/[lmdze]/trunk/phylmd/physiq.f
ViewVC logotype

Diff of /trunk/phylmd/physiq.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 174 by guez, Wed Nov 25 20:14:19 2015 UTC revision 224 by guez, Fri Apr 28 13:40:59 2017 UTC
# Line 16  contains Line 16  contains
16    
17      use aaam_bud_m, only: aaam_bud      use aaam_bud_m, only: aaam_bud
18      USE abort_gcm_m, ONLY: abort_gcm      USE abort_gcm_m, ONLY: abort_gcm
     use aeropt_m, only: aeropt  
19      use ajsec_m, only: ajsec      use ajsec_m, only: ajsec
20      use calltherm_m, only: calltherm      use calltherm_m, only: calltherm
21      USE clesphys, ONLY: cdhmax, cdmmax, co2_ppm, ecrit_hf, ecrit_ins, &      USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ksta, ksta_ter, ok_kzmin, &
22           ecrit_mth, ecrit_reg, ecrit_tra, ksta, ksta_ter, ok_kzmin           ok_instan
23      USE clesphys2, ONLY: cycle_diurne, iflag_con, nbapp_rad, new_oliq, &      USE clesphys2, ONLY: conv_emanuel, nbapp_rad, new_oliq, ok_orodr, ok_orolf
          ok_orodr, ok_orolf  
24      USE clmain_m, ONLY: clmain      USE clmain_m, ONLY: clmain
25      use clouds_gno_m, only: clouds_gno      use clouds_gno_m, only: clouds_gno
26      use comconst, only: dtphys      use comconst, only: dtphys
27      USE comgeomphy, ONLY: airephy      USE comgeomphy, ONLY: airephy
28      USE concvl_m, ONLY: concvl      USE concvl_m, ONLY: concvl
29      USE conf_gcm_m, ONLY: offline, raz_date, day_step, iphysiq      USE conf_gcm_m, ONLY: lmt_pas
30      USE conf_phys_m, ONLY: conf_phys      USE conf_phys_m, ONLY: conf_phys
31      use conflx_m, only: conflx      use conflx_m, only: conflx
32      USE ctherm, ONLY: iflag_thermals, nsplit_thermals      USE ctherm, ONLY: iflag_thermals, nsplit_thermals
33      use diagcld2_m, only: diagcld2      use diagcld2_m, only: diagcld2
     use diagetpq_m, only: diagetpq  
     use diagphy_m, only: diagphy  
34      USE dimens_m, ONLY: llm, nqmx      USE dimens_m, ONLY: llm, nqmx
35      USE dimphy, ONLY: klon      USE dimphy, ONLY: klon
36      USE dimsoil, ONLY: nsoilmx      USE dimsoil, ONLY: nsoilmx
37      use drag_noro_m, only: drag_noro      use drag_noro_m, only: drag_noro
38      use dynetat0_m, only: day_ref, annee_ref      use dynetat0_m, only: day_ref, annee_ref
39      USE fcttre, ONLY: foeew, qsatl, qsats, thermcep      USE fcttre, ONLY: foeew
40      use fisrtilp_m, only: fisrtilp      use fisrtilp_m, only: fisrtilp
41      USE hgardfou_m, ONLY: hgardfou      USE hgardfou_m, ONLY: hgardfou
42        USE histsync_m, ONLY: histsync
43        USE histwrite_phy_m, ONLY: histwrite_phy
44      USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &      USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &
45           nbsrf           nbsrf
46      USE ini_histins_m, ONLY: ini_histins      USE ini_histins_m, ONLY: ini_histins, nid_ins
47      use netcdf95, only: NF95_CLOSE      use netcdf95, only: NF95_CLOSE
48      use newmicro_m, only: newmicro      use newmicro_m, only: newmicro
49        use nr_util, only: assert
50        use nuage_m, only: nuage
51      USE orbite_m, ONLY: orbite      USE orbite_m, ONLY: orbite
52      USE ozonecm_m, ONLY: ozonecm      USE ozonecm_m, ONLY: ozonecm
53      USE phyetat0_m, ONLY: phyetat0, rlat, rlon      USE phyetat0_m, ONLY: phyetat0, rlat, rlon
54      USE phyredem_m, ONLY: phyredem      USE phyredem_m, ONLY: phyredem
55      USE phyredem0_m, ONLY: phyredem0      USE phyredem0_m, ONLY: phyredem0
     USE phystokenc_m, ONLY: phystokenc  
56      USE phytrac_m, ONLY: phytrac      USE phytrac_m, ONLY: phytrac
     USE qcheck_m, ONLY: qcheck  
57      use radlwsw_m, only: radlwsw      use radlwsw_m, only: radlwsw
     use readsulfate_m, only: readsulfate  
     use readsulfate_preind_m, only: readsulfate_preind  
58      use yoegwd, only: sugwd      use yoegwd, only: sugwd
59      USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt      USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt, rmo3, md
60      USE temps, ONLY: itau_phy      use time_phylmdz, only: itap, increment_itap
61      use transp_m, only: transp      use transp_m, only: transp
62        use transp_lay_m, only: transp_lay
63      use unit_nml_m, only: unit_nml      use unit_nml_m, only: unit_nml
64      USE ymds2ju_m, ONLY: ymds2ju      USE ymds2ju_m, ONLY: ymds2ju
65      USE yoethf_m, ONLY: r2es, rvtmp2      USE yoethf_m, ONLY: r2es, rvtmp2
# Line 81  contains Line 78  contains
78      REAL, intent(in):: play(:, :) ! (klon, llm)      REAL, intent(in):: play(:, :) ! (klon, llm)
79      ! pression pour le mileu de chaque couche (en Pa)      ! pression pour le mileu de chaque couche (en Pa)
80    
81      REAL, intent(in):: pphi(:, :) ! (klon, llm)      REAL, intent(in):: pphi(:, :) ! (klon, llm)
82      ! géopotentiel de chaque couche (référence sol)      ! géopotentiel de chaque couche (référence sol)
83    
84      REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol      REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol
85    
86      REAL, intent(in):: u(:, :) ! (klon, llm)      REAL, intent(in):: u(:, :) ! (klon, llm)
87      ! vitesse dans la direction X (de O a E) en m/s      ! vitesse dans la direction X (de O a E) en m / s
88    
89      REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m/s      REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m / s
90      REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)      REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)
91    
92      REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)      REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)
93      ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)      ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)
94    
95      REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa/s      REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa / s
96      REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)      REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)
97      REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)      REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)
98      REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K/s)      REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K / s)
99    
100      REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)      REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)
101      ! tendance physique de "qx" (s-1)      ! tendance physique de "qx" (s-1)
# Line 107  contains Line 104  contains
104    
105      LOGICAL:: firstcal = .true.      LOGICAL:: firstcal = .true.
106    
     LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface  
     PARAMETER (ok_gust = .FALSE.)  
   
     LOGICAL, PARAMETER:: check = .FALSE.  
     ! Verifier la conservation du modele en eau  
   
107      LOGICAL, PARAMETER:: ok_stratus = .FALSE.      LOGICAL, PARAMETER:: ok_stratus = .FALSE.
108      ! Ajouter artificiellement les stratus      ! Ajouter artificiellement les stratus
109    
110      ! "slab" ocean      ! pour phystoke avec thermiques
     REAL, save:: tslab(klon) ! temperature of ocean slab  
     REAL, save:: seaice(klon) ! glace de mer (kg/m2)  
     REAL fluxo(klon) ! flux turbulents ocean-glace de mer  
     REAL fluxg(klon) ! flux turbulents ocean-atmosphere  
   
     logical:: ok_journe = .false., ok_mensuel = .true., ok_instan = .false.  
     ! sorties journalieres, mensuelles et instantanees dans les  
     ! fichiers histday, histmth et histins  
   
     LOGICAL ok_region ! sortir le fichier regional  
     PARAMETER (ok_region = .FALSE.)  
   
     ! pour phsystoke avec thermiques  
111      REAL fm_therm(klon, llm + 1)      REAL fm_therm(klon, llm + 1)
112      REAL entr_therm(klon, llm)      REAL entr_therm(klon, llm)
113      real, save:: q2(klon, llm + 1, nbsrf)      real, save:: q2(klon, llm + 1, nbsrf)
# Line 140  contains Line 118  contains
118      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)
119      LOGICAL, save:: ancien_ok      LOGICAL, save:: ancien_ok
120    
121      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K/s)      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K / s)
122      REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg/kg/s)      REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg / kg / s)
123    
124      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)
125    
126      REAL swdn0(klon, llm + 1), swdn(klon, llm + 1)      REAL, save:: swdn0(klon, llm + 1), swdn(klon, llm + 1)
127      REAL swup0(klon, llm + 1), swup(klon, llm + 1)      REAL, save:: swup0(klon, llm + 1), swup(klon, llm + 1)
     SAVE swdn0, swdn, swup0, swup  
   
     REAL lwdn0(klon, llm + 1), lwdn(klon, llm + 1)  
     REAL lwup0(klon, llm + 1), lwup(klon, llm + 1)  
     SAVE lwdn0, lwdn, lwup0, lwup  
128    
129      ! Amip2      REAL, save:: lwdn0(klon, llm + 1), lwdn(klon, llm + 1)
130      ! variables a une pression donnee      REAL, save:: lwup0(klon, llm + 1), lwup(klon, llm + 1)
   
     integer nlevSTD  
     PARAMETER(nlevSTD = 17)  
131    
132      ! prw: precipitable water      ! prw: precipitable water
133      real prw(klon)      real prw(klon)
134    
135      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg/m2)      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg / m2)
136      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg/kg)      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg / kg)
137      REAL flwp(klon), fiwp(klon)      REAL flwp(klon), fiwp(klon)
138      REAL flwc(klon, llm), fiwc(klon, llm)      REAL flwc(klon, llm), fiwc(klon, llm)
139    
     INTEGER kmax, lmax  
     PARAMETER(kmax = 8, lmax = 8)  
     INTEGER kmaxm1, lmaxm1  
     PARAMETER(kmaxm1 = kmax - 1, lmaxm1 = lmax - 1)  
   
140      ! Variables propres a la physique      ! Variables propres a la physique
141    
142      INTEGER, save:: radpas      INTEGER, save:: radpas
143      ! Radiative transfer computations are made every "radpas" call to      ! Radiative transfer computations are made every "radpas" call to
144      ! "physiq".      ! "physiq".
145    
146      REAL radsol(klon)      REAL, save:: radsol(klon) ! bilan radiatif au sol calcule par code radiatif
     SAVE radsol ! bilan radiatif au sol calcule par code radiatif  
   
     INTEGER:: itap = 0 ! number of calls to "physiq"  
   
147      REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction      REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction
148    
149      REAL, save:: ftsoil(klon, nsoilmx, nbsrf)      REAL, save:: ftsoil(klon, nsoilmx, nbsrf)
# Line 190  contains Line 151  contains
151    
152      REAL, save:: fevap(klon, nbsrf) ! evaporation      REAL, save:: fevap(klon, nbsrf) ! evaporation
153      REAL fluxlat(klon, nbsrf)      REAL fluxlat(klon, nbsrf)
     SAVE fluxlat  
154    
155      REAL, save:: fqsurf(klon, nbsrf)      REAL, save:: fqsurf(klon, nbsrf)
156      ! humidite de l'air au contact de la surface      ! humidite de l'air au contact de la surface
157    
158      REAL, save:: qsol(klon)      REAL, save:: qsol(klon) ! column-density of water in soil, in kg m-2
159      ! column-density of water in soil, in kg m-2      REAL, save:: fsnow(klon, nbsrf) ! \'epaisseur neigeuse
   
     REAL, save:: fsnow(klon, nbsrf) ! epaisseur neigeuse  
160      REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface      REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface
161    
162      ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :      ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :
# Line 210  contains Line 168  contains
168      REAL, save:: zpic(klon) ! Maximum de l'OESM      REAL, save:: zpic(klon) ! Maximum de l'OESM
169      REAL, save:: zval(klon) ! Minimum de l'OESM      REAL, save:: zval(klon) ! Minimum de l'OESM
170      REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM      REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM
   
171      REAL zulow(klon), zvlow(klon)      REAL zulow(klon), zvlow(klon)
172        INTEGER igwd, itest(klon)
173    
174      INTEGER igwd, idx(klon), itest(klon)      REAL, save:: agesno(klon, nbsrf) ! age de la neige
175        REAL, save:: run_off_lic_0(klon)
176    
177      REAL agesno(klon, nbsrf)      ! Variables li\'ees \`a la convection d'Emanuel :
178      SAVE agesno ! age de la neige      REAL, save:: Ma(klon, llm) ! undilute upward mass flux
179        REAL, save:: qcondc(klon, llm) ! in-cld water content from convect
     REAL run_off_lic_0(klon)  
     SAVE run_off_lic_0  
     !KE43  
     ! Variables liees a la convection de K. Emanuel (sb):  
   
     REAL Ma(klon, llm) ! undilute upward mass flux  
     SAVE Ma  
     REAL qcondc(klon, llm) ! in-cld water content from convect  
     SAVE qcondc  
180      REAL, save:: sig1(klon, llm), w01(klon, llm)      REAL, save:: sig1(klon, llm), w01(klon, llm)
     REAL, save:: wd(klon)  
   
     ! Variables locales pour la couche limite (al1):  
   
     ! Variables locales:  
181    
182        ! Variables pour la couche limite (Alain Lahellec) :
183      REAL cdragh(klon) ! drag coefficient pour T and Q      REAL cdragh(klon) ! drag coefficient pour T and Q
184      REAL cdragm(klon) ! drag coefficient pour vent      REAL cdragm(klon) ! drag coefficient pour vent
185    
# Line 241  contains Line 187  contains
187      REAL ycoefh(klon, llm) ! coef d'echange pour phytrac      REAL ycoefh(klon, llm) ! coef d'echange pour phytrac
188      REAL yu1(klon) ! vents dans la premiere couche U      REAL yu1(klon) ! vents dans la premiere couche U
189      REAL yv1(klon) ! vents dans la premiere couche V      REAL yv1(klon) ! vents dans la premiere couche V
190      REAL ffonte(klon, nbsrf) !Flux thermique utilise pour fondre la neige  
191      REAL fqcalving(klon, nbsrf) !Flux d'eau "perdue" par la surface      REAL, save:: ffonte(klon, nbsrf)
192      ! !et necessaire pour limiter la      ! flux thermique utilise pour fondre la neige
193      ! !hauteur de neige, en kg/m2/s  
194        REAL, save:: fqcalving(klon, nbsrf)
195        ! flux d'eau "perdue" par la surface et necessaire pour limiter la
196        ! hauteur de neige, en kg / m2 / s
197    
198      REAL zxffonte(klon), zxfqcalving(klon)      REAL zxffonte(klon), zxfqcalving(klon)
199    
200      REAL pfrac_impa(klon, llm)! Produits des coefs lessivage impaction      REAL, save:: pfrac_impa(klon, llm)! Produits des coefs lessivage impaction
201      save pfrac_impa      REAL, save:: pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation
202      REAL pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation  
203      save pfrac_nucl      REAL, save:: pfrac_1nucl(klon, llm)
204      REAL pfrac_1nucl(klon, llm)! Produits des coefs lessi nucl (alpha = 1)      ! Produits des coefs lessi nucl (alpha = 1)
205      save pfrac_1nucl  
206      REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction)      REAL frac_impa(klon, llm) ! fraction d'a\'erosols lessiv\'es (impaction)
207      REAL frac_nucl(klon, llm) ! idem (nucleation)      REAL frac_nucl(klon, llm) ! idem (nucleation)
208    
209      REAL, save:: rain_fall(klon)      REAL, save:: rain_fall(klon)
210      ! liquid water mass flux (kg/m2/s), positive down      ! liquid water mass flux (kg / m2 / s), positive down
211    
212      REAL, save:: snow_fall(klon)      REAL, save:: snow_fall(klon)
213      ! solid water mass flux (kg/m2/s), positive down      ! solid water mass flux (kg / m2 / s), positive down
214    
215      REAL rain_tiedtke(klon), snow_tiedtke(klon)      REAL rain_tiedtke(klon), snow_tiedtke(klon)
216    
217      REAL evap(klon), devap(klon) ! evaporation and its derivative      REAL evap(klon) ! flux d'\'evaporation au sol
218      REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee      real devap(klon) ! derivative of the evaporation flux at the surface
219      REAL dlw(klon) ! derivee infra rouge      REAL sens(klon) ! flux de chaleur sensible au sol
220      SAVE dlw      real dsens(klon) ! derivee du flux de chaleur sensible au sol
221        REAL, save:: dlw(klon) ! derivative of infra-red flux
222      REAL bils(klon) ! bilan de chaleur au sol      REAL bils(klon) ! bilan de chaleur au sol
223      REAL, save:: fder(klon) ! Derive de flux (sensible et latente)      REAL fder(klon) ! Derive de flux (sensible et latente)
224      REAL ve(klon) ! integr. verticale du transport meri. de l'energie      REAL ve(klon) ! integr. verticale du transport meri. de l'energie
225      REAL vq(klon) ! integr. verticale du transport meri. de l'eau      REAL vq(klon) ! integr. verticale du transport meri. de l'eau
226      REAL ue(klon) ! integr. verticale du transport zonal de l'energie      REAL ue(klon) ! integr. verticale du transport zonal de l'energie
# Line 281  contains Line 232  contains
232      ! Conditions aux limites      ! Conditions aux limites
233    
234      INTEGER julien      INTEGER julien
     INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day  
235      REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface      REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface
236      REAL pctsrf_new(klon, nbsrf) ! pourcentage surfaces issus d'ORCHIDEE      REAL, save:: albsol(klon) ! albedo du sol total, visible, moyen par maille
     REAL, save:: albsol(klon) ! albedo du sol total visible  
237      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU
238        real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2
     ! Declaration des procedures appelees  
   
     EXTERNAL nuage ! calculer les proprietes radiatives  
   
     ! Variables locales  
239    
240      real, save:: clwcon(klon, llm), rnebcon(klon, llm)      real, save:: clwcon(klon, llm), rnebcon(klon, llm)
241      real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)      real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)
# Line 304  contains Line 248  contains
248      REAL cldtau(klon, llm) ! epaisseur optique      REAL cldtau(klon, llm) ! epaisseur optique
249      REAL cldemi(klon, llm) ! emissivite infrarouge      REAL cldemi(klon, llm) ! emissivite infrarouge
250    
251      REAL fluxq(klon, llm, nbsrf) ! flux turbulent d'humidite      REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface
252      REAL fluxt(klon, llm, nbsrf) ! flux turbulent de chaleur      REAL flux_t(klon, nbsrf) ! flux turbulent de chaleur à la surface
253      REAL fluxu(klon, llm, nbsrf) ! flux turbulent de vitesse u      REAL flux_u(klon, nbsrf) ! flux turbulent de vitesse u à la surface
254      REAL fluxv(klon, llm, nbsrf) ! flux turbulent de vitesse v      REAL flux_v(klon, nbsrf) ! flux turbulent de vitesse v à la surface
   
     REAL zxfluxt(klon, llm)  
     REAL zxfluxq(klon, llm)  
     REAL zxfluxu(klon, llm)  
     REAL zxfluxv(klon, llm)  
255    
256      ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que      ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que
257      ! les variables soient r\'emanentes.      ! les variables soient r\'emanentes.
# Line 325  contains Line 264  contains
264      real, save:: sollwdown(klon) ! downward LW flux at surface      real, save:: sollwdown(klon) ! downward LW flux at surface
265      REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)      REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)
266      REAL, save:: albpla(klon)      REAL, save:: albpla(klon)
267      REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous surface      REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous-surface
268      REAL fsolsw(klon, nbsrf) ! flux solaire absorb. pour chaque sous surface      REAL fsolsw(klon, nbsrf) ! flux solaire absorb\'e pour chaque sous-surface
269    
270      REAL conv_q(klon, llm) ! convergence de l'humidite (kg/kg/s)      REAL conv_q(klon, llm) ! convergence de l'humidite (kg / kg / s)
271      REAL conv_t(klon, llm) ! convergence of temperature (K/s)      REAL conv_t(klon, llm) ! convergence of temperature (K / s)
272    
273      REAL cldl(klon), cldm(klon), cldh(klon) !nuages bas, moyen et haut      REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut
274      REAL cldt(klon), cldq(klon) !nuage total, eau liquide integree      REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree
   
     REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon)  
275    
276        REAL zxfluxlat(klon)
277      REAL dist, mu0(klon), fract(klon)      REAL dist, mu0(klon), fract(klon)
278      real longi      real longi
279      REAL z_avant(klon), z_apres(klon), z_factor(klon)      REAL z_avant(klon), z_apres(klon), z_factor(klon)
280      REAL za, zb      REAL zb
281      REAL zx_t, zx_qs, zcor      REAL zx_t, zx_qs, zcor
282      real zqsat(klon, llm)      real zqsat(klon, llm)
283      INTEGER i, k, iq, nsrf      INTEGER i, k, iq, nsrf
     REAL, PARAMETER:: t_coup = 234.  
284      REAL zphi(klon, llm)      REAL zphi(klon, llm)
285    
286      ! cf. AM Variables locales pour la CLA (hbtm2)      ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm)
287    
288      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite
289      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA
290      REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite      REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite
291      REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite      REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite
292      REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite      REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite
293      REAL, SAVE:: pblt(klon, nbsrf) ! T a la Hauteur de couche limite      REAL, SAVE:: pblt(klon, nbsrf) ! T \`a la hauteur de couche limite
294      REAL, SAVE:: therm(klon, nbsrf)      REAL, SAVE:: therm(klon, nbsrf)
295      REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape      REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape
296      REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition      REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition
297      REAL, SAVE:: trmb3(klon, nbsrf) ! Point Omega      REAL, SAVE:: trmb3(klon, nbsrf) ! Point Omega
298      ! Grdeurs de sorties      ! Grandeurs de sorties
299      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)
300      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)
301      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)
302      REAL s_trmb3(klon)      REAL s_trmb3(klon)
303    
304      ! Variables locales pour la convection de K. Emanuel :      ! Variables pour la convection de K. Emanuel :
305    
306      REAL upwd(klon, llm) ! saturated updraft mass flux      REAL upwd(klon, llm) ! saturated updraft mass flux
307      REAL dnwd(klon, llm) ! saturated downdraft mass flux      REAL dnwd(klon, llm) ! saturated downdraft mass flux
308      REAL dnwd0(klon, llm) ! unsaturated downdraft mass flux      REAL, save:: cape(klon)
     REAL cape(klon) ! CAPE  
     SAVE cape  
309    
310      INTEGER iflagctrl(klon) ! flag fonctionnement de convect      INTEGER iflagctrl(klon) ! flag fonctionnement de convect
311    
# Line 382  contains Line 317  contains
317      ! eva: \'evaporation de l'eau liquide nuageuse      ! eva: \'evaporation de l'eau liquide nuageuse
318      ! vdf: vertical diffusion in boundary layer      ! vdf: vertical diffusion in boundary layer
319      REAL d_t_con(klon, llm), d_q_con(klon, llm)      REAL d_t_con(klon, llm), d_q_con(klon, llm)
320      REAL d_u_con(klon, llm), d_v_con(klon, llm)      REAL, save:: d_u_con(klon, llm), d_v_con(klon, llm)
321      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)
322      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)
323      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)
# Line 396  contains Line 331  contains
331      REAL prfl(klon, llm + 1), psfl(klon, llm + 1)      REAL prfl(klon, llm + 1), psfl(klon, llm + 1)
332    
333      INTEGER, save:: ibas_con(klon), itop_con(klon)      INTEGER, save:: ibas_con(klon), itop_con(klon)
334        real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa
335    
336      REAL rain_con(klon), rain_lsc(klon)      REAL, save:: rain_con(klon)
337      REAL snow_con(klon), snow_lsc(klon)      real rain_lsc(klon)
338      REAL d_ts(klon, nbsrf)      REAL, save:: snow_con(klon) ! neige (mm / s)
339        real snow_lsc(klon)
340        REAL d_ts(klon, nbsrf) ! variation of ftsol
341    
342      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)
343      REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)      REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)
# Line 422  contains Line 360  contains
360      integer:: iflag_cldcon = 1      integer:: iflag_cldcon = 1
361      logical ptconv(klon, llm)      logical ptconv(klon, llm)
362    
363      ! Variables locales pour effectuer les appels en s\'erie :      ! Variables pour effectuer les appels en s\'erie :
364    
365      REAL t_seri(klon, llm), q_seri(klon, llm)      REAL t_seri(klon, llm), q_seri(klon, llm)
366      REAL ql_seri(klon, llm)      REAL ql_seri(klon, llm)
# Line 436  contains Line 374  contains
374      REAL zustrph(klon), zvstrph(klon)      REAL zustrph(klon), zvstrph(klon)
375      REAL aam, torsfc      REAL aam, torsfc
376    
     REAL zx_tmp_fi2d(klon) ! variable temporaire grille physique  
   
     INTEGER, SAVE:: nid_ins  
   
377      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.
378      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.
379      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.
380      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.
381    
382      real date0      real date0
383        REAL tsol(klon)
384    
385      ! Variables li\'ees au bilan d'\'energie et d'enthalpie :      REAL d_t_ec(klon, llm)
386      REAL ztsol(klon)      ! tendance due \`a la conversion d'\'energie cin\'etique en
387      REAL d_h_vcol, d_qt, d_ec      ! énergie thermique
388      REAL, SAVE:: d_h_vcol_phy  
389      REAL zero_v(klon)      REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf)
390      CHARACTER(LEN = 20) tit      ! temperature and humidity at 2 m
391      INTEGER:: ip_ebil = 0 ! print level for energy conservation diagnostics  
392      INTEGER:: if_ebil = 0 ! verbosity for diagnostics of energy conservation      REAL, save:: u10m(klon, nbsrf), v10m(klon, nbsrf) ! vents a 10 m
393        REAL zt2m(klon), zq2m(klon) ! température, humidité 2 m moyenne sur 1 maille
394      REAL d_t_ec(klon, llm) ! tendance due \`a la conversion Ec -> E thermique      REAL zu10m(klon), zv10m(klon) ! vents a 10 m moyennes sur 1 maille
     REAL ZRCPD  
   
     REAL t2m(klon, nbsrf), q2m(klon, nbsrf) ! temperature and humidity at 2 m  
     REAL u10m(klon, nbsrf), v10m(klon, nbsrf) ! vents a 10 m  
     REAL zt2m(klon), zq2m(klon) ! temp., hum. 2 m moyenne s/ 1 maille  
     REAL zu10m(klon), zv10m(klon) ! vents a 10 m moyennes s/1 maille  
395    
396      ! Aerosol effects:      ! Aerosol effects:
397    
398      REAL sulfate(klon, llm) ! SO4 aerosol concentration (micro g/m3)      REAL, save:: topswad(klon), solswad(klon) ! aerosol direct effect
   
     REAL, save:: sulfate_pi(klon, llm)  
     ! SO4 aerosol concentration, in micro g/m3, pre-industrial value  
   
     REAL cldtaupi(klon, llm)  
     ! cloud optical thickness for pre-industrial (pi) aerosols  
   
     REAL re(klon, llm) ! Cloud droplet effective radius  
     REAL fl(klon, llm) ! denominator of re  
   
     ! Aerosol optical properties  
     REAL, save:: tau_ae(klon, llm, 2), piz_ae(klon, llm, 2)  
     REAL, save:: cg_ae(klon, llm, 2)  
   
     REAL topswad(klon), solswad(klon) ! aerosol direct effect  
     REAL topswai(klon), solswai(klon) ! aerosol indirect effect  
   
     REAL aerindex(klon) ! POLDER aerosol index  
   
399      LOGICAL:: ok_ade = .false. ! apply aerosol direct effect      LOGICAL:: ok_ade = .false. ! apply aerosol direct effect
     LOGICAL:: ok_aie = .false. ! apply aerosol indirect effect  
400    
401      REAL:: bl95_b0 = 2., bl95_b1 = 0.2      REAL:: bl95_b0 = 2., bl95_b1 = 0.2
402      ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus      ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus
403      ! B). They link cloud droplet number concentration to aerosol mass      ! B). They link cloud droplet number concentration to aerosol mass
404      ! concentration.      ! concentration.
405    
406      SAVE u10m      real zmasse(klon, llm)
     SAVE v10m  
     SAVE t2m  
     SAVE q2m  
     SAVE ffonte  
     SAVE fqcalving  
     SAVE rain_con  
     SAVE snow_con  
     SAVE topswai  
     SAVE topswad  
     SAVE solswai  
     SAVE solswad  
     SAVE d_u_con  
     SAVE d_v_con  
   
     real zmasse(klon, llm)  
407      ! (column-density of mass of air in a cell, in kg m-2)      ! (column-density of mass of air in a cell, in kg m-2)
408    
     real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2  
409      integer, save:: ncid_startphy      integer, save:: ncid_startphy
410    
411      namelist /physiq_nml/ ok_journe, ok_mensuel, ok_instan, fact_cldcon, &      namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, &
412           facttemps, ok_newmicro, iflag_cldcon, ratqsbas, ratqshaut, if_ebil, &           ratqsbas, ratqshaut, ok_ade, bl95_b0, bl95_b1, iflag_thermals, &
413           ok_ade, ok_aie, bl95_b0, bl95_b1, iflag_thermals, nsplit_thermals           nsplit_thermals
414    
415      !----------------------------------------------------------------      !----------------------------------------------------------------
416    
     IF (if_ebil >= 1) zero_v = 0.  
417      IF (nqmx < 2) CALL abort_gcm('physiq', &      IF (nqmx < 2) CALL abort_gcm('physiq', &
418           'eaux vapeur et liquide sont indispensables')           'eaux vapeur et liquide sont indispensables')
419    
# Line 533  contains Line 425  contains
425         q2m = 0.         q2m = 0.
426         ffonte = 0.         ffonte = 0.
427         fqcalving = 0.         fqcalving = 0.
        piz_ae = 0.  
        tau_ae = 0.  
        cg_ae = 0.  
428         rain_con = 0.         rain_con = 0.
429         snow_con = 0.         snow_con = 0.
        topswai = 0.  
        topswad = 0.  
        solswai = 0.  
        solswad = 0.  
   
430         d_u_con = 0.         d_u_con = 0.
431         d_v_con = 0.         d_v_con = 0.
432         rnebcon0 = 0.         rnebcon0 = 0.
433         clwcon0 = 0.         clwcon0 = 0.
434         rnebcon = 0.         rnebcon = 0.
435         clwcon = 0.         clwcon = 0.
   
436         pblh =0. ! Hauteur de couche limite         pblh =0. ! Hauteur de couche limite
437         plcl =0. ! Niveau de condensation de la CLA         plcl =0. ! Niveau de condensation de la CLA
438         capCL =0. ! CAPE de couche limite         capCL =0. ! CAPE de couche limite
439         oliqCL =0. ! eau_liqu integree de couche limite         oliqCL =0. ! eau_liqu integree de couche limite
440         cteiCL =0. ! cloud top instab. crit. couche limite         cteiCL =0. ! cloud top instab. crit. couche limite
441         pblt =0. ! T a la Hauteur de couche limite         pblt =0.
442         therm =0.         therm =0.
443         trmb1 =0. ! deep_cape         trmb1 =0. ! deep_cape
444         trmb2 =0. ! inhibition         trmb2 =0. ! inhibition
445         trmb3 =0. ! Point Omega         trmb3 =0. ! Point Omega
446    
        IF (if_ebil >= 1) d_h_vcol_phy = 0.  
   
447         iflag_thermals = 0         iflag_thermals = 0
448         nsplit_thermals = 1         nsplit_thermals = 1
449         print *, "Enter namelist 'physiq_nml'."         print *, "Enter namelist 'physiq_nml'."
# Line 574  contains Line 455  contains
455         ! Initialiser les compteurs:         ! Initialiser les compteurs:
456    
457         frugs = 0.         frugs = 0.
458         CALL phyetat0(pctsrf, ftsol, ftsoil, tslab, seaice, fqsurf, qsol, &         CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
459              fsnow, falbe, fevap, rain_fall, snow_fall, solsw, sollw, dlw, &              fevap, rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, &
460              radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, &              agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, &
461              t_ancien, q_ancien, ancien_ok, rnebcon, ratqs, clwcon, &              q_ancien, ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
462              run_off_lic_0, sig1, w01, ncid_startphy)              w01, ncid_startphy)
463    
464         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial
465         q2 = 1e-8         q2 = 1e-8
466    
        lmt_pas = day_step / iphysiq  
        print *, 'Number of time steps of "physics" per day: ', lmt_pas  
   
467         radpas = lmt_pas / nbapp_rad         radpas = lmt_pas / nbapp_rad
468           print *, "radpas = ", radpas
        ! On remet le calendrier a zero  
        IF (raz_date) itau_phy = 0  
   
        CALL printflag(radpas, ok_journe, ok_instan, ok_region)  
469    
470         ! Initialisation pour le sch\'ema de convection d'Emanuel :         ! Initialisation pour le sch\'ema de convection d'Emanuel :
471         IF (iflag_con >= 3) THEN         IF (conv_emanuel) THEN
472            ibas_con = 1            ibas_con = 1
473            itop_con = 1            itop_con = 1
474         ENDIF         ENDIF
# Line 606  contains Line 480  contains
480            rugoro = 0.            rugoro = 0.
481         ENDIF         ENDIF
482    
483         ecrit_ins = NINT(ecrit_ins/dtphys)         ecrit_ins = NINT(ecrit_ins / dtphys)
        ecrit_hf = NINT(ecrit_hf/dtphys)  
        ecrit_mth = NINT(ecrit_mth/dtphys)  
        ecrit_tra = NINT(86400.*ecrit_tra/dtphys)  
        ecrit_reg = NINT(ecrit_reg/dtphys)  
484    
485         ! Initialisation des sorties         ! Initialisation des sorties
486    
487         call ini_histins(dtphys, ok_instan, nid_ins)         call ini_histins(dtphys, ok_newmicro)
488         CALL ymds2ju(annee_ref, 1, day_ref, 0., date0)         CALL ymds2ju(annee_ref, 1, day_ref, 0., date0)
489         ! Positionner date0 pour initialisation de ORCHIDEE         ! Positionner date0 pour initialisation de ORCHIDEE
490         print *, 'physiq date0: ', date0         print *, 'physiq date0: ', date0
491         CALL phyredem0(lmt_pas)         CALL phyredem0
492      ENDIF test_firstcal      ENDIF test_firstcal
493    
494      ! We will modify variables *_seri and we will not touch variables      ! We will modify variables *_seri and we will not touch variables
# Line 630  contains Line 500  contains
500      ql_seri = qx(:, :, iliq)      ql_seri = qx(:, :, iliq)
501      tr_seri = qx(:, :, 3:nqmx)      tr_seri = qx(:, :, 3:nqmx)
502    
503      ztsol = sum(ftsol * pctsrf, dim = 2)      tsol = sum(ftsol * pctsrf, dim = 2)
   
     IF (if_ebil >= 1) THEN  
        tit = 'after dynamics'  
        CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &  
             ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)  
        ! Comme les tendances de la physique sont ajout\'es dans la  
        !  dynamique, la variation d'enthalpie par la dynamique devrait  
        !  \^etre \'egale \`a la variation de la physique au pas de temps  
        !  pr\'ec\'edent.  Donc la somme de ces 2 variations devrait \^etre  
        !  nulle.  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol + d_h_vcol_phy, &  
             d_qt, 0.)  
     END IF  
504    
505      ! Diagnostic de la tendance dynamique :      ! Diagnostic de la tendance dynamique :
506      IF (ancien_ok) THEN      IF (ancien_ok) THEN
# Line 674  contains Line 530  contains
530      ! Check temperatures:      ! Check temperatures:
531      CALL hgardfou(t_seri, ftsol)      CALL hgardfou(t_seri, ftsol)
532    
533      ! Incrémenter le compteur de la physique      call increment_itap
     itap = itap + 1  
534      julien = MOD(dayvrai, 360)      julien = MOD(dayvrai, 360)
535      if (julien == 0) julien = 360      if (julien == 0) julien = 360
536    
537      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg
538    
     ! Prescrire l'ozone :  
     wo = ozonecm(REAL(julien), paprs)  
   
539      ! \'Evaporation de l'eau liquide nuageuse :      ! \'Evaporation de l'eau liquide nuageuse :
540      DO k = 1, llm      DO k = 1, llm
541         DO i = 1, klon         DO i = 1, klon
# Line 695  contains Line 547  contains
547      ENDDO      ENDDO
548      ql_seri = 0.      ql_seri = 0.
549    
     IF (if_ebil >= 2) THEN  
        tit = 'after reevap'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 1, dtphys, t_seri, q_seri, &  
             ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec)  
     END IF  
   
550      frugs = MAX(frugs, 0.000015)      frugs = MAX(frugs, 0.000015)
551      zxrugs = sum(frugs * pctsrf, dim = 2)      zxrugs = sum(frugs * pctsrf, dim = 2)
552    
553      ! Calculs nécessaires au calcul de l'albedo dans l'interface avec      ! Calculs n\'ecessaires au calcul de l'albedo dans l'interface avec
554      ! la surface.      ! la surface.
555    
556      CALL orbite(REAL(julien), longi, dist)      CALL orbite(REAL(julien), longi, dist)
557      IF (cycle_diurne) THEN      CALL zenang(longi, time, dtphys * radpas, mu0, fract)
        CALL zenang(longi, time, dtphys * radpas, mu0, fract)  
     ELSE  
        mu0 = - 999.999  
     ENDIF  
   
     ! Calcul de l'abedo moyen par maille  
558      albsol = sum(falbe * pctsrf, dim = 2)      albsol = sum(falbe * pctsrf, dim = 2)
559    
560      ! R\'epartition sous maille des flux longwave et shortwave      ! R\'epartition sous maille des flux longwave et shortwave
561      ! R\'epartition du longwave par sous-surface lin\'earis\'ee      ! R\'epartition du longwave par sous-surface lin\'earis\'ee
562    
563      forall (nsrf = 1: nbsrf)      forall (nsrf = 1: nbsrf)
564         fsollw(:, nsrf) = sollw + 4. * RSIGMA * ztsol**3 &         fsollw(:, nsrf) = sollw + 4. * RSIGMA * tsol**3 &
565              * (ztsol - ftsol(:, nsrf))              * (tsol - ftsol(:, nsrf))
566         fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol)         fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol)
567      END forall      END forall
568    
569      fder = dlw      CALL clmain(dtphys, pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, &
570             ftsol, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, &
571      ! Couche limite:           paprs, play, fsnow, fqsurf, fevap, falbe, fluxlat, rain_fall, &
572             snow_fall, fsolsw, fsollw, frugs, agesno, rugoro, d_t_vdf, d_q_vdf, &
573      CALL clmain(dtphys, itap, pctsrf, pctsrf_new, t_seri, q_seri, u_seri, &           d_u_vdf, d_v_vdf, d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, &
574           v_seri, julien, mu0, co2_ppm, ftsol, cdmmax, cdhmax, ksta, ksta_ter, &           cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, &
575           ok_kzmin, ftsoil, qsol, paprs, play, fsnow, fqsurf, fevap, falbe, &           pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, plcl, &
576           fluxlat, rain_fall, snow_fall, fsolsw, fsollw, fder, rlat, frugs, &           fqcalving, ffonte, run_off_lic_0)
          firstcal, agesno, rugoro, d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, &  
          fluxt, fluxq, fluxu, fluxv, cdragh, cdragm, q2, dsens, devap, &  
          ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, pblh, capCL, oliqCL, cteiCL, &  
          pblT, therm, trmb1, trmb2, trmb3, plcl, fqcalving, ffonte, &  
          run_off_lic_0, fluxo, fluxg, tslab)  
577    
578      ! Incr\'ementation des flux      ! Incr\'ementation des flux
579    
580      zxfluxt = 0.      sens = - sum(flux_t * pctsrf, dim = 2)
581      zxfluxq = 0.      evap = - sum(flux_q * pctsrf, dim = 2)
582      zxfluxu = 0.      fder = dlw + dsens + devap
     zxfluxv = 0.  
     DO nsrf = 1, nbsrf  
        DO k = 1, llm  
           DO i = 1, klon  
              zxfluxt(i, k) = zxfluxt(i, k) + fluxt(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxq(i, k) = zxfluxq(i, k) + fluxq(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxu(i, k) = zxfluxu(i, k) + fluxu(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxv(i, k) = zxfluxv(i, k) + fluxv(i, k, nsrf) * pctsrf(i, nsrf)  
           END DO  
        END DO  
     END DO  
     DO i = 1, klon  
        sens(i) = - zxfluxt(i, 1) ! flux de chaleur sensible au sol  
        evap(i) = - zxfluxq(i, 1) ! flux d'\'evaporation au sol  
        fder(i) = dlw(i) + dsens(i) + devap(i)  
     ENDDO  
583    
584      DO k = 1, llm      DO k = 1, llm
585         DO i = 1, klon         DO i = 1, klon
# Line 773  contains Line 590  contains
590         ENDDO         ENDDO
591      ENDDO      ENDDO
592    
     IF (if_ebil >= 2) THEN  
        tit = 'after clmain'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             sens, evap, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec)  
     END IF  
   
593      ! Update surface temperature:      ! Update surface temperature:
594    
595      DO i = 1, klon      call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf')
596         zxtsol(i) = 0.      ftsol = ftsol + d_ts
597         zxfluxlat(i) = 0.      tsol = sum(ftsol * pctsrf, dim = 2)
598        zxfluxlat = sum(fluxlat * pctsrf, dim = 2)
599        zt2m = sum(t2m * pctsrf, dim = 2)
600        zq2m = sum(q2m * pctsrf, dim = 2)
601        zu10m = sum(u10m * pctsrf, dim = 2)
602        zv10m = sum(v10m * pctsrf, dim = 2)
603        zxffonte = sum(ffonte * pctsrf, dim = 2)
604        zxfqcalving = sum(fqcalving * pctsrf, dim = 2)
605        s_pblh = sum(pblh * pctsrf, dim = 2)
606        s_lcl = sum(plcl * pctsrf, dim = 2)
607        s_capCL = sum(capCL * pctsrf, dim = 2)
608        s_oliqCL = sum(oliqCL * pctsrf, dim = 2)
609        s_cteiCL = sum(cteiCL * pctsrf, dim = 2)
610        s_pblT = sum(pblT * pctsrf, dim = 2)
611        s_therm = sum(therm * pctsrf, dim = 2)
612        s_trmb1 = sum(trmb1 * pctsrf, dim = 2)
613        s_trmb2 = sum(trmb2 * pctsrf, dim = 2)
614        s_trmb3 = sum(trmb3 * pctsrf, dim = 2)
615    
616         zt2m(i) = 0.      ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne :
        zq2m(i) = 0.  
        zu10m(i) = 0.  
        zv10m(i) = 0.  
        zxffonte(i) = 0.  
        zxfqcalving(i) = 0.  
   
        s_pblh(i) = 0.  
        s_lcl(i) = 0.  
        s_capCL(i) = 0.  
        s_oliqCL(i) = 0.  
        s_cteiCL(i) = 0.  
        s_pblT(i) = 0.  
        s_therm(i) = 0.  
        s_trmb1(i) = 0.  
        s_trmb2(i) = 0.  
        s_trmb3(i) = 0.  
   
        IF (abs(pctsrf(i, is_ter) + pctsrf(i, is_lic) + pctsrf(i, is_oce) &  
             + pctsrf(i, is_sic) - 1.)  >  EPSFRA) print *, &  
             'physiq : probl\`eme sous surface au point ', i, &  
             pctsrf(i, 1 : nbsrf)  
     ENDDO  
617      DO nsrf = 1, nbsrf      DO nsrf = 1, nbsrf
618         DO i = 1, klon         DO i = 1, klon
619            ftsol(i, nsrf) = ftsol(i, nsrf) + d_ts(i, nsrf)            IF (pctsrf(i, nsrf) < epsfra) then
620            zxtsol(i) = zxtsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)               ftsol(i, nsrf) = tsol(i)
621            zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf)*pctsrf(i, nsrf)               t2m(i, nsrf) = zt2m(i)
622                 q2m(i, nsrf) = zq2m(i)
623            zt2m(i) = zt2m(i) + t2m(i, nsrf)*pctsrf(i, nsrf)               u10m(i, nsrf) = zu10m(i)
624            zq2m(i) = zq2m(i) + q2m(i, nsrf)*pctsrf(i, nsrf)               v10m(i, nsrf) = zv10m(i)
625            zu10m(i) = zu10m(i) + u10m(i, nsrf)*pctsrf(i, nsrf)               ffonte(i, nsrf) = zxffonte(i)
626            zv10m(i) = zv10m(i) + v10m(i, nsrf)*pctsrf(i, nsrf)               fqcalving(i, nsrf) = zxfqcalving(i)
627            zxffonte(i) = zxffonte(i) + ffonte(i, nsrf)*pctsrf(i, nsrf)               pblh(i, nsrf) = s_pblh(i)
628            zxfqcalving(i) = zxfqcalving(i) + &               plcl(i, nsrf) = s_lcl(i)
629                 fqcalving(i, nsrf)*pctsrf(i, nsrf)               capCL(i, nsrf) = s_capCL(i)
630            s_pblh(i) = s_pblh(i) + pblh(i, nsrf)*pctsrf(i, nsrf)               oliqCL(i, nsrf) = s_oliqCL(i)
631            s_lcl(i) = s_lcl(i) + plcl(i, nsrf)*pctsrf(i, nsrf)               cteiCL(i, nsrf) = s_cteiCL(i)
632            s_capCL(i) = s_capCL(i) + capCL(i, nsrf) *pctsrf(i, nsrf)               pblT(i, nsrf) = s_pblT(i)
633            s_oliqCL(i) = s_oliqCL(i) + oliqCL(i, nsrf) *pctsrf(i, nsrf)               therm(i, nsrf) = s_therm(i)
634            s_cteiCL(i) = s_cteiCL(i) + cteiCL(i, nsrf) *pctsrf(i, nsrf)               trmb1(i, nsrf) = s_trmb1(i)
635            s_pblT(i) = s_pblT(i) + pblT(i, nsrf) *pctsrf(i, nsrf)               trmb2(i, nsrf) = s_trmb2(i)
636            s_therm(i) = s_therm(i) + therm(i, nsrf) *pctsrf(i, nsrf)               trmb3(i, nsrf) = s_trmb3(i)
637            s_trmb1(i) = s_trmb1(i) + trmb1(i, nsrf) *pctsrf(i, nsrf)            end IF
           s_trmb2(i) = s_trmb2(i) + trmb2(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb3(i) = s_trmb3(i) + trmb3(i, nsrf) *pctsrf(i, nsrf)  
638         ENDDO         ENDDO
639      ENDDO      ENDDO
640    
641      ! Si une sous-fraction n'existe pas, elle prend la température moyenne :      dlw = - 4. * RSIGMA * tsol**3
642      DO nsrf = 1, nbsrf  
643         DO i = 1, klon      ! Appeler la convection
644            IF (pctsrf(i, nsrf) < epsfra) ftsol(i, nsrf) = zxtsol(i)  
645        if (conv_emanuel) then
646            IF (pctsrf(i, nsrf) < epsfra) t2m(i, nsrf) = zt2m(i)         CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, &
647            IF (pctsrf(i, nsrf) < epsfra) q2m(i, nsrf) = zq2m(i)              d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, &
648            IF (pctsrf(i, nsrf) < epsfra) u10m(i, nsrf) = zu10m(i)              upwd, dnwd, Ma, cape, iflagctrl, qcondc, pmflxr, da, phi, mp)
649            IF (pctsrf(i, nsrf) < epsfra) v10m(i, nsrf) = zv10m(i)         snow_con = 0.
           IF (pctsrf(i, nsrf) < epsfra) ffonte(i, nsrf) = zxffonte(i)  
           IF (pctsrf(i, nsrf) < epsfra) &  
                fqcalving(i, nsrf) = zxfqcalving(i)  
           IF (pctsrf(i, nsrf) < epsfra) pblh(i, nsrf) = s_pblh(i)  
           IF (pctsrf(i, nsrf) < epsfra) plcl(i, nsrf) = s_lcl(i)  
           IF (pctsrf(i, nsrf) < epsfra) capCL(i, nsrf) = s_capCL(i)  
           IF (pctsrf(i, nsrf) < epsfra) oliqCL(i, nsrf) = s_oliqCL(i)  
           IF (pctsrf(i, nsrf) < epsfra) cteiCL(i, nsrf) = s_cteiCL(i)  
           IF (pctsrf(i, nsrf) < epsfra) pblT(i, nsrf) = s_pblT(i)  
           IF (pctsrf(i, nsrf) < epsfra) therm(i, nsrf) = s_therm(i)  
           IF (pctsrf(i, nsrf) < epsfra) trmb1(i, nsrf) = s_trmb1(i)  
           IF (pctsrf(i, nsrf) < epsfra) trmb2(i, nsrf) = s_trmb2(i)  
           IF (pctsrf(i, nsrf) < epsfra) trmb3(i, nsrf) = s_trmb3(i)  
        ENDDO  
     ENDDO  
   
     ! Calculer la dérive du flux infrarouge  
   
     DO i = 1, klon  
        dlw(i) = - 4. * RSIGMA * zxtsol(i)**3  
     ENDDO  
   
     IF (check) print *, "avantcon = ", qcheck(paprs, q_seri, ql_seri)  
   
     ! Appeler la convection (au choix)  
   
     if (iflag_con == 2) then  
        conv_q = d_q_dyn + d_q_vdf / dtphys  
        conv_t = d_t_dyn + d_t_vdf / dtphys  
        z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)  
        CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:- 1), &  
             q_seri(:, llm:1:- 1), conv_t, conv_q, zxfluxq(:, 1), omega, &  
             d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:- 1), &  
             mfd(:, llm:1:- 1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, &  
             kdtop, pmflxr, pmflxs)  
        WHERE (rain_con < 0.) rain_con = 0.  
        WHERE (snow_con < 0.) snow_con = 0.  
        ibas_con = llm + 1 - kcbot  
        itop_con = llm + 1 - kctop  
     else  
        ! iflag_con >= 3  
   
        da = 0.  
        mp = 0.  
        phi = 0.  
        CALL concvl(dtphys, paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, &  
             w01, d_t_con, d_q_con, d_u_con, d_v_con, rain_con, snow_con, &  
             ibas_con, itop_con, upwd, dnwd, dnwd0, Ma, cape, iflagctrl, &  
             qcondc, wd, pmflxr, pmflxs, da, phi, mp)  
650         clwcon0 = qcondc         clwcon0 = qcondc
651         mfu = upwd + dnwd         mfu = upwd + dnwd
        IF (.NOT. ok_gust) wd = 0.  
652    
653         IF (thermcep) THEN         zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play)
654            zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play)         zqsat = zqsat / (1. - retv * zqsat)
           zqsat = zqsat / (1. - retv * zqsat)  
        ELSE  
           zqsat = merge(qsats(t_seri), qsatl(t_seri), t_seri < t_coup) / play  
        ENDIF  
655    
656         ! Properties of convective clouds         ! Properties of convective clouds
657         clwcon0 = fact_cldcon * clwcon0         clwcon0 = fact_cldcon * clwcon0
658         call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &         call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &
659              rnebcon0)              rnebcon0)
660    
661           forall (i = 1:klon) ema_pct(i) = paprs(i, itop_con(i) + 1)
662         mfd = 0.         mfd = 0.
663         pen_u = 0.         pen_u = 0.
664         pen_d = 0.         pen_d = 0.
665         pde_d = 0.         pde_d = 0.
666         pde_u = 0.         pde_u = 0.
667        else
668           conv_q = d_q_dyn + d_q_vdf / dtphys
669           conv_t = d_t_dyn + d_t_vdf / dtphys
670           z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)
671           CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:- 1), &
672                q_seri(:, llm:1:- 1), conv_t, conv_q, - evap, omega, &
673                d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:- 1), &
674                mfd(:, llm:1:- 1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, &
675                kdtop, pmflxr, pmflxs)
676           WHERE (rain_con < 0.) rain_con = 0.
677           WHERE (snow_con < 0.) snow_con = 0.
678           ibas_con = llm + 1 - kcbot
679           itop_con = llm + 1 - kctop
680      END if      END if
681    
682      DO k = 1, llm      DO k = 1, llm
# Line 926  contains Line 688  contains
688         ENDDO         ENDDO
689      ENDDO      ENDDO
690    
691      IF (if_ebil >= 2) THEN      IF (.not. conv_emanuel) THEN
        tit = 'after convect'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, rain_con, snow_con, ztsol, d_h_vcol, d_qt, d_ec)  
     END IF  
   
     IF (check) THEN  
        za = qcheck(paprs, q_seri, ql_seri)  
        print *, "aprescon = ", za  
        zx_t = 0.  
        za = 0.  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_con(i)+ &  
                snow_con(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtphys  
        print *, "Precip = ", zx_t  
     ENDIF  
   
     IF (iflag_con == 2) THEN  
692         z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)         z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)
693         z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres         z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres
694         DO k = 1, llm         DO k = 1, llm
# Line 975  contains Line 715  contains
715         t_seri = t_seri + d_t_ajs         t_seri = t_seri + d_t_ajs
716         q_seri = q_seri + d_q_ajs         q_seri = q_seri + d_q_ajs
717      else      else
        ! Thermiques  
718         call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, &         call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, &
719              q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)              q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)
720      endif      endif
721    
     IF (if_ebil >= 2) THEN  
        tit = 'after dry_adjust'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)  
     END IF  
   
722      ! Caclul des ratqs      ! Caclul des ratqs
723    
724      ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q      ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q
# Line 1007  contains Line 740  contains
740      do k = 1, llm      do k = 1, llm
741         do i = 1, klon         do i = 1, klon
742            ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &            ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &
743                 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)                 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)
744         enddo         enddo
745      enddo      enddo
746    
# Line 1040  contains Line 773  contains
773            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)
774         ENDDO         ENDDO
775      ENDDO      ENDDO
     IF (check) THEN  
        za = qcheck(paprs, q_seri, ql_seri)  
        print *, "apresilp = ", za  
        zx_t = 0.  
        za = 0.  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_lsc(i) &  
                + snow_lsc(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtphys  
        print *, "Precip = ", zx_t  
     ENDIF  
   
     IF (if_ebil >= 2) THEN  
        tit = 'after fisrt'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, rain_lsc, snow_lsc, ztsol, d_h_vcol, d_qt, d_ec)  
     END IF  
776    
777      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
778    
# Line 1076  contains Line 788  contains
788            do k = 1, llm            do k = 1, llm
789               do i = 1, klon               do i = 1, klon
790                  if (d_q_con(i, k) < 0.) then                  if (d_q_con(i, k) < 0.) then
791                     rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k)/dtphys &                     rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k) / dtphys &
792                          *zmasse(i, k)                          * zmasse(i, k)
793                  endif                  endif
794               enddo               enddo
795            enddo            enddo
# Line 1112  contains Line 824  contains
824    
825         ! On prend la somme des fractions nuageuses et des contenus en eau         ! On prend la somme des fractions nuageuses et des contenus en eau
826         cldfra = min(max(cldfra, rnebcon), 1.)         cldfra = min(max(cldfra, rnebcon), 1.)
827         cldliq = cldliq + rnebcon*clwcon         cldliq = cldliq + rnebcon * clwcon
828      ENDIF      ENDIF
829    
830      ! 2. Nuages stratiformes      ! 2. Nuages stratiformes
# Line 1135  contains Line 847  contains
847         snow_fall(i) = snow_con(i) + snow_lsc(i)         snow_fall(i) = snow_con(i) + snow_lsc(i)
848      ENDDO      ENDDO
849    
     IF (if_ebil >= 2) CALL diagetpq(airephy, "after diagcld", ip_ebil, 2, 2, &  
          dtphys, t_seri, q_seri, ql_seri, u_seri, v_seri, paprs, d_h_vcol, &  
          d_qt, d_ec)  
   
850      ! Humidit\'e relative pour diagnostic :      ! Humidit\'e relative pour diagnostic :
851      DO k = 1, llm      DO k = 1, llm
852         DO i = 1, klon         DO i = 1, klon
853            zx_t = t_seri(i, k)            zx_t = t_seri(i, k)
854            IF (thermcep) THEN            zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t) / play(i, k)
855               zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t)/play(i, k)            zx_qs = MIN(0.5, zx_qs)
856               zx_qs = MIN(0.5, zx_qs)            zcor = 1. / (1. - retv * zx_qs)
857               zcor = 1./(1. - retv*zx_qs)            zx_qs = zx_qs * zcor
858               zx_qs = zx_qs*zcor            zx_rh(i, k) = q_seri(i, k) / zx_qs
           ELSE  
              IF (zx_t < t_coup) THEN  
                 zx_qs = qsats(zx_t)/play(i, k)  
              ELSE  
                 zx_qs = qsatl(zx_t)/play(i, k)  
              ENDIF  
           ENDIF  
           zx_rh(i, k) = q_seri(i, k)/zx_qs  
859            zqsat(i, k) = zx_qs            zqsat(i, k) = zx_qs
860         ENDDO         ENDDO
861      ENDDO      ENDDO
862    
     ! Introduce the aerosol direct and first indirect radiative forcings:  
     IF (ok_ade .OR. ok_aie) THEN  
        ! Get sulfate aerosol distribution :  
        CALL readsulfate(dayvrai, time, firstcal, sulfate)  
        CALL readsulfate_preind(dayvrai, time, firstcal, sulfate_pi)  
   
        CALL aeropt(play, paprs, t_seri, sulfate, rhcl, tau_ae, piz_ae, cg_ae, &  
             aerindex)  
     ELSE  
        tau_ae = 0.  
        piz_ae = 0.  
        cg_ae = 0.  
     ENDIF  
   
863      ! Param\`etres optiques des nuages et quelques param\`etres pour      ! Param\`etres optiques des nuages et quelques param\`etres pour
864      ! diagnostics :      ! diagnostics :
865      if (ok_newmicro) then      if (ok_newmicro) then
866         CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &         CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &
867              cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc, ok_aie, &              cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc)
             sulfate, sulfate_pi, bl95_b0, bl95_b1, cldtaupi, re, fl)  
868      else      else
869         CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &         CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &
870              cldl, cldm, cldt, cldq, ok_aie, sulfate, sulfate_pi, bl95_b0, &              cldl, cldm, cldt, cldq)
             bl95_b1, cldtaupi, re, fl)  
871      endif      endif
872    
873      IF (MOD(itap - 1, radpas) == 0) THEN      IF (MOD(itap - 1, radpas) == 0) THEN
874         ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.         wo = ozonecm(REAL(julien), paprs)
        ! Calcul de l'abedo moyen par maille  
875         albsol = sum(falbe * pctsrf, dim = 2)         albsol = sum(falbe * pctsrf, dim = 2)
876           CALL radlwsw(dist, mu0, fract, paprs, play, tsol, albsol, t_seri, &
        ! Rayonnement (compatible Arpege-IFS) :  
        CALL radlwsw(dist, mu0, fract, paprs, play, zxtsol, albsol, t_seri, &  
877              q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, &              q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, &
878              radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, &              radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, &
879              toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, &              toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, &
880              swup0, swup, ok_ade, ok_aie, tau_ae, piz_ae, cg_ae, topswad, &              swup0, swup, ok_ade, topswad, solswad)
             solswad, cldtaupi, topswai, solswai)  
881      ENDIF      ENDIF
882    
883      ! Ajouter la tendance des rayonnements (tous les pas)      ! Ajouter la tendance des rayonnements (tous les pas)
   
884      DO k = 1, llm      DO k = 1, llm
885         DO i = 1, klon         DO i = 1, klon
886            t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys/86400.            t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys &
887         ENDDO                 / 86400.
     ENDDO  
   
     IF (if_ebil >= 2) THEN  
        tit = 'after rad'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)  
        call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec)  
     END IF  
   
     ! Calculer l'hydrologie de la surface  
     DO i = 1, klon  
        zxqsurf(i) = 0.  
        zxsnow(i) = 0.  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxqsurf(i) = zxqsurf(i) + fqsurf(i, nsrf)*pctsrf(i, nsrf)  
           zxsnow(i) = zxsnow(i) + fsnow(i, nsrf)*pctsrf(i, nsrf)  
888         ENDDO         ENDDO
889      ENDDO      ENDDO
890    
891      ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage)      ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage)
   
892      DO i = 1, klon      DO i = 1, klon
893         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)
894      ENDDO      ENDDO
# Line 1244  contains Line 903  contains
903            IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN            IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN
904               itest(i) = 1               itest(i) = 1
905               igwd = igwd + 1               igwd = igwd + 1
              idx(igwd) = i  
906            ENDIF            ENDIF
907         ENDDO         ENDDO
908    
# Line 1270  contains Line 928  contains
928            IF (zpic(i) - zmea(i) > 100.) THEN            IF (zpic(i) - zmea(i) > 100.) THEN
929               itest(i) = 1               itest(i) = 1
930               igwd = igwd + 1               igwd = igwd + 1
              idx(igwd) = i  
931            ENDIF            ENDIF
932         ENDDO         ENDDO
933    
# Line 1306  contains Line 963  contains
963      CALL aaam_bud(rg, romega, rlat, rlon, pphis, zustrdr, zustrli, zustrph, &      CALL aaam_bud(rg, romega, rlat, rlon, pphis, zustrdr, zustrli, zustrph, &
964           zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc)           zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc)
965    
     IF (if_ebil >= 2) CALL diagetpq(airephy, 'after orography', ip_ebil, 2, &  
          2, dtphys, t_seri, q_seri, ql_seri, u_seri, v_seri, paprs, d_h_vcol, &  
          d_qt, d_ec)  
   
966      ! Calcul des tendances traceurs      ! Calcul des tendances traceurs
967      call phytrac(itap, lmt_pas, julien, time, firstcal, lafin, dtphys, t, &      call phytrac(julien, time, firstcal, lafin, dtphys, t, paprs, play, mfu, &
968           paprs, play, mfu, mfd, pde_u, pen_d, ycoefh, fm_therm, entr_therm, &           mfd, pde_u, pen_d, ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, &
969           yu1, yv1, ftsol, pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, &           pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, dnwd, tr_seri, &
970           dnwd, tr_seri, zmasse, ncid_startphy, nid_ins)           zmasse, ncid_startphy)
   
     IF (offline) call phystokenc(dtphys, rlon, rlat, t, mfu, mfd, pen_u, &  
          pde_u, pen_d, pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, &  
          pctsrf, frac_impa, frac_nucl, pphis, airephy, dtphys, itap)  
971    
972      ! Calculer le transport de l'eau et de l'energie (diagnostique)      ! Calculer le transport de l'eau et de l'energie (diagnostique)
973      CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq)      CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq)
974    
975      ! diag. bilKP      ! diag. bilKP
976    
977      CALL transp_lay(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, &      CALL transp_lay(paprs, t_seri, q_seri, u_seri, v_seri, zphi, &
978           ve_lay, vq_lay, ue_lay, uq_lay)           ve_lay, vq_lay, ue_lay, uq_lay)
979    
980      ! Accumuler les variables a stocker dans les fichiers histoire:      ! Accumuler les variables a stocker dans les fichiers histoire:
981    
982      ! conversion Ec -> E thermique      ! conversion Ec en énergie thermique
983      DO k = 1, llm      DO k = 1, llm
984         DO i = 1, klon         DO i = 1, klon
985            ZRCPD = RCPD * (1. + RVTMP2 * q_seri(i, k))            d_t_ec(i, k) = 0.5 / (RCPD * (1. + RVTMP2 * q_seri(i, k))) &
           d_t_ec(i, k) = 0.5 / ZRCPD &  
986                 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)                 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)
987            t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)            t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)
988            d_t_ec(i, k) = d_t_ec(i, k) / dtphys            d_t_ec(i, k) = d_t_ec(i, k) / dtphys
989         END DO         END DO
990      END DO      END DO
991    
     IF (if_ebil >= 1) THEN  
        tit = 'after physic'  
        CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &  
             ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)  
        ! Comme les tendances de la physique sont ajoute dans la dynamique,  
        ! on devrait avoir que la variation d'entalpie par la dynamique  
        ! est egale a la variation de la physique au pas de temps precedent.  
        ! Donc la somme de ces 2 variations devrait etre nulle.  
        call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, sens, &  
             evap, rain_fall, snow_fall, ztsol, d_h_vcol, d_qt, d_ec)  
        d_h_vcol_phy = d_h_vcol  
     END IF  
   
992      ! SORTIES      ! SORTIES
993    
994      ! prw = eau precipitable      ! prw = eau precipitable
995      DO i = 1, klon      DO i = 1, klon
996         prw(i) = 0.         prw(i) = 0.
997         DO k = 1, llm         DO k = 1, llm
998            prw(i) = prw(i) + q_seri(i, k)*zmasse(i, k)            prw(i) = prw(i) + q_seri(i, k) * zmasse(i, k)
999         ENDDO         ENDDO
1000      ENDDO      ENDDO
1001    
# Line 1392  contains Line 1027  contains
1027         ENDDO         ENDDO
1028      ENDDO      ENDDO
1029    
1030      call write_histins      CALL histwrite_phy("phis", pphis)
1031        CALL histwrite_phy("aire", airephy)
1032        CALL histwrite_phy("psol", paprs(:, 1))
1033        CALL histwrite_phy("precip", rain_fall + snow_fall)
1034        CALL histwrite_phy("plul", rain_lsc + snow_lsc)
1035        CALL histwrite_phy("pluc", rain_con + snow_con)
1036        CALL histwrite_phy("tsol", tsol)
1037        CALL histwrite_phy("t2m", zt2m)
1038        CALL histwrite_phy("q2m", zq2m)
1039        CALL histwrite_phy("u10m", zu10m)
1040        CALL histwrite_phy("v10m", zv10m)
1041        CALL histwrite_phy("snow", snow_fall)
1042        CALL histwrite_phy("cdrm", cdragm)
1043        CALL histwrite_phy("cdrh", cdragh)
1044        CALL histwrite_phy("topl", toplw)
1045        CALL histwrite_phy("evap", evap)
1046        CALL histwrite_phy("sols", solsw)
1047        CALL histwrite_phy("soll", sollw)
1048        CALL histwrite_phy("solldown", sollwdown)
1049        CALL histwrite_phy("bils", bils)
1050        CALL histwrite_phy("sens", - sens)
1051        CALL histwrite_phy("fder", fder)
1052        CALL histwrite_phy("dtsvdfo", d_ts(:, is_oce))
1053        CALL histwrite_phy("dtsvdft", d_ts(:, is_ter))
1054        CALL histwrite_phy("dtsvdfg", d_ts(:, is_lic))
1055        CALL histwrite_phy("dtsvdfi", d_ts(:, is_sic))
1056    
1057        DO nsrf = 1, nbsrf
1058           CALL histwrite_phy("pourc_"//clnsurf(nsrf), pctsrf(:, nsrf) * 100.)
1059           CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf))
1060           CALL histwrite_phy("sens_"//clnsurf(nsrf), flux_t(:, nsrf))
1061           CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf))
1062           CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf))
1063           CALL histwrite_phy("taux_"//clnsurf(nsrf), flux_u(:, nsrf))
1064           CALL histwrite_phy("tauy_"//clnsurf(nsrf), flux_v(:, nsrf))
1065           CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf))
1066           CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf))
1067        END DO
1068    
1069        CALL histwrite_phy("albs", albsol)
1070        CALL histwrite_phy("tro3", wo * dobson_u * 1e3 / zmasse / rmo3 * md)
1071        CALL histwrite_phy("rugs", zxrugs)
1072        CALL histwrite_phy("s_pblh", s_pblh)
1073        CALL histwrite_phy("s_pblt", s_pblt)
1074        CALL histwrite_phy("s_lcl", s_lcl)
1075        CALL histwrite_phy("s_capCL", s_capCL)
1076        CALL histwrite_phy("s_oliqCL", s_oliqCL)
1077        CALL histwrite_phy("s_cteiCL", s_cteiCL)
1078        CALL histwrite_phy("s_therm", s_therm)
1079        CALL histwrite_phy("s_trmb1", s_trmb1)
1080        CALL histwrite_phy("s_trmb2", s_trmb2)
1081        CALL histwrite_phy("s_trmb3", s_trmb3)
1082    
1083        if (conv_emanuel) then
1084           CALL histwrite_phy("ptop", ema_pct)
1085           CALL histwrite_phy("dnwd0", - mp)
1086        end if
1087    
1088        CALL histwrite_phy("temp", t_seri)
1089        CALL histwrite_phy("vitu", u_seri)
1090        CALL histwrite_phy("vitv", v_seri)
1091        CALL histwrite_phy("geop", zphi)
1092        CALL histwrite_phy("pres", play)
1093        CALL histwrite_phy("dtvdf", d_t_vdf)
1094        CALL histwrite_phy("dqvdf", d_q_vdf)
1095        CALL histwrite_phy("rhum", zx_rh)
1096        CALL histwrite_phy("d_t_ec", d_t_ec)
1097        CALL histwrite_phy("dtsw0", heat0 / 86400.)
1098        CALL histwrite_phy("dtlw0", - cool0 / 86400.)
1099        CALL histwrite_phy("msnow", sum(fsnow * pctsrf, dim = 2))
1100        call histwrite_phy("qsurf", sum(fqsurf * pctsrf, dim = 2))
1101    
1102        if (ok_instan) call histsync(nid_ins)
1103    
1104      IF (lafin) then      IF (lafin) then
1105         call NF95_CLOSE(ncid_startphy)         call NF95_CLOSE(ncid_startphy)
1106         CALL phyredem(pctsrf, ftsol, ftsoil, tslab, seaice, fqsurf, qsol, &         CALL phyredem(pctsrf, ftsol, ftsoil, fqsurf, qsol, &
1107              fsnow, falbe, fevap, rain_fall, snow_fall, solsw, sollw, dlw, &              fsnow, falbe, fevap, rain_fall, snow_fall, solsw, sollw, dlw, &
1108              radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, &              radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, &
1109              t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &              t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
# Line 1405  contains Line 1112  contains
1112    
1113      firstcal = .FALSE.      firstcal = .FALSE.
1114    
   contains  
   
     subroutine write_histins  
   
       ! From phylmd/write_histins.h, version 1.2 2005/05/25 13:10:09  
   
       ! Ecriture des sorties  
   
       use dimens_m, only: iim, jjm  
       USE histsync_m, ONLY: histsync  
       USE histwrite_m, ONLY: histwrite  
   
       integer i, itau_w ! pas de temps ecriture  
       REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm)  
   
       !--------------------------------------------------  
   
       IF (ok_instan) THEN  
          ! Champs 2D:  
   
          itau_w = itau_phy + itap  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, pphis, zx_tmp_2d)  
          CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, airephy, zx_tmp_2d)  
          CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = paprs(i, 1)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "psol", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_fall(i) + snow_fall(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "precip", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_lsc(i) + snow_lsc(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "plul", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_con(i) + snow_con(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "pluc", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxtsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "tsol", itau_w, zx_tmp_2d)  
          !ccIM  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zt2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "t2m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zq2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "q2m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zu10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "u10m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zv10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "v10m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, snow_fall, zx_tmp_2d)  
          CALL histwrite(nid_ins, "snow", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrm", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrh", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, toplw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "topl", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, evap, zx_tmp_2d)  
          CALL histwrite(nid_ins, "evap", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, solsw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sols", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "soll", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollwdown, zx_tmp_2d)  
          CALL histwrite(nid_ins, "solldown", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, bils, zx_tmp_2d)  
          CALL histwrite(nid_ins, "bils", itau_w, zx_tmp_2d)  
   
          zx_tmp_fi2d(1:klon) = - sens(1:klon)  
          ! CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sens, zx_tmp_2d)  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sens", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, fder, zx_tmp_2d)  
          CALL histwrite(nid_ins, "fder", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_oce), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfo", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_ter), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdft", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_lic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfg", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_sic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfi", itau_w, zx_tmp_2d)  
   
          DO nsrf = 1, nbsrf  
             !XXX  
             zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf)*100.  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "pourc_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "fract_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxt(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "sens_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxlat(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "lat_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = ftsol(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tsol_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxu(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "taux_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxv(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tauy_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = frugs(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "rugs_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = falbe(:, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "albe_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
          END DO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albs", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxrugs, zx_tmp_2d)  
          CALL histwrite(nid_ins, "rugs", itau_w, zx_tmp_2d)  
   
          !HBTM2  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblh", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblt, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblt", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_lcl, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_lcl", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_capCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_capCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_oliqCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_oliqCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_cteiCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_cteiCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_therm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_therm", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb1, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb1", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb2, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb2", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb3, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb3", itau_w, zx_tmp_2d)  
   
          ! Champs 3D:  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, t_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "temp", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, u_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitu", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, v_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitv", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, zphi, zx_tmp_3d)  
          CALL histwrite(nid_ins, "geop", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, play, zx_tmp_3d)  
          CALL histwrite(nid_ins, "pres", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_t_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dtvdf", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_q_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d)  
   
          call histsync(nid_ins)  
       ENDIF  
   
     end subroutine write_histins  
   
1115    END SUBROUTINE physiq    END SUBROUTINE physiq
1116    
1117  end module physiq_m  end module physiq_m

Legend:
Removed from v.174  
changed lines
  Added in v.224

  ViewVC Help
Powered by ViewVC 1.1.21