/[lmdze]/trunk/phylmd/physiq.f
ViewVC logotype

Diff of /trunk/phylmd/physiq.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 174 by guez, Wed Nov 25 20:14:19 2015 UTC revision 215 by guez, Tue Mar 28 12:46:28 2017 UTC
# Line 16  contains Line 16  contains
16    
17      use aaam_bud_m, only: aaam_bud      use aaam_bud_m, only: aaam_bud
18      USE abort_gcm_m, ONLY: abort_gcm      USE abort_gcm_m, ONLY: abort_gcm
     use aeropt_m, only: aeropt  
19      use ajsec_m, only: ajsec      use ajsec_m, only: ajsec
20      use calltherm_m, only: calltherm      use calltherm_m, only: calltherm
21      USE clesphys, ONLY: cdhmax, cdmmax, co2_ppm, ecrit_hf, ecrit_ins, &      USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ksta, ksta_ter, ok_kzmin, &
22           ecrit_mth, ecrit_reg, ecrit_tra, ksta, ksta_ter, ok_kzmin           ok_instan
23      USE clesphys2, ONLY: cycle_diurne, iflag_con, nbapp_rad, new_oliq, &      USE clesphys2, ONLY: conv_emanuel, nbapp_rad, new_oliq, ok_orodr, ok_orolf
          ok_orodr, ok_orolf  
24      USE clmain_m, ONLY: clmain      USE clmain_m, ONLY: clmain
25      use clouds_gno_m, only: clouds_gno      use clouds_gno_m, only: clouds_gno
26      use comconst, only: dtphys      use comconst, only: dtphys
27      USE comgeomphy, ONLY: airephy      USE comgeomphy, ONLY: airephy
28      USE concvl_m, ONLY: concvl      USE concvl_m, ONLY: concvl
29      USE conf_gcm_m, ONLY: offline, raz_date, day_step, iphysiq      USE conf_gcm_m, ONLY: offline, lmt_pas
30      USE conf_phys_m, ONLY: conf_phys      USE conf_phys_m, ONLY: conf_phys
31      use conflx_m, only: conflx      use conflx_m, only: conflx
32      USE ctherm, ONLY: iflag_thermals, nsplit_thermals      USE ctherm, ONLY: iflag_thermals, nsplit_thermals
33      use diagcld2_m, only: diagcld2      use diagcld2_m, only: diagcld2
     use diagetpq_m, only: diagetpq  
     use diagphy_m, only: diagphy  
34      USE dimens_m, ONLY: llm, nqmx      USE dimens_m, ONLY: llm, nqmx
35      USE dimphy, ONLY: klon      USE dimphy, ONLY: klon
36      USE dimsoil, ONLY: nsoilmx      USE dimsoil, ONLY: nsoilmx
37      use drag_noro_m, only: drag_noro      use drag_noro_m, only: drag_noro
38      use dynetat0_m, only: day_ref, annee_ref      use dynetat0_m, only: day_ref, annee_ref
39      USE fcttre, ONLY: foeew, qsatl, qsats, thermcep      USE fcttre, ONLY: foeew, qsatl, qsats
40      use fisrtilp_m, only: fisrtilp      use fisrtilp_m, only: fisrtilp
41      USE hgardfou_m, ONLY: hgardfou      USE hgardfou_m, ONLY: hgardfou
42        USE histsync_m, ONLY: histsync
43        USE histwrite_phy_m, ONLY: histwrite_phy
44      USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &      USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &
45           nbsrf           nbsrf
46      USE ini_histins_m, ONLY: ini_histins      USE ini_histins_m, ONLY: ini_histins, nid_ins
47      use netcdf95, only: NF95_CLOSE      use netcdf95, only: NF95_CLOSE
48      use newmicro_m, only: newmicro      use newmicro_m, only: newmicro
49        use nr_util, only: assert
50        use nuage_m, only: nuage
51      USE orbite_m, ONLY: orbite      USE orbite_m, ONLY: orbite
52      USE ozonecm_m, ONLY: ozonecm      USE ozonecm_m, ONLY: ozonecm
53      USE phyetat0_m, ONLY: phyetat0, rlat, rlon      USE phyetat0_m, ONLY: phyetat0, rlat, rlon
# Line 55  contains Line 55  contains
55      USE phyredem0_m, ONLY: phyredem0      USE phyredem0_m, ONLY: phyredem0
56      USE phystokenc_m, ONLY: phystokenc      USE phystokenc_m, ONLY: phystokenc
57      USE phytrac_m, ONLY: phytrac      USE phytrac_m, ONLY: phytrac
     USE qcheck_m, ONLY: qcheck  
58      use radlwsw_m, only: radlwsw      use radlwsw_m, only: radlwsw
     use readsulfate_m, only: readsulfate  
     use readsulfate_preind_m, only: readsulfate_preind  
59      use yoegwd, only: sugwd      use yoegwd, only: sugwd
60      USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt      USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt, rmo3, md
61      USE temps, ONLY: itau_phy      use time_phylmdz, only: itap, increment_itap
62      use transp_m, only: transp      use transp_m, only: transp
63        use transp_lay_m, only: transp_lay
64      use unit_nml_m, only: unit_nml      use unit_nml_m, only: unit_nml
65      USE ymds2ju_m, ONLY: ymds2ju      USE ymds2ju_m, ONLY: ymds2ju
66      USE yoethf_m, ONLY: r2es, rvtmp2      USE yoethf_m, ONLY: r2es, rvtmp2
# Line 81  contains Line 79  contains
79      REAL, intent(in):: play(:, :) ! (klon, llm)      REAL, intent(in):: play(:, :) ! (klon, llm)
80      ! pression pour le mileu de chaque couche (en Pa)      ! pression pour le mileu de chaque couche (en Pa)
81    
82      REAL, intent(in):: pphi(:, :) ! (klon, llm)      REAL, intent(in):: pphi(:, :) ! (klon, llm)
83      ! géopotentiel de chaque couche (référence sol)      ! géopotentiel de chaque couche (référence sol)
84    
85      REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol      REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol
86    
87      REAL, intent(in):: u(:, :) ! (klon, llm)      REAL, intent(in):: u(:, :) ! (klon, llm)
88      ! vitesse dans la direction X (de O a E) en m/s      ! vitesse dans la direction X (de O a E) en m / s
89    
90      REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m/s      REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m / s
91      REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)      REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)
92    
93      REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)      REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)
94      ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)      ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)
95    
96      REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa/s      REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa / s
97      REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)      REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)
98      REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)      REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)
99      REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K/s)      REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K / s)
100    
101      REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)      REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)
102      ! tendance physique de "qx" (s-1)      ! tendance physique de "qx" (s-1)
# Line 107  contains Line 105  contains
105    
106      LOGICAL:: firstcal = .true.      LOGICAL:: firstcal = .true.
107    
     LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface  
     PARAMETER (ok_gust = .FALSE.)  
   
     LOGICAL, PARAMETER:: check = .FALSE.  
     ! Verifier la conservation du modele en eau  
   
108      LOGICAL, PARAMETER:: ok_stratus = .FALSE.      LOGICAL, PARAMETER:: ok_stratus = .FALSE.
109      ! Ajouter artificiellement les stratus      ! Ajouter artificiellement les stratus
110    
111      ! "slab" ocean      ! pour phystoke avec thermiques
     REAL, save:: tslab(klon) ! temperature of ocean slab  
     REAL, save:: seaice(klon) ! glace de mer (kg/m2)  
     REAL fluxo(klon) ! flux turbulents ocean-glace de mer  
     REAL fluxg(klon) ! flux turbulents ocean-atmosphere  
   
     logical:: ok_journe = .false., ok_mensuel = .true., ok_instan = .false.  
     ! sorties journalieres, mensuelles et instantanees dans les  
     ! fichiers histday, histmth et histins  
   
     LOGICAL ok_region ! sortir le fichier regional  
     PARAMETER (ok_region = .FALSE.)  
   
     ! pour phsystoke avec thermiques  
112      REAL fm_therm(klon, llm + 1)      REAL fm_therm(klon, llm + 1)
113      REAL entr_therm(klon, llm)      REAL entr_therm(klon, llm)
114      real, save:: q2(klon, llm + 1, nbsrf)      real, save:: q2(klon, llm + 1, nbsrf)
# Line 140  contains Line 119  contains
119      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)
120      LOGICAL, save:: ancien_ok      LOGICAL, save:: ancien_ok
121    
122      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K/s)      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K / s)
123      REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg/kg/s)      REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg / kg / s)
124    
125      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)
126    
127      REAL swdn0(klon, llm + 1), swdn(klon, llm + 1)      REAL, save:: swdn0(klon, llm + 1), swdn(klon, llm + 1)
128      REAL swup0(klon, llm + 1), swup(klon, llm + 1)      REAL, save:: swup0(klon, llm + 1), swup(klon, llm + 1)
     SAVE swdn0, swdn, swup0, swup  
   
     REAL lwdn0(klon, llm + 1), lwdn(klon, llm + 1)  
     REAL lwup0(klon, llm + 1), lwup(klon, llm + 1)  
     SAVE lwdn0, lwdn, lwup0, lwup  
   
     ! Amip2  
     ! variables a une pression donnee  
129    
130      integer nlevSTD      REAL, save:: lwdn0(klon, llm + 1), lwdn(klon, llm + 1)
131      PARAMETER(nlevSTD = 17)      REAL, save:: lwup0(klon, llm + 1), lwup(klon, llm + 1)
132    
133      ! prw: precipitable water      ! prw: precipitable water
134      real prw(klon)      real prw(klon)
135    
136      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg/m2)      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg / m2)
137      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg/kg)      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg / kg)
138      REAL flwp(klon), fiwp(klon)      REAL flwp(klon), fiwp(klon)
139      REAL flwc(klon, llm), fiwc(klon, llm)      REAL flwc(klon, llm), fiwc(klon, llm)
140    
     INTEGER kmax, lmax  
     PARAMETER(kmax = 8, lmax = 8)  
     INTEGER kmaxm1, lmaxm1  
     PARAMETER(kmaxm1 = kmax - 1, lmaxm1 = lmax - 1)  
   
141      ! Variables propres a la physique      ! Variables propres a la physique
142    
143      INTEGER, save:: radpas      INTEGER, save:: radpas
144      ! Radiative transfer computations are made every "radpas" call to      ! Radiative transfer computations are made every "radpas" call to
145      ! "physiq".      ! "physiq".
146    
147      REAL radsol(klon)      REAL, save:: radsol(klon) ! bilan radiatif au sol calcule par code radiatif
     SAVE radsol ! bilan radiatif au sol calcule par code radiatif  
   
     INTEGER:: itap = 0 ! number of calls to "physiq"  
   
148      REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction      REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction
149    
150      REAL, save:: ftsoil(klon, nsoilmx, nbsrf)      REAL, save:: ftsoil(klon, nsoilmx, nbsrf)
# Line 190  contains Line 152  contains
152    
153      REAL, save:: fevap(klon, nbsrf) ! evaporation      REAL, save:: fevap(klon, nbsrf) ! evaporation
154      REAL fluxlat(klon, nbsrf)      REAL fluxlat(klon, nbsrf)
     SAVE fluxlat  
155    
156      REAL, save:: fqsurf(klon, nbsrf)      REAL, save:: fqsurf(klon, nbsrf)
157      ! humidite de l'air au contact de la surface      ! humidite de l'air au contact de la surface
158    
159      REAL, save:: qsol(klon)      REAL, save:: qsol(klon) ! column-density of water in soil, in kg m-2
160      ! column-density of water in soil, in kg m-2      REAL, save:: fsnow(klon, nbsrf) ! \'epaisseur neigeuse
   
     REAL, save:: fsnow(klon, nbsrf) ! epaisseur neigeuse  
161      REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface      REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface
162    
163      ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :      ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :
# Line 210  contains Line 169  contains
169      REAL, save:: zpic(klon) ! Maximum de l'OESM      REAL, save:: zpic(klon) ! Maximum de l'OESM
170      REAL, save:: zval(klon) ! Minimum de l'OESM      REAL, save:: zval(klon) ! Minimum de l'OESM
171      REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM      REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM
   
172      REAL zulow(klon), zvlow(klon)      REAL zulow(klon), zvlow(klon)
173        INTEGER igwd, itest(klon)
174    
175      INTEGER igwd, idx(klon), itest(klon)      REAL, save:: agesno(klon, nbsrf) ! age de la neige
176        REAL, save:: run_off_lic_0(klon)
     REAL agesno(klon, nbsrf)  
     SAVE agesno ! age de la neige  
177    
178      REAL run_off_lic_0(klon)      ! Variables li\'ees \`a la convection d'Emanuel :
179      SAVE run_off_lic_0      REAL, save:: Ma(klon, llm) ! undilute upward mass flux
180      !KE43      REAL, save:: qcondc(klon, llm) ! in-cld water content from convect
     ! Variables liees a la convection de K. Emanuel (sb):  
   
     REAL Ma(klon, llm) ! undilute upward mass flux  
     SAVE Ma  
     REAL qcondc(klon, llm) ! in-cld water content from convect  
     SAVE qcondc  
181      REAL, save:: sig1(klon, llm), w01(klon, llm)      REAL, save:: sig1(klon, llm), w01(klon, llm)
     REAL, save:: wd(klon)  
   
     ! Variables locales pour la couche limite (al1):  
   
     ! Variables locales:  
182    
183        ! Variables pour la couche limite (Alain Lahellec) :
184      REAL cdragh(klon) ! drag coefficient pour T and Q      REAL cdragh(klon) ! drag coefficient pour T and Q
185      REAL cdragm(klon) ! drag coefficient pour vent      REAL cdragm(klon) ! drag coefficient pour vent
186    
# Line 241  contains Line 188  contains
188      REAL ycoefh(klon, llm) ! coef d'echange pour phytrac      REAL ycoefh(klon, llm) ! coef d'echange pour phytrac
189      REAL yu1(klon) ! vents dans la premiere couche U      REAL yu1(klon) ! vents dans la premiere couche U
190      REAL yv1(klon) ! vents dans la premiere couche V      REAL yv1(klon) ! vents dans la premiere couche V
191      REAL ffonte(klon, nbsrf) !Flux thermique utilise pour fondre la neige  
192      REAL fqcalving(klon, nbsrf) !Flux d'eau "perdue" par la surface      REAL, save:: ffonte(klon, nbsrf)
193      ! !et necessaire pour limiter la      ! flux thermique utilise pour fondre la neige
194      ! !hauteur de neige, en kg/m2/s  
195        REAL, save:: fqcalving(klon, nbsrf)
196        ! flux d'eau "perdue" par la surface et necessaire pour limiter la
197        ! hauteur de neige, en kg / m2 / s
198    
199      REAL zxffonte(klon), zxfqcalving(klon)      REAL zxffonte(klon), zxfqcalving(klon)
200    
201      REAL pfrac_impa(klon, llm)! Produits des coefs lessivage impaction      REAL, save:: pfrac_impa(klon, llm)! Produits des coefs lessivage impaction
202      save pfrac_impa      REAL, save:: pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation
203      REAL pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation  
204      save pfrac_nucl      REAL, save:: pfrac_1nucl(klon, llm)
205      REAL pfrac_1nucl(klon, llm)! Produits des coefs lessi nucl (alpha = 1)      ! Produits des coefs lessi nucl (alpha = 1)
206      save pfrac_1nucl  
207      REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction)      REAL frac_impa(klon, llm) ! fraction d'a\'erosols lessiv\'es (impaction)
208      REAL frac_nucl(klon, llm) ! idem (nucleation)      REAL frac_nucl(klon, llm) ! idem (nucleation)
209    
210      REAL, save:: rain_fall(klon)      REAL, save:: rain_fall(klon)
211      ! liquid water mass flux (kg/m2/s), positive down      ! liquid water mass flux (kg / m2 / s), positive down
212    
213      REAL, save:: snow_fall(klon)      REAL, save:: snow_fall(klon)
214      ! solid water mass flux (kg/m2/s), positive down      ! solid water mass flux (kg / m2 / s), positive down
215    
216      REAL rain_tiedtke(klon), snow_tiedtke(klon)      REAL rain_tiedtke(klon), snow_tiedtke(klon)
217    
218      REAL evap(klon), devap(klon) ! evaporation and its derivative      REAL evap(klon) ! flux d'\'evaporation au sol
219      REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee      real devap(klon) ! derivative of the evaporation flux at the surface
220      REAL dlw(klon) ! derivee infra rouge      REAL sens(klon) ! flux de chaleur sensible au sol
221      SAVE dlw      real dsens(klon) ! derivee du flux de chaleur sensible au sol
222        REAL, save:: dlw(klon) ! derivee infra rouge
223      REAL bils(klon) ! bilan de chaleur au sol      REAL bils(klon) ! bilan de chaleur au sol
224      REAL, save:: fder(klon) ! Derive de flux (sensible et latente)      REAL, save:: fder(klon) ! Derive de flux (sensible et latente)
225      REAL ve(klon) ! integr. verticale du transport meri. de l'energie      REAL ve(klon) ! integr. verticale du transport meri. de l'energie
226      REAL vq(klon) ! integr. verticale du transport meri. de l'eau      REAL vq(klon) ! integr. verticale du transport meri. de l'eau
227      REAL ue(klon) ! integr. verticale du transport zonal de l'energie      REAL ue(klon) ! integr. verticale du transport zonal de l'energie
# Line 281  contains Line 233  contains
233      ! Conditions aux limites      ! Conditions aux limites
234    
235      INTEGER julien      INTEGER julien
     INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day  
236      REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface      REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface
     REAL pctsrf_new(klon, nbsrf) ! pourcentage surfaces issus d'ORCHIDEE  
237      REAL, save:: albsol(klon) ! albedo du sol total visible      REAL, save:: albsol(klon) ! albedo du sol total visible
238      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU
239        real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2
     ! Declaration des procedures appelees  
   
     EXTERNAL nuage ! calculer les proprietes radiatives  
   
     ! Variables locales  
240    
241      real, save:: clwcon(klon, llm), rnebcon(klon, llm)      real, save:: clwcon(klon, llm), rnebcon(klon, llm)
242      real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)      real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)
# Line 304  contains Line 249  contains
249      REAL cldtau(klon, llm) ! epaisseur optique      REAL cldtau(klon, llm) ! epaisseur optique
250      REAL cldemi(klon, llm) ! emissivite infrarouge      REAL cldemi(klon, llm) ! emissivite infrarouge
251    
252      REAL fluxq(klon, llm, nbsrf) ! flux turbulent d'humidite      REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface
253      REAL fluxt(klon, llm, nbsrf) ! flux turbulent de chaleur      REAL flux_t(klon, nbsrf) ! flux turbulent de chaleur à la surface
254      REAL fluxu(klon, llm, nbsrf) ! flux turbulent de vitesse u      REAL flux_u(klon, nbsrf) ! flux turbulent de vitesse u à la surface
255      REAL fluxv(klon, llm, nbsrf) ! flux turbulent de vitesse v      REAL flux_v(klon, nbsrf) ! flux turbulent de vitesse v à la surface
   
     REAL zxfluxt(klon, llm)  
     REAL zxfluxq(klon, llm)  
     REAL zxfluxu(klon, llm)  
     REAL zxfluxv(klon, llm)  
256    
257      ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que      ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que
258      ! les variables soient r\'emanentes.      ! les variables soient r\'emanentes.
# Line 325  contains Line 265  contains
265      real, save:: sollwdown(klon) ! downward LW flux at surface      real, save:: sollwdown(klon) ! downward LW flux at surface
266      REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)      REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)
267      REAL, save:: albpla(klon)      REAL, save:: albpla(klon)
268      REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous surface      REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous-surface
269      REAL fsolsw(klon, nbsrf) ! flux solaire absorb. pour chaque sous surface      REAL fsolsw(klon, nbsrf) ! flux solaire absorb\'e pour chaque sous-surface
270    
271      REAL conv_q(klon, llm) ! convergence de l'humidite (kg/kg/s)      REAL conv_q(klon, llm) ! convergence de l'humidite (kg / kg / s)
272      REAL conv_t(klon, llm) ! convergence of temperature (K/s)      REAL conv_t(klon, llm) ! convergence of temperature (K / s)
273    
274      REAL cldl(klon), cldm(klon), cldh(klon) !nuages bas, moyen et haut      REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut
275      REAL cldt(klon), cldq(klon) !nuage total, eau liquide integree      REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree
276    
277      REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon)      REAL zxqsurf(klon), zxfluxlat(klon)
278    
279      REAL dist, mu0(klon), fract(klon)      REAL dist, mu0(klon), fract(klon)
280      real longi      real longi
281      REAL z_avant(klon), z_apres(klon), z_factor(klon)      REAL z_avant(klon), z_apres(klon), z_factor(klon)
282      REAL za, zb      REAL zb
283      REAL zx_t, zx_qs, zcor      REAL zx_t, zx_qs, zcor
284      real zqsat(klon, llm)      real zqsat(klon, llm)
285      INTEGER i, k, iq, nsrf      INTEGER i, k, iq, nsrf
     REAL, PARAMETER:: t_coup = 234.  
286      REAL zphi(klon, llm)      REAL zphi(klon, llm)
287    
288      ! cf. AM Variables locales pour la CLA (hbtm2)      ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm)
289    
290      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite
291      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA
292      REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite      REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite
293      REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite      REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite
294      REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite      REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite
295      REAL, SAVE:: pblt(klon, nbsrf) ! T a la Hauteur de couche limite      REAL, SAVE:: pblt(klon, nbsrf) ! T \`a la hauteur de couche limite
296      REAL, SAVE:: therm(klon, nbsrf)      REAL, SAVE:: therm(klon, nbsrf)
297      REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape      REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape
298      REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition      REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition
299      REAL, SAVE:: trmb3(klon, nbsrf) ! Point Omega      REAL, SAVE:: trmb3(klon, nbsrf) ! Point Omega
300      ! Grdeurs de sorties      ! Grandeurs de sorties
301      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)
302      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)
303      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)
304      REAL s_trmb3(klon)      REAL s_trmb3(klon)
305    
306      ! Variables locales pour la convection de K. Emanuel :      ! Variables pour la convection de K. Emanuel :
307    
308      REAL upwd(klon, llm) ! saturated updraft mass flux      REAL upwd(klon, llm) ! saturated updraft mass flux
309      REAL dnwd(klon, llm) ! saturated downdraft mass flux      REAL dnwd(klon, llm) ! saturated downdraft mass flux
310      REAL dnwd0(klon, llm) ! unsaturated downdraft mass flux      REAL, save:: cape(klon)
     REAL cape(klon) ! CAPE  
     SAVE cape  
311    
312      INTEGER iflagctrl(klon) ! flag fonctionnement de convect      INTEGER iflagctrl(klon) ! flag fonctionnement de convect
313    
# Line 382  contains Line 319  contains
319      ! eva: \'evaporation de l'eau liquide nuageuse      ! eva: \'evaporation de l'eau liquide nuageuse
320      ! vdf: vertical diffusion in boundary layer      ! vdf: vertical diffusion in boundary layer
321      REAL d_t_con(klon, llm), d_q_con(klon, llm)      REAL d_t_con(klon, llm), d_q_con(klon, llm)
322      REAL d_u_con(klon, llm), d_v_con(klon, llm)      REAL, save:: d_u_con(klon, llm), d_v_con(klon, llm)
323      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)
324      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)
325      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)
# Line 396  contains Line 333  contains
333      REAL prfl(klon, llm + 1), psfl(klon, llm + 1)      REAL prfl(klon, llm + 1), psfl(klon, llm + 1)
334    
335      INTEGER, save:: ibas_con(klon), itop_con(klon)      INTEGER, save:: ibas_con(klon), itop_con(klon)
336        real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa
337    
338      REAL rain_con(klon), rain_lsc(klon)      REAL, save:: rain_con(klon)
339      REAL snow_con(klon), snow_lsc(klon)      real rain_lsc(klon)
340        REAL, save:: snow_con(klon) ! neige (mm / s)
341        real snow_lsc(klon)
342      REAL d_ts(klon, nbsrf)      REAL d_ts(klon, nbsrf)
343    
344      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)
# Line 422  contains Line 362  contains
362      integer:: iflag_cldcon = 1      integer:: iflag_cldcon = 1
363      logical ptconv(klon, llm)      logical ptconv(klon, llm)
364    
365      ! Variables locales pour effectuer les appels en s\'erie :      ! Variables pour effectuer les appels en s\'erie :
366    
367      REAL t_seri(klon, llm), q_seri(klon, llm)      REAL t_seri(klon, llm), q_seri(klon, llm)
368      REAL ql_seri(klon, llm)      REAL ql_seri(klon, llm)
# Line 436  contains Line 376  contains
376      REAL zustrph(klon), zvstrph(klon)      REAL zustrph(klon), zvstrph(klon)
377      REAL aam, torsfc      REAL aam, torsfc
378    
     REAL zx_tmp_fi2d(klon) ! variable temporaire grille physique  
   
     INTEGER, SAVE:: nid_ins  
   
379      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.
380      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.
381      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.
382      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.
383    
384      real date0      real date0
   
     ! Variables li\'ees au bilan d'\'energie et d'enthalpie :  
385      REAL ztsol(klon)      REAL ztsol(klon)
386      REAL d_h_vcol, d_qt, d_ec  
387      REAL, SAVE:: d_h_vcol_phy      REAL d_t_ec(klon, llm)
388      REAL zero_v(klon)      ! tendance due \`a la conversion d'\'energie cin\'etique en
389      CHARACTER(LEN = 20) tit      ! énergie thermique
390      INTEGER:: ip_ebil = 0 ! print level for energy conservation diagnostics  
391      INTEGER:: if_ebil = 0 ! verbosity for diagnostics of energy conservation      REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf)
392        ! temperature and humidity at 2 m
393      REAL d_t_ec(klon, llm) ! tendance due \`a la conversion Ec -> E thermique  
394      REAL ZRCPD      REAL, save:: u10m(klon, nbsrf), v10m(klon, nbsrf) ! vents a 10 m
395        REAL zt2m(klon), zq2m(klon) ! température, humidité 2 m moyenne sur 1 maille
396      REAL t2m(klon, nbsrf), q2m(klon, nbsrf) ! temperature and humidity at 2 m      REAL zu10m(klon), zv10m(klon) ! vents a 10 m moyennes sur 1 maille
     REAL u10m(klon, nbsrf), v10m(klon, nbsrf) ! vents a 10 m  
     REAL zt2m(klon), zq2m(klon) ! temp., hum. 2 m moyenne s/ 1 maille  
     REAL zu10m(klon), zv10m(klon) ! vents a 10 m moyennes s/1 maille  
397    
398      ! Aerosol effects:      ! Aerosol effects:
399    
400      REAL sulfate(klon, llm) ! SO4 aerosol concentration (micro g/m3)      REAL sulfate(klon, llm) ! SO4 aerosol concentration (micro g / m3)
401    
402      REAL, save:: sulfate_pi(klon, llm)      REAL, save:: sulfate_pi(klon, llm)
403      ! SO4 aerosol concentration, in micro g/m3, pre-industrial value      ! SO4 aerosol concentration, in \mu g / m3, pre-industrial value
404    
405      REAL cldtaupi(klon, llm)      REAL cldtaupi(klon, llm)
406      ! cloud optical thickness for pre-industrial (pi) aerosols      ! cloud optical thickness for pre-industrial aerosols
407    
408      REAL re(klon, llm) ! Cloud droplet effective radius      REAL re(klon, llm) ! Cloud droplet effective radius
409      REAL fl(klon, llm) ! denominator of re      REAL fl(klon, llm) ! denominator of re
# Line 481  contains Line 412  contains
412      REAL, save:: tau_ae(klon, llm, 2), piz_ae(klon, llm, 2)      REAL, save:: tau_ae(klon, llm, 2), piz_ae(klon, llm, 2)
413      REAL, save:: cg_ae(klon, llm, 2)      REAL, save:: cg_ae(klon, llm, 2)
414    
415      REAL topswad(klon), solswad(klon) ! aerosol direct effect      REAL, save:: topswad(klon), solswad(klon) ! aerosol direct effect
416      REAL topswai(klon), solswai(klon) ! aerosol indirect effect      REAL, save:: topswai(klon), solswai(klon) ! aerosol indirect effect
   
     REAL aerindex(klon) ! POLDER aerosol index  
417    
418      LOGICAL:: ok_ade = .false. ! apply aerosol direct effect      LOGICAL:: ok_ade = .false. ! apply aerosol direct effect
419      LOGICAL:: ok_aie = .false. ! apply aerosol indirect effect      LOGICAL:: ok_aie = .false. ! apply aerosol indirect effect
# Line 494  contains Line 423  contains
423      ! B). They link cloud droplet number concentration to aerosol mass      ! B). They link cloud droplet number concentration to aerosol mass
424      ! concentration.      ! concentration.
425    
426      SAVE u10m      real zmasse(klon, llm)
     SAVE v10m  
     SAVE t2m  
     SAVE q2m  
     SAVE ffonte  
     SAVE fqcalving  
     SAVE rain_con  
     SAVE snow_con  
     SAVE topswai  
     SAVE topswad  
     SAVE solswai  
     SAVE solswad  
     SAVE d_u_con  
     SAVE d_v_con  
   
     real zmasse(klon, llm)  
427      ! (column-density of mass of air in a cell, in kg m-2)      ! (column-density of mass of air in a cell, in kg m-2)
428    
     real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2  
429      integer, save:: ncid_startphy      integer, save:: ncid_startphy
430    
431      namelist /physiq_nml/ ok_journe, ok_mensuel, ok_instan, fact_cldcon, &      namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, &
432           facttemps, ok_newmicro, iflag_cldcon, ratqsbas, ratqshaut, if_ebil, &           ratqsbas, ratqshaut, ok_ade, ok_aie, bl95_b0, bl95_b1, &
433           ok_ade, ok_aie, bl95_b0, bl95_b1, iflag_thermals, nsplit_thermals           iflag_thermals, nsplit_thermals
434    
435      !----------------------------------------------------------------      !----------------------------------------------------------------
436    
     IF (if_ebil >= 1) zero_v = 0.  
437      IF (nqmx < 2) CALL abort_gcm('physiq', &      IF (nqmx < 2) CALL abort_gcm('physiq', &
438           'eaux vapeur et liquide sont indispensables')           'eaux vapeur et liquide sont indispensables')
439    
# Line 555  contains Line 467  contains
467         capCL =0. ! CAPE de couche limite         capCL =0. ! CAPE de couche limite
468         oliqCL =0. ! eau_liqu integree de couche limite         oliqCL =0. ! eau_liqu integree de couche limite
469         cteiCL =0. ! cloud top instab. crit. couche limite         cteiCL =0. ! cloud top instab. crit. couche limite
470         pblt =0. ! T a la Hauteur de couche limite         pblt =0.
471         therm =0.         therm =0.
472         trmb1 =0. ! deep_cape         trmb1 =0. ! deep_cape
473         trmb2 =0. ! inhibition         trmb2 =0. ! inhibition
474         trmb3 =0. ! Point Omega         trmb3 =0. ! Point Omega
475    
        IF (if_ebil >= 1) d_h_vcol_phy = 0.  
   
476         iflag_thermals = 0         iflag_thermals = 0
477         nsplit_thermals = 1         nsplit_thermals = 1
478         print *, "Enter namelist 'physiq_nml'."         print *, "Enter namelist 'physiq_nml'."
# Line 574  contains Line 484  contains
484         ! Initialiser les compteurs:         ! Initialiser les compteurs:
485    
486         frugs = 0.         frugs = 0.
487         CALL phyetat0(pctsrf, ftsol, ftsoil, tslab, seaice, fqsurf, qsol, &         CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
488              fsnow, falbe, fevap, rain_fall, snow_fall, solsw, sollw, dlw, &              fevap, rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, &
489              radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, &              agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, &
490              t_ancien, q_ancien, ancien_ok, rnebcon, ratqs, clwcon, &              q_ancien, ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
491              run_off_lic_0, sig1, w01, ncid_startphy)              w01, ncid_startphy)
492    
493         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial
494         q2 = 1e-8         q2 = 1e-8
495    
        lmt_pas = day_step / iphysiq  
        print *, 'Number of time steps of "physics" per day: ', lmt_pas  
   
496         radpas = lmt_pas / nbapp_rad         radpas = lmt_pas / nbapp_rad
497           print *, "radpas = ", radpas
        ! On remet le calendrier a zero  
        IF (raz_date) itau_phy = 0  
   
        CALL printflag(radpas, ok_journe, ok_instan, ok_region)  
498    
499         ! Initialisation pour le sch\'ema de convection d'Emanuel :         ! Initialisation pour le sch\'ema de convection d'Emanuel :
500         IF (iflag_con >= 3) THEN         IF (conv_emanuel) THEN
501            ibas_con = 1            ibas_con = 1
502            itop_con = 1            itop_con = 1
503         ENDIF         ENDIF
# Line 606  contains Line 509  contains
509            rugoro = 0.            rugoro = 0.
510         ENDIF         ENDIF
511    
512         ecrit_ins = NINT(ecrit_ins/dtphys)         ecrit_ins = NINT(ecrit_ins / dtphys)
        ecrit_hf = NINT(ecrit_hf/dtphys)  
        ecrit_mth = NINT(ecrit_mth/dtphys)  
        ecrit_tra = NINT(86400.*ecrit_tra/dtphys)  
        ecrit_reg = NINT(ecrit_reg/dtphys)  
513    
514         ! Initialisation des sorties         ! Initialisation des sorties
515    
516         call ini_histins(dtphys, ok_instan, nid_ins)         call ini_histins(dtphys)
517         CALL ymds2ju(annee_ref, 1, day_ref, 0., date0)         CALL ymds2ju(annee_ref, 1, day_ref, 0., date0)
518         ! Positionner date0 pour initialisation de ORCHIDEE         ! Positionner date0 pour initialisation de ORCHIDEE
519         print *, 'physiq date0: ', date0         print *, 'physiq date0: ', date0
520         CALL phyredem0(lmt_pas)         CALL phyredem0
521      ENDIF test_firstcal      ENDIF test_firstcal
522    
523      ! We will modify variables *_seri and we will not touch variables      ! We will modify variables *_seri and we will not touch variables
# Line 632  contains Line 531  contains
531    
532      ztsol = sum(ftsol * pctsrf, dim = 2)      ztsol = sum(ftsol * pctsrf, dim = 2)
533    
     IF (if_ebil >= 1) THEN  
        tit = 'after dynamics'  
        CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &  
             ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)  
        ! Comme les tendances de la physique sont ajout\'es dans la  
        !  dynamique, la variation d'enthalpie par la dynamique devrait  
        !  \^etre \'egale \`a la variation de la physique au pas de temps  
        !  pr\'ec\'edent.  Donc la somme de ces 2 variations devrait \^etre  
        !  nulle.  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol + d_h_vcol_phy, &  
             d_qt, 0.)  
     END IF  
   
534      ! Diagnostic de la tendance dynamique :      ! Diagnostic de la tendance dynamique :
535      IF (ancien_ok) THEN      IF (ancien_ok) THEN
536         DO k = 1, llm         DO k = 1, llm
# Line 674  contains Line 559  contains
559      ! Check temperatures:      ! Check temperatures:
560      CALL hgardfou(t_seri, ftsol)      CALL hgardfou(t_seri, ftsol)
561    
562      ! Incrémenter le compteur de la physique      call increment_itap
     itap = itap + 1  
563      julien = MOD(dayvrai, 360)      julien = MOD(dayvrai, 360)
564      if (julien == 0) julien = 360      if (julien == 0) julien = 360
565    
566      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg
567    
     ! Prescrire l'ozone :  
     wo = ozonecm(REAL(julien), paprs)  
   
568      ! \'Evaporation de l'eau liquide nuageuse :      ! \'Evaporation de l'eau liquide nuageuse :
569      DO k = 1, llm      DO k = 1, llm
570         DO i = 1, klon         DO i = 1, klon
# Line 695  contains Line 576  contains
576      ENDDO      ENDDO
577      ql_seri = 0.      ql_seri = 0.
578    
     IF (if_ebil >= 2) THEN  
        tit = 'after reevap'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 1, dtphys, t_seri, q_seri, &  
             ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec)  
     END IF  
   
579      frugs = MAX(frugs, 0.000015)      frugs = MAX(frugs, 0.000015)
580      zxrugs = sum(frugs * pctsrf, dim = 2)      zxrugs = sum(frugs * pctsrf, dim = 2)
581    
582      ! Calculs nécessaires au calcul de l'albedo dans l'interface avec      ! Calculs n\'ecessaires au calcul de l'albedo dans l'interface avec
583      ! la surface.      ! la surface.
584    
585      CALL orbite(REAL(julien), longi, dist)      CALL orbite(REAL(julien), longi, dist)
586      IF (cycle_diurne) THEN      CALL zenang(longi, time, dtphys * radpas, mu0, fract)
        CALL zenang(longi, time, dtphys * radpas, mu0, fract)  
     ELSE  
        mu0 = - 999.999  
     ENDIF  
587    
588      ! Calcul de l'abedo moyen par maille      ! Calcul de l'abedo moyen par maille
589      albsol = sum(falbe * pctsrf, dim = 2)      albsol = sum(falbe * pctsrf, dim = 2)
# Line 730  contains Line 599  contains
599    
600      fder = dlw      fder = dlw
601    
602      ! Couche limite:      CALL clmain(dtphys, pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, &
603             ftsol, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, &
604      CALL clmain(dtphys, itap, pctsrf, pctsrf_new, t_seri, q_seri, u_seri, &           paprs, play, fsnow, fqsurf, fevap, falbe, fluxlat, rain_fall, &
605           v_seri, julien, mu0, co2_ppm, ftsol, cdmmax, cdhmax, ksta, ksta_ter, &           snow_fall, fsolsw, fsollw, fder, frugs, agesno, rugoro, d_t_vdf, &
606           ok_kzmin, ftsoil, qsol, paprs, play, fsnow, fqsurf, fevap, falbe, &           d_q_vdf, d_u_vdf, d_v_vdf, d_ts, flux_t, flux_q, flux_u, flux_v, &
607           fluxlat, rain_fall, snow_fall, fsolsw, fsollw, fder, rlat, frugs, &           cdragh, cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m, &
608           firstcal, agesno, rugoro, d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, &           v10m, pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, &
609           fluxt, fluxq, fluxu, fluxv, cdragh, cdragm, q2, dsens, devap, &           plcl, fqcalving, ffonte, run_off_lic_0)
          ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, pblh, capCL, oliqCL, cteiCL, &  
          pblT, therm, trmb1, trmb2, trmb3, plcl, fqcalving, ffonte, &  
          run_off_lic_0, fluxo, fluxg, tslab)  
610    
611      ! Incr\'ementation des flux      ! Incr\'ementation des flux
612    
613      zxfluxt = 0.      sens = - sum(flux_t * pctsrf, dim = 2)
614      zxfluxq = 0.      evap = - sum(flux_q * pctsrf, dim = 2)
615      zxfluxu = 0.      fder = dlw + dsens + devap
     zxfluxv = 0.  
     DO nsrf = 1, nbsrf  
        DO k = 1, llm  
           DO i = 1, klon  
              zxfluxt(i, k) = zxfluxt(i, k) + fluxt(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxq(i, k) = zxfluxq(i, k) + fluxq(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxu(i, k) = zxfluxu(i, k) + fluxu(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxv(i, k) = zxfluxv(i, k) + fluxv(i, k, nsrf) * pctsrf(i, nsrf)  
           END DO  
        END DO  
     END DO  
     DO i = 1, klon  
        sens(i) = - zxfluxt(i, 1) ! flux de chaleur sensible au sol  
        evap(i) = - zxfluxq(i, 1) ! flux d'\'evaporation au sol  
        fder(i) = dlw(i) + dsens(i) + devap(i)  
     ENDDO  
616    
617      DO k = 1, llm      DO k = 1, llm
618         DO i = 1, klon         DO i = 1, klon
# Line 773  contains Line 623  contains
623         ENDDO         ENDDO
624      ENDDO      ENDDO
625    
     IF (if_ebil >= 2) THEN  
        tit = 'after clmain'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             sens, evap, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec)  
     END IF  
   
626      ! Update surface temperature:      ! Update surface temperature:
627    
628      DO i = 1, klon      call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf')
629         zxtsol(i) = 0.      ftsol = ftsol + d_ts
630         zxfluxlat(i) = 0.      ztsol = sum(ftsol * pctsrf, dim = 2)
631        zxfluxlat = sum(fluxlat * pctsrf, dim = 2)
632         zt2m(i) = 0.      zt2m = sum(t2m * pctsrf, dim = 2)
633         zq2m(i) = 0.      zq2m = sum(q2m * pctsrf, dim = 2)
634         zu10m(i) = 0.      zu10m = sum(u10m * pctsrf, dim = 2)
635         zv10m(i) = 0.      zv10m = sum(v10m * pctsrf, dim = 2)
636         zxffonte(i) = 0.      zxffonte = sum(ffonte * pctsrf, dim = 2)
637         zxfqcalving(i) = 0.      zxfqcalving = sum(fqcalving * pctsrf, dim = 2)
638        s_pblh = sum(pblh * pctsrf, dim = 2)
639         s_pblh(i) = 0.      s_lcl = sum(plcl * pctsrf, dim = 2)
640         s_lcl(i) = 0.      s_capCL = sum(capCL * pctsrf, dim = 2)
641         s_capCL(i) = 0.      s_oliqCL = sum(oliqCL * pctsrf, dim = 2)
642         s_oliqCL(i) = 0.      s_cteiCL = sum(cteiCL * pctsrf, dim = 2)
643         s_cteiCL(i) = 0.      s_pblT = sum(pblT * pctsrf, dim = 2)
644         s_pblT(i) = 0.      s_therm = sum(therm * pctsrf, dim = 2)
645         s_therm(i) = 0.      s_trmb1 = sum(trmb1 * pctsrf, dim = 2)
646         s_trmb1(i) = 0.      s_trmb2 = sum(trmb2 * pctsrf, dim = 2)
647         s_trmb2(i) = 0.      s_trmb3 = sum(trmb3 * pctsrf, dim = 2)
        s_trmb3(i) = 0.  
   
        IF (abs(pctsrf(i, is_ter) + pctsrf(i, is_lic) + pctsrf(i, is_oce) &  
             + pctsrf(i, is_sic) - 1.)  >  EPSFRA) print *, &  
             'physiq : probl\`eme sous surface au point ', i, &  
             pctsrf(i, 1 : nbsrf)  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           ftsol(i, nsrf) = ftsol(i, nsrf) + d_ts(i, nsrf)  
           zxtsol(i) = zxtsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)  
           zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf)*pctsrf(i, nsrf)  
   
           zt2m(i) = zt2m(i) + t2m(i, nsrf)*pctsrf(i, nsrf)  
           zq2m(i) = zq2m(i) + q2m(i, nsrf)*pctsrf(i, nsrf)  
           zu10m(i) = zu10m(i) + u10m(i, nsrf)*pctsrf(i, nsrf)  
           zv10m(i) = zv10m(i) + v10m(i, nsrf)*pctsrf(i, nsrf)  
           zxffonte(i) = zxffonte(i) + ffonte(i, nsrf)*pctsrf(i, nsrf)  
           zxfqcalving(i) = zxfqcalving(i) + &  
                fqcalving(i, nsrf)*pctsrf(i, nsrf)  
           s_pblh(i) = s_pblh(i) + pblh(i, nsrf)*pctsrf(i, nsrf)  
           s_lcl(i) = s_lcl(i) + plcl(i, nsrf)*pctsrf(i, nsrf)  
           s_capCL(i) = s_capCL(i) + capCL(i, nsrf) *pctsrf(i, nsrf)  
           s_oliqCL(i) = s_oliqCL(i) + oliqCL(i, nsrf) *pctsrf(i, nsrf)  
           s_cteiCL(i) = s_cteiCL(i) + cteiCL(i, nsrf) *pctsrf(i, nsrf)  
           s_pblT(i) = s_pblT(i) + pblT(i, nsrf) *pctsrf(i, nsrf)  
           s_therm(i) = s_therm(i) + therm(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb1(i) = s_trmb1(i) + trmb1(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb2(i) = s_trmb2(i) + trmb2(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb3(i) = s_trmb3(i) + trmb3(i, nsrf) *pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
648    
649      ! Si une sous-fraction n'existe pas, elle prend la température moyenne :      ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne :
650      DO nsrf = 1, nbsrf      DO nsrf = 1, nbsrf
651         DO i = 1, klon         DO i = 1, klon
652            IF (pctsrf(i, nsrf) < epsfra) ftsol(i, nsrf) = zxtsol(i)            IF (pctsrf(i, nsrf) < epsfra) then
653                 ftsol(i, nsrf) = ztsol(i)
654            IF (pctsrf(i, nsrf) < epsfra) t2m(i, nsrf) = zt2m(i)               t2m(i, nsrf) = zt2m(i)
655            IF (pctsrf(i, nsrf) < epsfra) q2m(i, nsrf) = zq2m(i)               q2m(i, nsrf) = zq2m(i)
656            IF (pctsrf(i, nsrf) < epsfra) u10m(i, nsrf) = zu10m(i)               u10m(i, nsrf) = zu10m(i)
657            IF (pctsrf(i, nsrf) < epsfra) v10m(i, nsrf) = zv10m(i)               v10m(i, nsrf) = zv10m(i)
658            IF (pctsrf(i, nsrf) < epsfra) ffonte(i, nsrf) = zxffonte(i)               ffonte(i, nsrf) = zxffonte(i)
659            IF (pctsrf(i, nsrf) < epsfra) &               fqcalving(i, nsrf) = zxfqcalving(i)
660                 fqcalving(i, nsrf) = zxfqcalving(i)               pblh(i, nsrf) = s_pblh(i)
661            IF (pctsrf(i, nsrf) < epsfra) pblh(i, nsrf) = s_pblh(i)               plcl(i, nsrf) = s_lcl(i)
662            IF (pctsrf(i, nsrf) < epsfra) plcl(i, nsrf) = s_lcl(i)               capCL(i, nsrf) = s_capCL(i)
663            IF (pctsrf(i, nsrf) < epsfra) capCL(i, nsrf) = s_capCL(i)               oliqCL(i, nsrf) = s_oliqCL(i)
664            IF (pctsrf(i, nsrf) < epsfra) oliqCL(i, nsrf) = s_oliqCL(i)               cteiCL(i, nsrf) = s_cteiCL(i)
665            IF (pctsrf(i, nsrf) < epsfra) cteiCL(i, nsrf) = s_cteiCL(i)               pblT(i, nsrf) = s_pblT(i)
666            IF (pctsrf(i, nsrf) < epsfra) pblT(i, nsrf) = s_pblT(i)               therm(i, nsrf) = s_therm(i)
667            IF (pctsrf(i, nsrf) < epsfra) therm(i, nsrf) = s_therm(i)               trmb1(i, nsrf) = s_trmb1(i)
668            IF (pctsrf(i, nsrf) < epsfra) trmb1(i, nsrf) = s_trmb1(i)               trmb2(i, nsrf) = s_trmb2(i)
669            IF (pctsrf(i, nsrf) < epsfra) trmb2(i, nsrf) = s_trmb2(i)               trmb3(i, nsrf) = s_trmb3(i)
670            IF (pctsrf(i, nsrf) < epsfra) trmb3(i, nsrf) = s_trmb3(i)            end IF
671         ENDDO         ENDDO
672      ENDDO      ENDDO
673    
674      ! Calculer la dérive du flux infrarouge      ! Calculer la dérive du flux infrarouge
675    
676      DO i = 1, klon      DO i = 1, klon
677         dlw(i) = - 4. * RSIGMA * zxtsol(i)**3         dlw(i) = - 4. * RSIGMA * ztsol(i)**3
678      ENDDO      ENDDO
679    
680      IF (check) print *, "avantcon = ", qcheck(paprs, q_seri, ql_seri)      ! Appeler la convection
   
     ! Appeler la convection (au choix)  
681    
682      if (iflag_con == 2) then      if (conv_emanuel) then
683         conv_q = d_q_dyn + d_q_vdf / dtphys         CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, &
684         conv_t = d_t_dyn + d_t_vdf / dtphys              d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, &
685         z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)              upwd, dnwd, Ma, cape, iflagctrl, qcondc, pmflxr, da, phi, mp)
686         CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:- 1), &         snow_con = 0.
             q_seri(:, llm:1:- 1), conv_t, conv_q, zxfluxq(:, 1), omega, &  
             d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:- 1), &  
             mfd(:, llm:1:- 1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, &  
             kdtop, pmflxr, pmflxs)  
        WHERE (rain_con < 0.) rain_con = 0.  
        WHERE (snow_con < 0.) snow_con = 0.  
        ibas_con = llm + 1 - kcbot  
        itop_con = llm + 1 - kctop  
     else  
        ! iflag_con >= 3  
   
        da = 0.  
        mp = 0.  
        phi = 0.  
        CALL concvl(dtphys, paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, &  
             w01, d_t_con, d_q_con, d_u_con, d_v_con, rain_con, snow_con, &  
             ibas_con, itop_con, upwd, dnwd, dnwd0, Ma, cape, iflagctrl, &  
             qcondc, wd, pmflxr, pmflxs, da, phi, mp)  
687         clwcon0 = qcondc         clwcon0 = qcondc
688         mfu = upwd + dnwd         mfu = upwd + dnwd
        IF (.NOT. ok_gust) wd = 0.  
689    
690         IF (thermcep) THEN         zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play)
691            zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play)         zqsat = zqsat / (1. - retv * zqsat)
           zqsat = zqsat / (1. - retv * zqsat)  
        ELSE  
           zqsat = merge(qsats(t_seri), qsatl(t_seri), t_seri < t_coup) / play  
        ENDIF  
692    
693         ! Properties of convective clouds         ! Properties of convective clouds
694         clwcon0 = fact_cldcon * clwcon0         clwcon0 = fact_cldcon * clwcon0
695         call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &         call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &
696              rnebcon0)              rnebcon0)
697    
698           forall (i = 1:klon) ema_pct(i) = paprs(i, itop_con(i) + 1)
699         mfd = 0.         mfd = 0.
700         pen_u = 0.         pen_u = 0.
701         pen_d = 0.         pen_d = 0.
702         pde_d = 0.         pde_d = 0.
703         pde_u = 0.         pde_u = 0.
704        else
705           conv_q = d_q_dyn + d_q_vdf / dtphys
706           conv_t = d_t_dyn + d_t_vdf / dtphys
707           z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)
708           CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:- 1), &
709                q_seri(:, llm:1:- 1), conv_t, conv_q, - evap, omega, &
710                d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:- 1), &
711                mfd(:, llm:1:- 1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, &
712                kdtop, pmflxr, pmflxs)
713           WHERE (rain_con < 0.) rain_con = 0.
714           WHERE (snow_con < 0.) snow_con = 0.
715           ibas_con = llm + 1 - kcbot
716           itop_con = llm + 1 - kctop
717      END if      END if
718    
719      DO k = 1, llm      DO k = 1, llm
# Line 926  contains Line 725  contains
725         ENDDO         ENDDO
726      ENDDO      ENDDO
727    
728      IF (if_ebil >= 2) THEN      IF (.not. conv_emanuel) THEN
        tit = 'after convect'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, rain_con, snow_con, ztsol, d_h_vcol, d_qt, d_ec)  
     END IF  
   
     IF (check) THEN  
        za = qcheck(paprs, q_seri, ql_seri)  
        print *, "aprescon = ", za  
        zx_t = 0.  
        za = 0.  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_con(i)+ &  
                snow_con(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtphys  
        print *, "Precip = ", zx_t  
     ENDIF  
   
     IF (iflag_con == 2) THEN  
729         z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)         z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)
730         z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres         z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres
731         DO k = 1, llm         DO k = 1, llm
# Line 975  contains Line 752  contains
752         t_seri = t_seri + d_t_ajs         t_seri = t_seri + d_t_ajs
753         q_seri = q_seri + d_q_ajs         q_seri = q_seri + d_q_ajs
754      else      else
        ! Thermiques  
755         call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, &         call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, &
756              q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)              q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)
757      endif      endif
758    
     IF (if_ebil >= 2) THEN  
        tit = 'after dry_adjust'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)  
     END IF  
   
759      ! Caclul des ratqs      ! Caclul des ratqs
760    
761      ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q      ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q
# Line 1007  contains Line 777  contains
777      do k = 1, llm      do k = 1, llm
778         do i = 1, klon         do i = 1, klon
779            ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &            ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &
780                 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)                 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)
781         enddo         enddo
782      enddo      enddo
783    
# Line 1040  contains Line 810  contains
810            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)
811         ENDDO         ENDDO
812      ENDDO      ENDDO
     IF (check) THEN  
        za = qcheck(paprs, q_seri, ql_seri)  
        print *, "apresilp = ", za  
        zx_t = 0.  
        za = 0.  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_lsc(i) &  
                + snow_lsc(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtphys  
        print *, "Precip = ", zx_t  
     ENDIF  
   
     IF (if_ebil >= 2) THEN  
        tit = 'after fisrt'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, rain_lsc, snow_lsc, ztsol, d_h_vcol, d_qt, d_ec)  
     END IF  
813    
814      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
815    
# Line 1076  contains Line 825  contains
825            do k = 1, llm            do k = 1, llm
826               do i = 1, klon               do i = 1, klon
827                  if (d_q_con(i, k) < 0.) then                  if (d_q_con(i, k) < 0.) then
828                     rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k)/dtphys &                     rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k) / dtphys &
829                          *zmasse(i, k)                          * zmasse(i, k)
830                  endif                  endif
831               enddo               enddo
832            enddo            enddo
# Line 1112  contains Line 861  contains
861    
862         ! On prend la somme des fractions nuageuses et des contenus en eau         ! On prend la somme des fractions nuageuses et des contenus en eau
863         cldfra = min(max(cldfra, rnebcon), 1.)         cldfra = min(max(cldfra, rnebcon), 1.)
864         cldliq = cldliq + rnebcon*clwcon         cldliq = cldliq + rnebcon * clwcon
865      ENDIF      ENDIF
866    
867      ! 2. Nuages stratiformes      ! 2. Nuages stratiformes
# Line 1135  contains Line 884  contains
884         snow_fall(i) = snow_con(i) + snow_lsc(i)         snow_fall(i) = snow_con(i) + snow_lsc(i)
885      ENDDO      ENDDO
886    
     IF (if_ebil >= 2) CALL diagetpq(airephy, "after diagcld", ip_ebil, 2, 2, &  
          dtphys, t_seri, q_seri, ql_seri, u_seri, v_seri, paprs, d_h_vcol, &  
          d_qt, d_ec)  
   
887      ! Humidit\'e relative pour diagnostic :      ! Humidit\'e relative pour diagnostic :
888      DO k = 1, llm      DO k = 1, llm
889         DO i = 1, klon         DO i = 1, klon
890            zx_t = t_seri(i, k)            zx_t = t_seri(i, k)
891            IF (thermcep) THEN            zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t) / play(i, k)
892               zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t)/play(i, k)            zx_qs = MIN(0.5, zx_qs)
893               zx_qs = MIN(0.5, zx_qs)            zcor = 1. / (1. - retv * zx_qs)
894               zcor = 1./(1. - retv*zx_qs)            zx_qs = zx_qs * zcor
895               zx_qs = zx_qs*zcor            zx_rh(i, k) = q_seri(i, k) / zx_qs
           ELSE  
              IF (zx_t < t_coup) THEN  
                 zx_qs = qsats(zx_t)/play(i, k)  
              ELSE  
                 zx_qs = qsatl(zx_t)/play(i, k)  
              ENDIF  
           ENDIF  
           zx_rh(i, k) = q_seri(i, k)/zx_qs  
896            zqsat(i, k) = zx_qs            zqsat(i, k) = zx_qs
897         ENDDO         ENDDO
898      ENDDO      ENDDO
899    
900      ! Introduce the aerosol direct and first indirect radiative forcings:      ! Introduce the aerosol direct and first indirect radiative forcings:
901      IF (ok_ade .OR. ok_aie) THEN      tau_ae = 0.
902         ! Get sulfate aerosol distribution :      piz_ae = 0.
903         CALL readsulfate(dayvrai, time, firstcal, sulfate)      cg_ae = 0.
        CALL readsulfate_preind(dayvrai, time, firstcal, sulfate_pi)  
   
        CALL aeropt(play, paprs, t_seri, sulfate, rhcl, tau_ae, piz_ae, cg_ae, &  
             aerindex)  
     ELSE  
        tau_ae = 0.  
        piz_ae = 0.  
        cg_ae = 0.  
     ENDIF  
904    
905      ! Param\`etres optiques des nuages et quelques param\`etres pour      ! Param\`etres optiques des nuages et quelques param\`etres pour
906      ! diagnostics :      ! diagnostics :
# Line 1187  contains Line 915  contains
915      endif      endif
916    
917      IF (MOD(itap - 1, radpas) == 0) THEN      IF (MOD(itap - 1, radpas) == 0) THEN
918           ! Prescrire l'ozone :
919           wo = ozonecm(REAL(julien), paprs)
920    
921         ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.         ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.
922         ! Calcul de l'abedo moyen par maille         ! Calcul de l'abedo moyen par maille
923         albsol = sum(falbe * pctsrf, dim = 2)         albsol = sum(falbe * pctsrf, dim = 2)
924    
925         ! Rayonnement (compatible Arpege-IFS) :         ! Rayonnement (compatible Arpege-IFS) :
926         CALL radlwsw(dist, mu0, fract, paprs, play, zxtsol, albsol, t_seri, &         CALL radlwsw(dist, mu0, fract, paprs, play, ztsol, albsol, t_seri, &
927              q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, &              q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, &
928              radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, &              radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, &
929              toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, &              toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, &
# Line 1201  contains Line 932  contains
932      ENDIF      ENDIF
933    
934      ! Ajouter la tendance des rayonnements (tous les pas)      ! Ajouter la tendance des rayonnements (tous les pas)
   
935      DO k = 1, llm      DO k = 1, llm
936         DO i = 1, klon         DO i = 1, klon
937            t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys/86400.            t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys &
938                   / 86400.
939         ENDDO         ENDDO
940      ENDDO      ENDDO
941    
     IF (if_ebil >= 2) THEN  
        tit = 'after rad'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)  
        call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec)  
     END IF  
   
942      ! Calculer l'hydrologie de la surface      ! Calculer l'hydrologie de la surface
943      DO i = 1, klon      zxqsurf = sum(fqsurf * pctsrf, dim = 2)
        zxqsurf(i) = 0.  
        zxsnow(i) = 0.  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxqsurf(i) = zxqsurf(i) + fqsurf(i, nsrf)*pctsrf(i, nsrf)  
           zxsnow(i) = zxsnow(i) + fsnow(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
944    
945      ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage)      ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage)
   
946      DO i = 1, klon      DO i = 1, klon
947         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)
948      ENDDO      ENDDO
# Line 1244  contains Line 957  contains
957            IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN            IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN
958               itest(i) = 1               itest(i) = 1
959               igwd = igwd + 1               igwd = igwd + 1
              idx(igwd) = i  
960            ENDIF            ENDIF
961         ENDDO         ENDDO
962    
# Line 1270  contains Line 982  contains
982            IF (zpic(i) - zmea(i) > 100.) THEN            IF (zpic(i) - zmea(i) > 100.) THEN
983               itest(i) = 1               itest(i) = 1
984               igwd = igwd + 1               igwd = igwd + 1
              idx(igwd) = i  
985            ENDIF            ENDIF
986         ENDDO         ENDDO
987    
# Line 1306  contains Line 1017  contains
1017      CALL aaam_bud(rg, romega, rlat, rlon, pphis, zustrdr, zustrli, zustrph, &      CALL aaam_bud(rg, romega, rlat, rlon, pphis, zustrdr, zustrli, zustrph, &
1018           zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc)           zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc)
1019    
     IF (if_ebil >= 2) CALL diagetpq(airephy, 'after orography', ip_ebil, 2, &  
          2, dtphys, t_seri, q_seri, ql_seri, u_seri, v_seri, paprs, d_h_vcol, &  
          d_qt, d_ec)  
   
1020      ! Calcul des tendances traceurs      ! Calcul des tendances traceurs
1021      call phytrac(itap, lmt_pas, julien, time, firstcal, lafin, dtphys, t, &      call phytrac(julien, time, firstcal, lafin, dtphys, t, paprs, play, mfu, &
1022           paprs, play, mfu, mfd, pde_u, pen_d, ycoefh, fm_therm, entr_therm, &           mfd, pde_u, pen_d, ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, &
1023           yu1, yv1, ftsol, pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, &           pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, dnwd, tr_seri, &
1024           dnwd, tr_seri, zmasse, ncid_startphy, nid_ins)           zmasse, ncid_startphy)
1025    
1026      IF (offline) call phystokenc(dtphys, rlon, rlat, t, mfu, mfd, pen_u, &      IF (offline) call phystokenc(dtphys, t, mfu, mfd, pen_u, pde_u, pen_d, &
1027           pde_u, pen_d, pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, &           pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, pctsrf, &
1028           pctsrf, frac_impa, frac_nucl, pphis, airephy, dtphys, itap)           frac_impa, frac_nucl, pphis, airephy, dtphys)
1029    
1030      ! Calculer le transport de l'eau et de l'energie (diagnostique)      ! Calculer le transport de l'eau et de l'energie (diagnostique)
1031      CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq)      CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq)
1032    
1033      ! diag. bilKP      ! diag. bilKP
1034    
1035      CALL transp_lay(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, &      CALL transp_lay(paprs, t_seri, q_seri, u_seri, v_seri, zphi, &
1036           ve_lay, vq_lay, ue_lay, uq_lay)           ve_lay, vq_lay, ue_lay, uq_lay)
1037    
1038      ! Accumuler les variables a stocker dans les fichiers histoire:      ! Accumuler les variables a stocker dans les fichiers histoire:
1039    
1040      ! conversion Ec -> E thermique      ! conversion Ec en énergie thermique
1041      DO k = 1, llm      DO k = 1, llm
1042         DO i = 1, klon         DO i = 1, klon
1043            ZRCPD = RCPD * (1. + RVTMP2 * q_seri(i, k))            d_t_ec(i, k) = 0.5 / (RCPD * (1. + RVTMP2 * q_seri(i, k))) &
           d_t_ec(i, k) = 0.5 / ZRCPD &  
1044                 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)                 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)
1045            t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)            t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)
1046            d_t_ec(i, k) = d_t_ec(i, k) / dtphys            d_t_ec(i, k) = d_t_ec(i, k) / dtphys
1047         END DO         END DO
1048      END DO      END DO
1049    
     IF (if_ebil >= 1) THEN  
        tit = 'after physic'  
        CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &  
             ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)  
        ! Comme les tendances de la physique sont ajoute dans la dynamique,  
        ! on devrait avoir que la variation d'entalpie par la dynamique  
        ! est egale a la variation de la physique au pas de temps precedent.  
        ! Donc la somme de ces 2 variations devrait etre nulle.  
        call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, sens, &  
             evap, rain_fall, snow_fall, ztsol, d_h_vcol, d_qt, d_ec)  
        d_h_vcol_phy = d_h_vcol  
     END IF  
   
1050      ! SORTIES      ! SORTIES
1051    
1052      ! prw = eau precipitable      ! prw = eau precipitable
1053      DO i = 1, klon      DO i = 1, klon
1054         prw(i) = 0.         prw(i) = 0.
1055         DO k = 1, llm         DO k = 1, llm
1056            prw(i) = prw(i) + q_seri(i, k)*zmasse(i, k)            prw(i) = prw(i) + q_seri(i, k) * zmasse(i, k)
1057         ENDDO         ENDDO
1058      ENDDO      ENDDO
1059    
# Line 1392  contains Line 1085  contains
1085         ENDDO         ENDDO
1086      ENDDO      ENDDO
1087    
1088      call write_histins      CALL histwrite_phy("phis", pphis)
1089        CALL histwrite_phy("aire", airephy)
1090        CALL histwrite_phy("psol", paprs(:, 1))
1091        CALL histwrite_phy("precip", rain_fall + snow_fall)
1092        CALL histwrite_phy("plul", rain_lsc + snow_lsc)
1093        CALL histwrite_phy("pluc", rain_con + snow_con)
1094        CALL histwrite_phy("tsol", ztsol)
1095        CALL histwrite_phy("t2m", zt2m)
1096        CALL histwrite_phy("q2m", zq2m)
1097        CALL histwrite_phy("u10m", zu10m)
1098        CALL histwrite_phy("v10m", zv10m)
1099        CALL histwrite_phy("snow", snow_fall)
1100        CALL histwrite_phy("cdrm", cdragm)
1101        CALL histwrite_phy("cdrh", cdragh)
1102        CALL histwrite_phy("topl", toplw)
1103        CALL histwrite_phy("evap", evap)
1104        CALL histwrite_phy("sols", solsw)
1105        CALL histwrite_phy("soll", sollw)
1106        CALL histwrite_phy("solldown", sollwdown)
1107        CALL histwrite_phy("bils", bils)
1108        CALL histwrite_phy("sens", - sens)
1109        CALL histwrite_phy("fder", fder)
1110        CALL histwrite_phy("dtsvdfo", d_ts(:, is_oce))
1111        CALL histwrite_phy("dtsvdft", d_ts(:, is_ter))
1112        CALL histwrite_phy("dtsvdfg", d_ts(:, is_lic))
1113        CALL histwrite_phy("dtsvdfi", d_ts(:, is_sic))
1114    
1115        DO nsrf = 1, nbsrf
1116           CALL histwrite_phy("pourc_"//clnsurf(nsrf), pctsrf(:, nsrf) * 100.)
1117           CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf))
1118           CALL histwrite_phy("sens_"//clnsurf(nsrf), flux_t(:, nsrf))
1119           CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf))
1120           CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf))
1121           CALL histwrite_phy("taux_"//clnsurf(nsrf), flux_u(:, nsrf))
1122           CALL histwrite_phy("tauy_"//clnsurf(nsrf), flux_v(:, nsrf))
1123           CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf))
1124           CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf))
1125        END DO
1126    
1127        CALL histwrite_phy("albs", albsol)
1128        CALL histwrite_phy("tro3", wo * dobson_u * 1e3 / zmasse / rmo3 * md)
1129        CALL histwrite_phy("rugs", zxrugs)
1130        CALL histwrite_phy("s_pblh", s_pblh)
1131        CALL histwrite_phy("s_pblt", s_pblt)
1132        CALL histwrite_phy("s_lcl", s_lcl)
1133        CALL histwrite_phy("s_capCL", s_capCL)
1134        CALL histwrite_phy("s_oliqCL", s_oliqCL)
1135        CALL histwrite_phy("s_cteiCL", s_cteiCL)
1136        CALL histwrite_phy("s_therm", s_therm)
1137        CALL histwrite_phy("s_trmb1", s_trmb1)
1138        CALL histwrite_phy("s_trmb2", s_trmb2)
1139        CALL histwrite_phy("s_trmb3", s_trmb3)
1140    
1141        if (conv_emanuel) then
1142           CALL histwrite_phy("ptop", ema_pct)
1143           CALL histwrite_phy("dnwd0", - mp)
1144        end if
1145    
1146        CALL histwrite_phy("temp", t_seri)
1147        CALL histwrite_phy("vitu", u_seri)
1148        CALL histwrite_phy("vitv", v_seri)
1149        CALL histwrite_phy("geop", zphi)
1150        CALL histwrite_phy("pres", play)
1151        CALL histwrite_phy("dtvdf", d_t_vdf)
1152        CALL histwrite_phy("dqvdf", d_q_vdf)
1153        CALL histwrite_phy("rhum", zx_rh)
1154        CALL histwrite_phy("d_t_ec", d_t_ec)
1155        CALL histwrite_phy("dtsw0", heat0 / 86400.)
1156        CALL histwrite_phy("dtlw0", - cool0 / 86400.)
1157        CALL histwrite_phy("msnow", sum(fsnow * pctsrf, dim = 2))
1158    
1159        if (ok_instan) call histsync(nid_ins)
1160    
1161      IF (lafin) then      IF (lafin) then
1162         call NF95_CLOSE(ncid_startphy)         call NF95_CLOSE(ncid_startphy)
1163         CALL phyredem(pctsrf, ftsol, ftsoil, tslab, seaice, fqsurf, qsol, &         CALL phyredem(pctsrf, ftsol, ftsoil, fqsurf, qsol, &
1164              fsnow, falbe, fevap, rain_fall, snow_fall, solsw, sollw, dlw, &              fsnow, falbe, fevap, rain_fall, snow_fall, solsw, sollw, dlw, &
1165              radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, &              radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, &
1166              t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &              t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
# Line 1405  contains Line 1169  contains
1169    
1170      firstcal = .FALSE.      firstcal = .FALSE.
1171    
   contains  
   
     subroutine write_histins  
   
       ! From phylmd/write_histins.h, version 1.2 2005/05/25 13:10:09  
   
       ! Ecriture des sorties  
   
       use dimens_m, only: iim, jjm  
       USE histsync_m, ONLY: histsync  
       USE histwrite_m, ONLY: histwrite  
   
       integer i, itau_w ! pas de temps ecriture  
       REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm)  
   
       !--------------------------------------------------  
   
       IF (ok_instan) THEN  
          ! Champs 2D:  
   
          itau_w = itau_phy + itap  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, pphis, zx_tmp_2d)  
          CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, airephy, zx_tmp_2d)  
          CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = paprs(i, 1)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "psol", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_fall(i) + snow_fall(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "precip", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_lsc(i) + snow_lsc(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "plul", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_con(i) + snow_con(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "pluc", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxtsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "tsol", itau_w, zx_tmp_2d)  
          !ccIM  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zt2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "t2m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zq2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "q2m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zu10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "u10m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zv10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "v10m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, snow_fall, zx_tmp_2d)  
          CALL histwrite(nid_ins, "snow", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrm", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrh", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, toplw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "topl", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, evap, zx_tmp_2d)  
          CALL histwrite(nid_ins, "evap", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, solsw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sols", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "soll", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollwdown, zx_tmp_2d)  
          CALL histwrite(nid_ins, "solldown", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, bils, zx_tmp_2d)  
          CALL histwrite(nid_ins, "bils", itau_w, zx_tmp_2d)  
   
          zx_tmp_fi2d(1:klon) = - sens(1:klon)  
          ! CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sens, zx_tmp_2d)  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sens", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, fder, zx_tmp_2d)  
          CALL histwrite(nid_ins, "fder", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_oce), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfo", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_ter), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdft", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_lic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfg", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_sic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfi", itau_w, zx_tmp_2d)  
   
          DO nsrf = 1, nbsrf  
             !XXX  
             zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf)*100.  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "pourc_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "fract_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxt(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "sens_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxlat(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "lat_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = ftsol(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tsol_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxu(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "taux_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxv(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tauy_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = frugs(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "rugs_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = falbe(:, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "albe_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
          END DO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albs", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxrugs, zx_tmp_2d)  
          CALL histwrite(nid_ins, "rugs", itau_w, zx_tmp_2d)  
   
          !HBTM2  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblh", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblt, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblt", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_lcl, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_lcl", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_capCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_capCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_oliqCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_oliqCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_cteiCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_cteiCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_therm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_therm", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb1, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb1", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb2, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb2", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb3, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb3", itau_w, zx_tmp_2d)  
   
          ! Champs 3D:  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, t_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "temp", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, u_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitu", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, v_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitv", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, zphi, zx_tmp_3d)  
          CALL histwrite(nid_ins, "geop", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, play, zx_tmp_3d)  
          CALL histwrite(nid_ins, "pres", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_t_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dtvdf", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_q_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d)  
   
          call histsync(nid_ins)  
       ENDIF  
   
     end subroutine write_histins  
   
1172    END SUBROUTINE physiq    END SUBROUTINE physiq
1173    
1174  end module physiq_m  end module physiq_m

Legend:
Removed from v.174  
changed lines
  Added in v.215

  ViewVC Help
Powered by ViewVC 1.1.21