENDDO
1479    
1480      ! Sauvegarder les valeurs de t et q a la fin de la physique:      ! Sauvegarder les valeurs de t et q a la fin de la physique:
1481      DO k = 1, llm      DO k = 1, llm
# Line 1774  contains Line 1486  contains
1486      ENDDO      ENDDO
1487    
1488      ! Ecriture des sorties      ! Ecriture des sorties
     call write_histhf  
     call write_histday  
1489      call write_histins      call write_histins
1490    
1491      ! Si c'est la fin, il faut conserver l'etat de redemarrage      ! Si c'est la fin, il faut conserver l'etat de redemarrage
# Line 1783  contains Line 1493  contains
1493         itau_phy = itau_phy + itap         itau_phy = itau_phy + itap
1494         CALL phyredem("restartphy.nc", rlat, rlon, pctsrf, ftsol, ftsoil, &         CALL phyredem("restartphy.nc", rlat, rlon, pctsrf, ftsol, ftsoil, &
1495              tslab, seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, &              tslab, seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, &
1496              rain_fall, snow_fall, solsw, sollwdown, dlw, radsol, frugs, &              rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, &
1497              agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, &              agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, &
1498              q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0)              q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01)
1499      ENDIF      ENDIF
1500    
1501      firstcal = .FALSE.      firstcal = .FALSE.
1502    
1503    contains    contains
1504    
     subroutine write_histday  
   
       use gr_phy_write_3d_m, only: gr_phy_write_3d  
       integer itau_w ! pas de temps ecriture  
   
       !------------------------------------------------  
   
       if (ok_journe) THEN  
          itau_w = itau_phy + itap  
          if (nqmx <= 4) then  
             call histwrite(nid_day, "Sigma_O3_Royer", itau_w, &  
                  gr_phy_write_3d(wo) * 1e3)  
             ! (convert "wo" from kDU to DU)  
          end if  
          if (ok_sync) then  
             call histsync(nid_day)  
          endif  
       ENDIF  
   
     End subroutine write_histday  
   
     !****************************  
   
     subroutine write_histhf  
   
       ! From phylmd/write_histhf.h, version 1.5 2005/05/25 13:10:09  
   
       !------------------------------------------------  
   
       call write_histhf3d  
   
       IF (ok_sync) THEN  
          call histsync(nid_hf)  
       ENDIF  
   
     end subroutine write_histhf  
   
     !***************************************************************  
   
1505      subroutine write_histins      subroutine write_histins
1506    
1507        ! From phylmd/write_histins.h, version 1.2 2005/05/25 13:10:09        ! From phylmd/write_histins.h, version 1.2 2005/05/25 13:10:09
1508    
1509          use dimens_m, only: iim, jjm
1510          USE histsync_m, ONLY: histsync
1511          USE histwrite_m, ONLY: histwrite
1512    
1513        real zout        real zout
1514        integer itau_w ! pas de temps ecriture        integer itau_w ! pas de temps ecriture
1515          REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm)
1516    
1517        !--------------------------------------------------        !--------------------------------------------------
1518    
# Line 1848  contains Line 1524  contains
1524           itau_w = itau_phy + itap           itau_w = itau_phy + itap
1525    
1526           i = NINT(zout/zsto)           i = NINT(zout/zsto)
1527           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), pphis, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, pphis, zx_tmp_2d)
1528           CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d)
1529    
1530           i = NINT(zout/zsto)           i = NINT(zout/zsto)
1531           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), airephy, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, airephy, zx_tmp_2d)
1532           CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d)
1533    
1534           DO i = 1, klon           DO i = 1, klon
1535              zx_tmp_fi2d(i) = paprs(i, 1)              zx_tmp_fi2d(i) = paprs(i, 1)
1536           ENDDO           ENDDO
1537           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)
1538           CALL histwrite(nid_ins, "psol", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "psol", itau_w, zx_tmp_2d)
1539    
1540           DO i = 1, klon           DO i = 1, klon
1541              zx_tmp_fi2d(i) = rain_fall(i) + snow_fall(i)              zx_tmp_fi2d(i) = rain_fall(i) + snow_fall(i)
1542           ENDDO           ENDDO
1543           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)
1544           CALL histwrite(nid_ins, "precip", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "precip", itau_w, zx_tmp_2d)
1545    
1546           DO i = 1, klon           DO i = 1, klon
1547              zx_tmp_fi2d(i) = rain_lsc(i) + snow_lsc(i)              zx_tmp_fi2d(i) = rain_lsc(i) + snow_lsc(i)
1548           ENDDO           ENDDO
1549           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)
1550           CALL histwrite(nid_ins, "plul", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "plul", itau_w, zx_tmp_2d)
1551    
1552           DO i = 1, klon           DO i = 1, klon
1553              zx_tmp_fi2d(i) = rain_con(i) + snow_con(i)              zx_tmp_fi2d(i) = rain_con(i) + snow_con(i)
1554           ENDDO           ENDDO
1555           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)
1556           CALL histwrite(nid_ins, "pluc", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "pluc", itau_w, zx_tmp_2d)
1557    
1558           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zxtsol, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxtsol, zx_tmp_2d)
1559           CALL histwrite(nid_ins, "tsol", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "tsol", itau_w, zx_tmp_2d)
1560           !ccIM           !ccIM
1561           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zt2m, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zt2m, zx_tmp_2d)
1562           CALL histwrite(nid_ins, "t2m", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "t2m", itau_w, zx_tmp_2d)
1563    
1564           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zq2m, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zq2m, zx_tmp_2d)
1565           CALL histwrite(nid_ins, "q2m", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "q2m", itau_w, zx_tmp_2d)
1566    
1567           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zu10m, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zu10m, zx_tmp_2d)
1568           CALL histwrite(nid_ins, "u10m", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "u10m", itau_w, zx_tmp_2d)
1569    
1570           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zv10m, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zv10m, zx_tmp_2d)
1571           CALL histwrite(nid_ins, "v10m", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "v10m", itau_w, zx_tmp_2d)
1572    
1573           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), snow_fall, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, snow_fall, zx_tmp_2d)
1574           CALL histwrite(nid_ins, "snow", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "snow", itau_w, zx_tmp_2d)
1575    
1576           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), cdragm, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragm, zx_tmp_2d)
1577           CALL histwrite(nid_ins, "cdrm", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "cdrm", itau_w, zx_tmp_2d)
1578    
1579           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), cdragh, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragh, zx_tmp_2d)
1580           CALL histwrite(nid_ins, "cdrh", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "cdrh", itau_w, zx_tmp_2d)
1581    
1582           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), toplw, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, toplw, zx_tmp_2d)
1583           CALL histwrite(nid_ins, "topl", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "topl", itau_w, zx_tmp_2d)
1584    
1585           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), evap, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, evap, zx_tmp_2d)
1586           CALL histwrite(nid_ins, "evap", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "evap", itau_w, zx_tmp_2d)
1587    
1588           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), solsw, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, solsw, zx_tmp_2d)
1589           CALL histwrite(nid_ins, "sols", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "sols", itau_w, zx_tmp_2d)
1590    
1591           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sollw, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollw, zx_tmp_2d)
1592           CALL histwrite(nid_ins, "soll", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "soll", itau_w, zx_tmp_2d)
1593    
1594           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sollwdown, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollwdown, zx_tmp_2d)
1595           CALL histwrite(nid_ins, "solldown", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "solldown", itau_w, zx_tmp_2d)
1596    
1597           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), bils, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, bils, zx_tmp_2d)
1598           CALL histwrite(nid_ins, "bils", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "bils", itau_w, zx_tmp_2d)
1599    
1600           zx_tmp_fi2d(1:klon) = -1*sens(1:klon)           zx_tmp_fi2d(1:klon) = -1*sens(1:klon)
1601           ! CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sens, zx_tmp_2d)           ! CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sens, zx_tmp_2d)
1602           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)
1603           CALL histwrite(nid_ins, "sens", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "sens", itau_w, zx_tmp_2d)
1604    
1605           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), fder, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, fder, zx_tmp_2d)
1606           CALL histwrite(nid_ins, "fder", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "fder", itau_w, zx_tmp_2d)
1607    
1608           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_oce), zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_oce), zx_tmp_2d)
1609           CALL histwrite(nid_ins, "dtsvdfo", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "dtsvdfo", itau_w, zx_tmp_2d)
1610    
1611           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_ter), zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_ter), zx_tmp_2d)
1612           CALL histwrite(nid_ins, "dtsvdft", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "dtsvdft", itau_w, zx_tmp_2d)
1613    
1614           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_lic), zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_lic), zx_tmp_2d)
1615           CALL histwrite(nid_ins, "dtsvdfg", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "dtsvdfg", itau_w, zx_tmp_2d)
1616    
1617           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_sic), zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_sic), zx_tmp_2d)
1618           CALL histwrite(nid_ins, "dtsvdfi", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "dtsvdfi", itau_w, zx_tmp_2d)
1619    
1620           DO nsrf = 1, nbsrf           DO nsrf = 1, nbsrf
1621              !XXX              !XXX
1622              zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf)*100.              zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf)*100.
1623              CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)              CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)
1624              CALL histwrite(nid_ins, "pourc_"//clnsurf(nsrf), itau_w, &              CALL histwrite(nid_ins, "pourc_"//clnsurf(nsrf), itau_w, &
1625                   zx_tmp_2d)                   zx_tmp_2d)
1626    
1627              zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf)              zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf)
1628              CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)              CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)
1629              CALL histwrite(nid_ins, "fract_"//clnsurf(nsrf), itau_w, &              CALL histwrite(nid_ins, "fract_"//clnsurf(nsrf), itau_w, &
1630                   zx_tmp_2d)                   zx_tmp_2d)
1631    
1632              zx_tmp_fi2d(1 : klon) = fluxt(1 : klon, 1, nsrf)              zx_tmp_fi2d(1 : klon) = fluxt(1 : klon, 1, nsrf)
1633              CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)              CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)
1634              CALL histwrite(nid_ins, "sens_"//clnsurf(nsrf), itau_w, &              CALL histwrite(nid_ins, "sens_"//clnsurf(nsrf), itau_w, &
1635                   zx_tmp_2d)                   zx_tmp_2d)
1636    
1637              zx_tmp_fi2d(1 : klon) = fluxlat(1 : klon, nsrf)              zx_tmp_fi2d(1 : klon) = fluxlat(1 : klon, nsrf)
1638              CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)              CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)
1639              CALL histwrite(nid_ins, "lat_"//clnsurf(nsrf), itau_w, &              CALL histwrite(nid_ins, "lat_"//clnsurf(nsrf), itau_w, &
1640                   zx_tmp_2d)                   zx_tmp_2d)
1641    
1642              zx_tmp_fi2d(1 : klon) = ftsol(1 : klon, nsrf)              zx_tmp_fi2d(1 : klon) = ftsol(1 : klon, nsrf)
1643              CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)              CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)
1644              CALL histwrite(nid_ins, "tsol_"//clnsurf(nsrf), itau_w, &              CALL histwrite(nid_ins, "tsol_"//clnsurf(nsrf), itau_w, &
1645                   zx_tmp_2d)                   zx_tmp_2d)
1646    
1647              zx_tmp_fi2d(1 : klon) = fluxu(1 : klon, 1, nsrf)              zx_tmp_fi2d(1 : klon) = fluxu(1 : klon, 1, nsrf)
1648              CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)              CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)
1649              CALL histwrite(nid_ins, "taux_"//clnsurf(nsrf), itau_w, &              CALL histwrite(nid_ins, "taux_"//clnsurf(nsrf), itau_w, &
1650                   zx_tmp_2d)                   zx_tmp_2d)
1651    
1652              zx_tmp_fi2d(1 : klon) = fluxv(1 : klon, 1, nsrf)              zx_tmp_fi2d(1 : klon) = fluxv(1 : klon, 1, nsrf)
1653              CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)              CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)
1654              CALL histwrite(nid_ins, "tauy_"//clnsurf(nsrf), itau_w, &              CALL histwrite(nid_ins, "tauy_"//clnsurf(nsrf), itau_w, &
1655                   zx_tmp_2d)                   zx_tmp_2d)
1656    
1657              zx_tmp_fi2d(1 : klon) = frugs(1 : klon, nsrf)              zx_tmp_fi2d(1 : klon) = frugs(1 : klon, nsrf)
1658              CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)              CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)
1659              CALL histwrite(nid_ins, "rugs_"//clnsurf(nsrf), itau_w, &              CALL histwrite(nid_ins, "rugs_"//clnsurf(nsrf), itau_w, &
1660                   zx_tmp_2d)                   zx_tmp_2d)
1661    
1662              zx_tmp_fi2d(1 : klon) = falbe(1 : klon, nsrf)              zx_tmp_fi2d(1 : klon) = falbe(1 : klon, nsrf)
1663              CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)              CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)
1664              CALL histwrite(nid_ins, "albe_"//clnsurf(nsrf), itau_w, &              CALL histwrite(nid_ins, "albe_"//clnsurf(nsrf), itau_w, &
1665                   zx_tmp_2d)                   zx_tmp_2d)
1666    
1667           END DO           END DO
1668           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), albsol, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsol, zx_tmp_2d)
1669           CALL histwrite(nid_ins, "albs", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "albs", itau_w, zx_tmp_2d)
1670           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), albsollw, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsollw, zx_tmp_2d)
1671           CALL histwrite(nid_ins, "albslw", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "albslw", itau_w, zx_tmp_2d)
1672    
1673           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zxrugs, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxrugs, zx_tmp_2d)
1674           CALL histwrite(nid_ins, "rugs", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "rugs", itau_w, zx_tmp_2d)
1675    
1676           !HBTM2           !HBTM2
1677    
1678           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_pblh, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblh, zx_tmp_2d)
1679           CALL histwrite(nid_ins, "s_pblh", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "s_pblh", itau_w, zx_tmp_2d)
1680    
1681           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_pblt, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblt, zx_tmp_2d)
1682           CALL histwrite(nid_ins, "s_pblt", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "s_pblt", itau_w, zx_tmp_2d)
1683    
1684           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_lcl, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_lcl, zx_tmp_2d)
1685           CALL histwrite(nid_ins, "s_lcl", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "s_lcl", itau_w, zx_tmp_2d)
1686    
1687           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_capCL, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_capCL, zx_tmp_2d)
1688           CALL histwrite(nid_ins, "s_capCL", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "s_capCL", itau_w, zx_tmp_2d)
1689    
1690           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_oliqCL, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_oliqCL, zx_tmp_2d)
1691           CALL histwrite(nid_ins, "s_oliqCL", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "s_oliqCL", itau_w, zx_tmp_2d)
1692    
1693           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_cteiCL, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_cteiCL, zx_tmp_2d)
1694           CALL histwrite(nid_ins, "s_cteiCL", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "s_cteiCL", itau_w, zx_tmp_2d)
1695    
1696           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_therm, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_therm, zx_tmp_2d)
1697           CALL histwrite(nid_ins, "s_therm", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "s_therm", itau_w, zx_tmp_2d)
1698    
1699           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb1, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb1, zx_tmp_2d)
1700           CALL histwrite(nid_ins, "s_trmb1", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "s_trmb1", itau_w, zx_tmp_2d)
1701    
1702           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb2, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb2, zx_tmp_2d)
1703           CALL histwrite(nid_ins, "s_trmb2", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "s_trmb2", itau_w, zx_tmp_2d)
1704    
1705           CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb3, zx_tmp_2d)           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb3, zx_tmp_2d)
1706           CALL histwrite(nid_ins, "s_trmb3", itau_w, zx_tmp_2d)           CALL histwrite(nid_ins, "s_trmb3", itau_w, zx_tmp_2d)
1707    
1708           ! Champs 3D:           ! Champs 3D:
1709    
1710           CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), t_seri, zx_tmp_3d)           CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, t_seri, zx_tmp_3d)
1711           CALL histwrite(nid_ins, "temp", itau_w, zx_tmp_3d)           CALL histwrite(nid_ins, "temp", itau_w, zx_tmp_3d)
1712    
1713           CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), u_seri, zx_tmp_3d)           CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, u_seri, zx_tmp_3d)
1714           CALL histwrite(nid_ins, "vitu", itau_w, zx_tmp_3d)           CALL histwrite(nid_ins, "vitu", itau_w, zx_tmp_3d)
1715    
1716           CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), v_seri, zx_tmp_3d)           CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, v_seri, zx_tmp_3d)
1717           CALL histwrite(nid_ins, "vitv", itau_w, zx_tmp_3d)           CALL histwrite(nid_ins, "vitv", itau_w, zx_tmp_3d)
1718    
1719           CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), zphi, zx_tmp_3d)           CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, zphi, zx_tmp_3d)
1720           CALL histwrite(nid_ins, "geop", itau_w, zx_tmp_3d)           CALL histwrite(nid_ins, "geop", itau_w, zx_tmp_3d)
1721    
1722           CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), play, zx_tmp_3d)           CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, play, zx_tmp_3d)
1723           CALL histwrite(nid_ins, "pres", itau_w, zx_tmp_3d)           CALL histwrite(nid_ins, "pres", itau_w, zx_tmp_3d)
1724    
1725           CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), d_t_vdf, zx_tmp_3d)           CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_t_vdf, zx_tmp_3d)
1726           CALL histwrite(nid_ins, "dtvdf", itau_w, zx_tmp_3d)           CALL histwrite(nid_ins, "dtvdf", itau_w, zx_tmp_3d)
1727    
1728           CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), d_q_vdf, zx_tmp_3d)           CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_q_vdf, zx_tmp_3d)
1729           CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d)           CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d)
1730    
1731           if (ok_sync) then           call histsync(nid_ins)
             call histsync(nid_ins)  
          endif  
1732        ENDIF        ENDIF
1733    
1734      end subroutine write_histins      end subroutine write_histins
1735    
     !****************************************************  
   
     subroutine write_histhf3d  
   
       ! From phylmd/write_histhf3d.h, version 1.2 2005/05/25 13:10:09  
   
       integer itau_w ! pas de temps ecriture  
   
       !-------------------------------------------------------  
   
       itau_w = itau_phy + itap  
   
       ! Champs 3D:  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), t_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "temp", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), qx(1, 1, ivap), zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "ovap", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), u_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitu", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), v_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitv", itau_w, zx_tmp_3d)  
   
       if (nbtr >= 3) then  
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), tr_seri(1, 1, 3), &  
               zx_tmp_3d)  
          CALL histwrite(nid_hf3d, "O3", itau_w, zx_tmp_3d)  
       end if  
   
       if (ok_sync) then  
          call histsync(nid_hf3d)  
       endif  
   
     end subroutine write_histhf3d  
   
1736    END SUBROUTINE physiq    END SUBROUTINE physiq
1737    
1738  end module physiq_m  end module physiq_m

Legend:
Removed from v.51  
changed lines
  Added in v.101

  ViewVC Help
Powered by ViewVC 1.1.21