/[lmdze]/trunk/phylmd/physiq.f
ViewVC logotype

Diff of /trunk/phylmd/physiq.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 134 by guez, Wed Apr 29 15:47:56 2015 UTC revision 244 by guez, Tue Nov 14 14:56:42 2017 UTC
# Line 4  module physiq_m Line 4  module physiq_m
4    
5  contains  contains
6    
7    SUBROUTINE physiq(lafin, dayvrai, time, dtphys, paprs, play, pphi, pphis, &    SUBROUTINE physiq(lafin, dayvrai, time, paprs, play, pphi, pphis, u, v, t, &
8         u, v, t, qx, omega, d_u, d_v, d_t, d_qx)         qx, omega, d_u, d_v, d_t, d_qx)
9    
10      ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28      ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28
11      ! (subversion revision 678)      ! (subversion revision 678)
12    
13      ! Author: Z.X. Li (LMD/CNRS) 1993      ! Author: Z. X. Li (LMD/CNRS) 1993
14    
15      ! This is the main procedure for the "physics" part of the program.      ! This is the main procedure for the "physics" part of the program.
16    
17      use aaam_bud_m, only: aaam_bud      use aaam_bud_m, only: aaam_bud
18      USE abort_gcm_m, ONLY: abort_gcm      USE abort_gcm_m, ONLY: abort_gcm
     use aeropt_m, only: aeropt  
19      use ajsec_m, only: ajsec      use ajsec_m, only: ajsec
20      use calltherm_m, only: calltherm      use calltherm_m, only: calltherm
21      USE clesphys, ONLY: cdhmax, cdmmax, co2_ppm, ecrit_hf, ecrit_ins, &      USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ksta, ksta_ter, ok_kzmin, &
22           ecrit_mth, ecrit_reg, ecrit_tra, ksta, ksta_ter, ok_kzmin           ok_instan
23      USE clesphys2, ONLY: cycle_diurne, iflag_con, nbapp_rad, new_oliq, &      USE clesphys2, ONLY: conv_emanuel, nbapp_rad, new_oliq, ok_orodr, ok_orolf
          ok_orodr, ok_orolf  
24      USE clmain_m, ONLY: clmain      USE clmain_m, ONLY: clmain
25      use clouds_gno_m, only: clouds_gno      use clouds_gno_m, only: clouds_gno
26      USE comgeomphy, ONLY: airephy, cuphy, cvphy      use comconst, only: dtphys
27        USE comgeomphy, ONLY: airephy
28      USE concvl_m, ONLY: concvl      USE concvl_m, ONLY: concvl
29      USE conf_gcm_m, ONLY: offline, raz_date      USE conf_gcm_m, ONLY: lmt_pas
30      USE conf_phys_m, ONLY: conf_phys      USE conf_phys_m, ONLY: conf_phys
31      use conflx_m, only: conflx      use conflx_m, only: conflx
32      USE ctherm, ONLY: iflag_thermals, nsplit_thermals      USE ctherm, ONLY: iflag_thermals, nsplit_thermals
33      use diagcld2_m, only: diagcld2      use diagcld2_m, only: diagcld2
     use diagetpq_m, only: diagetpq  
     use diagphy_m, only: diagphy  
34      USE dimens_m, ONLY: llm, nqmx      USE dimens_m, ONLY: llm, nqmx
35      USE dimphy, ONLY: klon      USE dimphy, ONLY: klon
36      USE dimsoil, ONLY: nsoilmx      USE dimsoil, ONLY: nsoilmx
37      use drag_noro_m, only: drag_noro      use drag_noro_m, only: drag_noro
38      use dynetat0_m, only: day_ref, annee_ref      use dynetat0_m, only: day_ref, annee_ref
39      USE fcttre, ONLY: foeew, qsatl, qsats, thermcep      USE fcttre, ONLY: foeew
40      use fisrtilp_m, only: fisrtilp      use fisrtilp_m, only: fisrtilp
41      USE hgardfou_m, ONLY: hgardfou      USE hgardfou_m, ONLY: hgardfou
42        USE histsync_m, ONLY: histsync
43        USE histwrite_phy_m, ONLY: histwrite_phy
44      USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &      USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &
45           nbsrf           nbsrf
46      USE ini_histins_m, ONLY: ini_histins      USE ini_histins_m, ONLY: ini_histins, nid_ins
47        use lift_noro_m, only: lift_noro
48        use netcdf95, only: NF95_CLOSE
49      use newmicro_m, only: newmicro      use newmicro_m, only: newmicro
50        use nr_util, only: assert
51        use nuage_m, only: nuage
52      USE orbite_m, ONLY: orbite      USE orbite_m, ONLY: orbite
53      USE ozonecm_m, ONLY: ozonecm      USE ozonecm_m, ONLY: ozonecm
54      USE phyetat0_m, ONLY: phyetat0, rlat, rlon      USE phyetat0_m, ONLY: phyetat0
55      USE phyredem_m, ONLY: phyredem      USE phyredem_m, ONLY: phyredem
56      USE phystokenc_m, ONLY: phystokenc      USE phyredem0_m, ONLY: phyredem0
57      USE phytrac_m, ONLY: phytrac      USE phytrac_m, ONLY: phytrac
     USE qcheck_m, ONLY: qcheck  
58      use radlwsw_m, only: radlwsw      use radlwsw_m, only: radlwsw
59      use readsulfate_m, only: readsulfate      use yoegwd, only: sugwd
60      use readsulfate_preind_m, only: readsulfate_preind      USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt, rmo3, md
61      use sugwd_m, only: sugwd      use time_phylmdz, only: itap, increment_itap
62      USE suphec_m, ONLY: ra, rcpd, retv, rg, rlvtt, romega, rsigma, rtt      use transp_m, only: transp
63      USE temps, ONLY: itau_phy      use transp_lay_m, only: transp_lay
64      use unit_nml_m, only: unit_nml      use unit_nml_m, only: unit_nml
65      USE ymds2ju_m, ONLY: ymds2ju      USE ymds2ju_m, ONLY: ymds2ju
66      USE yoethf_m, ONLY: r2es, rvtmp2      USE yoethf_m, ONLY: r2es, rvtmp2
# Line 70  contains Line 72  contains
72      ! current day number, based at value 1 on January 1st of annee_ref      ! current day number, based at value 1 on January 1st of annee_ref
73    
74      REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour      REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour
     REAL, intent(in):: dtphys ! pas d'integration pour la physique (seconde)  
75    
76      REAL, intent(in):: paprs(:, :) ! (klon, llm + 1)      REAL, intent(in):: paprs(:, :) ! (klon, llm + 1)
77      ! pression pour chaque inter-couche, en Pa      ! pression pour chaque inter-couche, en Pa
# Line 78  contains Line 79  contains
79      REAL, intent(in):: play(:, :) ! (klon, llm)      REAL, intent(in):: play(:, :) ! (klon, llm)
80      ! pression pour le mileu de chaque couche (en Pa)      ! pression pour le mileu de chaque couche (en Pa)
81    
82      REAL, intent(in):: pphi(:, :) ! (klon, llm)      REAL, intent(in):: pphi(:, :) ! (klon, llm)
83      ! géopotentiel de chaque couche (référence sol)      ! géopotentiel de chaque couche (référence sol)
84    
85      REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol      REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol
86    
87      REAL, intent(in):: u(:, :) ! (klon, llm)      REAL, intent(in):: u(:, :) ! (klon, llm)
88      ! vitesse dans la direction X (de O a E) en m/s      ! vitesse dans la direction X (de O a E) en m / s
89    
90      REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m/s      REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m / s
91      REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)      REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)
92    
93      REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)      REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)
94      ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)      ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)
95    
96      REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa/s      REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa / s
97      REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)      REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)
98      REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)      REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)
99      REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K/s)      REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K / s)
100    
101      REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)      REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)
102      ! tendance physique de "qx" (s-1)      ! tendance physique de "qx" (s-1)
# Line 104  contains Line 105  contains
105    
106      LOGICAL:: firstcal = .true.      LOGICAL:: firstcal = .true.
107    
     LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface  
     PARAMETER (ok_gust = .FALSE.)  
   
     LOGICAL, PARAMETER:: check = .FALSE.  
     ! Verifier la conservation du modele en eau  
   
108      LOGICAL, PARAMETER:: ok_stratus = .FALSE.      LOGICAL, PARAMETER:: ok_stratus = .FALSE.
109      ! Ajouter artificiellement les stratus      ! Ajouter artificiellement les stratus
110    
111      ! "slab" ocean      ! pour phystoke avec thermiques
     REAL, save:: tslab(klon) ! temperature of ocean slab  
     REAL, save:: seaice(klon) ! glace de mer (kg/m2)  
     REAL fluxo(klon) ! flux turbulents ocean-glace de mer  
     REAL fluxg(klon) ! flux turbulents ocean-atmosphere  
   
     logical:: ok_journe = .false., ok_mensuel = .true., ok_instan = .false.  
     ! sorties journalieres, mensuelles et instantanees dans les  
     ! fichiers histday, histmth et histins  
   
     LOGICAL ok_region ! sortir le fichier regional  
     PARAMETER (ok_region = .FALSE.)  
   
     ! pour phsystoke avec thermiques  
112      REAL fm_therm(klon, llm + 1)      REAL fm_therm(klon, llm + 1)
113      REAL entr_therm(klon, llm)      REAL entr_therm(klon, llm)
114      real, save:: q2(klon, llm + 1, nbsrf)      real, save:: q2(klon, llm + 1, nbsrf)
# Line 137  contains Line 119  contains
119      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)
120      LOGICAL, save:: ancien_ok      LOGICAL, save:: ancien_ok
121    
122      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K/s)      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K / s)
123      REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg/kg/s)      REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg / kg / s)
124    
125      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)
126    
127      REAL swdn0(klon, llm + 1), swdn(klon, llm + 1)      REAL, save:: swdn0(klon, llm + 1), swdn(klon, llm + 1)
128      REAL swup0(klon, llm + 1), swup(klon, llm + 1)      REAL, save:: swup0(klon, llm + 1), swup(klon, llm + 1)
129      SAVE swdn0, swdn, swup0, swup  
130        REAL, save:: lwdn0(klon, llm + 1), lwdn(klon, llm + 1)
131      REAL lwdn0(klon, llm + 1), lwdn(klon, llm + 1)      REAL, save:: lwup0(klon, llm + 1), lwup(klon, llm + 1)
     REAL lwup0(klon, llm + 1), lwup(klon, llm + 1)  
     SAVE lwdn0, lwdn, lwup0, lwup  
   
     ! Amip2  
     ! variables a une pression donnee  
   
     integer nlevSTD  
     PARAMETER(nlevSTD = 17)  
     real rlevSTD(nlevSTD)  
     DATA rlevSTD/100000., 92500., 85000., 70000., &  
          60000., 50000., 40000., 30000., 25000., 20000., &  
          15000., 10000., 7000., 5000., 3000., 2000., 1000./  
     CHARACTER(LEN = 4) clevSTD(nlevSTD)  
     DATA clevSTD/'1000', '925 ', '850 ', '700 ', '600 ', &  
          '500 ', '400 ', '300 ', '250 ', '200 ', '150 ', '100 ', &  
          '70 ', '50 ', '30 ', '20 ', '10 '/  
132    
133      ! prw: precipitable water      ! prw: precipitable water
134      real prw(klon)      real prw(klon)
135    
136      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg/m2)      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg / m2)
137      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg/kg)      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg / kg)
138      REAL flwp(klon), fiwp(klon)      REAL flwp(klon), fiwp(klon)
139      REAL flwc(klon, llm), fiwc(klon, llm)      REAL flwc(klon, llm), fiwc(klon, llm)
140    
     INTEGER kmax, lmax  
     PARAMETER(kmax = 8, lmax = 8)  
     INTEGER kmaxm1, lmaxm1  
     PARAMETER(kmaxm1 = kmax-1, lmaxm1 = lmax-1)  
   
     REAL zx_tau(kmaxm1), zx_pc(lmaxm1)  
     DATA zx_tau/0., 0.3, 1.3, 3.6, 9.4, 23., 60./  
     DATA zx_pc/50., 180., 310., 440., 560., 680., 800./  
   
     ! cldtopres pression au sommet des nuages  
     REAL cldtopres(lmaxm1)  
     DATA cldtopres/50., 180., 310., 440., 560., 680., 800./  
   
     ! taulev: numero du niveau de tau dans les sorties ISCCP  
     CHARACTER(LEN = 4) taulev(kmaxm1)  
   
     DATA taulev/'tau0', 'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'/  
     CHARACTER(LEN = 3) pclev(lmaxm1)  
     DATA pclev/'pc1', 'pc2', 'pc3', 'pc4', 'pc5', 'pc6', 'pc7'/  
   
     CHARACTER(LEN = 28) cnameisccp(lmaxm1, kmaxm1)  
     DATA cnameisccp/'pc< 50hPa, tau< 0.3', 'pc= 50-180hPa, tau< 0.3', &  
          'pc= 180-310hPa, tau< 0.3', 'pc= 310-440hPa, tau< 0.3', &  
          'pc= 440-560hPa, tau< 0.3', 'pc= 560-680hPa, tau< 0.3', &  
          'pc= 680-800hPa, tau< 0.3', 'pc< 50hPa, tau= 0.3-1.3', &  
          'pc= 50-180hPa, tau= 0.3-1.3', 'pc= 180-310hPa, tau= 0.3-1.3', &  
          'pc= 310-440hPa, tau= 0.3-1.3', 'pc= 440-560hPa, tau= 0.3-1.3', &  
          'pc= 560-680hPa, tau= 0.3-1.3', 'pc= 680-800hPa, tau= 0.3-1.3', &  
          'pc< 50hPa, tau= 1.3-3.6', 'pc= 50-180hPa, tau= 1.3-3.6', &  
          'pc= 180-310hPa, tau= 1.3-3.6', 'pc= 310-440hPa, tau= 1.3-3.6', &  
          'pc= 440-560hPa, tau= 1.3-3.6', 'pc= 560-680hPa, tau= 1.3-3.6', &  
          'pc= 680-800hPa, tau= 1.3-3.6', 'pc< 50hPa, tau= 3.6-9.4', &  
          'pc= 50-180hPa, tau= 3.6-9.4', 'pc= 180-310hPa, tau= 3.6-9.4', &  
          'pc= 310-440hPa, tau= 3.6-9.4', 'pc= 440-560hPa, tau= 3.6-9.4', &  
          'pc= 560-680hPa, tau= 3.6-9.4', 'pc= 680-800hPa, tau= 3.6-9.4', &  
          'pc< 50hPa, tau= 9.4-23', 'pc= 50-180hPa, tau= 9.4-23', &  
          'pc= 180-310hPa, tau= 9.4-23', 'pc= 310-440hPa, tau= 9.4-23', &  
          'pc= 440-560hPa, tau= 9.4-23', 'pc= 560-680hPa, tau= 9.4-23', &  
          'pc= 680-800hPa, tau= 9.4-23', 'pc< 50hPa, tau= 23-60', &  
          'pc= 50-180hPa, tau= 23-60', 'pc= 180-310hPa, tau= 23-60', &  
          'pc= 310-440hPa, tau= 23-60', 'pc= 440-560hPa, tau= 23-60', &  
          'pc= 560-680hPa, tau= 23-60', 'pc= 680-800hPa, tau= 23-60', &  
          'pc< 50hPa, tau> 60.', 'pc= 50-180hPa, tau> 60.', &  
          'pc= 180-310hPa, tau> 60.', 'pc= 310-440hPa, tau> 60.', &  
          'pc= 440-560hPa, tau> 60.', 'pc= 560-680hPa, tau> 60.', &  
          'pc= 680-800hPa, tau> 60.'/  
   
     ! ISCCP simulator v3.4  
   
141      ! Variables propres a la physique      ! Variables propres a la physique
142    
143      INTEGER, save:: radpas      INTEGER, save:: radpas
144      ! Radiative transfer computations are made every "radpas" call to      ! Radiative transfer computations are made every "radpas" call to
145      ! "physiq".      ! "physiq".
146    
147      REAL radsol(klon)      REAL, save:: radsol(klon) ! bilan radiatif au sol calcule par code radiatif
     SAVE radsol ! bilan radiatif au sol calcule par code radiatif  
   
     INTEGER, SAVE:: itap ! number of calls to "physiq"  
   
148      REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction      REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction
149    
150      REAL, save:: ftsoil(klon, nsoilmx, nbsrf)      REAL, save:: ftsoil(klon, nsoilmx, nbsrf)
# Line 239  contains Line 152  contains
152    
153      REAL, save:: fevap(klon, nbsrf) ! evaporation      REAL, save:: fevap(klon, nbsrf) ! evaporation
154      REAL fluxlat(klon, nbsrf)      REAL fluxlat(klon, nbsrf)
     SAVE fluxlat  
155    
156      REAL, save:: fqsurf(klon, nbsrf)      REAL, save:: fqsurf(klon, nbsrf)
157      ! humidite de l'air au contact de la surface      ! humidite de l'air au contact de la surface
158    
159      REAL, save:: qsol(klon)      REAL, save:: qsol(klon) ! column-density of water in soil, in kg m-2
160      ! column-density of water in soil, in kg m-2      REAL, save:: fsnow(klon, nbsrf) ! \'epaisseur neigeuse
161        REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface
     REAL, save:: fsnow(klon, nbsrf) ! epaisseur neigeuse  
     REAL, save:: falbe(klon, nbsrf) ! albedo par type de surface  
     REAL, save:: falblw(klon, nbsrf) ! albedo par type de surface  
162    
163      ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :      ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :
164      REAL, save:: zmea(klon) ! orographie moyenne      REAL, save:: zmea(klon) ! orographie moyenne
# Line 260  contains Line 169  contains
169      REAL, save:: zpic(klon) ! Maximum de l'OESM      REAL, save:: zpic(klon) ! Maximum de l'OESM
170      REAL, save:: zval(klon) ! Minimum de l'OESM      REAL, save:: zval(klon) ! Minimum de l'OESM
171      REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM      REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM
   
172      REAL zulow(klon), zvlow(klon)      REAL zulow(klon), zvlow(klon)
173        INTEGER igwd, itest(klon)
174    
175      INTEGER igwd, idx(klon), itest(klon)      REAL, save:: agesno(klon, nbsrf) ! age de la neige
176        REAL, save:: run_off_lic_0(klon)
     REAL agesno(klon, nbsrf)  
     SAVE agesno ! age de la neige  
177    
178      REAL run_off_lic_0(klon)      ! Variables li\'ees \`a la convection d'Emanuel :
179      SAVE run_off_lic_0      REAL, save:: Ma(klon, llm) ! undilute upward mass flux
180      !KE43      REAL, save:: qcondc(klon, llm) ! in-cld water content from convect
     ! Variables liees a la convection de K. Emanuel (sb):  
   
     REAL Ma(klon, llm) ! undilute upward mass flux  
     SAVE Ma  
     REAL qcondc(klon, llm) ! in-cld water content from convect  
     SAVE qcondc  
181      REAL, save:: sig1(klon, llm), w01(klon, llm)      REAL, save:: sig1(klon, llm), w01(klon, llm)
     REAL, save:: wd(klon)  
   
     ! Variables locales pour la couche limite (al1):  
   
     ! Variables locales:  
182    
183        ! Variables pour la couche limite (Alain Lahellec) :
184      REAL cdragh(klon) ! drag coefficient pour T and Q      REAL cdragh(klon) ! drag coefficient pour T and Q
185      REAL cdragm(klon) ! drag coefficient pour vent      REAL cdragm(klon) ! drag coefficient pour vent
186    
187      ! Pour phytrac :      REAL coefh(klon, 2:llm) ! coef d'echange pour phytrac
188      REAL ycoefh(klon, llm) ! coef d'echange pour phytrac  
189      REAL yu1(klon) ! vents dans la premiere couche U      REAL, save:: ffonte(klon, nbsrf)
190      REAL yv1(klon) ! vents dans la premiere couche V      ! flux thermique utilise pour fondre la neige
191      REAL ffonte(klon, nbsrf) !Flux thermique utilise pour fondre la neige  
192      REAL fqcalving(klon, nbsrf) !Flux d'eau "perdue" par la surface      REAL, save:: fqcalving(klon, nbsrf)
193      ! !et necessaire pour limiter la      ! flux d'eau "perdue" par la surface et necessaire pour limiter la
194      ! !hauteur de neige, en kg/m2/s      ! hauteur de neige, en kg / m2 / s
195    
196      REAL zxffonte(klon), zxfqcalving(klon)      REAL zxffonte(klon), zxfqcalving(klon)
197    
198      REAL pfrac_impa(klon, llm)! Produits des coefs lessivage impaction      REAL, save:: pfrac_impa(klon, llm)! Produits des coefs lessivage impaction
199      save pfrac_impa      REAL, save:: pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation
200      REAL pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation  
201      save pfrac_nucl      REAL, save:: pfrac_1nucl(klon, llm)
202      REAL pfrac_1nucl(klon, llm)! Produits des coefs lessi nucl (alpha = 1)      ! Produits des coefs lessi nucl (alpha = 1)
203      save pfrac_1nucl  
204      REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction)      REAL frac_impa(klon, llm) ! fraction d'a\'erosols lessiv\'es (impaction)
205      REAL frac_nucl(klon, llm) ! idem (nucleation)      REAL frac_nucl(klon, llm) ! idem (nucleation)
206    
207      REAL, save:: rain_fall(klon)      REAL, save:: rain_fall(klon)
208      ! liquid water mass flux (kg/m2/s), positive down      ! liquid water mass flux (kg / m2 / s), positive down
209    
210      REAL, save:: snow_fall(klon)      REAL, save:: snow_fall(klon)
211      ! solid water mass flux (kg/m2/s), positive down      ! solid water mass flux (kg / m2 / s), positive down
212    
213      REAL rain_tiedtke(klon), snow_tiedtke(klon)      REAL rain_tiedtke(klon), snow_tiedtke(klon)
214    
215      REAL evap(klon), devap(klon) ! evaporation and its derivative      REAL evap(klon) ! flux d'\'evaporation au sol
216      REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee      real devap(klon) ! derivative of the evaporation flux at the surface
217      REAL dlw(klon) ! derivee infra rouge      REAL sens(klon) ! flux de chaleur sensible au sol
218      SAVE dlw      real dsens(klon) ! derivee du flux de chaleur sensible au sol
219        REAL, save:: dlw(klon) ! derivative of infra-red flux
220      REAL bils(klon) ! bilan de chaleur au sol      REAL bils(klon) ! bilan de chaleur au sol
221      REAL fder(klon) ! Derive de flux (sensible et latente)      REAL fder(klon) ! Derive de flux (sensible et latente)
     save fder  
222      REAL ve(klon) ! integr. verticale du transport meri. de l'energie      REAL ve(klon) ! integr. verticale du transport meri. de l'energie
223      REAL vq(klon) ! integr. verticale du transport meri. de l'eau      REAL vq(klon) ! integr. verticale du transport meri. de l'eau
224      REAL ue(klon) ! integr. verticale du transport zonal de l'energie      REAL ue(klon) ! integr. verticale du transport zonal de l'energie
# Line 332  contains Line 230  contains
230      ! Conditions aux limites      ! Conditions aux limites
231    
232      INTEGER julien      INTEGER julien
     INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day  
233      REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface      REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface
234      REAL pctsrf_new(klon, nbsrf) ! pourcentage surfaces issus d'ORCHIDEE      REAL, save:: albsol(klon) ! albedo du sol total, visible, moyen par maille
     REAL, save:: albsol(klon) ! albedo du sol total  
     REAL, save:: albsollw(klon) ! albedo du sol total  
235      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU
236        real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2
     ! Declaration des procedures appelees  
   
     EXTERNAL nuage ! calculer les proprietes radiatives  
     EXTERNAL transp ! transport total de l'eau et de l'energie  
   
     ! Variables locales  
237    
238      real, save:: clwcon(klon, llm), rnebcon(klon, llm)      real, save:: clwcon(klon, llm), rnebcon(klon, llm)
239      real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)      real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)
# Line 357  contains Line 246  contains
246      REAL cldtau(klon, llm) ! epaisseur optique      REAL cldtau(klon, llm) ! epaisseur optique
247      REAL cldemi(klon, llm) ! emissivite infrarouge      REAL cldemi(klon, llm) ! emissivite infrarouge
248    
249      REAL fluxq(klon, llm, nbsrf) ! flux turbulent d'humidite      REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface
250      REAL fluxt(klon, llm, nbsrf) ! flux turbulent de chaleur      REAL flux_t(klon, nbsrf) ! flux turbulent de chaleur à la surface
251      REAL fluxu(klon, llm, nbsrf) ! flux turbulent de vitesse u  
252      REAL fluxv(klon, llm, nbsrf) ! flux turbulent de vitesse v      REAL flux_u(klon, nbsrf), flux_v(klon, nbsrf)
253        ! tension du vent (flux turbulent de vent) à la surface, en Pa
     REAL zxfluxt(klon, llm)  
     REAL zxfluxq(klon, llm)  
     REAL zxfluxu(klon, llm)  
     REAL zxfluxv(klon, llm)  
254    
255      ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que      ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que
256      ! les variables soient r\'emanentes.      ! les variables soient r\'emanentes.
257      REAL, save:: heat(klon, llm) ! chauffage solaire      REAL, save:: heat(klon, llm) ! chauffage solaire
258      REAL heat0(klon, llm) ! chauffage solaire ciel clair      REAL, save:: heat0(klon, llm) ! chauffage solaire ciel clair
259      REAL, save:: cool(klon, llm) ! refroidissement infrarouge      REAL, save:: cool(klon, llm) ! refroidissement infrarouge
260      REAL cool0(klon, llm) ! refroidissement infrarouge ciel clair      REAL, save:: cool0(klon, llm) ! refroidissement infrarouge ciel clair
261      REAL, save:: topsw(klon), toplw(klon), solsw(klon)      REAL, save:: topsw(klon), toplw(klon), solsw(klon)
262      REAL, save:: sollw(klon) ! rayonnement infrarouge montant \`a la surface      REAL, save:: sollw(klon) ! rayonnement infrarouge montant \`a la surface
263      real, save:: sollwdown(klon) ! downward LW flux at surface      real, save:: sollwdown(klon) ! downward LW flux at surface
264      REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)      REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)
265      REAL albpla(klon)      REAL, save:: albpla(klon)
266      REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous surface      REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous-surface
267      REAL fsolsw(klon, nbsrf) ! flux solaire absorb. pour chaque sous surface      REAL fsolsw(klon, nbsrf) ! flux solaire absorb\'e pour chaque sous-surface
     SAVE albpla  
     SAVE heat0, cool0  
   
     INTEGER itaprad  
     SAVE itaprad  
   
     REAL conv_q(klon, llm) ! convergence de l'humidite (kg/kg/s)  
     REAL conv_t(klon, llm) ! convergence of temperature (K/s)  
268    
269      REAL cldl(klon), cldm(klon), cldh(klon) !nuages bas, moyen et haut      REAL conv_q(klon, llm) ! convergence de l'humidite (kg / kg / s)
270      REAL cldt(klon), cldq(klon) !nuage total, eau liquide integree      REAL conv_t(klon, llm) ! convergence of temperature (K / s)
271    
272      REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon)      REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut
273        REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree
274    
275        REAL zxfluxlat(klon)
276      REAL dist, mu0(klon), fract(klon)      REAL dist, mu0(klon), fract(klon)
277      real longi      real longi
278      REAL z_avant(klon), z_apres(klon), z_factor(klon)      REAL z_avant(klon), z_apres(klon), z_factor(klon)
279      REAL za, zb      REAL zb
280      REAL zx_t, zx_qs, zcor      REAL zx_t, zx_qs, zcor
281      real zqsat(klon, llm)      real zqsat(klon, llm)
282      INTEGER i, k, iq, nsrf      INTEGER i, k, iq, nsrf
     REAL, PARAMETER:: t_coup = 234.  
283      REAL zphi(klon, llm)      REAL zphi(klon, llm)
284    
285      ! cf. AM Variables locales pour la CLA (hbtm2)      ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm)
286    
287      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite
288      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA
289      REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite      REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite
290      REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite      REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite
291      REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite      REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite
292      REAL, SAVE:: pblt(klon, nbsrf) ! T a la Hauteur de couche limite      REAL, SAVE:: pblt(klon, nbsrf) ! T \`a la hauteur de couche limite
293      REAL, SAVE:: therm(klon, nbsrf)      REAL, SAVE:: therm(klon, nbsrf)
294      REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape      REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape
295      REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition      REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition
296      REAL, SAVE:: trmb3(klon, nbsrf) ! Point Omega      REAL, SAVE:: trmb3(klon, nbsrf) ! Point Omega
297      ! Grdeurs de sorties      ! Grandeurs de sorties
298      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)
299      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)
300      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)
301      REAL s_trmb3(klon)      REAL s_trmb3(klon)
302    
303      ! Variables locales pour la convection de K. Emanuel :      ! Variables pour la convection de K. Emanuel :
304    
305      REAL upwd(klon, llm) ! saturated updraft mass flux      REAL upwd(klon, llm) ! saturated updraft mass flux
306      REAL dnwd(klon, llm) ! saturated downdraft mass flux      REAL dnwd(klon, llm) ! saturated downdraft mass flux
307      REAL dnwd0(klon, llm) ! unsaturated downdraft mass flux      REAL, save:: cape(klon)
     REAL cape(klon) ! CAPE  
     SAVE cape  
308    
309      INTEGER iflagctrl(klon) ! flag fonctionnement de convect      INTEGER iflagctrl(klon) ! flag fonctionnement de convect
310    
# Line 440  contains Line 316  contains
316      ! eva: \'evaporation de l'eau liquide nuageuse      ! eva: \'evaporation de l'eau liquide nuageuse
317      ! vdf: vertical diffusion in boundary layer      ! vdf: vertical diffusion in boundary layer
318      REAL d_t_con(klon, llm), d_q_con(klon, llm)      REAL d_t_con(klon, llm), d_q_con(klon, llm)
319      REAL d_u_con(klon, llm), d_v_con(klon, llm)      REAL, save:: d_u_con(klon, llm), d_v_con(klon, llm)
320      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)
321      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)
322      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)
# Line 454  contains Line 330  contains
330      REAL prfl(klon, llm + 1), psfl(klon, llm + 1)      REAL prfl(klon, llm + 1), psfl(klon, llm + 1)
331    
332      INTEGER, save:: ibas_con(klon), itop_con(klon)      INTEGER, save:: ibas_con(klon), itop_con(klon)
333        real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa
334    
335      REAL rain_con(klon), rain_lsc(klon)      REAL, save:: rain_con(klon)
336      REAL snow_con(klon), snow_lsc(klon)      real rain_lsc(klon)
337      REAL d_ts(klon, nbsrf)      REAL, save:: snow_con(klon) ! neige (mm / s)
338        real snow_lsc(klon)
339        REAL d_ts(klon, nbsrf) ! variation of ftsol
340    
341      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)
342      REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)      REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)
# Line 480  contains Line 359  contains
359      integer:: iflag_cldcon = 1      integer:: iflag_cldcon = 1
360      logical ptconv(klon, llm)      logical ptconv(klon, llm)
361    
362      ! Variables locales pour effectuer les appels en s\'erie :      ! Variables pour effectuer les appels en s\'erie :
363    
364      REAL t_seri(klon, llm), q_seri(klon, llm)      REAL t_seri(klon, llm), q_seri(klon, llm)
365      REAL ql_seri(klon, llm)      REAL ql_seri(klon, llm)
# Line 491  contains Line 370  contains
370    
371      REAL zustrdr(klon), zvstrdr(klon)      REAL zustrdr(klon), zvstrdr(klon)
372      REAL zustrli(klon), zvstrli(klon)      REAL zustrli(klon), zvstrli(klon)
     REAL zustrph(klon), zvstrph(klon)  
373      REAL aam, torsfc      REAL aam, torsfc
374    
     REAL zx_tmp_fi2d(klon) ! variable temporaire grille physique  
   
     INTEGER, SAVE:: nid_ins  
   
375      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.
376      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.
377      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.
378      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.
379    
     REAL zsto  
380      real date0      real date0
381        REAL tsol(klon)
382    
383      ! Variables li\'ees au bilan d'\'energie et d'enthalpie :      REAL d_t_ec(klon, llm)
384      REAL ztsol(klon)      ! tendance due \`a la conversion d'\'energie cin\'etique en
385      REAL d_h_vcol, d_qt, d_ec      ! énergie thermique
386      REAL, SAVE:: d_h_vcol_phy  
387      REAL zero_v(klon)      REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf)
388      CHARACTER(LEN = 20) tit      ! temperature and humidity at 2 m
389      INTEGER:: ip_ebil = 0 ! print level for energy conservation diagnostics  
390      INTEGER:: if_ebil = 0 ! verbosity for diagnostics of energy conservation      REAL, save:: u10m_srf(klon, nbsrf), v10m_srf(klon, nbsrf)
391        ! composantes du vent \`a 10 m
392      REAL d_t_ec(klon, llm) ! tendance due \`a la conversion Ec -> E thermique      
393      REAL ZRCPD      REAL zt2m(klon), zq2m(klon) ! température, humidité 2 m moyenne sur 1 maille
394        REAL u10m(klon), v10m(klon) ! vent \`a 10 m moyenn\' sur les sous-surfaces
     REAL t2m(klon, nbsrf), q2m(klon, nbsrf) ! temperature and humidity at 2 m  
     REAL u10m(klon, nbsrf), v10m(klon, nbsrf) ! vents a 10 m  
     REAL zt2m(klon), zq2m(klon) ! temp., hum. 2 m moyenne s/ 1 maille  
     REAL zu10m(klon), zv10m(klon) ! vents a 10 m moyennes s/1 maille  
395    
396      ! Aerosol effects:      ! Aerosol effects:
397    
398      REAL sulfate(klon, llm) ! SO4 aerosol concentration (micro g/m3)      REAL, save:: topswad(klon), solswad(klon) ! aerosol direct effect
   
     REAL, save:: sulfate_pi(klon, llm)  
     ! SO4 aerosol concentration, in micro g/m3, pre-industrial value  
   
     REAL cldtaupi(klon, llm)  
     ! cloud optical thickness for pre-industrial (pi) aerosols  
   
     REAL re(klon, llm) ! Cloud droplet effective radius  
     REAL fl(klon, llm) ! denominator of re  
   
     ! Aerosol optical properties  
     REAL, save:: tau_ae(klon, llm, 2), piz_ae(klon, llm, 2)  
     REAL, save:: cg_ae(klon, llm, 2)  
   
     REAL topswad(klon), solswad(klon) ! aerosol direct effect  
     REAL topswai(klon), solswai(klon) ! aerosol indirect effect  
   
     REAL aerindex(klon) ! POLDER aerosol index  
   
399      LOGICAL:: ok_ade = .false. ! apply aerosol direct effect      LOGICAL:: ok_ade = .false. ! apply aerosol direct effect
     LOGICAL:: ok_aie = .false. ! apply aerosol indirect effect  
400    
401      REAL:: bl95_b0 = 2., bl95_b1 = 0.2      REAL:: bl95_b0 = 2., bl95_b1 = 0.2
402      ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus      ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus
403      ! B). They link cloud droplet number concentration to aerosol mass      ! B). They link cloud droplet number concentration to aerosol mass
404      ! concentration.      ! concentration.
405    
406      SAVE u10m      real zmasse(klon, llm)
     SAVE v10m  
     SAVE t2m  
     SAVE q2m  
     SAVE ffonte  
     SAVE fqcalving  
     SAVE rain_con  
     SAVE snow_con  
     SAVE topswai  
     SAVE topswad  
     SAVE solswai  
     SAVE solswad  
     SAVE d_u_con  
     SAVE d_v_con  
   
     real zmasse(klon, llm)  
407      ! (column-density of mass of air in a cell, in kg m-2)      ! (column-density of mass of air in a cell, in kg m-2)
408    
409      real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2      integer, save:: ncid_startphy
410    
411      namelist /physiq_nml/ ok_journe, ok_mensuel, ok_instan, fact_cldcon, &      namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, &
412           facttemps, ok_newmicro, iflag_cldcon, ratqsbas, ratqshaut, if_ebil, &           ratqsbas, ratqshaut, ok_ade, bl95_b0, bl95_b1, iflag_thermals, &
413           ok_ade, ok_aie, bl95_b0, bl95_b1, iflag_thermals, nsplit_thermals           nsplit_thermals
414    
415      !----------------------------------------------------------------      !----------------------------------------------------------------
416    
     IF (if_ebil >= 1) zero_v = 0.  
417      IF (nqmx < 2) CALL abort_gcm('physiq', &      IF (nqmx < 2) CALL abort_gcm('physiq', &
418           'eaux vapeur et liquide sont indispensables', 1)           'eaux vapeur et liquide sont indispensables')
419    
420      test_firstcal: IF (firstcal) THEN      test_firstcal: IF (firstcal) THEN
421         ! initialiser         ! initialiser
422         u10m = 0.         u10m_srf = 0.
423         v10m = 0.         v10m_srf = 0.
424         t2m = 0.         t2m = 0.
425         q2m = 0.         q2m = 0.
426         ffonte = 0.         ffonte = 0.
427         fqcalving = 0.         fqcalving = 0.
        piz_ae = 0.  
        tau_ae = 0.  
        cg_ae = 0.  
428         rain_con = 0.         rain_con = 0.
429         snow_con = 0.         snow_con = 0.
        topswai = 0.  
        topswad = 0.  
        solswai = 0.  
        solswad = 0.  
   
430         d_u_con = 0.         d_u_con = 0.
431         d_v_con = 0.         d_v_con = 0.
432         rnebcon0 = 0.         rnebcon0 = 0.
433         clwcon0 = 0.         clwcon0 = 0.
434         rnebcon = 0.         rnebcon = 0.
435         clwcon = 0.         clwcon = 0.
   
436         pblh =0. ! Hauteur de couche limite         pblh =0. ! Hauteur de couche limite
437         plcl =0. ! Niveau de condensation de la CLA         plcl =0. ! Niveau de condensation de la CLA
438         capCL =0. ! CAPE de couche limite         capCL =0. ! CAPE de couche limite
439         oliqCL =0. ! eau_liqu integree de couche limite         oliqCL =0. ! eau_liqu integree de couche limite
440         cteiCL =0. ! cloud top instab. crit. couche limite         cteiCL =0. ! cloud top instab. crit. couche limite
441         pblt =0. ! T a la Hauteur de couche limite         pblt =0.
442         therm =0.         therm =0.
443         trmb1 =0. ! deep_cape         trmb1 =0. ! deep_cape
444         trmb2 =0. ! inhibition         trmb2 =0. ! inhibition
445         trmb3 =0. ! Point Omega         trmb3 =0. ! Point Omega
446    
        IF (if_ebil >= 1) d_h_vcol_phy = 0.  
   
447         iflag_thermals = 0         iflag_thermals = 0
448         nsplit_thermals = 1         nsplit_thermals = 1
449         print *, "Enter namelist 'physiq_nml'."         print *, "Enter namelist 'physiq_nml'."
# Line 632  contains Line 455  contains
455         ! Initialiser les compteurs:         ! Initialiser les compteurs:
456    
457         frugs = 0.         frugs = 0.
458         itap = 0         CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
459         itaprad = 0              fevap, rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, &
460         CALL phyetat0(pctsrf, ftsol, ftsoil, tslab, seaice, fqsurf, qsol, &              agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, &
461              fsnow, falbe, falblw, fevap, rain_fall, snow_fall, solsw, sollw, &              q_ancien, ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
462              dlw, radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, &              w01, ncid_startphy)
             zval, t_ancien, q_ancien, ancien_ok, rnebcon, ratqs, clwcon, &  
             run_off_lic_0, sig1, w01)  
463    
464         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial
465         q2 = 1e-8         q2 = 1e-8
466    
467         radpas = NINT(86400. / dtphys / nbapp_rad)         radpas = lmt_pas / nbapp_rad
468           print *, "radpas = ", radpas
        ! on remet le calendrier a zero  
        IF (raz_date) itau_phy = 0  
   
        CALL printflag(radpas, ok_journe, ok_instan, ok_region)  
   
        IF (dtphys * radpas > 21600. .AND. cycle_diurne) THEN  
           print *, "Au minimum 4 appels par jour si cycle diurne"  
           call abort_gcm('physiq', &  
                "Nombre d'appels au rayonnement insuffisant", 1)  
        ENDIF  
469    
470         ! Initialisation pour le sch\'ema de convection d'Emanuel :         ! Initialisation pour le sch\'ema de convection d'Emanuel :
471         IF (iflag_con >= 3) THEN         IF (conv_emanuel) THEN
472            ibas_con = 1            ibas_con = 1
473            itop_con = 1            itop_con = 1
474         ENDIF         ENDIF
# Line 669  contains Line 480  contains
480            rugoro = 0.            rugoro = 0.
481         ENDIF         ENDIF
482    
483         lmt_pas = NINT(86400. / dtphys) ! tous les jours         ecrit_ins = NINT(ecrit_ins / dtphys)
        print *, 'Number of time steps of "physics" per day: ', lmt_pas  
   
        ecrit_ins = NINT(ecrit_ins/dtphys)  
        ecrit_hf = NINT(ecrit_hf/dtphys)  
        ecrit_mth = NINT(ecrit_mth/dtphys)  
        ecrit_tra = NINT(86400.*ecrit_tra/dtphys)  
        ecrit_reg = NINT(ecrit_reg/dtphys)  
484    
485         ! Initialisation des sorties         ! Initialisation des sorties
486    
487         call ini_histins(dtphys, ok_instan, nid_ins)         call ini_histins(dtphys, ok_newmicro)
488         CALL ymds2ju(annee_ref, 1, day_ref, 0., date0)         CALL ymds2ju(annee_ref, 1, day_ref, 0., date0)
489         ! Positionner date0 pour initialisation de ORCHIDEE         ! Positionner date0 pour initialisation de ORCHIDEE
490         print *, 'physiq date0: ', date0         print *, 'physiq date0: ', date0
491           CALL phyredem0
492      ENDIF test_firstcal      ENDIF test_firstcal
493    
494      ! We will modify variables *_seri and we will not touch variables      ! We will modify variables *_seri and we will not touch variables
# Line 693  contains Line 498  contains
498      v_seri = v      v_seri = v
499      q_seri = qx(:, :, ivap)      q_seri = qx(:, :, ivap)
500      ql_seri = qx(:, :, iliq)      ql_seri = qx(:, :, iliq)
501      tr_seri = qx(:, :, 3: nqmx)      tr_seri = qx(:, :, 3:nqmx)
   
     ztsol = sum(ftsol * pctsrf, dim = 2)  
502    
503      IF (if_ebil >= 1) THEN      tsol = sum(ftsol * pctsrf, dim = 2)
        tit = 'after dynamics'  
        CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &  
             ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)  
        ! Comme les tendances de la physique sont ajout\'es dans la  
        !  dynamique, la variation d'enthalpie par la dynamique devrait  
        !  \^etre \'egale \`a la variation de la physique au pas de temps  
        !  pr\'ec\'edent.  Donc la somme de ces 2 variations devrait \^etre  
        !  nulle.  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol + d_h_vcol_phy, &  
             d_qt, 0.)  
     END IF  
504    
505      ! Diagnostic de la tendance dynamique :      ! Diagnostic de la tendance dynamique :
506      IF (ancien_ok) THEN      IF (ancien_ok) THEN
# Line 739  contains Line 530  contains
530      ! Check temperatures:      ! Check temperatures:
531      CALL hgardfou(t_seri, ftsol)      CALL hgardfou(t_seri, ftsol)
532    
533      ! Incrémenter le compteur de la physique      call increment_itap
     itap = itap + 1  
534      julien = MOD(dayvrai, 360)      julien = MOD(dayvrai, 360)
535      if (julien == 0) julien = 360      if (julien == 0) julien = 360
536    
537      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg
538    
     ! Prescrire l'ozone :  
     wo = ozonecm(REAL(julien), paprs)  
   
539      ! \'Evaporation de l'eau liquide nuageuse :      ! \'Evaporation de l'eau liquide nuageuse :
540      DO k = 1, llm      DO k = 1, llm
541         DO i = 1, klon         DO i = 1, klon
# Line 760  contains Line 547  contains
547      ENDDO      ENDDO
548      ql_seri = 0.      ql_seri = 0.
549    
     IF (if_ebil >= 2) THEN  
        tit = 'after reevap'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 1, dtphys, t_seri, q_seri, &  
             ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec)  
     END IF  
   
550      frugs = MAX(frugs, 0.000015)      frugs = MAX(frugs, 0.000015)
551      zxrugs = sum(frugs * pctsrf, dim = 2)      zxrugs = sum(frugs * pctsrf, dim = 2)
552    
553      ! Calculs nécessaires au calcul de l'albedo dans l'interface avec      ! Calculs n\'ecessaires au calcul de l'albedo dans l'interface avec
554      ! la surface.      ! la surface.
555    
556      CALL orbite(REAL(julien), longi, dist)      CALL orbite(REAL(julien), longi, dist)
557      IF (cycle_diurne) THEN      CALL zenang(longi, time, dtphys * radpas, mu0, fract)
        CALL zenang(longi, time, dtphys * radpas, mu0, fract)  
     ELSE  
        mu0 = -999.999  
     ENDIF  
   
     ! Calcul de l'abedo moyen par maille  
558      albsol = sum(falbe * pctsrf, dim = 2)      albsol = sum(falbe * pctsrf, dim = 2)
     albsollw = sum(falblw * pctsrf, dim = 2)  
559    
560      ! R\'epartition sous maille des flux longwave et shortwave      ! R\'epartition sous maille des flux longwave et shortwave
561      ! R\'epartition du longwave par sous-surface lin\'earis\'ee      ! R\'epartition du longwave par sous-surface lin\'earis\'ee
562    
563      forall (nsrf = 1: nbsrf)      forall (nsrf = 1: nbsrf)
564         fsollw(:, nsrf) = sollw + 4. * RSIGMA * ztsol**3 &         fsollw(:, nsrf) = sollw + 4. * RSIGMA * tsol**3 &
565              * (ztsol - ftsol(:, nsrf))              * (tsol - ftsol(:, nsrf))
566         fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol)         fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol)
567      END forall      END forall
568    
569      fder = dlw      CALL clmain(dtphys, pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, &
570             ftsol, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, &
571      ! Couche limite:           paprs, play, fsnow, fqsurf, fevap, falbe, fluxlat, rain_fall, &
572             snow_fall, fsolsw, fsollw, frugs, agesno, rugoro, d_t_vdf, d_q_vdf, &
573      CALL clmain(dtphys, itap, pctsrf, pctsrf_new, t_seri, q_seri, u_seri, &           d_u_vdf, d_v_vdf, d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, &
574           v_seri, julien, mu0, co2_ppm, ftsol, cdmmax, cdhmax, &           cdragm, q2, dsens, devap, coefh, t2m, q2m, u10m_srf, v10m_srf, &
575           ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, play, fsnow, fqsurf, &           pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, plcl, &
576           fevap, falbe, falblw, fluxlat, rain_fall, snow_fall, fsolsw, fsollw, &           fqcalving, ffonte, run_off_lic_0)
          fder, rlat, frugs, firstcal, agesno, rugoro, d_t_vdf, d_q_vdf, &  
          d_u_vdf, d_v_vdf, d_ts, fluxt, fluxq, fluxu, fluxv, cdragh, cdragm, &  
          q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, pblh, &  
          capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, plcl, &  
          fqcalving, ffonte, run_off_lic_0, fluxo, fluxg, tslab)  
577    
578      ! Incr\'ementation des flux      ! Incr\'ementation des flux
579    
580      zxfluxt = 0.      sens = - sum(flux_t * pctsrf, dim = 2)
581      zxfluxq = 0.      evap = - sum(flux_q * pctsrf, dim = 2)
582      zxfluxu = 0.      fder = dlw + dsens + devap
     zxfluxv = 0.  
     DO nsrf = 1, nbsrf  
        DO k = 1, llm  
           DO i = 1, klon  
              zxfluxt(i, k) = zxfluxt(i, k) + fluxt(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxq(i, k) = zxfluxq(i, k) + fluxq(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxu(i, k) = zxfluxu(i, k) + fluxu(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxv(i, k) = zxfluxv(i, k) + fluxv(i, k, nsrf) * pctsrf(i, nsrf)  
           END DO  
        END DO  
     END DO  
     DO i = 1, klon  
        sens(i) = - zxfluxt(i, 1) ! flux de chaleur sensible au sol  
        evap(i) = - zxfluxq(i, 1) ! flux d'\'evaporation au sol  
        fder(i) = dlw(i) + dsens(i) + devap(i)  
     ENDDO  
583    
584      DO k = 1, llm      DO k = 1, llm
585         DO i = 1, klon         DO i = 1, klon
# Line 839  contains Line 590  contains
590         ENDDO         ENDDO
591      ENDDO      ENDDO
592    
     IF (if_ebil >= 2) THEN  
        tit = 'after clmain'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             sens, evap, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec)  
     END IF  
   
593      ! Update surface temperature:      ! Update surface temperature:
594    
595      DO i = 1, klon      call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf')
596         zxtsol(i) = 0.      ftsol = ftsol + d_ts
597         zxfluxlat(i) = 0.      tsol = sum(ftsol * pctsrf, dim = 2)
598        zxfluxlat = sum(fluxlat * pctsrf, dim = 2)
599         zt2m(i) = 0.      zt2m = sum(t2m * pctsrf, dim = 2)
600         zq2m(i) = 0.      zq2m = sum(q2m * pctsrf, dim = 2)
601         zu10m(i) = 0.      u10m = sum(u10m_srf * pctsrf, dim = 2)
602         zv10m(i) = 0.      v10m = sum(v10m_srf * pctsrf, dim = 2)
603         zxffonte(i) = 0.      zxffonte = sum(ffonte * pctsrf, dim = 2)
604         zxfqcalving(i) = 0.      zxfqcalving = sum(fqcalving * pctsrf, dim = 2)
605        s_pblh = sum(pblh * pctsrf, dim = 2)
606         s_pblh(i) = 0.      s_lcl = sum(plcl * pctsrf, dim = 2)
607         s_lcl(i) = 0.      s_capCL = sum(capCL * pctsrf, dim = 2)
608         s_capCL(i) = 0.      s_oliqCL = sum(oliqCL * pctsrf, dim = 2)
609         s_oliqCL(i) = 0.      s_cteiCL = sum(cteiCL * pctsrf, dim = 2)
610         s_cteiCL(i) = 0.      s_pblT = sum(pblT * pctsrf, dim = 2)
611         s_pblT(i) = 0.      s_therm = sum(therm * pctsrf, dim = 2)
612         s_therm(i) = 0.      s_trmb1 = sum(trmb1 * pctsrf, dim = 2)
613         s_trmb1(i) = 0.      s_trmb2 = sum(trmb2 * pctsrf, dim = 2)
614         s_trmb2(i) = 0.      s_trmb3 = sum(trmb3 * pctsrf, dim = 2)
        s_trmb3(i) = 0.  
   
        IF (abs(pctsrf(i, is_ter) + pctsrf(i, is_lic) + pctsrf(i, is_oce) &  
             + pctsrf(i, is_sic) - 1.)  >  EPSFRA) print *, &  
             'physiq : probl\`eme sous surface au point ', i, &  
             pctsrf(i, 1 : nbsrf)  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           ftsol(i, nsrf) = ftsol(i, nsrf) + d_ts(i, nsrf)  
           zxtsol(i) = zxtsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)  
           zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf)*pctsrf(i, nsrf)  
   
           zt2m(i) = zt2m(i) + t2m(i, nsrf)*pctsrf(i, nsrf)  
           zq2m(i) = zq2m(i) + q2m(i, nsrf)*pctsrf(i, nsrf)  
           zu10m(i) = zu10m(i) + u10m(i, nsrf)*pctsrf(i, nsrf)  
           zv10m(i) = zv10m(i) + v10m(i, nsrf)*pctsrf(i, nsrf)  
           zxffonte(i) = zxffonte(i) + ffonte(i, nsrf)*pctsrf(i, nsrf)  
           zxfqcalving(i) = zxfqcalving(i) + &  
                fqcalving(i, nsrf)*pctsrf(i, nsrf)  
           s_pblh(i) = s_pblh(i) + pblh(i, nsrf)*pctsrf(i, nsrf)  
           s_lcl(i) = s_lcl(i) + plcl(i, nsrf)*pctsrf(i, nsrf)  
           s_capCL(i) = s_capCL(i) + capCL(i, nsrf) *pctsrf(i, nsrf)  
           s_oliqCL(i) = s_oliqCL(i) + oliqCL(i, nsrf) *pctsrf(i, nsrf)  
           s_cteiCL(i) = s_cteiCL(i) + cteiCL(i, nsrf) *pctsrf(i, nsrf)  
           s_pblT(i) = s_pblT(i) + pblT(i, nsrf) *pctsrf(i, nsrf)  
           s_therm(i) = s_therm(i) + therm(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb1(i) = s_trmb1(i) + trmb1(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb2(i) = s_trmb2(i) + trmb2(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb3(i) = s_trmb3(i) + trmb3(i, nsrf) *pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
615    
616      ! Si une sous-fraction n'existe pas, elle prend la température moyenne :      ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne :
617      DO nsrf = 1, nbsrf      DO nsrf = 1, nbsrf
618         DO i = 1, klon         DO i = 1, klon
619            IF (pctsrf(i, nsrf) < epsfra) ftsol(i, nsrf) = zxtsol(i)            IF (pctsrf(i, nsrf) < epsfra) then
620                 ftsol(i, nsrf) = tsol(i)
621            IF (pctsrf(i, nsrf) < epsfra) t2m(i, nsrf) = zt2m(i)               t2m(i, nsrf) = zt2m(i)
622            IF (pctsrf(i, nsrf) < epsfra) q2m(i, nsrf) = zq2m(i)               q2m(i, nsrf) = zq2m(i)
623            IF (pctsrf(i, nsrf) < epsfra) u10m(i, nsrf) = zu10m(i)               u10m_srf(i, nsrf) = u10m(i)
624            IF (pctsrf(i, nsrf) < epsfra) v10m(i, nsrf) = zv10m(i)               v10m_srf(i, nsrf) = v10m(i)
625            IF (pctsrf(i, nsrf) < epsfra) ffonte(i, nsrf) = zxffonte(i)               ffonte(i, nsrf) = zxffonte(i)
626            IF (pctsrf(i, nsrf) < epsfra) &               fqcalving(i, nsrf) = zxfqcalving(i)
627                 fqcalving(i, nsrf) = zxfqcalving(i)               pblh(i, nsrf) = s_pblh(i)
628            IF (pctsrf(i, nsrf) < epsfra) pblh(i, nsrf) = s_pblh(i)               plcl(i, nsrf) = s_lcl(i)
629            IF (pctsrf(i, nsrf) < epsfra) plcl(i, nsrf) = s_lcl(i)               capCL(i, nsrf) = s_capCL(i)
630            IF (pctsrf(i, nsrf) < epsfra) capCL(i, nsrf) = s_capCL(i)               oliqCL(i, nsrf) = s_oliqCL(i)
631            IF (pctsrf(i, nsrf) < epsfra) oliqCL(i, nsrf) = s_oliqCL(i)               cteiCL(i, nsrf) = s_cteiCL(i)
632            IF (pctsrf(i, nsrf) < epsfra) cteiCL(i, nsrf) = s_cteiCL(i)               pblT(i, nsrf) = s_pblT(i)
633            IF (pctsrf(i, nsrf) < epsfra) pblT(i, nsrf) = s_pblT(i)               therm(i, nsrf) = s_therm(i)
634            IF (pctsrf(i, nsrf) < epsfra) therm(i, nsrf) = s_therm(i)               trmb1(i, nsrf) = s_trmb1(i)
635            IF (pctsrf(i, nsrf) < epsfra) trmb1(i, nsrf) = s_trmb1(i)               trmb2(i, nsrf) = s_trmb2(i)
636            IF (pctsrf(i, nsrf) < epsfra) trmb2(i, nsrf) = s_trmb2(i)               trmb3(i, nsrf) = s_trmb3(i)
637            IF (pctsrf(i, nsrf) < epsfra) trmb3(i, nsrf) = s_trmb3(i)            end IF
638         ENDDO         ENDDO
639      ENDDO      ENDDO
640    
641      ! Calculer la dérive du flux infrarouge      dlw = - 4. * RSIGMA * tsol**3
642    
643      DO i = 1, klon      ! Appeler la convection
644         dlw(i) = - 4. * RSIGMA * zxtsol(i)**3  
645      ENDDO      if (conv_emanuel) then
646           CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, &
647      IF (check) print *, "avantcon = ", qcheck(paprs, q_seri, ql_seri)              d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, &
648                upwd, dnwd, Ma, cape, iflagctrl, qcondc, pmflxr, da, phi, mp)
649      ! Appeler la convection (au choix)         snow_con = 0.
   
     if (iflag_con == 2) then  
        conv_q = d_q_dyn + d_q_vdf / dtphys  
        conv_t = d_t_dyn + d_t_vdf / dtphys  
        z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)  
        CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:-1), &  
             q_seri(:, llm:1:-1), conv_t, conv_q, zxfluxq(:, 1), omega, &  
             d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:-1), &  
             mfd(:, llm:1:-1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, &  
             kdtop, pmflxr, pmflxs)  
        WHERE (rain_con < 0.) rain_con = 0.  
        WHERE (snow_con < 0.) snow_con = 0.  
        ibas_con = llm + 1 - kcbot  
        itop_con = llm + 1 - kctop  
     else  
        ! iflag_con >= 3  
   
        da = 0.  
        mp = 0.  
        phi = 0.  
        CALL concvl(dtphys, paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, &  
             w01, d_t_con, d_q_con, d_u_con, d_v_con, rain_con, snow_con, &  
             ibas_con, itop_con, upwd, dnwd, dnwd0, Ma, cape, iflagctrl, &  
             qcondc, wd, pmflxr, pmflxs, da, phi, mp)  
650         clwcon0 = qcondc         clwcon0 = qcondc
651         mfu = upwd + dnwd         mfu = upwd + dnwd
        IF (.NOT. ok_gust) wd = 0.  
652    
653         IF (thermcep) THEN         zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play)
654            zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play)         zqsat = zqsat / (1. - retv * zqsat)
           zqsat = zqsat / (1. - retv * zqsat)  
        ELSE  
           zqsat = merge(qsats(t_seri), qsatl(t_seri), t_seri < t_coup) / play  
        ENDIF  
655    
656         ! Properties of convective clouds         ! Properties of convective clouds
657         clwcon0 = fact_cldcon * clwcon0         clwcon0 = fact_cldcon * clwcon0
658         call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &         call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &
659              rnebcon0)              rnebcon0)
660    
661           forall (i = 1:klon) ema_pct(i) = paprs(i, itop_con(i) + 1)
662         mfd = 0.         mfd = 0.
663         pen_u = 0.         pen_u = 0.
664         pen_d = 0.         pen_d = 0.
665         pde_d = 0.         pde_d = 0.
666         pde_u = 0.         pde_u = 0.
667        else
668           conv_q = d_q_dyn + d_q_vdf / dtphys
669           conv_t = d_t_dyn + d_t_vdf / dtphys
670           z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)
671           CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:- 1), &
672                q_seri(:, llm:1:- 1), conv_t, conv_q, - evap, omega, &
673                d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:- 1), &
674                mfd(:, llm:1:- 1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, &
675                kdtop, pmflxr, pmflxs)
676           WHERE (rain_con < 0.) rain_con = 0.
677           WHERE (snow_con < 0.) snow_con = 0.
678           ibas_con = llm + 1 - kcbot
679           itop_con = llm + 1 - kctop
680      END if      END if
681    
682      DO k = 1, llm      DO k = 1, llm
# Line 992  contains Line 688  contains
688         ENDDO         ENDDO
689      ENDDO      ENDDO
690    
691      IF (if_ebil >= 2) THEN      IF (.not. conv_emanuel) THEN
        tit = 'after convect'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, rain_con, snow_con, ztsol, d_h_vcol, d_qt, d_ec)  
     END IF  
   
     IF (check) THEN  
        za = qcheck(paprs, q_seri, ql_seri)  
        print *, "aprescon = ", za  
        zx_t = 0.  
        za = 0.  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_con(i)+ &  
                snow_con(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtphys  
        print *, "Precip = ", zx_t  
     ENDIF  
   
     IF (iflag_con == 2) THEN  
692         z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)         z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)
693         z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres         z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres
694         DO k = 1, llm         DO k = 1, llm
# Line 1041  contains Line 715  contains
715         t_seri = t_seri + d_t_ajs         t_seri = t_seri + d_t_ajs
716         q_seri = q_seri + d_q_ajs         q_seri = q_seri + d_q_ajs
717      else      else
        ! Thermiques  
718         call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, &         call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, &
719              q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)              q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)
720      endif      endif
721    
     IF (if_ebil >= 2) THEN  
        tit = 'after dry_adjust'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)  
     END IF  
   
722      ! Caclul des ratqs      ! Caclul des ratqs
723    
724      ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q      ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q
# Line 1073  contains Line 740  contains
740      do k = 1, llm      do k = 1, llm
741         do i = 1, klon         do i = 1, klon
742            ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &            ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &
743                 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)                 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)
744         enddo         enddo
745      enddo      enddo
746    
# Line 1106  contains Line 773  contains
773            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)
774         ENDDO         ENDDO
775      ENDDO      ENDDO
     IF (check) THEN  
        za = qcheck(paprs, q_seri, ql_seri)  
        print *, "apresilp = ", za  
        zx_t = 0.  
        za = 0.  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_lsc(i) &  
                + snow_lsc(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtphys  
        print *, "Precip = ", zx_t  
     ENDIF  
   
     IF (if_ebil >= 2) THEN  
        tit = 'after fisrt'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, rain_lsc, snow_lsc, ztsol, d_h_vcol, d_qt, d_ec)  
     END IF  
776    
777      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
778    
779      ! 1. NUAGES CONVECTIFS      ! 1. NUAGES CONVECTIFS
780    
781      IF (iflag_cldcon <= -1) THEN      IF (iflag_cldcon <= - 1) THEN
782         ! seulement pour Tiedtke         ! seulement pour Tiedtke
783         snow_tiedtke = 0.         snow_tiedtke = 0.
784         if (iflag_cldcon == -1) then         if (iflag_cldcon == - 1) then
785            rain_tiedtke = rain_con            rain_tiedtke = rain_con
786         else         else
787            rain_tiedtke = 0.            rain_tiedtke = 0.
788            do k = 1, llm            do k = 1, llm
789               do i = 1, klon               do i = 1, klon
790                  if (d_q_con(i, k) < 0.) then                  if (d_q_con(i, k) < 0.) then
791                     rain_tiedtke(i) = rain_tiedtke(i)-d_q_con(i, k)/dtphys &                     rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k) / dtphys &
792                          *zmasse(i, k)                          * zmasse(i, k)
793                  endif                  endif
794               enddo               enddo
795            enddo            enddo
# Line 1178  contains Line 824  contains
824    
825         ! On prend la somme des fractions nuageuses et des contenus en eau         ! On prend la somme des fractions nuageuses et des contenus en eau
826         cldfra = min(max(cldfra, rnebcon), 1.)         cldfra = min(max(cldfra, rnebcon), 1.)
827         cldliq = cldliq + rnebcon*clwcon         cldliq = cldliq + rnebcon * clwcon
828      ENDIF      ENDIF
829    
830      ! 2. Nuages stratiformes      ! 2. Nuages stratiformes
# Line 1201  contains Line 847  contains
847         snow_fall(i) = snow_con(i) + snow_lsc(i)         snow_fall(i) = snow_con(i) + snow_lsc(i)
848      ENDDO      ENDDO
849    
     IF (if_ebil >= 2) CALL diagetpq(airephy, "after diagcld", ip_ebil, 2, 2, &  
          dtphys, t_seri, q_seri, ql_seri, u_seri, v_seri, paprs, d_h_vcol, &  
          d_qt, d_ec)  
   
850      ! Humidit\'e relative pour diagnostic :      ! Humidit\'e relative pour diagnostic :
851      DO k = 1, llm      DO k = 1, llm
852         DO i = 1, klon         DO i = 1, klon
853            zx_t = t_seri(i, k)            zx_t = t_seri(i, k)
854            IF (thermcep) THEN            zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t) / play(i, k)
855               zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t)/play(i, k)            zx_qs = MIN(0.5, zx_qs)
856               zx_qs = MIN(0.5, zx_qs)            zcor = 1. / (1. - retv * zx_qs)
857               zcor = 1./(1.-retv*zx_qs)            zx_qs = zx_qs * zcor
858               zx_qs = zx_qs*zcor            zx_rh(i, k) = q_seri(i, k) / zx_qs
           ELSE  
              IF (zx_t < t_coup) THEN  
                 zx_qs = qsats(zx_t)/play(i, k)  
              ELSE  
                 zx_qs = qsatl(zx_t)/play(i, k)  
              ENDIF  
           ENDIF  
           zx_rh(i, k) = q_seri(i, k)/zx_qs  
859            zqsat(i, k) = zx_qs            zqsat(i, k) = zx_qs
860         ENDDO         ENDDO
861      ENDDO      ENDDO
862    
     ! Introduce the aerosol direct and first indirect radiative forcings:  
     IF (ok_ade .OR. ok_aie) THEN  
        ! Get sulfate aerosol distribution :  
        CALL readsulfate(dayvrai, time, firstcal, sulfate)  
        CALL readsulfate_preind(dayvrai, time, firstcal, sulfate_pi)  
   
        CALL aeropt(play, paprs, t_seri, sulfate, rhcl, tau_ae, piz_ae, cg_ae, &  
             aerindex)  
     ELSE  
        tau_ae = 0.  
        piz_ae = 0.  
        cg_ae = 0.  
     ENDIF  
   
863      ! Param\`etres optiques des nuages et quelques param\`etres pour      ! Param\`etres optiques des nuages et quelques param\`etres pour
864      ! diagnostics :      ! diagnostics :
865      if (ok_newmicro) then      if (ok_newmicro) then
866         CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &         CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &
867              cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc, ok_aie, &              cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc)
             sulfate, sulfate_pi, bl95_b0, bl95_b1, cldtaupi, re, fl)  
868      else      else
869         CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &         CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &
870              cldl, cldm, cldt, cldq, ok_aie, sulfate, sulfate_pi, bl95_b0, &              cldl, cldm, cldt, cldq)
             bl95_b1, cldtaupi, re, fl)  
871      endif      endif
872    
873      IF (MOD(itaprad, radpas) == 0) THEN      IF (MOD(itap - 1, radpas) == 0) THEN
874         ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.         wo = ozonecm(REAL(julien), paprs)
875         DO i = 1, klon         albsol = sum(falbe * pctsrf, dim = 2)
876            albsol(i) = falbe(i, is_oce) * pctsrf(i, is_oce) &         CALL radlwsw(dist, mu0, fract, paprs, play, tsol, albsol, t_seri, &
877                 + falbe(i, is_lic) * pctsrf(i, is_lic) &              q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, &
878                 + falbe(i, is_ter) * pctsrf(i, is_ter) &              radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, &
879                 + falbe(i, is_sic) * pctsrf(i, is_sic)              toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, &
880            albsollw(i) = falblw(i, is_oce) * pctsrf(i, is_oce) &              swup0, swup, ok_ade, topswad, solswad)
                + falblw(i, is_lic) * pctsrf(i, is_lic) &  
                + falblw(i, is_ter) * pctsrf(i, is_ter) &  
                + falblw(i, is_sic) * pctsrf(i, is_sic)  
        ENDDO  
        ! Rayonnement (compatible Arpege-IFS) :  
        CALL radlwsw(dist, mu0, fract, paprs, play, zxtsol, albsol, &  
             albsollw, t_seri, q_seri, wo, cldfra, cldemi, cldtau, heat, &  
             heat0, cool, cool0, radsol, albpla, topsw, toplw, solsw, sollw, &  
             sollwdown, topsw0, toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, &  
             lwup, swdn0, swdn, swup0, swup, ok_ade, ok_aie, tau_ae, piz_ae, &  
             cg_ae, topswad, solswad, cldtaupi, topswai, solswai)  
        itaprad = 0  
881      ENDIF      ENDIF
882    
     itaprad = itaprad + 1  
   
883      ! Ajouter la tendance des rayonnements (tous les pas)      ! Ajouter la tendance des rayonnements (tous les pas)
   
884      DO k = 1, llm      DO k = 1, llm
885         DO i = 1, klon         DO i = 1, klon
886            t_seri(i, k) = t_seri(i, k) + (heat(i, k)-cool(i, k)) * dtphys/86400.            t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys &
887         ENDDO                 / 86400.
     ENDDO  
   
     IF (if_ebil >= 2) THEN  
        tit = 'after rad'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)  
        call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec)  
     END IF  
   
     ! Calculer l'hydrologie de la surface  
     DO i = 1, klon  
        zxqsurf(i) = 0.  
        zxsnow(i) = 0.  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxqsurf(i) = zxqsurf(i) + fqsurf(i, nsrf)*pctsrf(i, nsrf)  
           zxsnow(i) = zxsnow(i) + fsnow(i, nsrf)*pctsrf(i, nsrf)  
888         ENDDO         ENDDO
889      ENDDO      ENDDO
890    
891      ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage)      ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage)
   
892      DO i = 1, klon      DO i = 1, klon
893         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)
894      ENDDO      ENDDO
# Line 1313  contains Line 896  contains
896      ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille :      ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille :
897    
898      IF (ok_orodr) THEN      IF (ok_orodr) THEN
899         ! selection des points pour lesquels le shema est actif:         ! S\'election des points pour lesquels le sch\'ema est actif :
900         igwd = 0         igwd = 0
901         DO i = 1, klon         DO i = 1, klon
902            itest(i) = 0            itest(i) = 0
903            IF (((zpic(i)-zmea(i)) > 100.).AND.(zstd(i) > 10.)) THEN            IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN
904               itest(i) = 1               itest(i) = 1
905               igwd = igwd + 1               igwd = igwd + 1
              idx(igwd) = i  
906            ENDIF            ENDIF
907         ENDDO         ENDDO
908    
909         CALL drag_noro(klon, llm, dtphys, paprs, play, zmea, zstd, zsig, zgam, &         CALL drag_noro(klon, llm, dtphys, paprs, play, zmea, zstd, zsig, zgam, &
910              zthe, zpic, zval, igwd, idx, itest, t_seri, u_seri, v_seri, &              zthe, zpic, zval, itest, t_seri, u_seri, v_seri, zulow, zvlow, &
911              zulow, zvlow, zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro)              zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro)
912    
913         ! ajout des tendances         ! ajout des tendances
914         DO k = 1, llm         DO k = 1, llm
# Line 1343  contains Line 925  contains
925         igwd = 0         igwd = 0
926         DO i = 1, klon         DO i = 1, klon
927            itest(i) = 0            itest(i) = 0
928            IF ((zpic(i) - zmea(i)) > 100.) THEN            IF (zpic(i) - zmea(i) > 100.) THEN
929               itest(i) = 1               itest(i) = 1
930               igwd = igwd + 1               igwd = igwd + 1
              idx(igwd) = i  
931            ENDIF            ENDIF
932         ENDDO         ENDDO
933    
934         CALL lift_noro(klon, llm, dtphys, paprs, play, rlat, zmea, zstd, zpic, &         CALL lift_noro(dtphys, paprs, play, zmea, zstd, zpic, itest, t_seri, &
935              itest, t_seri, u_seri, v_seri, zulow, zvlow, zustrli, zvstrli, &              u_seri, v_seri, zulow, zvlow, zustrli, zvstrli, d_t_lif, &
936              d_t_lif, d_u_lif, d_v_lif)              d_u_lif, d_v_lif)
937    
938         ! Ajout des tendances :         ! Ajout des tendances :
939         DO k = 1, llm         DO k = 1, llm
# Line 1364  contains Line 945  contains
945         ENDDO         ENDDO
946      ENDIF      ENDIF
947    
948      ! Stress n\'ecessaires : toute la physique      CALL aaam_bud(rg, romega, pphis, zustrdr, zustrli, &
949             sum((u_seri - u) / dtphys * zmasse, dim = 2), zvstrdr, &
950      DO i = 1, klon           zvstrli, sum((v_seri - v) / dtphys * zmasse, dim = 2), paprs, u, v, &
951         zustrph(i) = 0.           aam, torsfc)
        zvstrph(i) = 0.  
     ENDDO  
     DO k = 1, llm  
        DO i = 1, klon  
           zustrph(i) = zustrph(i) + (u_seri(i, k) - u(i, k)) / dtphys &  
                * zmasse(i, k)  
           zvstrph(i) = zvstrph(i) + (v_seri(i, k) - v(i, k)) / dtphys &  
                * zmasse(i, k)  
        ENDDO  
     ENDDO  
   
     CALL aaam_bud(ra, rg, romega, rlat, rlon, pphis, zustrdr, zustrli, &  
          zustrph, zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc)  
   
     IF (if_ebil >= 2) CALL diagetpq(airephy, 'after orography', ip_ebil, 2, &  
          2, dtphys, t_seri, q_seri, ql_seri, u_seri, v_seri, paprs, d_h_vcol, &  
          d_qt, d_ec)  
952    
953      ! Calcul des tendances traceurs      ! Calcul des tendances traceurs
954      call phytrac(itap, lmt_pas, julien, time, firstcal, lafin, dtphys, t, &      call phytrac(julien, time, firstcal, lafin, dtphys, t, paprs, play, mfu, &
955           paprs, play, mfu, mfd, pde_u, pen_d, ycoefh, fm_therm, entr_therm, &           mfd, pde_u, pen_d, coefh, cdragh, fm_therm, entr_therm, u(:, 1), &
956           yu1, yv1, ftsol, pctsrf, frac_impa, frac_nucl, pphis, da, phi, mp, &           v(:, 1), ftsol, pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, &
957           upwd, dnwd, tr_seri, zmasse)           dnwd, tr_seri, zmasse, ncid_startphy)
   
     IF (offline) call phystokenc(dtphys, rlon, rlat, t, mfu, mfd, pen_u, &  
          pde_u, pen_d, pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, &  
          pctsrf, frac_impa, frac_nucl, pphis, airephy, dtphys, itap)  
958    
959      ! Calculer le transport de l'eau et de l'energie (diagnostique)      ! Calculer le transport de l'eau et de l'energie (diagnostique)
960      CALL transp(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, &      CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq)
          ue, uq)  
961    
962      ! diag. bilKP      ! diag. bilKP
963    
964      CALL transp_lay(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, &      CALL transp_lay(paprs, t_seri, q_seri, u_seri, v_seri, zphi, &
965           ve_lay, vq_lay, ue_lay, uq_lay)           ve_lay, vq_lay, ue_lay, uq_lay)
966    
967      ! Accumuler les variables a stocker dans les fichiers histoire:      ! Accumuler les variables a stocker dans les fichiers histoire:
968    
969      ! conversion Ec -> E thermique      ! conversion Ec en énergie thermique
970      DO k = 1, llm      DO k = 1, llm
971         DO i = 1, klon         DO i = 1, klon
972            ZRCPD = RCPD * (1. + RVTMP2 * q_seri(i, k))            d_t_ec(i, k) = 0.5 / (RCPD * (1. + RVTMP2 * q_seri(i, k))) &
           d_t_ec(i, k) = 0.5 / ZRCPD &  
973                 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)                 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)
974            t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)            t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)
975            d_t_ec(i, k) = d_t_ec(i, k) / dtphys            d_t_ec(i, k) = d_t_ec(i, k) / dtphys
976         END DO         END DO
977      END DO      END DO
978    
     IF (if_ebil >= 1) THEN  
        tit = 'after physic'  
        CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &  
             ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)  
        ! Comme les tendances de la physique sont ajoute dans la dynamique,  
        ! on devrait avoir que la variation d'entalpie par la dynamique  
        ! est egale a la variation de la physique au pas de temps precedent.  
        ! Donc la somme de ces 2 variations devrait etre nulle.  
        call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, sens, &  
             evap, rain_fall, snow_fall, ztsol, d_h_vcol, d_qt, d_ec)  
        d_h_vcol_phy = d_h_vcol  
     END IF  
   
979      ! SORTIES      ! SORTIES
980    
981      ! prw = eau precipitable      ! prw = eau precipitable
982      DO i = 1, klon      DO i = 1, klon
983         prw(i) = 0.         prw(i) = 0.
984         DO k = 1, llm         DO k = 1, llm
985            prw(i) = prw(i) + q_seri(i, k)*zmasse(i, k)            prw(i) = prw(i) + q_seri(i, k) * zmasse(i, k)
986         ENDDO         ENDDO
987      ENDDO      ENDDO
988    
# Line 1456  contains Line 1001  contains
1001      DO iq = 3, nqmx      DO iq = 3, nqmx
1002         DO k = 1, llm         DO k = 1, llm
1003            DO i = 1, klon            DO i = 1, klon
1004               d_qx(i, k, iq) = (tr_seri(i, k, iq-2) - qx(i, k, iq)) / dtphys               d_qx(i, k, iq) = (tr_seri(i, k, iq - 2) - qx(i, k, iq)) / dtphys
1005            ENDDO            ENDDO
1006         ENDDO         ENDDO
1007      ENDDO      ENDDO
# Line 1469  contains Line 1014  contains
1014         ENDDO         ENDDO
1015      ENDDO      ENDDO
1016    
1017      ! Ecriture des sorties      CALL histwrite_phy("phis", pphis)
1018      call write_histins      CALL histwrite_phy("aire", airephy)
1019        CALL histwrite_phy("psol", paprs(:, 1))
1020      ! Si c'est la fin, il faut conserver l'etat de redemarrage      CALL histwrite_phy("precip", rain_fall + snow_fall)
1021      IF (lafin) THEN      CALL histwrite_phy("plul", rain_lsc + snow_lsc)
1022         itau_phy = itau_phy + itap      CALL histwrite_phy("pluc", rain_con + snow_con)
1023         CALL phyredem("restartphy.nc", rlat, rlon, pctsrf, ftsol, ftsoil, &      CALL histwrite_phy("tsol", tsol)
1024              tslab, seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, &      CALL histwrite_phy("t2m", zt2m)
1025              rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, &      CALL histwrite_phy("q2m", zq2m)
1026              agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, &      CALL histwrite_phy("u10m", u10m)
1027              q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01)      CALL histwrite_phy("v10m", v10m)
1028      ENDIF      CALL histwrite_phy("snow", snow_fall)
1029        CALL histwrite_phy("cdrm", cdragm)
1030      firstcal = .FALSE.      CALL histwrite_phy("cdrh", cdragh)
1031        CALL histwrite_phy("topl", toplw)
1032    contains      CALL histwrite_phy("evap", evap)
1033        CALL histwrite_phy("sols", solsw)
1034      subroutine write_histins      CALL histwrite_phy("soll", sollw)
1035        CALL histwrite_phy("solldown", sollwdown)
1036        ! From phylmd/write_histins.h, version 1.2 2005/05/25 13:10:09      CALL histwrite_phy("bils", bils)
1037        CALL histwrite_phy("sens", - sens)
1038        use dimens_m, only: iim, jjm      CALL histwrite_phy("fder", fder)
1039        USE histsync_m, ONLY: histsync      CALL histwrite_phy("dtsvdfo", d_ts(:, is_oce))
1040        USE histwrite_m, ONLY: histwrite      CALL histwrite_phy("dtsvdft", d_ts(:, is_ter))
1041        CALL histwrite_phy("dtsvdfg", d_ts(:, is_lic))
1042        real zout      CALL histwrite_phy("dtsvdfi", d_ts(:, is_sic))
       integer itau_w ! pas de temps ecriture  
       REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm)  
   
       !--------------------------------------------------  
   
       IF (ok_instan) THEN  
          ! Champs 2D:  
   
          zsto = dtphys * ecrit_ins  
          zout = dtphys * ecrit_ins  
          itau_w = itau_phy + itap  
   
          i = NINT(zout/zsto)  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, pphis, zx_tmp_2d)  
          CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d)  
   
          i = NINT(zout/zsto)  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, airephy, zx_tmp_2d)  
          CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = paprs(i, 1)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "psol", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_fall(i) + snow_fall(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "precip", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_lsc(i) + snow_lsc(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "plul", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_con(i) + snow_con(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "pluc", itau_w, zx_tmp_2d)  
1043    
1044           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxtsol, zx_tmp_2d)      DO nsrf = 1, nbsrf
1045           CALL histwrite(nid_ins, "tsol", itau_w, zx_tmp_2d)         CALL histwrite_phy("pourc_"//clnsurf(nsrf), pctsrf(:, nsrf) * 100.)
1046           !ccIM         CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf))
1047           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zt2m, zx_tmp_2d)         CALL histwrite_phy("sens_"//clnsurf(nsrf), flux_t(:, nsrf))
1048           CALL histwrite(nid_ins, "t2m", itau_w, zx_tmp_2d)         CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf))
1049           CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf))
1050           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zq2m, zx_tmp_2d)         CALL histwrite_phy("taux_"//clnsurf(nsrf), flux_u(:, nsrf))
1051           CALL histwrite(nid_ins, "q2m", itau_w, zx_tmp_2d)         CALL histwrite_phy("tauy_"//clnsurf(nsrf), flux_v(:, nsrf))
1052           CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf))
1053           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zu10m, zx_tmp_2d)         CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf))
1054           CALL histwrite(nid_ins, "u10m", itau_w, zx_tmp_2d)         CALL histwrite_phy("u10m_"//clnsurf(nsrf), u10m_srf(:, nsrf))
1055           CALL histwrite_phy("v10m_"//clnsurf(nsrf), v10m_srf(:, nsrf))
1056           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zv10m, zx_tmp_2d)      END DO
          CALL histwrite(nid_ins, "v10m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, snow_fall, zx_tmp_2d)  
          CALL histwrite(nid_ins, "snow", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrm", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrh", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, toplw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "topl", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, evap, zx_tmp_2d)  
          CALL histwrite(nid_ins, "evap", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, solsw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sols", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "soll", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollwdown, zx_tmp_2d)  
          CALL histwrite(nid_ins, "solldown", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, bils, zx_tmp_2d)  
          CALL histwrite(nid_ins, "bils", itau_w, zx_tmp_2d)  
   
          zx_tmp_fi2d(1:klon) = -1*sens(1:klon)  
          ! CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sens, zx_tmp_2d)  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sens", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, fder, zx_tmp_2d)  
          CALL histwrite(nid_ins, "fder", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_oce), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfo", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_ter), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdft", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_lic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfg", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_sic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfi", itau_w, zx_tmp_2d)  
   
          DO nsrf = 1, nbsrf  
             !XXX  
             zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf)*100.  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "pourc_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "fract_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxt(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "sens_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxlat(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "lat_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = ftsol(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tsol_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxu(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "taux_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxv(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tauy_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = frugs(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "rugs_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = falbe(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "albe_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
          END DO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albs", itau_w, zx_tmp_2d)  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albslw", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxrugs, zx_tmp_2d)  
          CALL histwrite(nid_ins, "rugs", itau_w, zx_tmp_2d)  
   
          !HBTM2  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblh", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblt, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblt", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_lcl, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_lcl", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_capCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_capCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_oliqCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_oliqCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_cteiCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_cteiCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_therm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_therm", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb1, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb1", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb2, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb2", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb3, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb3", itau_w, zx_tmp_2d)  
   
          ! Champs 3D:  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, t_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "temp", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, u_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitu", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, v_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitv", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, zphi, zx_tmp_3d)  
          CALL histwrite(nid_ins, "geop", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, play, zx_tmp_3d)  
          CALL histwrite(nid_ins, "pres", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_t_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dtvdf", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_q_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d)  
1057    
1058           call histsync(nid_ins)      CALL histwrite_phy("albs", albsol)
1059        ENDIF      CALL histwrite_phy("tro3", wo * dobson_u * 1e3 / zmasse / rmo3 * md)
1060        CALL histwrite_phy("rugs", zxrugs)
1061        CALL histwrite_phy("s_pblh", s_pblh)
1062        CALL histwrite_phy("s_pblt", s_pblt)
1063        CALL histwrite_phy("s_lcl", s_lcl)
1064        CALL histwrite_phy("s_capCL", s_capCL)
1065        CALL histwrite_phy("s_oliqCL", s_oliqCL)
1066        CALL histwrite_phy("s_cteiCL", s_cteiCL)
1067        CALL histwrite_phy("s_therm", s_therm)
1068        CALL histwrite_phy("s_trmb1", s_trmb1)
1069        CALL histwrite_phy("s_trmb2", s_trmb2)
1070        CALL histwrite_phy("s_trmb3", s_trmb3)
1071    
1072        if (conv_emanuel) then
1073           CALL histwrite_phy("ptop", ema_pct)
1074           CALL histwrite_phy("dnwd0", - mp)
1075        end if
1076    
1077        CALL histwrite_phy("temp", t_seri)
1078        CALL histwrite_phy("vitu", u_seri)
1079        CALL histwrite_phy("vitv", v_seri)
1080        CALL histwrite_phy("geop", zphi)
1081        CALL histwrite_phy("pres", play)
1082        CALL histwrite_phy("dtvdf", d_t_vdf)
1083        CALL histwrite_phy("dqvdf", d_q_vdf)
1084        CALL histwrite_phy("rhum", zx_rh)
1085        CALL histwrite_phy("d_t_ec", d_t_ec)
1086        CALL histwrite_phy("dtsw0", heat0 / 86400.)
1087        CALL histwrite_phy("dtlw0", - cool0 / 86400.)
1088        CALL histwrite_phy("msnow", sum(fsnow * pctsrf, dim = 2))
1089        call histwrite_phy("qsurf", sum(fqsurf * pctsrf, dim = 2))
1090    
1091        if (ok_instan) call histsync(nid_ins)
1092    
1093        IF (lafin) then
1094           call NF95_CLOSE(ncid_startphy)
1095           CALL phyredem(pctsrf, ftsol, ftsoil, fqsurf, qsol, &
1096                fsnow, falbe, fevap, rain_fall, snow_fall, solsw, sollw, dlw, &
1097                radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, &
1098                t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
1099                w01)
1100        end IF
1101    
1102      end subroutine write_histins      firstcal = .FALSE.
1103    
1104    END SUBROUTINE physiq    END SUBROUTINE physiq
1105    

Legend:
Removed from v.134  
changed lines
  Added in v.244

  ViewVC Help
Powered by ViewVC 1.1.21