--- trunk/phylmd/physiq.f 2014/09/16 14:00:41 108 +++ trunk/Sources/phylmd/physiq.f 2015/07/07 17:49:23 154 @@ -4,13 +4,13 @@ contains - SUBROUTINE physiq(lafin, rdayvrai, time, dtphys, paprs, play, pphi, pphis, & - u, v, t, qx, omega, d_u, d_v, d_t, d_qx) + SUBROUTINE physiq(lafin, dayvrai, time, paprs, play, pphi, pphis, u, v, t, & + qx, omega, d_u, d_v, d_t, d_qx) ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28 ! (subversion revision 678) - ! Author: Z.X. Li (LMD/CNRS) 1993 + ! Author: Z. X. Li (LMD/CNRS) 1993 ! This is the main procedure for the "physics" part of the program. @@ -25,9 +25,10 @@ ok_orodr, ok_orolf USE clmain_m, ONLY: clmain use clouds_gno_m, only: clouds_gno - USE comgeomphy, ONLY: airephy, cuphy, cvphy + use comconst, only: dtphys + USE comgeomphy, ONLY: airephy USE concvl_m, ONLY: concvl - USE conf_gcm_m, ONLY: offline, raz_date + USE conf_gcm_m, ONLY: offline, raz_date, day_step, iphysiq USE conf_phys_m, ONLY: conf_phys use conflx_m, only: conflx USE ctherm, ONLY: iflag_thermals, nsplit_thermals @@ -38,6 +39,7 @@ USE dimphy, ONLY: klon USE dimsoil, ONLY: nsoilmx use drag_noro_m, only: drag_noro + use dynetat0_m, only: day_ref, annee_ref USE fcttre, ONLY: foeew, qsatl, qsats, thermcep use fisrtilp_m, only: fisrtilp USE hgardfou_m, ONLY: hgardfou @@ -57,7 +59,7 @@ use readsulfate_preind_m, only: readsulfate_preind use sugwd_m, only: sugwd USE suphec_m, ONLY: ra, rcpd, retv, rg, rlvtt, romega, rsigma, rtt - USE temps, ONLY: annee_ref, day_ref, itau_phy + USE temps, ONLY: itau_phy use unit_nml_m, only: unit_nml USE ymds2ju_m, ONLY: ymds2ju USE yoethf_m, ONLY: r2es, rvtmp2 @@ -65,11 +67,10 @@ logical, intent(in):: lafin ! dernier passage - REAL, intent(in):: rdayvrai - ! (elapsed time since January 1st 0h of the starting year, in days) + integer, intent(in):: dayvrai + ! current day number, based at value 1 on January 1st of annee_ref REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour - REAL, intent(in):: dtphys ! pas d'integration pour la physique (seconde) REAL, intent(in):: paprs(:, :) ! (klon, llm + 1) ! pression pour chaque inter-couche, en Pa @@ -223,8 +224,8 @@ ! Variables propres a la physique INTEGER, save:: radpas - ! (Radiative transfer computations are made every "radpas" call to - ! "physiq".) + ! Radiative transfer computations are made every "radpas" call to + ! "physiq". REAL radsol(klon) SAVE radsol ! bilan radiatif au sol calcule par code radiatif @@ -318,8 +319,7 @@ REAL dlw(klon) ! derivee infra rouge SAVE dlw REAL bils(klon) ! bilan de chaleur au sol - REAL fder(klon) ! Derive de flux (sensible et latente) - save fder + REAL, save:: fder(klon) ! Derive de flux (sensible et latente) REAL ve(klon) ! integr. verticale du transport meri. de l'energie REAL vq(klon) ! integr. verticale du transport meri. de l'eau REAL ue(klon) ! integr. verticale du transport zonal de l'energie @@ -369,21 +369,16 @@ ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que ! les variables soient r\'emanentes. REAL, save:: heat(klon, llm) ! chauffage solaire - REAL heat0(klon, llm) ! chauffage solaire ciel clair + REAL, save:: heat0(klon, llm) ! chauffage solaire ciel clair REAL, save:: cool(klon, llm) ! refroidissement infrarouge - REAL cool0(klon, llm) ! refroidissement infrarouge ciel clair + REAL, save:: cool0(klon, llm) ! refroidissement infrarouge ciel clair REAL, save:: topsw(klon), toplw(klon), solsw(klon) REAL, save:: sollw(klon) ! rayonnement infrarouge montant \`a la surface real, save:: sollwdown(klon) ! downward LW flux at surface REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon) - REAL albpla(klon) + REAL, save:: albpla(klon) REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous surface REAL fsolsw(klon, nbsrf) ! flux solaire absorb. pour chaque sous surface - SAVE albpla - SAVE heat0, cool0 - - INTEGER itaprad - SAVE itaprad REAL conv_q(klon, llm) ! convergence de l'humidite (kg/kg/s) REAL conv_t(klon, llm) ! convergence of temperature (K/s) @@ -393,8 +388,8 @@ REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon) - REAL dist, rmu0(klon), fract(klon) - real zlongi + REAL dist, mu0(klon), fract(klon) + real longi REAL z_avant(klon), z_apres(klon), z_factor(klon) REAL za, zb REAL zx_t, zx_qs, zcor @@ -502,7 +497,6 @@ REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert. REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert. - REAL zsto real date0 ! Variables li\'ees au bilan d'\'energie et d'enthalpie : @@ -632,7 +626,6 @@ frugs = 0. itap = 0 - itaprad = 0 CALL phyetat0(pctsrf, ftsol, ftsoil, tslab, seaice, fqsurf, qsol, & fsnow, falbe, falblw, fevap, rain_fall, snow_fall, solsw, sollw, & dlw, radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, & @@ -642,20 +635,16 @@ ! ATTENTION : il faudra a terme relire q2 dans l'etat initial q2 = 1e-8 - radpas = NINT(86400. / dtphys / nbapp_rad) + lmt_pas = day_step / iphysiq + print *, 'Number of time steps of "physics" per day: ', lmt_pas + + radpas = lmt_pas / nbapp_rad - ! on remet le calendrier a zero + ! On remet le calendrier a zero IF (raz_date) itau_phy = 0 - PRINT *, 'cycle_diurne = ', cycle_diurne CALL printflag(radpas, ok_journe, ok_instan, ok_region) - IF (dtphys * REAL(radpas) > 21600. .AND. cycle_diurne) THEN - print *, "Au minimum 4 appels par jour si cycle diurne" - call abort_gcm('physiq', & - "Nombre d'appels au rayonnement insuffisant", 1) - ENDIF - ! Initialisation pour le sch\'ema de convection d'Emanuel : IF (iflag_con >= 3) THEN ibas_con = 1 @@ -669,9 +658,6 @@ rugoro = 0. ENDIF - lmt_pas = NINT(86400. / dtphys) ! tous les jours - print *, 'Number of time steps of "physics" per day: ', lmt_pas - ecrit_ins = NINT(ecrit_ins/dtphys) ecrit_hf = NINT(ecrit_hf/dtphys) ecrit_mth = NINT(ecrit_mth/dtphys) @@ -681,7 +667,7 @@ ! Initialisation des sorties call ini_histins(dtphys, ok_instan, nid_ins) - CALL ymds2ju(annee_ref, 1, int(day_ref), 0., date0) + CALL ymds2ju(annee_ref, 1, day_ref, 0., date0) ! Positionner date0 pour initialisation de ORCHIDEE print *, 'physiq date0: ', date0 ENDIF test_firstcal @@ -741,7 +727,7 @@ ! Incrémenter le compteur de la physique itap = itap + 1 - julien = MOD(NINT(rdayvrai), 360) + julien = MOD(dayvrai, 360) if (julien == 0) julien = 360 forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg @@ -771,13 +757,14 @@ frugs = MAX(frugs, 0.000015) zxrugs = sum(frugs * pctsrf, dim = 2) - ! Calculs nécessaires au calcul de l'albedo dans l'interface + ! Calculs nécessaires au calcul de l'albedo dans l'interface avec + ! la surface. - CALL orbite(REAL(julien), zlongi, dist) + CALL orbite(REAL(julien), longi, dist) IF (cycle_diurne) THEN - CALL zenang(zlongi, time, dtphys * REAL(radpas), rmu0, fract) + CALL zenang(longi, time, dtphys * radpas, mu0, fract) ELSE - rmu0 = -999.999 + mu0 = -999.999 ENDIF ! Calcul de l'abedo moyen par maille @@ -798,14 +785,14 @@ ! Couche limite: CALL clmain(dtphys, itap, pctsrf, pctsrf_new, t_seri, q_seri, u_seri, & - v_seri, julien, rmu0, co2_ppm, ftsol, cdmmax, cdhmax, & - ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, play, fsnow, fqsurf, & - fevap, falbe, falblw, fluxlat, rain_fall, snow_fall, fsolsw, fsollw, & - fder, rlat, frugs, firstcal, agesno, rugoro, d_t_vdf, d_q_vdf, & - d_u_vdf, d_v_vdf, d_ts, fluxt, fluxq, fluxu, fluxv, cdragh, cdragm, & - q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, pblh, & - capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, plcl, & - fqcalving, ffonte, run_off_lic_0, fluxo, fluxg, tslab) + v_seri, julien, mu0, co2_ppm, ftsol, cdmmax, cdhmax, ksta, ksta_ter, & + ok_kzmin, ftsoil, qsol, paprs, play, fsnow, fqsurf, fevap, falbe, & + falblw, fluxlat, rain_fall, snow_fall, fsolsw, fsollw, fder, rlat, & + frugs, firstcal, agesno, rugoro, d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, & + d_ts, fluxt, fluxq, fluxu, fluxv, cdragh, cdragm, q2, dsens, devap, & + ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, pblh, capCL, oliqCL, cteiCL, & + pblT, therm, trmb1, trmb2, trmb3, plcl, fqcalving, ffonte, & + run_off_lic_0, fluxo, fluxg, tslab) ! Incr\'ementation des flux @@ -1228,8 +1215,8 @@ ! Introduce the aerosol direct and first indirect radiative forcings: IF (ok_ade .OR. ok_aie) THEN ! Get sulfate aerosol distribution : - CALL readsulfate(rdayvrai, firstcal, sulfate) - CALL readsulfate_preind(rdayvrai, firstcal, sulfate_pi) + CALL readsulfate(dayvrai, time, firstcal, sulfate) + CALL readsulfate_preind(dayvrai, time, firstcal, sulfate_pi) CALL aeropt(play, paprs, t_seri, sulfate, rhcl, tau_ae, piz_ae, cg_ae, & aerindex) @@ -1251,8 +1238,8 @@ bl95_b1, cldtaupi, re, fl) endif - ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol. - IF (MOD(itaprad, radpas) == 0) THEN + IF (MOD(itap - 1, radpas) == 0) THEN + ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol. DO i = 1, klon albsol(i) = falbe(i, is_oce) * pctsrf(i, is_oce) & + falbe(i, is_lic) * pctsrf(i, is_lic) & @@ -1264,15 +1251,13 @@ + falblw(i, is_sic) * pctsrf(i, is_sic) ENDDO ! Rayonnement (compatible Arpege-IFS) : - CALL radlwsw(dist, rmu0, fract, paprs, play, zxtsol, albsol, & + CALL radlwsw(dist, mu0, fract, paprs, play, zxtsol, albsol, & albsollw, t_seri, q_seri, wo, cldfra, cldemi, cldtau, heat, & heat0, cool, cool0, radsol, albpla, topsw, toplw, solsw, sollw, & sollwdown, topsw0, toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, & lwup, swdn0, swdn, swup0, swup, ok_ade, ok_aie, tau_ae, piz_ae, & cg_ae, topswad, solswad, cldtaupi, topswai, solswai) - itaprad = 0 ENDIF - itaprad = itaprad + 1 ! Ajouter la tendance des rayonnements (tous les pas) @@ -1323,8 +1308,8 @@ ENDDO CALL drag_noro(klon, llm, dtphys, paprs, play, zmea, zstd, zsig, zgam, & - zthe, zpic, zval, igwd, idx, itest, t_seri, u_seri, v_seri, & - zulow, zvlow, zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro) + zthe, zpic, zval, itest, t_seri, u_seri, v_seri, zulow, zvlow, & + zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro) ! ajout des tendances DO k = 1, llm @@ -1385,11 +1370,10 @@ d_qt, d_ec) ! Calcul des tendances traceurs - call phytrac(itap, lmt_pas, julien, time, firstcal, lafin, dtphys, u, t, & + call phytrac(itap, lmt_pas, julien, time, firstcal, lafin, dtphys, t, & paprs, play, mfu, mfd, pde_u, pen_d, ycoefh, fm_therm, entr_therm, & - yu1, yv1, ftsol, pctsrf, frac_impa, frac_nucl, pphis, albsol, rhcl, & - cldfra, rneb, diafra, cldliq, pmflxr, pmflxs, prfl, psfl, da, phi, & - mp, upwd, dnwd, tr_seri, zmasse) + yu1, yv1, ftsol, pctsrf, frac_impa, frac_nucl, pphis, da, phi, mp, & + upwd, dnwd, tr_seri, zmasse) IF (offline) call phystokenc(dtphys, rlon, rlat, t, mfu, mfd, pen_u, & pde_u, pen_d, pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, & @@ -1474,11 +1458,11 @@ ! Si c'est la fin, il faut conserver l'etat de redemarrage IF (lafin) THEN itau_phy = itau_phy + itap - CALL phyredem("restartphy.nc", rlat, rlon, pctsrf, ftsol, ftsoil, & - tslab, seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, & - rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, & - agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, & - q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01) + CALL phyredem("restartphy.nc", pctsrf, ftsol, ftsoil, tslab, seaice, & + fqsurf, qsol, fsnow, falbe, falblw, fevap, rain_fall, snow_fall, & + solsw, sollw, dlw, radsol, frugs, agesno, zmea, zstd, zsig, zgam, & + zthe, zpic, zval, t_ancien, q_ancien, rnebcon, ratqs, clwcon, & + run_off_lic_0, sig1, w01) ENDIF firstcal = .FALSE. @@ -1493,8 +1477,7 @@ USE histsync_m, ONLY: histsync USE histwrite_m, ONLY: histwrite - real zout - integer itau_w ! pas de temps ecriture + integer i, itau_w ! pas de temps ecriture REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm) !-------------------------------------------------- @@ -1502,15 +1485,11 @@ IF (ok_instan) THEN ! Champs 2D: - zsto = dtphys * ecrit_ins - zout = dtphys * ecrit_ins itau_w = itau_phy + itap - i = NINT(zout/zsto) CALL gr_fi_ecrit(1, klon, iim, jjm + 1, pphis, zx_tmp_2d) CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d) - i = NINT(zout/zsto) CALL gr_fi_ecrit(1, klon, iim, jjm + 1, airephy, zx_tmp_2d) CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d)