/[lmdze]/trunk/phylmd/physiq.f
ViewVC logotype

Diff of /trunk/phylmd/physiq.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/physiq.f90 revision 12 by guez, Mon Jul 21 16:05:07 2008 UTC trunk/Sources/phylmd/physiq.f revision 226 by guez, Mon Oct 16 13:04:05 2017 UTC
# Line 1  Line 1 
1  module physiq_m  module physiq_m
2    
   ! This module is clean: no C preprocessor directive, no include line.  
   
3    IMPLICIT none    IMPLICIT none
4    
   private  
   public physiq  
   
5  contains  contains
6    
7    SUBROUTINE physiq(nq, firstcal, lafin, rdayvrai, gmtime, pdtphys, paprs, &    SUBROUTINE physiq(lafin, dayvrai, time, paprs, play, pphi, pphis, u, v, t, &
8         pplay, pphi, pphis, presnivs, clesphy0, u, v, t, qx, omega, d_u, d_v, &         qx, omega, d_u, d_v, d_t, d_qx)
        d_t, d_qx, d_ps, dudyn, PVteta)  
   
     ! From phylmd/physiq.F, v 1.22 2006/02/20 09:38:28  
   
     ! Author : Z.X. Li (LMD/CNRS), date: 1993/08/18  
   
     ! Objet: Moniteur general de la physique du modele  
     !AA      Modifications quant aux traceurs :  
     !AA                  -  uniformisation des parametrisations ds phytrac  
     !AA                  -  stockage des moyennes des champs necessaires  
     !AA                     en mode traceur off-line  
   
     USE ioipsl, only: ymds2ju, histwrite, histsync  
     use dimens_m, only: jjm, iim, llm  
     use indicesol, only: nbsrf, is_ter, is_lic, is_sic, is_oce, &  
          clnsurf, epsfra  
     use dimphy, only: klon, nbtr  
     use conf_gcm_m, only: raz_date, offline, iphysiq  
     use dimsoil, only: nsoilmx  
     use temps, only: itau_phy, day_ref, annee_ref, itaufin  
     use clesphys, only: ecrit_hf, ecrit_hf2mth, &  
          ecrit_ins, ecrit_mth, ecrit_day, &  
          cdmmax, cdhmax, &  
          co2_ppm, ecrit_reg, ecrit_tra, ksta, ksta_ter, &  
          ok_kzmin  
     use clesphys2, only: iflag_con, ok_orolf, ok_orodr, nbapp_rad, &  
          cycle_diurne, new_oliq, soil_model  
     use iniprint, only: prt_level  
     use abort_gcm_m, only: abort_gcm  
     use YOMCST, only: rcpd, rtt, rlvtt, rg, ra, rsigma, retv, romega  
     use comgeomphy  
     use ctherm  
     use phytrac_m, only: phytrac  
     use oasis_m  
     use radepsi  
     use radopt  
     use yoethf  
     use ini_hist, only: ini_histhf, ini_histday, ini_histins  
     use orbite_m, only: orbite, zenang  
     use phyetat0_m, only: phyetat0, rlat, rlon  
     use hgardfou_m, only: hgardfou  
     use conf_phys_m, only: conf_phys  
   
     ! Declaration des constantes et des fonctions thermodynamiques :  
     use fcttre, only: thermcep, foeew, qsats, qsatl  
   
     ! Variables argument:  
   
     INTEGER nq ! input nombre de traceurs (y compris vapeur d'eau)  
     REAL, intent(in):: rdayvrai ! input numero du jour de l'experience  
     REAL, intent(in):: gmtime ! heure de la journée en fraction de jour  
     REAL, intent(in):: pdtphys ! pas d'integration pour la physique (seconde)  
     LOGICAL, intent(in):: firstcal ! first call to "calfis"  
     logical, intent(in):: lafin ! dernier passage  
9    
10      REAL, intent(in):: paprs(klon, llm+1)      ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28
11      ! (pression pour chaque inter-couche, en Pa)      ! (subversion revision 678)
       
     REAL, intent(in):: pplay(klon, llm)  
     ! (input pression pour le mileu de chaque couche (en Pa))  
12    
13      REAL pphi(klon, llm)        ! Author: Z. X. Li (LMD/CNRS) 1993
     ! (input geopotentiel de chaque couche (g z) (reference sol))  
14    
15      REAL pphis(klon) ! input geopotentiel du sol      ! This is the main procedure for the "physics" part of the program.
16    
17        use aaam_bud_m, only: aaam_bud
18        USE abort_gcm_m, ONLY: abort_gcm
19        use ajsec_m, only: ajsec
20        use calltherm_m, only: calltherm
21        USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ksta, ksta_ter, ok_kzmin, &
22             ok_instan
23        USE clesphys2, ONLY: conv_emanuel, nbapp_rad, new_oliq, ok_orodr, ok_orolf
24        USE clmain_m, ONLY: clmain
25        use clouds_gno_m, only: clouds_gno
26        use comconst, only: dtphys
27        USE comgeomphy, ONLY: airephy
28        USE concvl_m, ONLY: concvl
29        USE conf_gcm_m, ONLY: lmt_pas
30        USE conf_phys_m, ONLY: conf_phys
31        use conflx_m, only: conflx
32        USE ctherm, ONLY: iflag_thermals, nsplit_thermals
33        use diagcld2_m, only: diagcld2
34        USE dimens_m, ONLY: llm, nqmx
35        USE dimphy, ONLY: klon
36        USE dimsoil, ONLY: nsoilmx
37        use drag_noro_m, only: drag_noro
38        use dynetat0_m, only: day_ref, annee_ref
39        USE fcttre, ONLY: foeew
40        use fisrtilp_m, only: fisrtilp
41        USE hgardfou_m, ONLY: hgardfou
42        USE histsync_m, ONLY: histsync
43        USE histwrite_phy_m, ONLY: histwrite_phy
44        USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &
45             nbsrf
46        USE ini_histins_m, ONLY: ini_histins, nid_ins
47        use netcdf95, only: NF95_CLOSE
48        use newmicro_m, only: newmicro
49        use nr_util, only: assert
50        use nuage_m, only: nuage
51        USE orbite_m, ONLY: orbite
52        USE ozonecm_m, ONLY: ozonecm
53        USE phyetat0_m, ONLY: phyetat0, rlat, rlon
54        USE phyredem_m, ONLY: phyredem
55        USE phyredem0_m, ONLY: phyredem0
56        USE phytrac_m, ONLY: phytrac
57        use radlwsw_m, only: radlwsw
58        use yoegwd, only: sugwd
59        USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt, rmo3, md
60        use time_phylmdz, only: itap, increment_itap
61        use transp_m, only: transp
62        use transp_lay_m, only: transp_lay
63        use unit_nml_m, only: unit_nml
64        USE ymds2ju_m, ONLY: ymds2ju
65        USE yoethf_m, ONLY: r2es, rvtmp2
66        use zenang_m, only: zenang
67    
68      REAL presnivs(llm)      logical, intent(in):: lafin ! dernier passage
     ! (input pressions approximat. des milieux couches ( en PA))  
   
     REAL u(klon, llm)  ! input vitesse dans la direction X (de O a E) en m/s  
     REAL v(klon, llm)  ! input vitesse Y (de S a N) en m/s  
     REAL t(klon, llm)  ! input temperature (K)  
   
     REAL, intent(in):: qx(klon, llm, nq)  
     ! (humidite specifique (kg/kg) et fractions massiques des autres traceurs)  
   
     REAL omega(klon, llm)  ! input vitesse verticale en Pa/s  
     REAL d_u(klon, llm)  ! output tendance physique de "u" (m/s/s)  
     REAL d_v(klon, llm)  ! output tendance physique de "v" (m/s/s)  
     REAL d_t(klon, llm)  ! output tendance physique de "t" (K/s)  
     REAL d_qx(klon, llm, nq)  ! output tendance physique de "qx" (kg/kg/s)  
     REAL d_ps(klon)  ! output tendance physique de la pression au sol  
   
     INTEGER nbteta  
     PARAMETER(nbteta=3)  
   
     REAL PVteta(klon, nbteta)  
     ! (output vorticite potentielle a des thetas constantes)  
   
     LOGICAL ok_cvl  ! pour activer le nouveau driver pour convection KE  
     PARAMETER (ok_cvl=.TRUE.)  
     LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface  
     PARAMETER (ok_gust=.FALSE.)  
   
     LOGICAL check ! Verifier la conservation du modele en eau  
     PARAMETER (check=.FALSE.)  
     LOGICAL ok_stratus ! Ajouter artificiellement les stratus  
     PARAMETER (ok_stratus=.FALSE.)  
   
     ! Parametres lies au coupleur OASIS:  
     INTEGER, SAVE :: npas, nexca  
     logical rnpb  
     parameter(rnpb=.true.)  
   
     character(len=6), save:: ocean  
     ! (type de modèle océan à utiliser: "force" ou "slab" mais pas "couple")  
   
     logical ok_ocean  
     SAVE ok_ocean  
   
     !IM "slab" ocean  
     REAL tslab(klon)    !Temperature du slab-ocean  
     SAVE tslab  
     REAL seaice(klon)   !glace de mer (kg/m2)  
     SAVE seaice  
     REAL fluxo(klon)    !flux turbulents ocean-glace de mer  
     REAL fluxg(klon)    !flux turbulents ocean-atmosphere  
   
     ! Modele thermique du sol, a activer pour le cycle diurne:  
     logical ok_veget  
     save ok_veget  
     LOGICAL ok_journe ! sortir le fichier journalier  
     save ok_journe  
   
     LOGICAL ok_mensuel ! sortir le fichier mensuel  
69    
70      LOGICAL ok_instan ! sortir le fichier instantane      integer, intent(in):: dayvrai
71      save ok_instan      ! current day number, based at value 1 on January 1st of annee_ref
72    
73      LOGICAL ok_region ! sortir le fichier regional      REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour
     PARAMETER (ok_region=.FALSE.)  
74    
75      !     pour phsystoke avec thermiques      REAL, intent(in):: paprs(:, :) ! (klon, llm + 1)
76      REAL fm_therm(klon, llm+1)      ! pression pour chaque inter-couche, en Pa
     REAL entr_therm(klon, llm)  
     real q2(klon, llm+1, nbsrf)  
     save q2  
77    
78      INTEGER ivap          ! indice de traceurs pour vapeur d'eau      REAL, intent(in):: play(:, :) ! (klon, llm)
79      PARAMETER (ivap=1)      ! pression pour le mileu de chaque couche (en Pa)
     INTEGER iliq          ! indice de traceurs pour eau liquide  
     PARAMETER (iliq=2)  
   
     REAL t_ancien(klon, llm), q_ancien(klon, llm)  
     SAVE t_ancien, q_ancien  
     LOGICAL ancien_ok  
     SAVE ancien_ok  
80    
81      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K/s)      REAL, intent(in):: pphi(:, :) ! (klon, llm)
82      REAL d_q_dyn(klon, llm)  ! tendance dynamique pour "q" (kg/kg/s)      ! géopotentiel de chaque couche (référence sol)
83    
84      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)      REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol
85    
86      !IM Amip2 PV a theta constante      REAL, intent(in):: u(:, :) ! (klon, llm)
87        ! vitesse dans la direction X (de O a E) en m / s
88    
89      CHARACTER(LEN=3) ctetaSTD(nbteta)      REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m / s
90      DATA ctetaSTD/'350', '380', '405'/      REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)
     REAL rtetaSTD(nbteta)  
     DATA rtetaSTD/350., 380., 405./  
   
     !MI Amip2 PV a theta constante  
   
     INTEGER klevp1  
     PARAMETER(klevp1=llm+1)  
   
     REAL swdn0(klon, klevp1), swdn(klon, klevp1)  
     REAL swup0(klon, klevp1), swup(klon, klevp1)  
     SAVE swdn0, swdn, swup0, swup  
   
     REAL SWdn200clr(klon), SWdn200(klon)  
     REAL SWup200clr(klon), SWup200(klon)  
     SAVE SWdn200clr, SWdn200, SWup200clr, SWup200  
   
     REAL lwdn0(klon, klevp1), lwdn(klon, klevp1)  
     REAL lwup0(klon, klevp1), lwup(klon, klevp1)  
     SAVE lwdn0, lwdn, lwup0, lwup  
   
     REAL LWdn200clr(klon), LWdn200(klon)  
     REAL LWup200clr(klon), LWup200(klon)  
     SAVE LWdn200clr, LWdn200, LWup200clr, LWup200  
   
     !IM Amip2  
     ! variables a une pression donnee  
   
     integer nlevSTD  
     PARAMETER(nlevSTD=17)  
     real rlevSTD(nlevSTD)  
     DATA rlevSTD/100000., 92500., 85000., 70000., &  
          60000., 50000., 40000., 30000., 25000., 20000., &  
          15000., 10000., 7000., 5000., 3000., 2000., 1000./  
     CHARACTER(LEN=4) clevSTD(nlevSTD)  
     DATA clevSTD/'1000', '925 ', '850 ', '700 ', '600 ', &  
          '500 ', '400 ', '300 ', '250 ', '200 ', '150 ', '100 ', &  
          '70  ', '50  ', '30  ', '20  ', '10  '/  
   
     real tlevSTD(klon, nlevSTD), qlevSTD(klon, nlevSTD)  
     real rhlevSTD(klon, nlevSTD), philevSTD(klon, nlevSTD)  
     real ulevSTD(klon, nlevSTD), vlevSTD(klon, nlevSTD)  
     real wlevSTD(klon, nlevSTD)  
   
     ! nout : niveau de output des variables a une pression donnee  
     INTEGER nout  
     PARAMETER(nout=3) !nout=1 : day; =2 : mth; =3 : NMC  
   
     REAL tsumSTD(klon, nlevSTD, nout)  
     REAL usumSTD(klon, nlevSTD, nout), vsumSTD(klon, nlevSTD, nout)  
     REAL wsumSTD(klon, nlevSTD, nout), phisumSTD(klon, nlevSTD, nout)  
     REAL qsumSTD(klon, nlevSTD, nout), rhsumSTD(klon, nlevSTD, nout)  
   
     SAVE tsumSTD, usumSTD, vsumSTD, wsumSTD, phisumSTD,  &  
          qsumSTD, rhsumSTD  
   
     logical oknondef(klon, nlevSTD, nout)  
     real tnondef(klon, nlevSTD, nout)  
     save tnondef  
   
     ! les produits uvSTD, vqSTD, .., T2STD sont calcules  
     ! a partir des valeurs instantannees toutes les 6 h  
     ! qui sont moyennees sur le mois  
   
     real uvSTD(klon, nlevSTD)  
     real vqSTD(klon, nlevSTD)  
     real vTSTD(klon, nlevSTD)  
     real wqSTD(klon, nlevSTD)  
   
     real uvsumSTD(klon, nlevSTD, nout)  
     real vqsumSTD(klon, nlevSTD, nout)  
     real vTsumSTD(klon, nlevSTD, nout)  
     real wqsumSTD(klon, nlevSTD, nout)  
   
     real vphiSTD(klon, nlevSTD)  
     real wTSTD(klon, nlevSTD)  
     real u2STD(klon, nlevSTD)  
     real v2STD(klon, nlevSTD)  
     real T2STD(klon, nlevSTD)  
   
     real vphisumSTD(klon, nlevSTD, nout)  
     real wTsumSTD(klon, nlevSTD, nout)  
     real u2sumSTD(klon, nlevSTD, nout)  
     real v2sumSTD(klon, nlevSTD, nout)  
     real T2sumSTD(klon, nlevSTD, nout)  
   
     SAVE uvsumSTD, vqsumSTD, vTsumSTD, wqsumSTD  
     SAVE vphisumSTD, wTsumSTD, u2sumSTD, v2sumSTD, T2sumSTD  
     !MI Amip2  
91    
92      ! prw: precipitable water      REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)
93      real prw(klon)      ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)
94    
95      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg/m2)      REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa / s
96      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg/kg)      REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)
97      REAL flwp(klon), fiwp(klon)      REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)
98      REAL flwc(klon, llm), fiwc(klon, llm)      REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K / s)
   
     INTEGER l, kmax, lmax  
     PARAMETER(kmax=8, lmax=8)  
     INTEGER kmaxm1, lmaxm1  
     PARAMETER(kmaxm1=kmax-1, lmaxm1=lmax-1)  
   
     REAL zx_tau(kmaxm1), zx_pc(lmaxm1)  
     DATA zx_tau/0.0, 0.3, 1.3, 3.6, 9.4, 23., 60./  
     DATA zx_pc/50., 180., 310., 440., 560., 680., 800./  
   
     ! cldtopres pression au sommet des nuages  
     REAL cldtopres(lmaxm1)  
     DATA cldtopres/50., 180., 310., 440., 560., 680., 800./  
   
     ! taulev: numero du niveau de tau dans les sorties ISCCP  
     CHARACTER(LEN=4) taulev(kmaxm1)  
   
     DATA taulev/'tau0', 'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'/  
     CHARACTER(LEN=3) pclev(lmaxm1)  
     DATA pclev/'pc1', 'pc2', 'pc3', 'pc4', 'pc5', 'pc6', 'pc7'/  
   
     CHARACTER(LEN=28) cnameisccp(lmaxm1, kmaxm1)  
     DATA cnameisccp/'pc< 50hPa, tau< 0.3', 'pc= 50-180hPa, tau< 0.3', &  
          'pc= 180-310hPa, tau< 0.3', 'pc= 310-440hPa, tau< 0.3', &  
          'pc= 440-560hPa, tau< 0.3', 'pc= 560-680hPa, tau< 0.3', &  
          'pc= 680-800hPa, tau< 0.3', 'pc< 50hPa, tau= 0.3-1.3', &  
          'pc= 50-180hPa, tau= 0.3-1.3', 'pc= 180-310hPa, tau= 0.3-1.3', &  
          'pc= 310-440hPa, tau= 0.3-1.3', 'pc= 440-560hPa, tau= 0.3-1.3', &  
          'pc= 560-680hPa, tau= 0.3-1.3', 'pc= 680-800hPa, tau= 0.3-1.3', &  
          'pc< 50hPa, tau= 1.3-3.6', 'pc= 50-180hPa, tau= 1.3-3.6', &  
          'pc= 180-310hPa, tau= 1.3-3.6', 'pc= 310-440hPa, tau= 1.3-3.6', &  
          'pc= 440-560hPa, tau= 1.3-3.6', 'pc= 560-680hPa, tau= 1.3-3.6', &  
          'pc= 680-800hPa, tau= 1.3-3.6', 'pc< 50hPa, tau= 3.6-9.4', &  
          'pc= 50-180hPa, tau= 3.6-9.4', 'pc= 180-310hPa, tau= 3.6-9.4', &  
          'pc= 310-440hPa, tau= 3.6-9.4', 'pc= 440-560hPa, tau= 3.6-9.4', &  
          'pc= 560-680hPa, tau= 3.6-9.4', 'pc= 680-800hPa, tau= 3.6-9.4', &  
          'pc< 50hPa, tau= 9.4-23', 'pc= 50-180hPa, tau= 9.4-23', &  
          'pc= 180-310hPa, tau= 9.4-23', 'pc= 310-440hPa, tau= 9.4-23', &  
          'pc= 440-560hPa, tau= 9.4-23', 'pc= 560-680hPa, tau= 9.4-23', &  
          'pc= 680-800hPa, tau= 9.4-23', 'pc< 50hPa, tau= 23-60', &  
          'pc= 50-180hPa, tau= 23-60', 'pc= 180-310hPa, tau= 23-60', &  
          'pc= 310-440hPa, tau= 23-60', 'pc= 440-560hPa, tau= 23-60', &  
          'pc= 560-680hPa, tau= 23-60', 'pc= 680-800hPa, tau= 23-60', &  
          'pc< 50hPa, tau> 60.', 'pc= 50-180hPa, tau> 60.', &  
          'pc= 180-310hPa, tau> 60.', 'pc= 310-440hPa, tau> 60.', &  
          'pc= 440-560hPa, tau> 60.', 'pc= 560-680hPa, tau> 60.', &  
          'pc= 680-800hPa, tau> 60.'/  
   
     !IM ISCCP simulator v3.4  
   
     integer nid_hf, nid_hf3d  
     save nid_hf, nid_hf3d  
   
     INTEGER        longcles  
     PARAMETER    ( longcles = 20 )  
     REAL, intent(in):: clesphy0( longcles      )  
   
     ! Variables propres a la physique  
99    
100      INTEGER, save:: radpas      REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)
101      ! (Radiative transfer computations are made every "radpas" call to      ! tendance physique de "qx" (s-1)
     ! "physiq".)  
102    
103      REAL radsol(klon)      ! Local:
     SAVE radsol               ! bilan radiatif au sol calcule par code radiatif  
104    
105      INTEGER, SAVE:: itap ! number of calls to "physiq"      LOGICAL:: firstcal = .true.
106    
107      REAL ftsol(klon, nbsrf)      LOGICAL, PARAMETER:: ok_stratus = .FALSE.
108      SAVE ftsol                  ! temperature du sol      ! Ajouter artificiellement les stratus
109    
110      REAL ftsoil(klon, nsoilmx, nbsrf)      ! pour phystoke avec thermiques
111      SAVE ftsoil                 ! temperature dans le sol      REAL fm_therm(klon, llm + 1)
112        REAL entr_therm(klon, llm)
113        real, save:: q2(klon, llm + 1, nbsrf)
114    
115      REAL fevap(klon, nbsrf)      INTEGER, PARAMETER:: ivap = 1 ! indice de traceur pour vapeur d'eau
116      SAVE fevap                 ! evaporation      INTEGER, PARAMETER:: iliq = 2 ! indice de traceur pour eau liquide
     REAL fluxlat(klon, nbsrf)  
     SAVE fluxlat  
117    
118      REAL fqsurf(klon, nbsrf)      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)
119      SAVE fqsurf                 ! humidite de l'air au contact de la surface      LOGICAL, save:: ancien_ok
120    
121      REAL qsol(klon)      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K / s)
122      SAVE qsol                  ! hauteur d'eau dans le sol      REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg / kg / s)
123    
124      REAL fsnow(klon, nbsrf)      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)
     SAVE fsnow                  ! epaisseur neigeuse  
125    
126      REAL falbe(klon, nbsrf)      REAL, save:: swdn0(klon, llm + 1), swdn(klon, llm + 1)
127      SAVE falbe                  ! albedo par type de surface      REAL, save:: swup0(klon, llm + 1), swup(klon, llm + 1)
     REAL falblw(klon, nbsrf)  
     SAVE falblw                 ! albedo par type de surface  
128    
129      !  Parametres de l'Orographie a l'Echelle Sous-Maille (OESM):      REAL, save:: lwdn0(klon, llm + 1), lwdn(klon, llm + 1)
130        REAL, save:: lwup0(klon, llm + 1), lwup(klon, llm + 1)
131    
132      REAL zmea(klon)      ! prw: precipitable water
133      SAVE zmea                   ! orographie moyenne      real prw(klon)
134    
135      REAL zstd(klon)      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg / m2)
136      SAVE zstd                   ! deviation standard de l'OESM      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg / kg)
137        REAL flwp(klon), fiwp(klon)
138        REAL flwc(klon, llm), fiwc(klon, llm)
139    
140      REAL zsig(klon)      ! Variables propres a la physique
     SAVE zsig                   ! pente de l'OESM  
141    
142      REAL zgam(klon)      INTEGER, save:: radpas
143      save zgam                   ! anisotropie de l'OESM      ! Radiative transfer computations are made every "radpas" call to
144        ! "physiq".
145    
146      REAL zthe(klon)      REAL, save:: radsol(klon) ! bilan radiatif au sol calcule par code radiatif
147      SAVE zthe                   ! orientation de l'OESM      REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction
148    
149      REAL zpic(klon)      REAL, save:: ftsoil(klon, nsoilmx, nbsrf)
150      SAVE zpic                   ! Maximum de l'OESM      ! soil temperature of surface fraction
151    
152      REAL zval(klon)      REAL, save:: fevap(klon, nbsrf) ! evaporation
153      SAVE zval                   ! Minimum de l'OESM      REAL fluxlat(klon, nbsrf)
154    
155      REAL rugoro(klon)      REAL, save:: fqsurf(klon, nbsrf)
156      SAVE rugoro                 ! longueur de rugosite de l'OESM      ! humidite de l'air au contact de la surface
157    
158        REAL, save:: qsol(klon) ! column-density of water in soil, in kg m-2
159        REAL, save:: fsnow(klon, nbsrf) ! \'epaisseur neigeuse
160        REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface
161    
162        ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :
163        REAL, save:: zmea(klon) ! orographie moyenne
164        REAL, save:: zstd(klon) ! deviation standard de l'OESM
165        REAL, save:: zsig(klon) ! pente de l'OESM
166        REAL, save:: zgam(klon) ! anisotropie de l'OESM
167        REAL, save:: zthe(klon) ! orientation de l'OESM
168        REAL, save:: zpic(klon) ! Maximum de l'OESM
169        REAL, save:: zval(klon) ! Minimum de l'OESM
170        REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM
171      REAL zulow(klon), zvlow(klon)      REAL zulow(klon), zvlow(klon)
172        INTEGER igwd, itest(klon)
173    
174      INTEGER igwd, idx(klon), itest(klon)      REAL, save:: agesno(klon, nbsrf) ! age de la neige
175        REAL, save:: run_off_lic_0(klon)
     REAL agesno(klon, nbsrf)  
     SAVE agesno                 ! age de la neige  
176    
177      REAL run_off_lic_0(klon)      ! Variables li\'ees \`a la convection d'Emanuel :
178      SAVE run_off_lic_0      REAL, save:: Ma(klon, llm) ! undilute upward mass flux
179      !KE43      REAL, save:: qcondc(klon, llm) ! in-cld water content from convect
180      ! Variables liees a la convection de K. Emanuel (sb):      REAL, save:: sig1(klon, llm), w01(klon, llm)
181    
182      REAL bas, top             ! cloud base and top levels      ! Variables pour la couche limite (Alain Lahellec) :
183      SAVE bas      REAL cdragh(klon) ! drag coefficient pour T and Q
184      SAVE top      REAL cdragm(klon) ! drag coefficient pour vent
185    
186      REAL Ma(klon, llm)        ! undilute upward mass flux      ! Pour phytrac :
187      SAVE Ma      REAL ycoefh(klon, llm) ! coef d'echange pour phytrac
188      REAL qcondc(klon, llm)    ! in-cld water content from convect      REAL yu1(klon), yv1(klon) ! vent dans la premi\`ere couche
189      SAVE qcondc  
190      REAL ema_work1(klon, llm), ema_work2(klon, llm)      REAL, save:: ffonte(klon, nbsrf)
191      SAVE ema_work1, ema_work2      ! flux thermique utilise pour fondre la neige
192    
193        REAL, save:: fqcalving(klon, nbsrf)
194        ! flux d'eau "perdue" par la surface et necessaire pour limiter la
195        ! hauteur de neige, en kg / m2 / s
196    
197      REAL wd(klon) ! sb      REAL zxffonte(klon), zxfqcalving(klon)
     SAVE wd       ! sb  
198    
199      ! Variables locales pour la couche limite (al1):      REAL, save:: pfrac_impa(klon, llm)! Produits des coefs lessivage impaction
200        REAL, save:: pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation
201    
202      ! Variables locales:      REAL, save:: pfrac_1nucl(klon, llm)
203        ! Produits des coefs lessi nucl (alpha = 1)
204    
205      REAL cdragh(klon) ! drag coefficient pour T and Q      REAL frac_impa(klon, llm) ! fraction d'a\'erosols lessiv\'es (impaction)
206      REAL cdragm(klon) ! drag coefficient pour vent      REAL frac_nucl(klon, llm) ! idem (nucleation)
207    
208      !AA  Pour phytrac      REAL, save:: rain_fall(klon)
209      REAL ycoefh(klon, llm)    ! coef d'echange pour phytrac      ! liquid water mass flux (kg / m2 / s), positive down
     REAL yu1(klon)            ! vents dans la premiere couche U  
     REAL yv1(klon)            ! vents dans la premiere couche V  
     REAL ffonte(klon, nbsrf)    !Flux thermique utilise pour fondre la neige  
     REAL fqcalving(klon, nbsrf) !Flux d'eau "perdue" par la surface  
     !                               !et necessaire pour limiter la  
     !                               !hauteur de neige, en kg/m2/s  
     REAL zxffonte(klon), zxfqcalving(klon)  
210    
211      REAL pfrac_impa(klon, llm)! Produits des coefs lessivage impaction      REAL, save:: snow_fall(klon)
212      save pfrac_impa      ! solid water mass flux (kg / m2 / s), positive down
     REAL pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation  
     save pfrac_nucl  
     REAL pfrac_1nucl(klon, llm)! Produits des coefs lessi nucl (alpha = 1)  
     save pfrac_1nucl  
     REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction)  
     REAL frac_nucl(klon, llm) ! idem (nucleation)  
213    
     !AA  
     REAL rain_fall(klon) ! pluie  
     REAL snow_fall(klon) ! neige  
     save snow_fall, rain_fall  
     !IM cf FH pour Tiedtke 080604  
214      REAL rain_tiedtke(klon), snow_tiedtke(klon)      REAL rain_tiedtke(klon), snow_tiedtke(klon)
215    
216      REAL total_rain(klon), nday_rain(klon)      REAL evap(klon) ! flux d'\'evaporation au sol
217      save nday_rain      real devap(klon) ! derivative of the evaporation flux at the surface
218        REAL sens(klon) ! flux de chaleur sensible au sol
219      REAL evap(klon), devap(klon) ! evaporation et sa derivee      real dsens(klon) ! derivee du flux de chaleur sensible au sol
220      REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee      REAL, save:: dlw(klon) ! derivative of infra-red flux
     REAL dlw(klon)    ! derivee infra rouge  
     SAVE dlw  
221      REAL bils(klon) ! bilan de chaleur au sol      REAL bils(klon) ! bilan de chaleur au sol
222      REAL fder(klon) ! Derive de flux (sensible et latente)      REAL fder(klon) ! Derive de flux (sensible et latente)
     save fder  
223      REAL ve(klon) ! integr. verticale du transport meri. de l'energie      REAL ve(klon) ! integr. verticale du transport meri. de l'energie
224      REAL vq(klon) ! integr. verticale du transport meri. de l'eau      REAL vq(klon) ! integr. verticale du transport meri. de l'eau
225      REAL ue(klon) ! integr. verticale du transport zonal de l'energie      REAL ue(klon) ! integr. verticale du transport zonal de l'energie
226      REAL uq(klon) ! integr. verticale du transport zonal de l'eau      REAL uq(klon) ! integr. verticale du transport zonal de l'eau
227    
228      REAL frugs(klon, nbsrf) ! longueur de rugosite      REAL, save:: frugs(klon, nbsrf) ! longueur de rugosite
     save frugs  
229      REAL zxrugs(klon) ! longueur de rugosite      REAL zxrugs(klon) ! longueur de rugosite
230    
231      ! Conditions aux limites      ! Conditions aux limites
232    
233      INTEGER julien      INTEGER julien
234        REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface
235      INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day      REAL, save:: albsol(klon) ! albedo du sol total, visible, moyen par maille
236      REAL pctsrf(klon, nbsrf)      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU
237      !IM      real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2
238      REAL pctsrf_new(klon, nbsrf) !pourcentage surfaces issus d'ORCHIDEE  
239        real, save:: clwcon(klon, llm), rnebcon(klon, llm)
240      SAVE pctsrf                 ! sous-fraction du sol      real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)
241      REAL albsol(klon)  
242      SAVE albsol                 ! albedo du sol total      REAL rhcl(klon, llm) ! humiditi relative ciel clair
243      REAL albsollw(klon)      REAL dialiq(klon, llm) ! eau liquide nuageuse
244      SAVE albsollw                 ! albedo du sol total      REAL diafra(klon, llm) ! fraction nuageuse
245        REAL cldliq(klon, llm) ! eau liquide nuageuse
246      REAL, SAVE:: wo(klon, llm) ! ozone      REAL cldfra(klon, llm) ! fraction nuageuse
247        REAL cldtau(klon, llm) ! epaisseur optique
248      ! Declaration des procedures appelees      REAL cldemi(klon, llm) ! emissivite infrarouge
249    
250      EXTERNAL alboc     ! calculer l'albedo sur ocean      REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface
251      EXTERNAL ajsec     ! ajustement sec      REAL flux_t(klon, nbsrf) ! flux turbulent de chaleur à la surface
252      EXTERNAL clmain    ! couche limite      REAL flux_u(klon, nbsrf) ! flux turbulent de vitesse u à la surface
253      !KE43      REAL flux_v(klon, nbsrf) ! flux turbulent de vitesse v à la surface
254      EXTERNAL conema3  ! convect4.3  
255      EXTERNAL fisrtilp  ! schema de condensation a grande echelle (pluie)      ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que
256      EXTERNAL nuage     ! calculer les proprietes radiatives      ! les variables soient r\'emanentes.
257      EXTERNAL ozonecm   ! prescrire l'ozone      REAL, save:: heat(klon, llm) ! chauffage solaire
258      EXTERNAL phyredem  ! ecrire l'etat de redemarrage de la physique      REAL, save:: heat0(klon, llm) ! chauffage solaire ciel clair
259      EXTERNAL radlwsw   ! rayonnements solaire et infrarouge      REAL, save:: cool(klon, llm) ! refroidissement infrarouge
260      EXTERNAL transp    ! transport total de l'eau et de l'energie      REAL, save:: cool0(klon, llm) ! refroidissement infrarouge ciel clair
261        REAL, save:: topsw(klon), toplw(klon), solsw(klon)
262      EXTERNAL ini_undefSTD  !initialise a 0 une variable a 1 niveau de pression      REAL, save:: sollw(klon) ! rayonnement infrarouge montant \`a la surface
263        real, save:: sollwdown(klon) ! downward LW flux at surface
264      EXTERNAL undefSTD      REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)
265      ! (somme les valeurs definies d'1 var a 1 niveau de pression)      REAL, save:: albpla(klon)
266        REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous-surface
267      ! Variables locales      REAL fsolsw(klon, nbsrf) ! flux solaire absorb\'e pour chaque sous-surface
268    
269      real clwcon(klon, llm), rnebcon(klon, llm)      REAL conv_q(klon, llm) ! convergence de l'humidite (kg / kg / s)
270      real clwcon0(klon, llm), rnebcon0(klon, llm)      REAL conv_t(klon, llm) ! convergence of temperature (K / s)
271    
272      save rnebcon, clwcon      REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut
273        REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree
274      REAL rhcl(klon, llm)    ! humiditi relative ciel clair  
275      REAL dialiq(klon, llm)  ! eau liquide nuageuse      REAL zxfluxlat(klon)
276      REAL diafra(klon, llm)  ! fraction nuageuse      REAL dist, mu0(klon), fract(klon)
277      REAL cldliq(klon, llm)  ! eau liquide nuageuse      real longi
     REAL cldfra(klon, llm)  ! fraction nuageuse  
     REAL cldtau(klon, llm)  ! epaisseur optique  
     REAL cldemi(klon, llm)  ! emissivite infrarouge  
   
     REAL fluxq(klon, llm, nbsrf)   ! flux turbulent d'humidite  
     REAL fluxt(klon, llm, nbsrf)   ! flux turbulent de chaleur  
     REAL fluxu(klon, llm, nbsrf)   ! flux turbulent de vitesse u  
     REAL fluxv(klon, llm, nbsrf)   ! flux turbulent de vitesse v  
   
     REAL zxfluxt(klon, llm)  
     REAL zxfluxq(klon, llm)  
     REAL zxfluxu(klon, llm)  
     REAL zxfluxv(klon, llm)  
   
     REAL heat(klon, llm)    ! chauffage solaire  
     REAL heat0(klon, llm)   ! chauffage solaire ciel clair  
     REAL cool(klon, llm)    ! refroidissement infrarouge  
     REAL cool0(klon, llm)   ! refroidissement infrarouge ciel clair  
     REAL topsw(klon), toplw(klon), solsw(klon), sollw(klon)  
     real sollwdown(klon)    ! downward LW flux at surface  
     REAL topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)  
     REAL albpla(klon)  
     REAL fsollw(klon, nbsrf)   ! bilan flux IR pour chaque sous surface  
     REAL fsolsw(klon, nbsrf)   ! flux solaire absorb. pour chaque sous surface  
     ! Le rayonnement n'est pas calcule tous les pas, il faut donc  
     !                      sauvegarder les sorties du rayonnement  
     SAVE  heat, cool, albpla, topsw, toplw, solsw, sollw, sollwdown  
     SAVE  topsw0, toplw0, solsw0, sollw0, heat0, cool0  
   
     INTEGER itaprad  
     SAVE itaprad  
   
     REAL conv_q(klon, llm) ! convergence de l'humidite (kg/kg/s)  
     REAL conv_t(klon, llm) ! convergence de la temperature(K/s)  
   
     REAL cldl(klon), cldm(klon), cldh(klon) !nuages bas, moyen et haut  
     REAL cldt(klon), cldq(klon) !nuage total, eau liquide integree  
   
     REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon)  
   
     REAL dist, rmu0(klon), fract(klon)  
     REAL zdtime ! pas de temps du rayonnement (s)  
     real zlongi  
   
278      REAL z_avant(klon), z_apres(klon), z_factor(klon)      REAL z_avant(klon), z_apres(klon), z_factor(klon)
279      LOGICAL zx_ajustq      REAL zb
280        REAL zx_t, zx_qs, zcor
     REAL za, zb  
     REAL zx_t, zx_qs, zdelta, zcor, zlvdcp, zlsdcp  
281      real zqsat(klon, llm)      real zqsat(klon, llm)
282      INTEGER i, k, iq, nsrf      INTEGER i, k, iq, nsrf
     REAL t_coup  
     PARAMETER (t_coup=234.0)  
   
283      REAL zphi(klon, llm)      REAL zphi(klon, llm)
284    
285      !IM cf. AM Variables locales pour la CLA (hbtm2)      ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm)
286    
287      REAL pblh(klon, nbsrf)           ! Hauteur de couche limite      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite
288      REAL plcl(klon, nbsrf)           ! Niveau de condensation de la CLA      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA
289      REAL capCL(klon, nbsrf)          ! CAPE de couche limite      REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite
290      REAL oliqCL(klon, nbsrf)          ! eau_liqu integree de couche limite      REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite
291      REAL cteiCL(klon, nbsrf)          ! cloud top instab. crit. couche limite      REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite
292      REAL pblt(klon, nbsrf)          ! T a la Hauteur de couche limite      REAL, SAVE:: pblt(klon, nbsrf) ! T \`a la hauteur de couche limite
293      REAL therm(klon, nbsrf)      REAL, SAVE:: therm(klon, nbsrf)
294      REAL trmb1(klon, nbsrf)          ! deep_cape      REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape
295      REAL trmb2(klon, nbsrf)          ! inhibition      REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition
296      REAL trmb3(klon, nbsrf)          ! Point Omega      REAL, SAVE:: trmb3(klon, nbsrf) ! Point Omega
297      ! Grdeurs de sorties      ! Grandeurs de sorties
298      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)
299      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)
300      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)
301      REAL s_trmb3(klon)      REAL s_trmb3(klon)
302    
303      ! Variables locales pour la convection de K. Emanuel (sb):      ! Variables pour la convection de K. Emanuel :
304    
305      REAL upwd(klon, llm)      ! saturated updraft mass flux      REAL upwd(klon, llm) ! saturated updraft mass flux
306      REAL dnwd(klon, llm)      ! saturated downdraft mass flux      REAL dnwd(klon, llm) ! saturated downdraft mass flux
307      REAL dnwd0(klon, llm)     ! unsaturated downdraft mass flux      REAL, save:: cape(klon)
308      REAL tvp(klon, llm)       ! virtual temp of lifted parcel  
309      REAL cape(klon)           ! CAPE      INTEGER iflagctrl(klon) ! flag fonctionnement de convect
     SAVE cape  
   
     REAL pbase(klon)          ! cloud base pressure  
     SAVE pbase  
     REAL bbase(klon)          ! cloud base buoyancy  
     SAVE bbase  
     REAL rflag(klon)          ! flag fonctionnement de convect  
     INTEGER iflagctrl(klon)          ! flag fonctionnement de convect  
     ! -- convect43:  
     INTEGER ntra              ! nb traceurs pour convect4.3  
     REAL dtvpdt1(klon, llm), dtvpdq1(klon, llm)  
     REAL dplcldt(klon), dplcldr(klon)  
310    
311      ! Variables du changement      ! Variables du changement
312    
313      ! con: convection      ! con: convection
314      ! lsc: condensation a grande echelle (Large-Scale-Condensation)      ! lsc: large scale condensation
315      ! ajs: ajustement sec      ! ajs: ajustement sec
316      ! eva: evaporation de l'eau liquide nuageuse      ! eva: \'evaporation de l'eau liquide nuageuse
317      ! vdf: couche limite (Vertical DiFfusion)      ! vdf: vertical diffusion in boundary layer
318      REAL d_t_con(klon, llm), d_q_con(klon, llm)      REAL d_t_con(klon, llm), d_q_con(klon, llm)
319      REAL d_u_con(klon, llm), d_v_con(klon, llm)      REAL, save:: d_u_con(klon, llm), d_v_con(klon, llm)
320      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)
321      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)
322      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)
323      REAL rneb(klon, llm)      REAL rneb(klon, llm)
324    
325      REAL pmfu(klon, llm), pmfd(klon, llm)      REAL mfu(klon, llm), mfd(klon, llm)
326      REAL pen_u(klon, llm), pen_d(klon, llm)      REAL pen_u(klon, llm), pen_d(klon, llm)
327      REAL pde_u(klon, llm), pde_d(klon, llm)      REAL pde_u(klon, llm), pde_d(klon, llm)
328      INTEGER kcbot(klon), kctop(klon), kdtop(klon)      INTEGER kcbot(klon), kctop(klon), kdtop(klon)
329      REAL pmflxr(klon, llm+1), pmflxs(klon, llm+1)      REAL pmflxr(klon, llm + 1), pmflxs(klon, llm + 1)
330      REAL prfl(klon, llm+1), psfl(klon, llm+1)      REAL prfl(klon, llm + 1), psfl(klon, llm + 1)
   
     INTEGER ibas_con(klon), itop_con(klon)  
331    
332      SAVE ibas_con, itop_con      INTEGER, save:: ibas_con(klon), itop_con(klon)
333        real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa
334    
335      REAL rain_con(klon), rain_lsc(klon)      REAL, save:: rain_con(klon)
336      REAL snow_con(klon), snow_lsc(klon)      real rain_lsc(klon)
337      REAL d_ts(klon, nbsrf)      REAL, save:: snow_con(klon) ! neige (mm / s)
338        real snow_lsc(klon)
339        REAL d_ts(klon, nbsrf) ! variation of ftsol
340    
341      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)
342      REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)      REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)
# Line 639  contains Line 346  contains
346      REAL d_u_lif(klon, llm), d_v_lif(klon, llm)      REAL d_u_lif(klon, llm), d_v_lif(klon, llm)
347      REAL d_t_lif(klon, llm)      REAL d_t_lif(klon, llm)
348    
349      REAL ratqs(klon, llm), ratqss(klon, llm), ratqsc(klon, llm)      REAL, save:: ratqs(klon, llm)
350      real ratqsbas, ratqshaut      real ratqss(klon, llm), ratqsc(klon, llm)
351      save ratqsbas, ratqshaut, ratqs      real:: ratqsbas = 0.01, ratqshaut = 0.3
352    
353      ! Parametres lies au nouveau schema de nuages (SB, PDF)      ! Parametres lies au nouveau schema de nuages (SB, PDF)
354      real fact_cldcon      real:: fact_cldcon = 0.375
355      real facttemps      real:: facttemps = 1.e-4
356      logical ok_newmicro      logical:: ok_newmicro = .true.
     save ok_newmicro  
     save fact_cldcon, facttemps  
357      real facteur      real facteur
358    
359      integer iflag_cldcon      integer:: iflag_cldcon = 1
     save iflag_cldcon  
   
360      logical ptconv(klon, llm)      logical ptconv(klon, llm)
361    
362      ! Variables liees a l'ecriture de la bande histoire physique      ! Variables pour effectuer les appels en s\'erie :
   
     integer itau_w   ! pas de temps ecriture = itap + itau_phy  
   
     ! Variables locales pour effectuer les appels en serie  
363    
364      REAL t_seri(klon, llm), q_seri(klon, llm)      REAL t_seri(klon, llm), q_seri(klon, llm)
365      REAL ql_seri(klon, llm), qs_seri(klon, llm)      REAL ql_seri(klon, llm)
366      REAL u_seri(klon, llm), v_seri(klon, llm)      REAL u_seri(klon, llm), v_seri(klon, llm)
367        REAL tr_seri(klon, llm, nqmx - 2)
     REAL tr_seri(klon, llm, nbtr)  
     REAL d_tr(klon, llm, nbtr)  
368    
369      REAL zx_rh(klon, llm)      REAL zx_rh(klon, llm)
     INTEGER ndex2d(iim*(jjm + 1)), ndex3d(iim*(jjm + 1)*llm)  
370    
371      REAL zustrdr(klon), zvstrdr(klon)      REAL zustrdr(klon), zvstrdr(klon)
372      REAL zustrli(klon), zvstrli(klon)      REAL zustrli(klon), zvstrli(klon)
373      REAL zustrph(klon), zvstrph(klon)      REAL zustrph(klon), zvstrph(klon)
374      REAL aam, torsfc      REAL aam, torsfc
375    
     REAL dudyn(iim+1, jjm + 1, llm)  
   
     REAL zx_tmp_fi2d(klon)      ! variable temporaire grille physique  
     REAL zx_tmp_fi3d(klon, llm) ! variable temporaire pour champs 3D  
   
     REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm)  
   
     INTEGER nid_day, nid_ins  
     SAVE nid_day, nid_ins  
   
376      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.
377      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.
378      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.
379      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.
380    
     REAL zsto  
   
     character(len=20) modname  
     character(len=80) abort_message  
     logical ok_sync  
381      real date0      real date0
382        REAL tsol(klon)
383    
384      !     Variables liees au bilan d'energie et d'enthalpi      REAL d_t_ec(klon, llm)
385      REAL ztsol(klon)      ! tendance due \`a la conversion d'\'energie cin\'etique en
386      REAL      d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec      ! énergie thermique
     REAL      d_h_vcol_phy  
     REAL      fs_bound, fq_bound  
     SAVE      d_h_vcol_phy  
     REAL      zero_v(klon)  
     CHARACTER(LEN=15) ztit  
     INTEGER   ip_ebil  ! PRINT level for energy conserv. diag.  
     SAVE      ip_ebil  
     DATA      ip_ebil/0/  
     INTEGER   if_ebil ! level for energy conserv. dignostics  
     SAVE      if_ebil  
     !+jld ec_conser  
     REAL d_t_ec(klon, llm)    ! tendance du a la conersion Ec -> E thermique  
     REAL ZRCPD  
     !-jld ec_conser  
     !IM: t2m, q2m, u10m, v10m  
     REAL t2m(klon, nbsrf), q2m(klon, nbsrf)   !temperature, humidite a 2m  
     REAL u10m(klon, nbsrf), v10m(klon, nbsrf) !vents a 10m  
     REAL zt2m(klon), zq2m(klon)             !temp., hum. 2m moyenne s/ 1 maille  
     REAL zu10m(klon), zv10m(klon)           !vents a 10m moyennes s/1 maille  
     !jq   Aerosol effects (Johannes Quaas, 27/11/2003)  
     REAL sulfate(klon, llm) ! SO4 aerosol concentration [ug/m3]  
   
     REAL sulfate_pi(klon, llm)  
     ! (SO4 aerosol concentration [ug/m3] (pre-industrial value))  
     SAVE sulfate_pi  
   
     REAL cldtaupi(klon, llm)  
     ! (Cloud optical thickness for pre-industrial (pi) aerosols)  
   
     REAL re(klon, llm)       ! Cloud droplet effective radius  
     REAL fl(klon, llm)  ! denominator of re  
   
     ! Aerosol optical properties  
     REAL tau_ae(klon, llm, 2), piz_ae(klon, llm, 2)  
     REAL cg_ae(klon, llm, 2)  
   
     REAL topswad(klon), solswad(klon) ! Aerosol direct effect.  
     ! ok_ade=T -ADE=topswad-topsw  
   
     REAL topswai(klon), solswai(klon) ! Aerosol indirect effect.  
     ! ok_aie=T ->  
     !        ok_ade=T -AIE=topswai-topswad  
     !        ok_ade=F -AIE=topswai-topsw  
   
     REAL aerindex(klon)       ! POLDER aerosol index  
   
     ! Parameters  
     LOGICAL ok_ade, ok_aie    ! Apply aerosol (in)direct effects or not  
     REAL bl95_b0, bl95_b1   ! Parameter in Boucher and Lohmann (1995)  
   
     SAVE ok_ade, ok_aie, bl95_b0, bl95_b1  
     SAVE u10m  
     SAVE v10m  
     SAVE t2m  
     SAVE q2m  
     SAVE ffonte  
     SAVE fqcalving  
     SAVE piz_ae  
     SAVE tau_ae  
     SAVE cg_ae  
     SAVE rain_con  
     SAVE snow_con  
     SAVE topswai  
     SAVE topswad  
     SAVE solswai  
     SAVE solswad  
     SAVE d_u_con  
     SAVE d_v_con  
     SAVE rnebcon0  
     SAVE clwcon0  
     SAVE pblh  
     SAVE plcl  
     SAVE capCL  
     SAVE oliqCL  
     SAVE cteiCL  
     SAVE pblt  
     SAVE therm  
     SAVE trmb1  
     SAVE trmb2  
     SAVE trmb3  
   
     !----------------------------------------------------------------  
387    
388      modname = 'physiq'      REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf)
389      IF (if_ebil >= 1) THEN      ! temperature and humidity at 2 m
        DO i=1, klon  
           zero_v(i)=0.  
        END DO  
     END IF  
     ok_sync=.TRUE.  
     IF (nq  <  2) THEN  
        abort_message = 'eaux vapeur et liquide sont indispensables'  
        CALL abort_gcm (modname, abort_message, 1)  
     ENDIF  
390    
391      test_firstcal: IF (firstcal) THEN      REAL, save:: u10m_srf(klon, nbsrf), v10m_srf(klon, nbsrf)
392         !  initialiser      ! composantes du vent \`a 10 m
393         u10m(:, :)=0.      
394         v10m(:, :)=0.      REAL zt2m(klon), zq2m(klon) ! température, humidité 2 m moyenne sur 1 maille
395         t2m(:, :)=0.      REAL u10m(klon), v10m(klon) ! vent \`a 10 m moyenn\' sur les sous-surfaces
        q2m(:, :)=0.  
        ffonte(:, :)=0.  
        fqcalving(:, :)=0.  
        piz_ae(:, :, :)=0.  
        tau_ae(:, :, :)=0.  
        cg_ae(:, :, :)=0.  
        rain_con(:)=0.  
        snow_con(:)=0.  
        bl95_b0=0.  
        bl95_b1=0.  
        topswai(:)=0.  
        topswad(:)=0.  
        solswai(:)=0.  
        solswad(:)=0.  
   
        d_u_con(:, :) = 0.0  
        d_v_con(:, :) = 0.0  
        rnebcon0(:, :) = 0.0  
        clwcon0(:, :) = 0.0  
        rnebcon(:, :) = 0.0  
        clwcon(:, :) = 0.0  
   
        pblh(:, :)   =0.        ! Hauteur de couche limite  
        plcl(:, :)   =0.        ! Niveau de condensation de la CLA  
        capCL(:, :)  =0.        ! CAPE de couche limite  
        oliqCL(:, :) =0.        ! eau_liqu integree de couche limite  
        cteiCL(:, :) =0.        ! cloud top instab. crit. couche limite  
        pblt(:, :)   =0.        ! T a la Hauteur de couche limite  
        therm(:, :)  =0.  
        trmb1(:, :)  =0.        ! deep_cape  
        trmb2(:, :)  =0.        ! inhibition  
        trmb3(:, :)  =0.        ! Point Omega  
   
        IF (if_ebil >= 1) d_h_vcol_phy=0.  
   
        ! appel a la lecture du run.def physique  
   
        call conf_phys(ocean, ok_veget, ok_journe, ok_mensuel, &  
             ok_instan, fact_cldcon, facttemps, ok_newmicro, &  
             iflag_cldcon, ratqsbas, ratqshaut, if_ebil, &  
             ok_ade, ok_aie,  &  
             bl95_b0, bl95_b1, &  
             iflag_thermals, nsplit_thermals)  
396    
397         ! Initialiser les compteurs:      ! Aerosol effects:
398    
399         frugs = 0.      REAL, save:: topswad(klon), solswad(klon) ! aerosol direct effect
400         itap = 0      LOGICAL:: ok_ade = .false. ! apply aerosol direct effect
        itaprad = 0  
        CALL phyetat0("startphy.nc", pctsrf, ftsol, ftsoil, ocean, tslab, &  
             seaice, fqsurf, qsol, fsnow, &  
             falbe, falblw, fevap, rain_fall, snow_fall, solsw, sollwdown, &  
             dlw, radsol, frugs, agesno, clesphy0, &  
             zmea, zstd, zsig, zgam, zthe, zpic, zval, rugoro, &  
             t_ancien, q_ancien, ancien_ok, rnebcon, ratqs, clwcon,  &  
             run_off_lic_0)  
   
        !   ATTENTION : il faudra a terme relire q2 dans l'etat initial  
        q2(:, :, :)=1.e-8  
401    
402         radpas = NINT( 86400. / pdtphys / nbapp_rad)      REAL:: bl95_b0 = 2., bl95_b1 = 0.2
403        ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus
404        ! B). They link cloud droplet number concentration to aerosol mass
405        ! concentration.
406    
407         ! on remet le calendrier a zero      real zmasse(klon, llm)
408        ! (column-density of mass of air in a cell, in kg m-2)
409    
410         IF (raz_date == 1) THEN      integer, save:: ncid_startphy
           itau_phy = 0  
        ENDIF  
411    
412         PRINT *, 'cycle_diurne = ', cycle_diurne      namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, &
413             ratqsbas, ratqshaut, ok_ade, bl95_b0, bl95_b1, iflag_thermals, &
414             nsplit_thermals
415    
416         IF(ocean.NE.'force ') THEN      !----------------------------------------------------------------
           ok_ocean=.TRUE.  
        ENDIF  
   
        CALL printflag(radpas, ok_ocean, ok_oasis, ok_journe, ok_instan, &  
             ok_region)  
417    
418         IF (pdtphys*REAL(radpas).GT.21600..AND.cycle_diurne) THEN      IF (nqmx < 2) CALL abort_gcm('physiq', &
419            print *,'Nbre d appels au rayonnement insuffisant'           'eaux vapeur et liquide sont indispensables')
           print *,"Au minimum 4 appels par jour si cycle diurne"  
           abort_message='Nbre d appels au rayonnement insuffisant'  
           call abort_gcm(modname, abort_message, 1)  
        ENDIF  
        print *,"Clef pour la convection, iflag_con=", iflag_con  
        print *,"Clef pour le driver de la convection, ok_cvl=", &  
             ok_cvl  
420    
421         ! Initialisation pour la convection de K.E. (sb):      test_firstcal: IF (firstcal) THEN
422         IF (iflag_con >= 3) THEN         ! initialiser
423           u10m_srf = 0.
424           v10m_srf = 0.
425           t2m = 0.
426           q2m = 0.
427           ffonte = 0.
428           fqcalving = 0.
429           rain_con = 0.
430           snow_con = 0.
431           d_u_con = 0.
432           d_v_con = 0.
433           rnebcon0 = 0.
434           clwcon0 = 0.
435           rnebcon = 0.
436           clwcon = 0.
437           pblh =0. ! Hauteur de couche limite
438           plcl =0. ! Niveau de condensation de la CLA
439           capCL =0. ! CAPE de couche limite
440           oliqCL =0. ! eau_liqu integree de couche limite
441           cteiCL =0. ! cloud top instab. crit. couche limite
442           pblt =0.
443           therm =0.
444           trmb1 =0. ! deep_cape
445           trmb2 =0. ! inhibition
446           trmb3 =0. ! Point Omega
447    
448           iflag_thermals = 0
449           nsplit_thermals = 1
450           print *, "Enter namelist 'physiq_nml'."
451           read(unit=*, nml=physiq_nml)
452           write(unit_nml, nml=physiq_nml)
453    
454            print *,"*** Convection de Kerry Emanuel 4.3  "         call conf_phys
455    
456            !IM15/11/02 rajout initialisation ibas_con, itop_con cf. SB =>BEG         ! Initialiser les compteurs:
           DO i = 1, klon  
              ibas_con(i) = 1  
              itop_con(i) = 1  
           ENDDO  
           !IM15/11/02 rajout initialisation ibas_con, itop_con cf. SB =>END  
457    
458           frugs = 0.
459           CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
460                fevap, rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, &
461                agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, &
462                q_ancien, ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
463                w01, ncid_startphy)
464    
465           ! ATTENTION : il faudra a terme relire q2 dans l'etat initial
466           q2 = 1e-8
467    
468           radpas = lmt_pas / nbapp_rad
469           print *, "radpas = ", radpas
470    
471           ! Initialisation pour le sch\'ema de convection d'Emanuel :
472           IF (conv_emanuel) THEN
473              ibas_con = 1
474              itop_con = 1
475         ENDIF         ENDIF
476    
477         IF (ok_orodr) THEN         IF (ok_orodr) THEN
478            DO i=1, klon            rugoro = MAX(1e-5, zstd * zsig / 2)
479               rugoro(i) = MAX(1.0e-05, zstd(i)*zsig(i)/2.0)            CALL SUGWD(paprs, play)
480            ENDDO         else
481            CALL SUGWD(klon, llm, paprs, pplay)            rugoro = 0.
482         ENDIF         ENDIF
483    
484         lmt_pas = NINT(86400. / pdtphys)  ! tous les jours         ecrit_ins = NINT(ecrit_ins / dtphys)
        print *, 'Number of time steps of "physics" per day: ', lmt_pas  
   
        ecrit_ins = NINT(ecrit_ins/pdtphys)  
        ecrit_hf = NINT(ecrit_hf/pdtphys)  
        ecrit_day = NINT(ecrit_day/pdtphys)  
        ecrit_mth = NINT(ecrit_mth/pdtphys)  
        ecrit_tra = NINT(86400.*ecrit_tra/pdtphys)  
        ecrit_reg = NINT(ecrit_reg/pdtphys)  
   
        ! Initialiser le couplage si necessaire  
   
        npas = 0  
        nexca = 0  
   
        print *,'AVANT HIST IFLAG_CON=', iflag_con  
   
        !   Initialisation des sorties  
   
        call ini_histhf(pdtphys, presnivs, nid_hf, nid_hf3d)  
        call ini_histday(pdtphys, presnivs, ok_journe, nid_day)  
        call ini_histins(pdtphys, presnivs, ok_instan, nid_ins)  
        CALL ymds2ju(annee_ref, 1, int(day_ref), 0., date0)  
        !XXXPB Positionner date0 pour initialisation de ORCHIDEE  
        WRITE(*, *) 'physiq date0 : ', date0  
     ENDIF test_firstcal  
   
     ! Mettre a zero des variables de sortie (pour securite)  
   
     DO i = 1, klon  
        d_ps(i) = 0.0  
     ENDDO  
     DO k = 1, llm  
        DO i = 1, klon  
           d_t(i, k) = 0.0  
           d_u(i, k) = 0.0  
           d_v(i, k) = 0.0  
        ENDDO  
     ENDDO  
     DO iq = 1, nq  
        DO k = 1, llm  
           DO i = 1, klon  
              d_qx(i, k, iq) = 0.0  
           ENDDO  
        ENDDO  
     ENDDO  
     da(:, :)=0.  
     mp(:, :)=0.  
     phi(:, :, :)=0.  
   
     ! Ne pas affecter les valeurs entrees de u, v, h, et q  
485    
486      DO k = 1, llm         ! Initialisation des sorties
        DO i = 1, klon  
           t_seri(i, k)  = t(i, k)  
           u_seri(i, k)  = u(i, k)  
           v_seri(i, k)  = v(i, k)  
           q_seri(i, k)  = qx(i, k, ivap)  
           ql_seri(i, k) = qx(i, k, iliq)  
           qs_seri(i, k) = 0.  
        ENDDO  
     ENDDO  
     IF (nq >= 3) THEN  
        tr_seri(:, :, :nq-2) = qx(:, :, 3:nq)  
     ELSE  
        tr_seri(:, :, 1) = 0.  
     ENDIF  
487    
488      DO i = 1, klon         call ini_histins(dtphys, ok_newmicro)
489         ztsol(i) = 0.         CALL ymds2ju(annee_ref, 1, day_ref, 0., date0)
490      ENDDO         ! Positionner date0 pour initialisation de ORCHIDEE
491      DO nsrf = 1, nbsrf         print *, 'physiq date0: ', date0
492         DO i = 1, klon         CALL phyredem0
493            ztsol(i) = ztsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)      ENDIF test_firstcal
        ENDDO  
     ENDDO  
494    
495      IF (if_ebil >= 1) THEN      ! We will modify variables *_seri and we will not touch variables
496         ztit='after dynamic'      ! u, v, t, qx:
497         CALL diagetpq(airephy, ztit, ip_ebil, 1, 1, pdtphys &      t_seri = t
498              , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs &      u_seri = u
499              , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)      v_seri = v
500         !     Comme les tendances de la physique sont ajoute dans la dynamique,      q_seri = qx(:, :, ivap)
501         !     on devrait avoir que la variation d'entalpie par la dynamique      ql_seri = qx(:, :, iliq)
502         !     est egale a la variation de la physique au pas de temps precedent.      tr_seri = qx(:, :, 3:nqmx)
        !     Donc la somme de ces 2 variations devrait etre nulle.  
        call diagphy(airephy, ztit, ip_ebil &  
             , zero_v, zero_v, zero_v, zero_v, zero_v &  
             , zero_v, zero_v, zero_v, ztsol &  
             , d_h_vcol+d_h_vcol_phy, d_qt, 0. &  
             , fs_bound, fq_bound )  
     END IF  
503    
504      ! Diagnostiquer la tendance dynamique      tsol = sum(ftsol * pctsrf, dim = 2)
505    
506        ! Diagnostic de la tendance dynamique :
507      IF (ancien_ok) THEN      IF (ancien_ok) THEN
508         DO k = 1, llm         DO k = 1, llm
509            DO i = 1, klon            DO i = 1, klon
510               d_t_dyn(i, k) = (t_seri(i, k)-t_ancien(i, k))/pdtphys               d_t_dyn(i, k) = (t_seri(i, k) - t_ancien(i, k)) / dtphys
511               d_q_dyn(i, k) = (q_seri(i, k)-q_ancien(i, k))/pdtphys               d_q_dyn(i, k) = (q_seri(i, k) - q_ancien(i, k)) / dtphys
512            ENDDO            ENDDO
513         ENDDO         ENDDO
514      ELSE      ELSE
515         DO k = 1, llm         DO k = 1, llm
516            DO i = 1, klon            DO i = 1, klon
517               d_t_dyn(i, k) = 0.0               d_t_dyn(i, k) = 0.
518               d_q_dyn(i, k) = 0.0               d_q_dyn(i, k) = 0.
519            ENDDO            ENDDO
520         ENDDO         ENDDO
521         ancien_ok = .TRUE.         ancien_ok = .TRUE.
522      ENDIF      ENDIF
523    
524      ! Ajouter le geopotentiel du sol:      ! Ajouter le geopotentiel du sol:
   
525      DO k = 1, llm      DO k = 1, llm
526         DO i = 1, klon         DO i = 1, klon
527            zphi(i, k) = pphi(i, k) + pphis(i)            zphi(i, k) = pphi(i, k) + pphis(i)
528         ENDDO         ENDDO
529      ENDDO      ENDDO
530    
531      ! Verifier les temperatures      ! Check temperatures:
   
532      CALL hgardfou(t_seri, ftsol)      CALL hgardfou(t_seri, ftsol)
533    
534      ! Incrementer le compteur de la physique      call increment_itap
535        julien = MOD(dayvrai, 360)
     itap = itap + 1  
     julien = MOD(NINT(rdayvrai), 360)  
536      if (julien == 0) julien = 360      if (julien == 0) julien = 360
537    
538      ! Mettre en action les conditions aux limites (albedo, sst, etc.).      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg
     ! Prescrire l'ozone et calculer l'albedo sur l'ocean.  
539    
540      IF (MOD(itap - 1, lmt_pas) == 0) THEN      ! \'Evaporation de l'eau liquide nuageuse :
541         CALL ozonecm(REAL(julien), rlat, paprs, wo)      DO k = 1, llm
     ENDIF  
   
     ! Re-evaporer l'eau liquide nuageuse  
   
     DO k = 1, llm  ! re-evaporation de l'eau liquide nuageuse  
542         DO i = 1, klon         DO i = 1, klon
543            zlvdcp=RLVTT/RCPD/(1.0+RVTMP2*q_seri(i, k))            zb = MAX(0., ql_seri(i, k))
544            zlsdcp=RLVTT/RCPD/(1.0+RVTMP2*q_seri(i, k))            t_seri(i, k) = t_seri(i, k) &
545            zdelta = MAX(0., SIGN(1., RTT-t_seri(i, k)))                 - zb * RLVTT / RCPD / (1. + RVTMP2 * q_seri(i, k))
           zb = MAX(0.0, ql_seri(i, k))  
           za = - MAX(0.0, ql_seri(i, k)) &  
                * (zlvdcp*(1.-zdelta)+zlsdcp*zdelta)  
           t_seri(i, k) = t_seri(i, k) + za  
546            q_seri(i, k) = q_seri(i, k) + zb            q_seri(i, k) = q_seri(i, k) + zb
           ql_seri(i, k) = 0.0  
547         ENDDO         ENDDO
548      ENDDO      ENDDO
549        ql_seri = 0.
550    
551      IF (if_ebil >= 2) THEN      frugs = MAX(frugs, 0.000015)
552         ztit='after reevap'      zxrugs = sum(frugs * pctsrf, dim = 2)
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 1, pdtphys &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil &  
             , zero_v, zero_v, zero_v, zero_v, zero_v &  
             , zero_v, zero_v, zero_v, ztsol &  
             , d_h_vcol, d_qt, d_ec &  
             , fs_bound, fq_bound )  
553    
554      END IF      ! Calculs n\'ecessaires au calcul de l'albedo dans l'interface avec
555        ! la surface.
     ! Appeler la diffusion verticale (programme de couche limite)  
   
     DO i = 1, klon  
        zxrugs(i) = 0.0  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           frugs(i, nsrf) = MAX(frugs(i, nsrf), 0.000015)  
        ENDDO  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxrugs(i) = zxrugs(i) + frugs(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
556    
557      ! calculs necessaires au calcul de l'albedo dans l'interface      CALL orbite(REAL(julien), longi, dist)
558        CALL zenang(longi, time, dtphys * radpas, mu0, fract)
559        albsol = sum(falbe * pctsrf, dim = 2)
560    
561        ! R\'epartition sous maille des flux longwave et shortwave
562        ! R\'epartition du longwave par sous-surface lin\'earis\'ee
563    
564        forall (nsrf = 1: nbsrf)
565           fsollw(:, nsrf) = sollw + 4. * RSIGMA * tsol**3 &
566                * (tsol - ftsol(:, nsrf))
567           fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol)
568        END forall
569    
570        CALL clmain(dtphys, pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, &
571             ftsol, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, &
572             paprs, play, fsnow, fqsurf, fevap, falbe, fluxlat, rain_fall, &
573             snow_fall, fsolsw, fsollw, frugs, agesno, rugoro, d_t_vdf, d_q_vdf, &
574             d_u_vdf, d_v_vdf, d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, &
575             cdragm, q2, dsens, devap, ycoefh, t2m, q2m, u10m_srf, v10m_srf, &
576             pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, plcl, &
577             fqcalving, ffonte, run_off_lic_0)
578    
579        ! Incr\'ementation des flux
580    
581        sens = - sum(flux_t * pctsrf, dim = 2)
582        evap = - sum(flux_q * pctsrf, dim = 2)
583        fder = dlw + dsens + devap
584    
585      CALL orbite(REAL(julien), zlongi, dist)      yu1 = u_seri(:, 1)
586      IF (cycle_diurne) THEN      yv1 = v_seri(:, 1)
        zdtime = pdtphys * REAL(radpas)  
        CALL zenang(zlongi, gmtime, zdtime, rmu0, fract)  
     ELSE  
        rmu0 = -999.999  
     ENDIF  
   
     !     Calcul de l'abedo moyen par maille  
     albsol(:)=0.  
     albsollw(:)=0.  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           albsol(i) = albsol(i) + falbe(i, nsrf) * pctsrf(i, nsrf)  
           albsollw(i) = albsollw(i) + falblw(i, nsrf) * pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     !     Repartition sous maille des flux LW et SW  
     ! Repartition du longwave par sous-surface linearisee  
   
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           fsollw(i, nsrf) = sollw(i) &  
                + 4.0*RSIGMA*ztsol(i)**3 * (ztsol(i)-ftsol(i, nsrf))  
           fsolsw(i, nsrf) = solsw(i)*(1.-falbe(i, nsrf))/(1.-albsol(i))  
        ENDDO  
     ENDDO  
   
     fder = dlw  
   
     CALL clmain(pdtphys, itap, date0, pctsrf, pctsrf_new, &  
          t_seri, q_seri, u_seri, v_seri, &  
          julien, rmu0, co2_ppm,  &  
          ok_veget, ocean, npas, nexca, ftsol, &  
          soil_model, cdmmax, cdhmax, &  
          ksta, ksta_ter, ok_kzmin, ftsoil, qsol,  &  
          paprs, pplay, fsnow, fqsurf, fevap, falbe, falblw, &  
          fluxlat, rain_fall, snow_fall, &  
          fsolsw, fsollw, sollwdown, fder, &  
          rlon, rlat, cuphy, cvphy, frugs, &  
          firstcal, lafin, agesno, rugoro, &  
          d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, &  
          fluxt, fluxq, fluxu, fluxv, cdragh, cdragm, &  
          q2, dsens, devap, &  
          ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, &  
          pblh, capCL, oliqCL, cteiCL, pblT, &  
          therm, trmb1, trmb2, trmb3, plcl, &  
          fqcalving, ffonte, run_off_lic_0, &  
          fluxo, fluxg, tslab, seaice)  
   
     !XXX Incrementation des flux  
   
     zxfluxt=0.  
     zxfluxq=0.  
     zxfluxu=0.  
     zxfluxv=0.  
     DO nsrf = 1, nbsrf  
        DO k = 1, llm  
           DO i = 1, klon  
              zxfluxt(i, k) = zxfluxt(i, k) +  &  
                   fluxt(i, k, nsrf) * pctsrf( i, nsrf)  
              zxfluxq(i, k) = zxfluxq(i, k) +  &  
                   fluxq(i, k, nsrf) * pctsrf( i, nsrf)  
              zxfluxu(i, k) = zxfluxu(i, k) +  &  
                   fluxu(i, k, nsrf) * pctsrf( i, nsrf)  
              zxfluxv(i, k) = zxfluxv(i, k) +  &  
                   fluxv(i, k, nsrf) * pctsrf( i, nsrf)  
           END DO  
        END DO  
     END DO  
     DO i = 1, klon  
        sens(i) = - zxfluxt(i, 1) ! flux de chaleur sensible au sol  
        evap(i) = - zxfluxq(i, 1) ! flux d'evaporation au sol  
        fder(i) = dlw(i) + dsens(i) + devap(i)  
     ENDDO  
587    
588      DO k = 1, llm      DO k = 1, llm
589         DO i = 1, klon         DO i = 1, klon
# Line 1180  contains Line 594  contains
594         ENDDO         ENDDO
595      ENDDO      ENDDO
596    
597      IF (if_ebil >= 2) THEN      ! Update surface temperature:
        ztit='after clmain'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil &  
             , zero_v, zero_v, zero_v, zero_v, sens &  
             , evap, zero_v, zero_v, ztsol &  
             , d_h_vcol, d_qt, d_ec &  
             , fs_bound, fq_bound )  
     END IF  
   
     ! Incrementer la temperature du sol  
598    
599      DO i = 1, klon      call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf')
600         zxtsol(i) = 0.0      ftsol = ftsol + d_ts
601         zxfluxlat(i) = 0.0      tsol = sum(ftsol * pctsrf, dim = 2)
602        zxfluxlat = sum(fluxlat * pctsrf, dim = 2)
603         zt2m(i) = 0.0      zt2m = sum(t2m * pctsrf, dim = 2)
604         zq2m(i) = 0.0      zq2m = sum(q2m * pctsrf, dim = 2)
605         zu10m(i) = 0.0      u10m = sum(u10m_srf * pctsrf, dim = 2)
606         zv10m(i) = 0.0      v10m = sum(v10m_srf * pctsrf, dim = 2)
607         zxffonte(i) = 0.0      zxffonte = sum(ffonte * pctsrf, dim = 2)
608         zxfqcalving(i) = 0.0      zxfqcalving = sum(fqcalving * pctsrf, dim = 2)
609        s_pblh = sum(pblh * pctsrf, dim = 2)
610         s_pblh(i) = 0.0      s_lcl = sum(plcl * pctsrf, dim = 2)
611         s_lcl(i) = 0.0      s_capCL = sum(capCL * pctsrf, dim = 2)
612         s_capCL(i) = 0.0      s_oliqCL = sum(oliqCL * pctsrf, dim = 2)
613         s_oliqCL(i) = 0.0      s_cteiCL = sum(cteiCL * pctsrf, dim = 2)
614         s_cteiCL(i) = 0.0      s_pblT = sum(pblT * pctsrf, dim = 2)
615         s_pblT(i) = 0.0      s_therm = sum(therm * pctsrf, dim = 2)
616         s_therm(i) = 0.0      s_trmb1 = sum(trmb1 * pctsrf, dim = 2)
617         s_trmb1(i) = 0.0      s_trmb2 = sum(trmb2 * pctsrf, dim = 2)
618         s_trmb2(i) = 0.0      s_trmb3 = sum(trmb3 * pctsrf, dim = 2)
        s_trmb3(i) = 0.0  
   
        IF ( abs( pctsrf(i, is_ter) + pctsrf(i, is_lic) +  &  
             pctsrf(i, is_oce) + pctsrf(i, is_sic)  - 1.) .GT. EPSFRA)  &  
             THEN  
           WRITE(*, *) 'physiq : pb sous surface au point ', i,  &  
                pctsrf(i, 1 : nbsrf)  
        ENDIF  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           ftsol(i, nsrf) = ftsol(i, nsrf) + d_ts(i, nsrf)  
           zxtsol(i) = zxtsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)  
           zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf)*pctsrf(i, nsrf)  
   
           zt2m(i) = zt2m(i) + t2m(i, nsrf)*pctsrf(i, nsrf)  
           zq2m(i) = zq2m(i) + q2m(i, nsrf)*pctsrf(i, nsrf)  
           zu10m(i) = zu10m(i) + u10m(i, nsrf)*pctsrf(i, nsrf)  
           zv10m(i) = zv10m(i) + v10m(i, nsrf)*pctsrf(i, nsrf)  
           zxffonte(i) = zxffonte(i) + ffonte(i, nsrf)*pctsrf(i, nsrf)  
           zxfqcalving(i) = zxfqcalving(i) +  &  
                fqcalving(i, nsrf)*pctsrf(i, nsrf)  
           s_pblh(i) = s_pblh(i) + pblh(i, nsrf)*pctsrf(i, nsrf)  
           s_lcl(i) = s_lcl(i) + plcl(i, nsrf)*pctsrf(i, nsrf)  
           s_capCL(i) = s_capCL(i) + capCL(i, nsrf) *pctsrf(i, nsrf)  
           s_oliqCL(i) = s_oliqCL(i) + oliqCL(i, nsrf) *pctsrf(i, nsrf)  
           s_cteiCL(i) = s_cteiCL(i) + cteiCL(i, nsrf) *pctsrf(i, nsrf)  
           s_pblT(i) = s_pblT(i) + pblT(i, nsrf) *pctsrf(i, nsrf)  
           s_therm(i) = s_therm(i) + therm(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb1(i) = s_trmb1(i) + trmb1(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb2(i) = s_trmb2(i) + trmb2(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb3(i) = s_trmb3(i) + trmb3(i, nsrf) *pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     ! Si une sous-fraction n'existe pas, elle prend la temp. moyenne  
619    
620        ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne :
621      DO nsrf = 1, nbsrf      DO nsrf = 1, nbsrf
622         DO i = 1, klon         DO i = 1, klon
623            IF (pctsrf(i, nsrf)  <  epsfra) ftsol(i, nsrf) = zxtsol(i)            IF (pctsrf(i, nsrf) < epsfra) then
624                 ftsol(i, nsrf) = tsol(i)
625            IF (pctsrf(i, nsrf)  <  epsfra) t2m(i, nsrf) = zt2m(i)               t2m(i, nsrf) = zt2m(i)
626            IF (pctsrf(i, nsrf)  <  epsfra) q2m(i, nsrf) = zq2m(i)               q2m(i, nsrf) = zq2m(i)
627            IF (pctsrf(i, nsrf)  <  epsfra) u10m(i, nsrf) = zu10m(i)               u10m_srf(i, nsrf) = u10m(i)
628            IF (pctsrf(i, nsrf)  <  epsfra) v10m(i, nsrf) = zv10m(i)               v10m_srf(i, nsrf) = v10m(i)
629            IF (pctsrf(i, nsrf)  <  epsfra) ffonte(i, nsrf) = zxffonte(i)               ffonte(i, nsrf) = zxffonte(i)
630            IF (pctsrf(i, nsrf)  <  epsfra)  &               fqcalving(i, nsrf) = zxfqcalving(i)
631                 fqcalving(i, nsrf) = zxfqcalving(i)               pblh(i, nsrf) = s_pblh(i)
632            IF (pctsrf(i, nsrf)  <  epsfra) pblh(i, nsrf)=s_pblh(i)               plcl(i, nsrf) = s_lcl(i)
633            IF (pctsrf(i, nsrf)  <  epsfra) plcl(i, nsrf)=s_lcl(i)               capCL(i, nsrf) = s_capCL(i)
634            IF (pctsrf(i, nsrf)  <  epsfra) capCL(i, nsrf)=s_capCL(i)               oliqCL(i, nsrf) = s_oliqCL(i)
635            IF (pctsrf(i, nsrf)  <  epsfra) oliqCL(i, nsrf)=s_oliqCL(i)               cteiCL(i, nsrf) = s_cteiCL(i)
636            IF (pctsrf(i, nsrf)  <  epsfra) cteiCL(i, nsrf)=s_cteiCL(i)               pblT(i, nsrf) = s_pblT(i)
637            IF (pctsrf(i, nsrf)  <  epsfra) pblT(i, nsrf)=s_pblT(i)               therm(i, nsrf) = s_therm(i)
638            IF (pctsrf(i, nsrf)  <  epsfra) therm(i, nsrf)=s_therm(i)               trmb1(i, nsrf) = s_trmb1(i)
639            IF (pctsrf(i, nsrf)  <  epsfra) trmb1(i, nsrf)=s_trmb1(i)               trmb2(i, nsrf) = s_trmb2(i)
640            IF (pctsrf(i, nsrf)  <  epsfra) trmb2(i, nsrf)=s_trmb2(i)               trmb3(i, nsrf) = s_trmb3(i)
641            IF (pctsrf(i, nsrf)  <  epsfra) trmb3(i, nsrf)=s_trmb3(i)            end IF
642         ENDDO         ENDDO
643      ENDDO      ENDDO
644    
645      ! Calculer la derive du flux infrarouge      dlw = - 4. * RSIGMA * tsol**3
646    
647      DO i = 1, klon      ! Appeler la convection
648         dlw(i) = - 4.0*RSIGMA*zxtsol(i)**3  
649      ENDDO      if (conv_emanuel) then
650           CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, &
651      ! Appeler la convection (au choix)              d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, &
652                upwd, dnwd, Ma, cape, iflagctrl, qcondc, pmflxr, da, phi, mp)
653      DO k = 1, llm         snow_con = 0.
654         DO i = 1, klon         clwcon0 = qcondc
655            conv_q(i, k) = d_q_dyn(i, k)  &         mfu = upwd + dnwd
656                 + d_q_vdf(i, k)/pdtphys  
657            conv_t(i, k) = d_t_dyn(i, k)  &         zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play)
658                 + d_t_vdf(i, k)/pdtphys         zqsat = zqsat / (1. - retv * zqsat)
659         ENDDO  
660      ENDDO         ! Properties of convective clouds
661      IF (check) THEN         clwcon0 = fact_cldcon * clwcon0
662         za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)         call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &
663         print *, "avantcon=", za              rnebcon0)
664      ENDIF  
665      zx_ajustq = .FALSE.         forall (i = 1:klon) ema_pct(i) = paprs(i, itop_con(i) + 1)
666      IF (iflag_con == 2) zx_ajustq=.TRUE.         mfd = 0.
667      IF (zx_ajustq) THEN         pen_u = 0.
668         DO i = 1, klon         pen_d = 0.
669            z_avant(i) = 0.0         pde_d = 0.
670         ENDDO         pde_u = 0.
671         DO k = 1, llm      else
672            DO i = 1, klon         conv_q = d_q_dyn + d_q_vdf / dtphys
673               z_avant(i) = z_avant(i) + (q_seri(i, k)+ql_seri(i, k)) &         conv_t = d_t_dyn + d_t_vdf / dtphys
674                    *(paprs(i, k)-paprs(i, k+1))/RG         z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)
675            ENDDO         CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:- 1), &
676         ENDDO              q_seri(:, llm:1:- 1), conv_t, conv_q, - evap, omega, &
677      ENDIF              d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:- 1), &
678      IF (iflag_con == 1) THEN              mfd(:, llm:1:- 1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, &
679         stop 'reactiver le call conlmd dans physiq.F'              kdtop, pmflxr, pmflxs)
     ELSE IF (iflag_con == 2) THEN  
        CALL conflx(pdtphys, paprs, pplay, t_seri, q_seri, &  
             conv_t, conv_q, zxfluxq(1, 1), omega, &  
             d_t_con, d_q_con, rain_con, snow_con, &  
             pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, &  
             kcbot, kctop, kdtop, pmflxr, pmflxs)  
680         WHERE (rain_con < 0.) rain_con = 0.         WHERE (rain_con < 0.) rain_con = 0.
681         WHERE (snow_con < 0.) snow_con = 0.         WHERE (snow_con < 0.) snow_con = 0.
682         DO i = 1, klon         ibas_con = llm + 1 - kcbot
683            ibas_con(i) = llm+1 - kcbot(i)         itop_con = llm + 1 - kctop
684            itop_con(i) = llm+1 - kctop(i)      END if
        ENDDO  
     ELSE IF (iflag_con >= 3) THEN  
        ! nb of tracers for the KE convection:  
        ! MAF la partie traceurs est faite dans phytrac  
        ! on met ntra=1 pour limiter les appels mais on peut  
        ! supprimer les calculs / ftra.  
        ntra = 1  
        ! Schema de convection modularise et vectorise:  
        ! (driver commun aux versions 3 et 4)  
   
        IF (ok_cvl) THEN ! new driver for convectL  
   
           CALL concvl (iflag_con, &  
                pdtphys, paprs, pplay, t_seri, q_seri, &  
                u_seri, v_seri, tr_seri, ntra, &  
                ema_work1, ema_work2, &  
                d_t_con, d_q_con, d_u_con, d_v_con, d_tr, &  
                rain_con, snow_con, ibas_con, itop_con, &  
                upwd, dnwd, dnwd0, &  
                Ma, cape, tvp, iflagctrl, &  
                pbase, bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr, qcondc, wd, &  
                pmflxr, pmflxs, &  
                da, phi, mp)  
   
           clwcon0=qcondc  
           pmfu(:, :)=upwd(:, :)+dnwd(:, :)  
   
        ELSE ! ok_cvl  
           ! MAF conema3 ne contient pas les traceurs  
           CALL conema3 (pdtphys, &  
                paprs, pplay, t_seri, q_seri, &  
                u_seri, v_seri, tr_seri, ntra, &  
                ema_work1, ema_work2, &  
                d_t_con, d_q_con, d_u_con, d_v_con, d_tr, &  
                rain_con, snow_con, ibas_con, itop_con, &  
                upwd, dnwd, dnwd0, bas, top, &  
                Ma, cape, tvp, rflag, &  
                pbase &  
                , bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr &  
                , clwcon0)  
   
        ENDIF ! ok_cvl  
   
        IF (.NOT. ok_gust) THEN  
           do i = 1, klon  
              wd(i)=0.0  
           enddo  
        ENDIF  
   
        ! Calcul des proprietes des nuages convectifs  
   
        DO k = 1, llm  
           DO i = 1, klon  
              zx_t = t_seri(i, k)  
              IF (thermcep) THEN  
                 zdelta = MAX(0., SIGN(1., rtt-zx_t))  
                 zx_qs  = r2es * FOEEW(zx_t, zdelta)/pplay(i, k)  
                 zx_qs  = MIN(0.5, zx_qs)  
                 zcor   = 1./(1.-retv*zx_qs)  
                 zx_qs  = zx_qs*zcor  
              ELSE  
                 IF (zx_t < t_coup) THEN  
                    zx_qs = qsats(zx_t)/pplay(i, k)  
                 ELSE  
                    zx_qs = qsatl(zx_t)/pplay(i, k)  
                 ENDIF  
              ENDIF  
              zqsat(i, k)=zx_qs  
           ENDDO  
        ENDDO  
   
        !   calcul des proprietes des nuages convectifs  
        clwcon0(:, :)=fact_cldcon*clwcon0(:, :)  
        call clouds_gno &  
             (klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, rnebcon0)  
     ELSE  
        print *, "iflag_con non-prevu", iflag_con  
        stop 1  
     ENDIF  
685    
686      DO k = 1, llm      DO k = 1, llm
687         DO i = 1, klon         DO i = 1, klon
# Line 1410  contains Line 692  contains
692         ENDDO         ENDDO
693      ENDDO      ENDDO
694    
695      IF (if_ebil >= 2) THEN      IF (.not. conv_emanuel) THEN
696         ztit='after convect'         z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)
697         CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys &         z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil &  
             , zero_v, zero_v, zero_v, zero_v, zero_v &  
             , zero_v, rain_con, snow_con, ztsol &  
             , d_h_vcol, d_qt, d_ec &  
             , fs_bound, fq_bound )  
     END IF  
   
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        print *,"aprescon=", za  
        zx_t = 0.0  
        za = 0.0  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_con(i)+ &  
                snow_con(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*pdtphys  
        print *,"Precip=", zx_t  
     ENDIF  
     IF (zx_ajustq) THEN  
        DO i = 1, klon  
           z_apres(i) = 0.0  
        ENDDO  
698         DO k = 1, llm         DO k = 1, llm
699            DO i = 1, klon            DO i = 1, klon
700               z_apres(i) = z_apres(i) + (q_seri(i, k)+ql_seri(i, k)) &               IF (z_factor(i) > 1. + 1E-8 .OR. z_factor(i) < 1. - 1E-8) THEN
                   *(paprs(i, k)-paprs(i, k+1))/RG  
           ENDDO  
        ENDDO  
        DO i = 1, klon  
           z_factor(i) = (z_avant(i)-(rain_con(i)+snow_con(i))*pdtphys) &  
                /z_apres(i)  
        ENDDO  
        DO k = 1, llm  
           DO i = 1, klon  
              IF (z_factor(i).GT.(1.0+1.0E-08) .OR. &  
                   z_factor(i) < (1.0-1.0E-08)) THEN  
701                  q_seri(i, k) = q_seri(i, k) * z_factor(i)                  q_seri(i, k) = q_seri(i, k) * z_factor(i)
702               ENDIF               ENDIF
703            ENDDO            ENDDO
704         ENDDO         ENDDO
705      ENDIF      ENDIF
     zx_ajustq=.FALSE.  
706    
707      ! Convection seche (thermiques ou ajustement)      ! Convection s\`eche (thermiques ou ajustement)
708    
709      d_t_ajs(:, :)=0.      d_t_ajs = 0.
710      d_u_ajs(:, :)=0.      d_u_ajs = 0.
711      d_v_ajs(:, :)=0.      d_v_ajs = 0.
712      d_q_ajs(:, :)=0.      d_q_ajs = 0.
713      fm_therm(:, :)=0.      fm_therm = 0.
714      entr_therm(:, :)=0.      entr_therm = 0.
715    
716      IF(prt_level>9)print *, &      if (iflag_thermals == 0) then
717           'AVANT LA CONVECTION SECHE, iflag_thermals=' &         ! Ajustement sec
718           , iflag_thermals, '   nsplit_thermals=', nsplit_thermals         CALL ajsec(paprs, play, t_seri, q_seri, d_t_ajs, d_q_ajs)
719      if(iflag_thermals < 0) then         t_seri = t_seri + d_t_ajs
720         !  Rien         q_seri = q_seri + d_q_ajs
        IF(prt_level>9)print *,'pas de convection'  
     else if(iflag_thermals == 0) then  
        !  Ajustement sec  
        IF(prt_level>9)print *,'ajsec'  
        CALL ajsec(paprs, pplay, t_seri, q_seri, d_t_ajs, d_q_ajs)  
        t_seri(:, :) = t_seri(:, :) + d_t_ajs(:, :)  
        q_seri(:, :) = q_seri(:, :) + d_q_ajs(:, :)  
721      else      else
722         !  Thermiques         call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, &
723         IF(prt_level>9)print *,'JUSTE AVANT, iflag_thermals=' &              q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)
             , iflag_thermals, '   nsplit_thermals=', nsplit_thermals  
        call calltherm(pdtphys &  
             , pplay, paprs, pphi &  
             , u_seri, v_seri, t_seri, q_seri &  
             , d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs &  
             , fm_therm, entr_therm)  
724      endif      endif
725    
726      IF (if_ebil >= 2) THEN      ! Caclul des ratqs
        ztit='after dry_adjust'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
     END IF  
   
     !  Caclul des ratqs  
727    
728      !   ratqs convectifs a l'ancienne en fonction de q(z=0)-q / q      ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q
729      !   on ecrase le tableau ratqsc calcule par clouds_gno      ! on \'ecrase le tableau ratqsc calcul\'e par clouds_gno
730      if (iflag_cldcon == 1) then      if (iflag_cldcon == 1) then
731         do k=1, llm         do k = 1, llm
732            do i=1, klon            do i = 1, klon
733               if(ptconv(i, k)) then               if(ptconv(i, k)) then
734                  ratqsc(i, k)=ratqsbas &                  ratqsc(i, k) = ratqsbas + fact_cldcon &
735                       +fact_cldcon*(q_seri(i, 1)-q_seri(i, k))/q_seri(i, k)                       * (q_seri(i, 1) - q_seri(i, k)) / q_seri(i, k)
736               else               else
737                  ratqsc(i, k)=0.                  ratqsc(i, k) = 0.
738               endif               endif
739            enddo            enddo
740         enddo         enddo
741      endif      endif
742    
743      !   ratqs stables      ! ratqs stables
744      do k=1, llm      do k = 1, llm
745         do i=1, klon         do i = 1, klon
746            ratqss(i, k)=ratqsbas+(ratqshaut-ratqsbas)* &            ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &
747                 min((paprs(i, 1)-pplay(i, k))/(paprs(i, 1)-30000.), 1.)                 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)
748         enddo         enddo
749      enddo      enddo
750    
751      !  ratqs final      ! ratqs final
752      if (iflag_cldcon == 1 .or.iflag_cldcon == 2) then      if (iflag_cldcon == 1 .or. iflag_cldcon == 2) then
753         !   les ratqs sont une conbinaison de ratqss et ratqsc         ! les ratqs sont une conbinaison de ratqss et ratqsc
754         !   ratqs final         ! ratqs final
755         !   1e4 (en gros 3 heures), en dur pour le moment, est le temps de         ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de
756         !   relaxation des ratqs         ! relaxation des ratqs
757         facteur=exp(-pdtphys*facttemps)         ratqs = max(ratqs * exp(- dtphys * facttemps), ratqss)
758         ratqs(:, :)=max(ratqs(:, :)*facteur, ratqss(:, :))         ratqs = max(ratqs, ratqsc)
        ratqs(:, :)=max(ratqs(:, :), ratqsc(:, :))  
759      else      else
760         !   on ne prend que le ratqs stable pour fisrtilp         ! on ne prend que le ratqs stable pour fisrtilp
761         ratqs(:, :)=ratqss(:, :)         ratqs = ratqss
762      endif      endif
763    
764      ! Appeler le processus de condensation a grande echelle      CALL fisrtilp(dtphys, paprs, play, t_seri, q_seri, ptconv, ratqs, &
765      ! et le processus de precipitation           d_t_lsc, d_q_lsc, d_ql_lsc, rneb, cldliq, rain_lsc, snow_lsc, &
766      CALL fisrtilp(pdtphys, paprs, pplay, &           pfrac_impa, pfrac_nucl, pfrac_1nucl, frac_impa, frac_nucl, prfl, &
767           t_seri, q_seri, ptconv, ratqs, &           psfl, rhcl)
          d_t_lsc, d_q_lsc, d_ql_lsc, rneb, cldliq, &  
          rain_lsc, snow_lsc, &  
          pfrac_impa, pfrac_nucl, pfrac_1nucl, &  
          frac_impa, frac_nucl, &  
          prfl, psfl, rhcl)  
768    
769      WHERE (rain_lsc < 0) rain_lsc = 0.      WHERE (rain_lsc < 0) rain_lsc = 0.
770      WHERE (snow_lsc < 0) snow_lsc = 0.      WHERE (snow_lsc < 0) snow_lsc = 0.
# Line 1559  contains Line 777  contains
777            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)
778         ENDDO         ENDDO
779      ENDDO      ENDDO
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        print *,"apresilp=", za  
        zx_t = 0.0  
        za = 0.0  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_lsc(i) &  
                + snow_lsc(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*pdtphys  
        print *,"Precip=", zx_t  
     ENDIF  
780    
781      IF (if_ebil >= 2) THEN      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
        ztit='after fisrt'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil &  
             , zero_v, zero_v, zero_v, zero_v, zero_v &  
             , zero_v, rain_lsc, snow_lsc, ztsol &  
             , d_h_vcol, d_qt, d_ec &  
             , fs_bound, fq_bound )  
     END IF  
   
     !  PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT  
782    
783      ! 1. NUAGES CONVECTIFS      ! 1. NUAGES CONVECTIFS
784    
785      IF (iflag_cldcon.le.-1) THEN ! seulement pour Tiedtke      IF (iflag_cldcon <= - 1) THEN
786         snow_tiedtke=0.         ! seulement pour Tiedtke
787         if (iflag_cldcon == -1) then         snow_tiedtke = 0.
788            rain_tiedtke=rain_con         if (iflag_cldcon == - 1) then
789              rain_tiedtke = rain_con
790         else         else
791            rain_tiedtke=0.            rain_tiedtke = 0.
792            do k=1, llm            do k = 1, llm
793               do i=1, klon               do i = 1, klon
794                  if (d_q_con(i, k) < 0.) then                  if (d_q_con(i, k) < 0.) then
795                     rain_tiedtke(i)=rain_tiedtke(i)-d_q_con(i, k)/pdtphys &                     rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k) / dtphys &
796                          *(paprs(i, k)-paprs(i, k+1))/rg                          * zmasse(i, k)
797                  endif                  endif
798               enddo               enddo
799            enddo            enddo
800         endif         endif
801    
802         ! Nuages diagnostiques pour Tiedtke         ! Nuages diagnostiques pour Tiedtke
803         CALL diagcld1(paprs, pplay, &         CALL diagcld1(paprs, play, rain_tiedtke, snow_tiedtke, ibas_con, &
804              rain_tiedtke, snow_tiedtke, ibas_con, itop_con, &              itop_con, diafra, dialiq)
             diafra, dialiq)  
805         DO k = 1, llm         DO k = 1, llm
806            DO i = 1, klon            DO i = 1, klon
807               IF (diafra(i, k).GT.cldfra(i, k)) THEN               IF (diafra(i, k) > cldfra(i, k)) THEN
808                  cldliq(i, k) = dialiq(i, k)                  cldliq(i, k) = dialiq(i, k)
809                  cldfra(i, k) = diafra(i, k)                  cldfra(i, k) = diafra(i, k)
810               ENDIF               ENDIF
811            ENDDO            ENDDO
812         ENDDO         ENDDO
   
813      ELSE IF (iflag_cldcon == 3) THEN      ELSE IF (iflag_cldcon == 3) THEN
814         ! On prend pour les nuages convectifs le max du calcul de la         ! On prend pour les nuages convectifs le maximum du calcul de
815         ! convection et du calcul du pas de temps précédent diminué d'un facteur         ! la convection et du calcul du pas de temps pr\'ec\'edent diminu\'e
816         ! facttemps         ! d'un facteur facttemps.
817         facteur = pdtphys *facttemps         facteur = dtphys * facttemps
818         do k=1, llm         do k = 1, llm
819            do i=1, klon            do i = 1, klon
820               rnebcon(i, k)=rnebcon(i, k)*facteur               rnebcon(i, k) = rnebcon(i, k) * facteur
821               if (rnebcon0(i, k)*clwcon0(i, k).gt.rnebcon(i, k)*clwcon(i, k)) &               if (rnebcon0(i, k) * clwcon0(i, k) &
822                    then                    > rnebcon(i, k) * clwcon(i, k)) then
823                  rnebcon(i, k)=rnebcon0(i, k)                  rnebcon(i, k) = rnebcon0(i, k)
824                  clwcon(i, k)=clwcon0(i, k)                  clwcon(i, k) = clwcon0(i, k)
825               endif               endif
826            enddo            enddo
827         enddo         enddo
828    
829         !   On prend la somme des fractions nuageuses et des contenus en eau         ! On prend la somme des fractions nuageuses et des contenus en eau
830         cldfra(:, :)=min(max(cldfra(:, :), rnebcon(:, :)), 1.)         cldfra = min(max(cldfra, rnebcon), 1.)
831         cldliq(:, :)=cldliq(:, :)+rnebcon(:, :)*clwcon(:, :)         cldliq = cldliq + rnebcon * clwcon
   
832      ENDIF      ENDIF
833    
834      ! 2. NUAGES STARTIFORMES      ! 2. Nuages stratiformes
835    
836      IF (ok_stratus) THEN      IF (ok_stratus) THEN
837         CALL diagcld2(paprs, pplay, t_seri, q_seri, diafra, dialiq)         CALL diagcld2(paprs, play, t_seri, q_seri, diafra, dialiq)
838         DO k = 1, llm         DO k = 1, llm
839            DO i = 1, klon            DO i = 1, klon
840               IF (diafra(i, k).GT.cldfra(i, k)) THEN               IF (diafra(i, k) > cldfra(i, k)) THEN
841                  cldliq(i, k) = dialiq(i, k)                  cldliq(i, k) = dialiq(i, k)
842                  cldfra(i, k) = diafra(i, k)                  cldfra(i, k) = diafra(i, k)
843               ENDIF               ENDIF
# Line 1655  contains Line 846  contains
846      ENDIF      ENDIF
847    
848      ! Precipitation totale      ! Precipitation totale
   
849      DO i = 1, klon      DO i = 1, klon
850         rain_fall(i) = rain_con(i) + rain_lsc(i)         rain_fall(i) = rain_con(i) + rain_lsc(i)
851         snow_fall(i) = snow_con(i) + snow_lsc(i)         snow_fall(i) = snow_con(i) + snow_lsc(i)
852      ENDDO      ENDDO
853    
854      IF (if_ebil >= 2) THEN      ! Humidit\'e relative pour diagnostic :
        ztit="after diagcld"  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
     END IF  
   
     ! Calculer l'humidite relative pour diagnostique  
   
855      DO k = 1, llm      DO k = 1, llm
856         DO i = 1, klon         DO i = 1, klon
857            zx_t = t_seri(i, k)            zx_t = t_seri(i, k)
858            IF (thermcep) THEN            zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t) / play(i, k)
859               zdelta = MAX(0., SIGN(1., rtt-zx_t))            zx_qs = MIN(0.5, zx_qs)
860               zx_qs  = r2es * FOEEW(zx_t, zdelta)/pplay(i, k)            zcor = 1. / (1. - retv * zx_qs)
861               zx_qs  = MIN(0.5, zx_qs)            zx_qs = zx_qs * zcor
862               zcor   = 1./(1.-retv*zx_qs)            zx_rh(i, k) = q_seri(i, k) / zx_qs
863               zx_qs  = zx_qs*zcor            zqsat(i, k) = zx_qs
           ELSE  
              IF (zx_t < t_coup) THEN  
                 zx_qs = qsats(zx_t)/pplay(i, k)  
              ELSE  
                 zx_qs = qsatl(zx_t)/pplay(i, k)  
              ENDIF  
           ENDIF  
           zx_rh(i, k) = q_seri(i, k)/zx_qs  
           zqsat(i, k)=zx_qs  
864         ENDDO         ENDDO
865      ENDDO      ENDDO
     !jq - introduce the aerosol direct and first indirect radiative forcings  
     !jq - Johannes Quaas, 27/11/2003 (quaas@lmd.jussieu.fr)  
     IF (ok_ade.OR.ok_aie) THEN  
        ! Get sulfate aerosol distribution  
        CALL readsulfate(rdayvrai, firstcal, sulfate)  
        CALL readsulfate_preind(rdayvrai, firstcal, sulfate_pi)  
   
        ! Calculate aerosol optical properties (Olivier Boucher)  
        CALL aeropt(pplay, paprs, t_seri, sulfate, rhcl, &  
             tau_ae, piz_ae, cg_ae, aerindex)  
     ELSE  
        tau_ae(:, :, :)=0.0  
        piz_ae(:, :, :)=0.0  
        cg_ae(:, :, :)=0.0  
     ENDIF  
   
     ! Calculer les parametres optiques des nuages et quelques  
     ! parametres pour diagnostiques:  
866    
867        ! Param\`etres optiques des nuages et quelques param\`etres pour
868        ! diagnostics :
869      if (ok_newmicro) then      if (ok_newmicro) then
870         CALL newmicro (paprs, pplay, ok_newmicro, &         CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &
871              t_seri, cldliq, cldfra, cldtau, cldemi, &              cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc)
             cldh, cldl, cldm, cldt, cldq, &  
             flwp, fiwp, flwc, fiwc, &  
             ok_aie, &  
             sulfate, sulfate_pi, &  
             bl95_b0, bl95_b1, &  
             cldtaupi, re, fl)  
872      else      else
873         CALL nuage (paprs, pplay, &         CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &
874              t_seri, cldliq, cldfra, cldtau, cldemi, &              cldl, cldm, cldt, cldq)
             cldh, cldl, cldm, cldt, cldq, &  
             ok_aie, &  
             sulfate, sulfate_pi, &  
             bl95_b0, bl95_b1, &  
             cldtaupi, re, fl)  
   
875      endif      endif
876    
877      ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.      IF (MOD(itap - 1, radpas) == 0) THEN
878           wo = ozonecm(REAL(julien), paprs)
879      IF (MOD(itaprad, radpas) == 0) THEN         albsol = sum(falbe * pctsrf, dim = 2)
880         DO i = 1, klon         CALL radlwsw(dist, mu0, fract, paprs, play, tsol, albsol, t_seri, &
881            albsol(i) = falbe(i, is_oce) * pctsrf(i, is_oce) &              q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, &
882                 + falbe(i, is_lic) * pctsrf(i, is_lic) &              radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, &
883                 + falbe(i, is_ter) * pctsrf(i, is_ter) &              toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, &
884                 + falbe(i, is_sic) * pctsrf(i, is_sic)              swup0, swup, ok_ade, topswad, solswad)
           albsollw(i) = falblw(i, is_oce) * pctsrf(i, is_oce) &  
                + falblw(i, is_lic) * pctsrf(i, is_lic) &  
                + falblw(i, is_ter) * pctsrf(i, is_ter) &  
                + falblw(i, is_sic) * pctsrf(i, is_sic)  
        ENDDO  
        ! nouveau rayonnement (compatible Arpege-IFS):  
        CALL radlwsw(dist, rmu0, fract,  &  
             paprs, pplay, zxtsol, albsol, albsollw, t_seri, q_seri, &  
             wo, &  
             cldfra, cldemi, cldtau, &  
             heat, heat0, cool, cool0, radsol, albpla, &  
             topsw, toplw, solsw, sollw, &  
             sollwdown, &  
             topsw0, toplw0, solsw0, sollw0, &  
             lwdn0, lwdn, lwup0, lwup,  &  
             swdn0, swdn, swup0, swup, &  
             ok_ade, ok_aie, & ! new for aerosol radiative effects  
             tau_ae, piz_ae, cg_ae, &  
             topswad, solswad, &  
             cldtaupi, &  
             topswai, solswai)  
        itaprad = 0  
885      ENDIF      ENDIF
     itaprad = itaprad + 1  
886    
887      ! Ajouter la tendance des rayonnements (tous les pas)      ! Ajouter la tendance des rayonnements (tous les pas)
   
888      DO k = 1, llm      DO k = 1, llm
889         DO i = 1, klon         DO i = 1, klon
890            t_seri(i, k) = t_seri(i, k) &            t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys &
891                 + (heat(i, k)-cool(i, k)) * pdtphys/86400.                 / 86400.
        ENDDO  
     ENDDO  
   
     IF (if_ebil >= 2) THEN  
        ztit='after rad'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil &  
             , topsw, toplw, solsw, sollw, zero_v &  
             , zero_v, zero_v, zero_v, ztsol &  
             , d_h_vcol, d_qt, d_ec &  
             , fs_bound, fq_bound )  
     END IF  
   
     ! Calculer l'hydrologie de la surface  
   
     DO i = 1, klon  
        zxqsurf(i) = 0.0  
        zxsnow(i) = 0.0  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxqsurf(i) = zxqsurf(i) + fqsurf(i, nsrf)*pctsrf(i, nsrf)  
           zxsnow(i) = zxsnow(i) + fsnow(i, nsrf)*pctsrf(i, nsrf)  
892         ENDDO         ENDDO
893      ENDDO      ENDDO
894    
895      ! Calculer le bilan du sol et la derive de temperature (couplage)      ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage)
   
896      DO i = 1, klon      DO i = 1, klon
897         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)
898      ENDDO      ENDDO
899    
900      !moddeblott(jan95)      ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille :
     ! Appeler le programme de parametrisation de l'orographie  
     ! a l'echelle sous-maille:  
901    
902      IF (ok_orodr) THEN      IF (ok_orodr) THEN
903           ! S\'election des points pour lesquels le sch\'ema est actif :
904         !  selection des points pour lesquels le shema est actif:         igwd = 0
905         igwd=0         DO i = 1, klon
906         DO i=1, klon            itest(i) = 0
907            itest(i)=0            IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN
908            IF (((zpic(i)-zmea(i)).GT.100.).AND.(zstd(i).GT.10.0)) THEN               itest(i) = 1
909               itest(i)=1               igwd = igwd + 1
              igwd=igwd+1  
              idx(igwd)=i  
910            ENDIF            ENDIF
911         ENDDO         ENDDO
912    
913         CALL drag_noro(klon, llm, pdtphys, paprs, pplay, &         CALL drag_noro(klon, llm, dtphys, paprs, play, zmea, zstd, zsig, zgam, &
914              zmea, zstd, zsig, zgam, zthe, zpic, zval, &              zthe, zpic, zval, itest, t_seri, u_seri, v_seri, zulow, zvlow, &
915              igwd, idx, itest, &              zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro)
             t_seri, u_seri, v_seri, &  
             zulow, zvlow, zustrdr, zvstrdr, &  
             d_t_oro, d_u_oro, d_v_oro)  
916    
917         !  ajout des tendances         ! ajout des tendances
918         DO k = 1, llm         DO k = 1, llm
919            DO i = 1, klon            DO i = 1, klon
920               t_seri(i, k) = t_seri(i, k) + d_t_oro(i, k)               t_seri(i, k) = t_seri(i, k) + d_t_oro(i, k)
# Line 1834  contains Line 922  contains
922               v_seri(i, k) = v_seri(i, k) + d_v_oro(i, k)               v_seri(i, k) = v_seri(i, k) + d_v_oro(i, k)
923            ENDDO            ENDDO
924         ENDDO         ENDDO
925        ENDIF
     ENDIF ! fin de test sur ok_orodr  
926    
927      IF (ok_orolf) THEN      IF (ok_orolf) THEN
928           ! S\'election des points pour lesquels le sch\'ema est actif :
929         !  selection des points pour lesquels le shema est actif:         igwd = 0
930         igwd=0         DO i = 1, klon
931         DO i=1, klon            itest(i) = 0
932            itest(i)=0            IF (zpic(i) - zmea(i) > 100.) THEN
933            IF ((zpic(i)-zmea(i)).GT.100.) THEN               itest(i) = 1
934               itest(i)=1               igwd = igwd + 1
              igwd=igwd+1  
              idx(igwd)=i  
935            ENDIF            ENDIF
936         ENDDO         ENDDO
937    
938         CALL lift_noro(klon, llm, pdtphys, paprs, pplay, &         CALL lift_noro(klon, llm, dtphys, paprs, play, rlat, zmea, zstd, zpic, &
939              rlat, zmea, zstd, zpic, &              itest, t_seri, u_seri, v_seri, zulow, zvlow, zustrli, zvstrli, &
             itest, &  
             t_seri, u_seri, v_seri, &  
             zulow, zvlow, zustrli, zvstrli, &  
940              d_t_lif, d_u_lif, d_v_lif)              d_t_lif, d_u_lif, d_v_lif)
941    
942         !  ajout des tendances         ! Ajout des tendances :
943         DO k = 1, llm         DO k = 1, llm
944            DO i = 1, klon            DO i = 1, klon
945               t_seri(i, k) = t_seri(i, k) + d_t_lif(i, k)               t_seri(i, k) = t_seri(i, k) + d_t_lif(i, k)
# Line 1865  contains Line 947  contains
947               v_seri(i, k) = v_seri(i, k) + d_v_lif(i, k)               v_seri(i, k) = v_seri(i, k) + d_v_lif(i, k)
948            ENDDO            ENDDO
949         ENDDO         ENDDO
950        ENDIF
951    
952      ENDIF ! fin de test sur ok_orolf      ! Stress n\'ecessaires : toute la physique
   
     ! STRESS NECESSAIRES: TOUTE LA PHYSIQUE  
953    
954      DO i = 1, klon      DO i = 1, klon
955         zustrph(i)=0.         zustrph(i) = 0.
956         zvstrph(i)=0.         zvstrph(i) = 0.
957      ENDDO      ENDDO
958      DO k = 1, llm      DO k = 1, llm
959         DO i = 1, klon         DO i = 1, klon
960            zustrph(i)=zustrph(i)+(u_seri(i, k)-u(i, k))/pdtphys* &            zustrph(i) = zustrph(i) + (u_seri(i, k) - u(i, k)) / dtphys &
961                 (paprs(i, k)-paprs(i, k+1))/rg                 * zmasse(i, k)
962            zvstrph(i)=zvstrph(i)+(v_seri(i, k)-v(i, k))/pdtphys* &            zvstrph(i) = zvstrph(i) + (v_seri(i, k) - v(i, k)) / dtphys &
963                 (paprs(i, k)-paprs(i, k+1))/rg                 * zmasse(i, k)
964         ENDDO         ENDDO
965      ENDDO      ENDDO
966    
967      !IM calcul composantes axiales du moment angulaire et couple des montagnes      CALL aaam_bud(rg, romega, rlat, rlon, pphis, zustrdr, zustrli, zustrph, &
968             zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc)
     CALL aaam_bud (27, klon, llm, gmtime, &  
          ra, rg, romega, &  
          rlat, rlon, pphis, &  
          zustrdr, zustrli, zustrph, &  
          zvstrdr, zvstrli, zvstrph, &  
          paprs, u, v, &  
          aam, torsfc)  
   
     IF (if_ebil >= 2) THEN  
        ztit='after orography'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
     END IF  
   
     !AA Installation de l'interface online-offline pour traceurs  
   
     !   Calcul  des tendances traceurs  
   
     call phytrac(rnpb, itap, lmt_pas, julien,  gmtime, firstcal, lafin, nq-2, &  
          pdtphys, u, v, t, paprs, pplay, pmfu,  pmfd,  pen_u,  pde_u,  pen_d, &  
          pde_d, ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, pctsrf, &  
          frac_impa,  frac_nucl, presnivs, pphis, pphi, albsol, rhcl, cldfra, &  
          rneb,  diafra,  cldliq, itop_con, ibas_con, pmflxr, pmflxs, prfl, &  
          psfl, da, phi, mp, upwd, dnwd, tr_seri)  
   
     IF (offline) THEN  
   
        print*, 'Attention on met a 0 les thermiques pour phystoke'  
        call phystokenc(pdtphys, rlon, rlat, &  
             t, pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, &  
             fm_therm, entr_therm, &  
             ycoefh, yu1, yv1, ftsol, pctsrf, &  
             frac_impa, frac_nucl, &  
             pphis, airephy, pdtphys, itap)  
969    
970      ENDIF      ! Calcul des tendances traceurs
971        call phytrac(julien, time, firstcal, lafin, dtphys, t, paprs, play, mfu, &
972             mfd, pde_u, pen_d, ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, &
973             pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, dnwd, tr_seri, &
974             zmasse, ncid_startphy)
975    
976      ! Calculer le transport de l'eau et de l'energie (diagnostique)      ! Calculer le transport de l'eau et de l'energie (diagnostique)
977        CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq)
978    
979      CALL transp (paprs, zxtsol, &      ! diag. bilKP
          t_seri, q_seri, u_seri, v_seri, zphi, &  
          ve, vq, ue, uq)  
980    
981      !IM diag. bilKP      CALL transp_lay(paprs, t_seri, q_seri, u_seri, v_seri, zphi, &
   
     CALL transp_lay (paprs, zxtsol, &  
          t_seri, q_seri, u_seri, v_seri, zphi, &  
982           ve_lay, vq_lay, ue_lay, uq_lay)           ve_lay, vq_lay, ue_lay, uq_lay)
983    
984      ! Accumuler les variables a stocker dans les fichiers histoire:      ! Accumuler les variables a stocker dans les fichiers histoire:
985    
986      !+jld ec_conser      ! conversion Ec en énergie thermique
987      DO k = 1, llm      DO k = 1, llm
988         DO i = 1, klon         DO i = 1, klon
989            ZRCPD = RCPD*(1.0+RVTMP2*q_seri(i, k))            d_t_ec(i, k) = 0.5 / (RCPD * (1. + RVTMP2 * q_seri(i, k))) &
990            d_t_ec(i, k)=0.5/ZRCPD &                 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)
991                 *(u(i, k)**2+v(i, k)**2-u_seri(i, k)**2-v_seri(i, k)**2)            t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)
992            t_seri(i, k)=t_seri(i, k)+d_t_ec(i, k)            d_t_ec(i, k) = d_t_ec(i, k) / dtphys
           d_t_ec(i, k) = d_t_ec(i, k)/pdtphys  
993         END DO         END DO
994      END DO      END DO
     !-jld ec_conser  
     IF (if_ebil >= 1) THEN  
        ztit='after physic'  
        CALL diagetpq(airephy, ztit, ip_ebil, 1, 1, pdtphys &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
        !     Comme les tendances de la physique sont ajoute dans la dynamique,  
        !     on devrait avoir que la variation d'entalpie par la dynamique  
        !     est egale a la variation de la physique au pas de temps precedent.  
        !     Donc la somme de ces 2 variations devrait etre nulle.  
        call diagphy(airephy, ztit, ip_ebil &  
             , topsw, toplw, solsw, sollw, sens &  
             , evap, rain_fall, snow_fall, ztsol &  
             , d_h_vcol, d_qt, d_ec &  
             , fs_bound, fq_bound )  
   
        d_h_vcol_phy=d_h_vcol  
   
     END IF  
995    
996      !   SORTIES      ! SORTIES
997    
998      !IM Interpolation sur les niveaux de pression du NMC      ! prw = eau precipitable
     call calcul_STDlev  
   
     !cc prw = eau precipitable  
999      DO i = 1, klon      DO i = 1, klon
1000         prw(i) = 0.         prw(i) = 0.
1001         DO k = 1, llm         DO k = 1, llm
1002            prw(i) = prw(i) + &            prw(i) = prw(i) + q_seri(i, k) * zmasse(i, k)
                q_seri(i, k)*(paprs(i, k)-paprs(i, k+1))/RG  
1003         ENDDO         ENDDO
1004      ENDDO      ENDDO
1005    
     !IM initialisation + calculs divers diag AMIP2  
     call calcul_divers  
   
1006      ! Convertir les incrementations en tendances      ! Convertir les incrementations en tendances
1007    
1008      DO k = 1, llm      DO k = 1, llm
1009         DO i = 1, klon         DO i = 1, klon
1010            d_u(i, k) = ( u_seri(i, k) - u(i, k) ) / pdtphys            d_u(i, k) = (u_seri(i, k) - u(i, k)) / dtphys
1011            d_v(i, k) = ( v_seri(i, k) - v(i, k) ) / pdtphys            d_v(i, k) = (v_seri(i, k) - v(i, k)) / dtphys
1012            d_t(i, k) = ( t_seri(i, k)-t(i, k) ) / pdtphys            d_t(i, k) = (t_seri(i, k) - t(i, k)) / dtphys
1013            d_qx(i, k, ivap) = ( q_seri(i, k) - qx(i, k, ivap) ) / pdtphys            d_qx(i, k, ivap) = (q_seri(i, k) - qx(i, k, ivap)) / dtphys
1014            d_qx(i, k, iliq) = ( ql_seri(i, k) - qx(i, k, iliq) ) / pdtphys            d_qx(i, k, iliq) = (ql_seri(i, k) - qx(i, k, iliq)) / dtphys
1015         ENDDO         ENDDO
1016      ENDDO      ENDDO
1017    
1018      IF (nq >= 3) THEN      DO iq = 3, nqmx
1019         DO iq = 3, nq         DO k = 1, llm
1020            DO  k = 1, llm            DO i = 1, klon
1021               DO  i = 1, klon               d_qx(i, k, iq) = (tr_seri(i, k, iq - 2) - qx(i, k, iq)) / dtphys
                 d_qx(i, k, iq) = ( tr_seri(i, k, iq-2) - qx(i, k, iq) ) / pdtphys  
              ENDDO  
1022            ENDDO            ENDDO
1023         ENDDO         ENDDO
1024      ENDIF      ENDDO
1025    
1026      ! Sauvegarder les valeurs de t et q a la fin de la physique:      ! Sauvegarder les valeurs de t et q a la fin de la physique:
   
1027      DO k = 1, llm      DO k = 1, llm
1028         DO i = 1, klon         DO i = 1, klon
1029            t_ancien(i, k) = t_seri(i, k)            t_ancien(i, k) = t_seri(i, k)
# Line 2015  contains Line 1031  contains
1031         ENDDO         ENDDO
1032      ENDDO      ENDDO
1033    
1034      !   Ecriture des sorties      CALL histwrite_phy("phis", pphis)
1035        CALL histwrite_phy("aire", airephy)
1036      call write_histhf      CALL histwrite_phy("psol", paprs(:, 1))
1037      call write_histday      CALL histwrite_phy("precip", rain_fall + snow_fall)
1038      call write_histins      CALL histwrite_phy("plul", rain_lsc + snow_lsc)
1039        CALL histwrite_phy("pluc", rain_con + snow_con)
1040      ! Si c'est la fin, il faut conserver l'etat de redemarrage      CALL histwrite_phy("tsol", tsol)
1041        CALL histwrite_phy("t2m", zt2m)
1042      IF (lafin) THEN      CALL histwrite_phy("q2m", zq2m)
1043         itau_phy = itau_phy + itap      CALL histwrite_phy("u10m", u10m)
1044         CALL phyredem ("restartphy.nc", radpas, rlat, rlon, pctsrf, ftsol, &      CALL histwrite_phy("v10m", v10m)
1045              ftsoil, tslab, seaice, fqsurf, qsol, &      CALL histwrite_phy("snow", snow_fall)
1046              fsnow, falbe, falblw, fevap, rain_fall, snow_fall, &      CALL histwrite_phy("cdrm", cdragm)
1047              solsw, sollwdown, dlw, &      CALL histwrite_phy("cdrh", cdragh)
1048              radsol, frugs, agesno, &      CALL histwrite_phy("topl", toplw)
1049              zmea, zstd, zsig, zgam, zthe, zpic, zval, rugoro, &      CALL histwrite_phy("evap", evap)
1050              t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0)      CALL histwrite_phy("sols", solsw)
1051      ENDIF      CALL histwrite_phy("soll", sollw)
1052        CALL histwrite_phy("solldown", sollwdown)
1053    contains      CALL histwrite_phy("bils", bils)
1054        CALL histwrite_phy("sens", - sens)
1055      subroutine calcul_STDlev      CALL histwrite_phy("fder", fder)
1056        CALL histwrite_phy("dtsvdfo", d_ts(:, is_oce))
1057        !     From phylmd/calcul_STDlev.h, v 1.1 2005/05/25 13:10:09      CALL histwrite_phy("dtsvdft", d_ts(:, is_ter))
1058        CALL histwrite_phy("dtsvdfg", d_ts(:, is_lic))
1059        CALL histwrite_phy("dtsvdfi", d_ts(:, is_sic))
1060    
1061        !IM on initialise les champs en debut du jour ou du mois      DO nsrf = 1, nbsrf
1062           CALL histwrite_phy("pourc_"//clnsurf(nsrf), pctsrf(:, nsrf) * 100.)
1063           CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf))
1064           CALL histwrite_phy("sens_"//clnsurf(nsrf), flux_t(:, nsrf))
1065           CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf))
1066           CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf))
1067           CALL histwrite_phy("taux_"//clnsurf(nsrf), flux_u(:, nsrf))
1068           CALL histwrite_phy("tauy_"//clnsurf(nsrf), flux_v(:, nsrf))
1069           CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf))
1070           CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf))
1071           CALL histwrite_phy("u10m_"//clnsurf(nsrf), u10m_srf(:, nsrf))
1072           CALL histwrite_phy("v10m_"//clnsurf(nsrf), v10m_srf(:, nsrf))
1073        END DO
1074    
1075        CALL ini_undefSTD(nlevSTD, itap, &      CALL histwrite_phy("albs", albsol)
1076             ecrit_day, ecrit_mth, &      CALL histwrite_phy("tro3", wo * dobson_u * 1e3 / zmasse / rmo3 * md)
1077             tnondef, tsumSTD)      CALL histwrite_phy("rugs", zxrugs)
1078        CALL ini_undefSTD(nlevSTD, itap, &      CALL histwrite_phy("s_pblh", s_pblh)
1079             ecrit_day, ecrit_mth, &      CALL histwrite_phy("s_pblt", s_pblt)
1080             tnondef, usumSTD)      CALL histwrite_phy("s_lcl", s_lcl)
1081        CALL ini_undefSTD(nlevSTD, itap, &      CALL histwrite_phy("s_capCL", s_capCL)
1082             ecrit_day, ecrit_mth, &      CALL histwrite_phy("s_oliqCL", s_oliqCL)
1083             tnondef, vsumSTD)      CALL histwrite_phy("s_cteiCL", s_cteiCL)
1084        CALL ini_undefSTD(nlevSTD, itap, &      CALL histwrite_phy("s_therm", s_therm)
1085             ecrit_day, ecrit_mth, &      CALL histwrite_phy("s_trmb1", s_trmb1)
1086             tnondef, wsumSTD)      CALL histwrite_phy("s_trmb2", s_trmb2)
1087        CALL ini_undefSTD(nlevSTD, itap, &      CALL histwrite_phy("s_trmb3", s_trmb3)
1088             ecrit_day, ecrit_mth, &  
1089             tnondef, phisumSTD)      if (conv_emanuel) then
1090        CALL ini_undefSTD(nlevSTD, itap, &         CALL histwrite_phy("ptop", ema_pct)
1091             ecrit_day, ecrit_mth, &         CALL histwrite_phy("dnwd0", - mp)
1092             tnondef, qsumSTD)      end if
1093        CALL ini_undefSTD(nlevSTD, itap, &  
1094             ecrit_day, ecrit_mth, &      CALL histwrite_phy("temp", t_seri)
1095             tnondef, rhsumSTD)      CALL histwrite_phy("vitu", u_seri)
1096        CALL ini_undefSTD(nlevSTD, itap, &      CALL histwrite_phy("vitv", v_seri)
1097             ecrit_day, ecrit_mth, &      CALL histwrite_phy("geop", zphi)
1098             tnondef, uvsumSTD)      CALL histwrite_phy("pres", play)
1099        CALL ini_undefSTD(nlevSTD, itap, &      CALL histwrite_phy("dtvdf", d_t_vdf)
1100             ecrit_day, ecrit_mth, &      CALL histwrite_phy("dqvdf", d_q_vdf)
1101             tnondef, vqsumSTD)      CALL histwrite_phy("rhum", zx_rh)
1102        CALL ini_undefSTD(nlevSTD, itap, &      CALL histwrite_phy("d_t_ec", d_t_ec)
1103             ecrit_day, ecrit_mth, &      CALL histwrite_phy("dtsw0", heat0 / 86400.)
1104             tnondef, vTsumSTD)      CALL histwrite_phy("dtlw0", - cool0 / 86400.)
1105        CALL ini_undefSTD(nlevSTD, itap, &      CALL histwrite_phy("msnow", sum(fsnow * pctsrf, dim = 2))
1106             ecrit_day, ecrit_mth, &      call histwrite_phy("qsurf", sum(fqsurf * pctsrf, dim = 2))
1107             tnondef, wqsumSTD)  
1108        CALL ini_undefSTD(nlevSTD, itap, &      if (ok_instan) call histsync(nid_ins)
1109             ecrit_day, ecrit_mth, &  
1110             tnondef, vphisumSTD)      IF (lafin) then
1111        CALL ini_undefSTD(nlevSTD, itap, &         call NF95_CLOSE(ncid_startphy)
1112             ecrit_day, ecrit_mth, &         CALL phyredem(pctsrf, ftsol, ftsoil, fqsurf, qsol, &
1113             tnondef, wTsumSTD)              fsnow, falbe, fevap, rain_fall, snow_fall, solsw, sollw, dlw, &
1114        CALL ini_undefSTD(nlevSTD, itap, &              radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, &
1115             ecrit_day, ecrit_mth, &              t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
1116             tnondef, u2sumSTD)              w01)
1117        CALL ini_undefSTD(nlevSTD, itap, &      end IF
            ecrit_day, ecrit_mth, &  
            tnondef, v2sumSTD)  
       CALL ini_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, &  
            tnondef, T2sumSTD)  
   
       !IM on interpole sur les niveaux STD de pression a chaque pas de  
       !temps de la physique  
   
       DO k=1, nlevSTD  
   
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               t_seri, tlevSTD(:, k))  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               u_seri, ulevSTD(:, k))  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               v_seri, vlevSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=paprs(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., zx_tmp_fi3d, rlevSTD(k), &  
               omega, wlevSTD(:, k))  
   
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zphi/RG, philevSTD(:, k))  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               qx(:, :, ivap), qlevSTD(:, k))  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_rh*100., rhlevSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=u_seri(i, l)*v_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, uvSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=v_seri(i, l)*q_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, vqSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=v_seri(i, l)*t_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, vTSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=omega(i, l)*qx(i, l, ivap)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, wqSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=v_seri(i, l)*zphi(i, l)/RG  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, vphiSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=omega(i, l)*t_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, wTSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=u_seri(i, l)*u_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, u2STD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=v_seri(i, l)*v_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, v2STD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=t_seri(i, l)*t_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, T2STD(:, k))  
   
       ENDDO !k=1, nlevSTD  
   
       !IM on somme les valeurs definies a chaque pas de temps de la  
       ! physique ou toutes les 6 heures  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.TRUE.  
       CALL undefSTD(nlevSTD, itap, tlevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, tsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, ulevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, usumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, vlevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, vsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, wlevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, wsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, philevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, phisumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, qlevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, qsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, rhlevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, rhsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, uvSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, uvsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, vqSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, vqsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, vTSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, vTsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, wqSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, wqsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, vphiSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, vphisumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, wTSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, wTsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, u2STD, &  
            ecrit_hf, &  
            oknondef, tnondef, u2sumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, v2STD, &  
            ecrit_hf, &  
            oknondef, tnondef, v2sumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, T2STD, &  
            ecrit_hf, &  
            oknondef, tnondef, T2sumSTD)  
   
       !IM on moyenne a la fin du jour ou du mois  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, tsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, usumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, vsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, wsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, phisumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, qsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, rhsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, uvsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, vqsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, vTsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, wqsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, vphisumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, wTsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, u2sumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, v2sumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, T2sumSTD)  
   
       !IM interpolation a chaque pas de temps du SWup(clr) et  
       !SWdn(clr) a 200 hPa  
   
       CALL plevel(klon, klevp1, .true., paprs, 20000., &  
            swdn0, SWdn200clr)  
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            swdn, SWdn200)  
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            swup0, SWup200clr)  
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            swup, SWup200)  
   
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            lwdn0, LWdn200clr)  
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            lwdn, LWdn200)  
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            lwup0, LWup200clr)  
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            lwup, LWup200)  
   
     end SUBROUTINE calcul_STDlev  
   
     !****************************************************  
   
     SUBROUTINE calcul_divers  
   
       ! From phylmd/calcul_divers.h, v 1.1 2005/05/25 13:10:09  
   
       ! initialisations diverses au "debut" du mois  
   
       IF(MOD(itap, ecrit_mth) == 1) THEN  
          DO i=1, klon  
             nday_rain(i)=0.  
          ENDDO  
       ENDIF  
   
       IF(MOD(itap, ecrit_day) == 0) THEN  
          !IM calcul total_rain, nday_rain  
          DO i = 1, klon  
             total_rain(i)=rain_fall(i)+snow_fall(i)    
             IF(total_rain(i).GT.0.) nday_rain(i)=nday_rain(i)+1.  
          ENDDO  
       ENDIF  
   
     End SUBROUTINE calcul_divers  
   
     !***********************************************  
   
     subroutine write_histday  
   
       !     From phylmd/write_histday.h, v 1.3 2005/05/25 13:10:09  
   
       if (ok_journe) THEN  
   
          ndex2d = 0  
          ndex3d = 0  
   
          ! Champs 2D:  
   
          itau_w = itau_phy + itap  
   
          !   FIN ECRITURE DES CHAMPS 3D  
   
          if (ok_sync) then  
             call histsync(nid_day)  
          endif  
   
       ENDIF  
   
     End subroutine write_histday  
   
     !****************************  
   
     subroutine write_histhf  
   
       ! From phylmd/write_histhf.h, v 1.5 2005/05/25 13:10:09  
   
       ndex2d = 0  
       ndex3d = 0  
   
       itau_w = itau_phy + itap  
   
       call write_histhf3d  
   
       IF (ok_sync) THEN  
          call histsync(nid_hf)  
       ENDIF  
   
     end subroutine write_histhf  
   
     !***************************************************************  
   
     subroutine write_histins  
   
       ! From phylmd/write_histins.h, v 1.2 2005/05/25 13:10:09  
   
       real zout  
   
       !--------------------------------------------------  
   
       IF (ok_instan) THEN  
   
          ndex2d = 0  
          ndex3d = 0  
   
          ! Champs 2D:  
   
          zsto = pdtphys * ecrit_ins  
          zout = pdtphys * ecrit_ins  
          itau_w = itau_phy + itap  
   
          i = NINT(zout/zsto)  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), pphis, zx_tmp_2d)  
          CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          i = NINT(zout/zsto)  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), airephy, zx_tmp_2d)  
          CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = paprs(i, 1)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "psol", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_fall(i) + snow_fall(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "precip", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_lsc(i) + snow_lsc(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "plul", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_con(i) + snow_con(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "pluc", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zxtsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "tsol", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
          !ccIM  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zt2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "t2m", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zq2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "q2m", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zu10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "u10m", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zv10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "v10m", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), snow_fall, zx_tmp_2d)  
          CALL histwrite(nid_ins, "snow", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), cdragm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrm", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), cdragh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrh", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), toplw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "topl", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), evap, zx_tmp_2d)  
          CALL histwrite(nid_ins, "evap", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), solsw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sols", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "soll", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sollwdown, zx_tmp_2d)  
          CALL histwrite(nid_ins, "solldown", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), bils, zx_tmp_2d)  
          CALL histwrite(nid_ins, "bils", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          zx_tmp_fi2d(1:klon)=-1*sens(1:klon)  
          !     CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sens, zx_tmp_2d)  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sens", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), fder, zx_tmp_2d)  
          CALL histwrite(nid_ins, "fder", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_oce), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfo", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_ter), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdft", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_lic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfg", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_sic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfi", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          DO nsrf = 1, nbsrf  
             !XXX  
             zx_tmp_fi2d(1 : klon) = pctsrf( 1 : klon, nsrf)*100.  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "pourc_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = pctsrf( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "fract_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxt( 1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "sens_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxlat( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "lat_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = ftsol( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tsol_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxu( 1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "taux_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxv( 1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tauy_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = frugs( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "rugs_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = falbe( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "albe_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          END DO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), albsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albs", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), albsollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albslw", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zxrugs, zx_tmp_2d)  
          CALL histwrite(nid_ins, "rugs", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          !IM cf. AM 081204 BEG  
   
          !HBTM2  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_pblh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblh", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_pblt, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblt", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_lcl, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_lcl", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_capCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_capCL", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_oliqCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_oliqCL", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_cteiCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_cteiCL", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_therm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_therm", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb1, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb1", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb2, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb2", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb3, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb3", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          !IM cf. AM 081204 END  
   
          ! Champs 3D:  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), t_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "temp", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), u_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitu", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), v_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitv", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), zphi, zx_tmp_3d)  
          CALL histwrite(nid_ins, "geop", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), pplay, zx_tmp_3d)  
          CALL histwrite(nid_ins, "pres", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), d_t_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dtvdf", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), d_q_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          if (ok_sync) then  
             call histsync(nid_ins)  
          endif  
       ENDIF  
   
     end subroutine write_histins  
   
     !****************************************************  
   
     subroutine write_histhf3d  
   
       ! From phylmd/write_histhf3d.h, v 1.2 2005/05/25 13:10:09  
   
       ndex2d = 0  
       ndex3d = 0  
   
       itau_w = itau_phy + itap  
   
       ! Champs 3D:  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), t_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "temp", itau_w, zx_tmp_3d, &  
            iim*(jjm + 1)*llm, ndex3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), qx(1, 1, ivap), zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "ovap", itau_w, zx_tmp_3d, &  
            iim*(jjm + 1)*llm, ndex3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), u_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitu", itau_w, zx_tmp_3d, &  
            iim*(jjm + 1)*llm, ndex3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), v_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitv", itau_w, zx_tmp_3d, &  
            iim*(jjm + 1)*llm, ndex3d)  
   
       if (nbtr >= 3) then  
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), tr_seri(1, 1, 3), &  
               zx_tmp_3d)  
          CALL histwrite(nid_hf3d, "O3", itau_w, zx_tmp_3d, iim*(jjm + 1)*llm, &  
               ndex3d)  
       end if  
   
       if (ok_sync) then  
          call histsync(nid_hf3d)  
       endif  
1118    
1119      end subroutine write_histhf3d      firstcal = .FALSE.
1120    
1121    END SUBROUTINE physiq    END SUBROUTINE physiq
1122    
   !****************************************************  
   
   FUNCTION qcheck(klon, klev, paprs, q, ql, aire)  
   
     ! From phylmd/physiq.F, v 1.22 2006/02/20 09:38:28  
   
     use YOMCST  
     IMPLICIT none  
   
     ! Calculer et imprimer l'eau totale. A utiliser pour verifier  
     ! la conservation de l'eau  
   
     INTEGER klon, klev  
     REAL, intent(in):: paprs(klon, klev+1)  
     real q(klon, klev), ql(klon, klev)  
     REAL aire(klon)  
     REAL qtotal, zx, qcheck  
     INTEGER i, k  
   
     zx = 0.0  
     DO i = 1, klon  
        zx = zx + aire(i)  
     ENDDO  
     qtotal = 0.0  
     DO k = 1, klev  
        DO i = 1, klon  
           qtotal = qtotal + (q(i, k)+ql(i, k)) * aire(i) &  
                *(paprs(i, k)-paprs(i, k+1))/RG  
        ENDDO  
     ENDDO  
   
     qcheck = qtotal/zx  
   
   END FUNCTION qcheck  
   
1123  end module physiq_m  end module physiq_m

Legend:
Removed from v.12  
changed lines
  Added in v.226

  ViewVC Help
Powered by ViewVC 1.1.21