--- trunk/Sources/phylmd/physiq.f 2016/03/21 15:36:26 186 +++ trunk/Sources/phylmd/physiq.f 2016/06/08 12:23:41 202 @@ -16,11 +16,10 @@ use aaam_bud_m, only: aaam_bud USE abort_gcm_m, ONLY: abort_gcm - use aeropt_m, only: aeropt use ajsec_m, only: ajsec use calltherm_m, only: calltherm - USE clesphys, ONLY: cdhmax, cdmmax, ecrit_hf, ecrit_ins, ecrit_mth, & - ecrit_reg, ecrit_tra, ksta, ksta_ter, ok_kzmin + USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ksta, ksta_ter, ok_kzmin, & + ok_instan USE clesphys2, ONLY: cycle_diurne, conv_emanuel, nbapp_rad, new_oliq, & ok_orodr, ok_orolf USE clmain_m, ONLY: clmain @@ -28,7 +27,7 @@ use comconst, only: dtphys USE comgeomphy, ONLY: airephy USE concvl_m, ONLY: concvl - USE conf_gcm_m, ONLY: offline, raz_date, day_step, iphysiq + USE conf_gcm_m, ONLY: offline, day_step, iphysiq, lmt_pas USE conf_phys_m, ONLY: conf_phys use conflx_m, only: conflx USE ctherm, ONLY: iflag_thermals, nsplit_thermals @@ -43,11 +42,14 @@ USE fcttre, ONLY: foeew, qsatl, qsats, thermcep use fisrtilp_m, only: fisrtilp USE hgardfou_m, ONLY: hgardfou + USE histsync_m, ONLY: histsync + USE histwrite_phy_m, ONLY: histwrite_phy USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, & nbsrf - USE ini_histins_m, ONLY: ini_histins + USE ini_histins_m, ONLY: ini_histins, nid_ins use netcdf95, only: NF95_CLOSE use newmicro_m, only: newmicro + use nr_util, only: assert use nuage_m, only: nuage USE orbite_m, ONLY: orbite USE ozonecm_m, ONLY: ozonecm @@ -58,10 +60,9 @@ USE phytrac_m, ONLY: phytrac USE qcheck_m, ONLY: qcheck use radlwsw_m, only: radlwsw - use readsulfate_m, only: readsulfate - use readsulfate_preind_m, only: readsulfate_preind use yoegwd, only: sugwd USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt + use time_phylmdz, only: itap, increment_itap use transp_m, only: transp use transp_lay_m, only: transp_lay use unit_nml_m, only: unit_nml @@ -82,24 +83,24 @@ REAL, intent(in):: play(:, :) ! (klon, llm) ! pression pour le mileu de chaque couche (en Pa) - REAL, intent(in):: pphi(:, :) ! (klon, llm) + REAL, intent(in):: pphi(:, :) ! (klon, llm) ! géopotentiel de chaque couche (référence sol) REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol REAL, intent(in):: u(:, :) ! (klon, llm) - ! vitesse dans la direction X (de O a E) en m/s + ! vitesse dans la direction X (de O a E) en m / s - REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m/s + REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m / s REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K) REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx) ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs) - REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa/s + REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa / s REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2) REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2) - REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K/s) + REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K / s) REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx) ! tendance physique de "qx" (s-1) @@ -108,23 +109,13 @@ LOGICAL:: firstcal = .true. - LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface - PARAMETER (ok_gust = .FALSE.) - - LOGICAL, PARAMETER:: check = .FALSE. + LOGICAL, PARAMETER:: check = .FALSE. ! Verifier la conservation du modele en eau LOGICAL, PARAMETER:: ok_stratus = .FALSE. ! Ajouter artificiellement les stratus - logical:: ok_journe = .false., ok_mensuel = .true., ok_instan = .false. - ! sorties journalieres, mensuelles et instantanees dans les - ! fichiers histday, histmth et histins - - LOGICAL ok_region ! sortir le fichier regional - PARAMETER (ok_region = .FALSE.) - - ! pour phsystoke avec thermiques + ! pour phystoke avec thermiques REAL fm_therm(klon, llm + 1) REAL entr_therm(klon, llm) real, save:: q2(klon, llm + 1, nbsrf) @@ -135,8 +126,8 @@ REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm) LOGICAL, save:: ancien_ok - REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K/s) - REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg/kg/s) + REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K / s) + REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg / kg / s) real da(klon, llm), phi(klon, llm, llm), mp(klon, llm) @@ -146,27 +137,16 @@ REAL lwdn0(klon, llm + 1), lwdn(klon, llm + 1) REAL lwup0(klon, llm + 1), lwup(klon, llm + 1) - SAVE lwdn0, lwdn, lwup0, lwup - - ! Amip2 - ! variables a une pression donnee - - integer nlevSTD - PARAMETER(nlevSTD = 17) + SAVE lwdn0, lwdn, lwup0, lwup ! prw: precipitable water real prw(klon) - ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg/m2) - ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg/kg) + ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg / m2) + ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg / kg) REAL flwp(klon), fiwp(klon) REAL flwc(klon, llm), fiwc(klon, llm) - INTEGER kmax, lmax - PARAMETER(kmax = 8, lmax = 8) - INTEGER kmaxm1, lmaxm1 - PARAMETER(kmaxm1 = kmax - 1, lmaxm1 = lmax - 1) - ! Variables propres a la physique INTEGER, save:: radpas @@ -176,8 +156,6 @@ REAL radsol(klon) SAVE radsol ! bilan radiatif au sol calcule par code radiatif - INTEGER:: itap = 0 ! number of calls to "physiq" - REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction REAL, save:: ftsoil(klon, nsoilmx, nbsrf) @@ -208,23 +186,15 @@ REAL zulow(klon), zvlow(klon) INTEGER igwd, itest(klon) - REAL agesno(klon, nbsrf) - SAVE agesno ! age de la neige + REAL, save:: agesno(klon, nbsrf) ! age de la neige + REAL, save:: run_off_lic_0(klon) - REAL run_off_lic_0(klon) - SAVE run_off_lic_0 - !KE43 - ! Variables liees a la convection de K. Emanuel (sb): - - REAL Ma(klon, llm) ! undilute upward mass flux - SAVE Ma - REAL qcondc(klon, llm) ! in-cld water content from convect - SAVE qcondc + ! Variables li\'ees \`a la convection d'Emanuel : + REAL, save:: Ma(klon, llm) ! undilute upward mass flux + REAL, save:: qcondc(klon, llm) ! in-cld water content from convect REAL, save:: sig1(klon, llm), w01(klon, llm) - REAL, save:: wd(klon) - - ! Variables pour la couche limite (al1): + ! Variables pour la couche limite (Alain Lahellec) : REAL cdragh(klon) ! drag coefficient pour T and Q REAL cdragm(klon) ! drag coefficient pour vent @@ -232,10 +202,12 @@ REAL ycoefh(klon, llm) ! coef d'echange pour phytrac REAL yu1(klon) ! vents dans la premiere couche U REAL yv1(klon) ! vents dans la premiere couche V - REAL ffonte(klon, nbsrf) !Flux thermique utilise pour fondre la neige - REAL fqcalving(klon, nbsrf) !Flux d'eau "perdue" par la surface - ! !et necessaire pour limiter la - ! !hauteur de neige, en kg/m2/s + REAL ffonte(klon, nbsrf) ! flux thermique utilise pour fondre la neige + + REAL fqcalving(klon, nbsrf) + ! flux d'eau "perdue" par la surface et necessaire pour limiter la + ! hauteur de neige, en kg / m2 / s + REAL zxffonte(klon), zxfqcalving(klon) REAL pfrac_impa(klon, llm)! Produits des coefs lessivage impaction @@ -248,10 +220,10 @@ REAL frac_nucl(klon, llm) ! idem (nucleation) REAL, save:: rain_fall(klon) - ! liquid water mass flux (kg/m2/s), positive down + ! liquid water mass flux (kg / m2 / s), positive down REAL, save:: snow_fall(klon) - ! solid water mass flux (kg/m2/s), positive down + ! solid water mass flux (kg / m2 / s), positive down REAL rain_tiedtke(klon), snow_tiedtke(klon) @@ -260,7 +232,7 @@ REAL dlw(klon) ! derivee infra rouge SAVE dlw REAL bils(klon) ! bilan de chaleur au sol - REAL, save:: fder(klon) ! Derive de flux (sensible et latente) + REAL, save:: fder(klon) ! Derive de flux (sensible et latente) REAL ve(klon) ! integr. verticale du transport meri. de l'energie REAL vq(klon) ! integr. verticale du transport meri. de l'eau REAL ue(klon) ! integr. verticale du transport zonal de l'energie @@ -272,9 +244,7 @@ ! Conditions aux limites INTEGER julien - INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface - REAL pctsrf_new(klon, nbsrf) ! pourcentage surfaces issus d'ORCHIDEE REAL, save:: albsol(klon) ! albedo du sol total visible REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU @@ -310,14 +280,14 @@ real, save:: sollwdown(klon) ! downward LW flux at surface REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon) REAL, save:: albpla(klon) - REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous surface - REAL fsolsw(klon, nbsrf) ! flux solaire absorb. pour chaque sous surface + REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous-surface + REAL fsolsw(klon, nbsrf) ! flux solaire absorb\'e pour chaque sous-surface - REAL conv_q(klon, llm) ! convergence de l'humidite (kg/kg/s) - REAL conv_t(klon, llm) ! convergence of temperature (K/s) + REAL conv_q(klon, llm) ! convergence de l'humidite (kg / kg / s) + REAL conv_t(klon, llm) ! convergence of temperature (K / s) - REAL cldl(klon), cldm(klon), cldh(klon) !nuages bas, moyen et haut - REAL cldt(klon), cldq(klon) !nuage total, eau liquide integree + REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut + REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon) @@ -331,7 +301,7 @@ REAL, PARAMETER:: t_coup = 234. REAL zphi(klon, llm) - ! cf. Anne Mathieu variables pour la couche limite atmosphérique (hbtm) + ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm) REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA @@ -341,7 +311,7 @@ REAL, SAVE:: pblt(klon, nbsrf) ! T a la Hauteur de couche limite REAL, SAVE:: therm(klon, nbsrf) REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape - REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition + REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition REAL, SAVE:: trmb3(klon, nbsrf) ! Point Omega ! Grandeurs de sorties REAL s_pblh(klon), s_lcl(klon), s_capCL(klon) @@ -423,10 +393,6 @@ REAL zustrph(klon), zvstrph(klon) REAL aam, torsfc - REAL zx_tmp_fi2d(klon) ! variable temporaire grille physique - - INTEGER, SAVE:: nid_ins - REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert. REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert. REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert. @@ -441,9 +407,11 @@ REAL zero_v(klon) CHARACTER(LEN = 20) tit INTEGER:: ip_ebil = 0 ! print level for energy conservation diagnostics - INTEGER:: if_ebil = 0 ! verbosity for diagnostics of energy conservation + INTEGER:: if_ebil = 0 ! verbosity for diagnostics of energy conservation + + REAL d_t_ec(klon, llm) + ! tendance due \`a la conversion Ec en énergie thermique - REAL d_t_ec(klon, llm) ! tendance due \`a la conversion Ec -> E thermique REAL ZRCPD REAL t2m(klon, nbsrf), q2m(klon, nbsrf) ! temperature and humidity at 2 m @@ -453,13 +421,13 @@ ! Aerosol effects: - REAL sulfate(klon, llm) ! SO4 aerosol concentration (micro g/m3) + REAL sulfate(klon, llm) ! SO4 aerosol concentration (micro g / m3) REAL, save:: sulfate_pi(klon, llm) - ! SO4 aerosol concentration, in \mu g/m3, pre-industrial value + ! SO4 aerosol concentration, in \mu g / m3, pre-industrial value REAL cldtaupi(klon, llm) - ! cloud optical thickness for pre-industrial (pi) aerosols + ! cloud optical thickness for pre-industrial aerosols REAL re(klon, llm) ! Cloud droplet effective radius REAL fl(klon, llm) ! denominator of re @@ -471,8 +439,6 @@ REAL topswad(klon), solswad(klon) ! aerosol direct effect REAL topswai(klon), solswai(klon) ! aerosol indirect effect - REAL aerindex(klon) ! POLDER aerosol index - LOGICAL:: ok_ade = .false. ! apply aerosol direct effect LOGICAL:: ok_aie = .false. ! apply aerosol indirect effect @@ -495,15 +461,14 @@ SAVE d_u_con SAVE d_v_con - real zmasse(klon, llm) + real zmasse(klon, llm) ! (column-density of mass of air in a cell, in kg m-2) - real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2 - integer, save:: ncid_startphy, itau_phy + integer, save:: ncid_startphy - namelist /physiq_nml/ ok_journe, ok_mensuel, ok_instan, fact_cldcon, & - facttemps, ok_newmicro, iflag_cldcon, ratqsbas, ratqshaut, if_ebil, & - ok_ade, ok_aie, bl95_b0, bl95_b1, iflag_thermals, nsplit_thermals + namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, & + iflag_cldcon, ratqsbas, ratqshaut, if_ebil, ok_ade, ok_aie, bl95_b0, & + bl95_b1, iflag_thermals, nsplit_thermals !---------------------------------------------------------------- @@ -544,7 +509,7 @@ pblt =0. ! T a la Hauteur de couche limite therm =0. trmb1 =0. ! deep_cape - trmb2 =0. ! inhibition + trmb2 =0. ! inhibition trmb3 =0. ! Point Omega IF (if_ebil >= 1) d_h_vcol_phy = 0. @@ -560,24 +525,17 @@ ! Initialiser les compteurs: frugs = 0. - CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, & - fsnow, falbe, fevap, rain_fall, snow_fall, solsw, sollw, dlw, & - radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, & - t_ancien, q_ancien, ancien_ok, rnebcon, ratqs, clwcon, & - run_off_lic_0, sig1, w01, ncid_startphy, itau_phy) + CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, & + fevap, rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, & + agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, & + q_ancien, ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, & + w01, ncid_startphy) ! ATTENTION : il faudra a terme relire q2 dans l'etat initial q2 = 1e-8 - lmt_pas = day_step / iphysiq - print *, 'Number of time steps of "physics" per day: ', lmt_pas - radpas = lmt_pas / nbapp_rad - - ! On remet le calendrier a zero - IF (raz_date) itau_phy = 0 - - CALL printflag(radpas, ok_journe, ok_instan, ok_region) + print *, "radpas = ", radpas ! Initialisation pour le sch\'ema de convection d'Emanuel : IF (conv_emanuel) THEN @@ -592,19 +550,15 @@ rugoro = 0. ENDIF - ecrit_ins = NINT(ecrit_ins/dtphys) - ecrit_hf = NINT(ecrit_hf/dtphys) - ecrit_mth = NINT(ecrit_mth/dtphys) - ecrit_tra = NINT(86400.*ecrit_tra/dtphys) - ecrit_reg = NINT(ecrit_reg/dtphys) + ecrit_ins = NINT(ecrit_ins / dtphys) ! Initialisation des sorties - call ini_histins(dtphys, ok_instan, nid_ins, itau_phy) + call ini_histins(dtphys) CALL ymds2ju(annee_ref, 1, day_ref, 0., date0) ! Positionner date0 pour initialisation de ORCHIDEE print *, 'physiq date0: ', date0 - CALL phyredem0(lmt_pas, itau_phy) + CALL phyredem0 ENDIF test_firstcal ! We will modify variables *_seri and we will not touch variables @@ -618,15 +572,15 @@ ztsol = sum(ftsol * pctsrf, dim = 2) - IF (if_ebil >= 1) THEN + IF (if_ebil >= 1) THEN tit = 'after dynamics' CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, & ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) ! Comme les tendances de la physique sont ajout\'es dans la - ! dynamique, la variation d'enthalpie par la dynamique devrait - ! \^etre \'egale \`a la variation de la physique au pas de temps - ! pr\'ec\'edent. Donc la somme de ces 2 variations devrait \^etre - ! nulle. + ! dynamique, la variation d'enthalpie par la dynamique devrait + ! \^etre \'egale \`a la variation de la physique au pas de temps + ! pr\'ec\'edent. Donc la somme de ces 2 variations devrait \^etre + ! nulle. call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, & zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol + d_h_vcol_phy, & d_qt, 0.) @@ -660,8 +614,7 @@ ! Check temperatures: CALL hgardfou(t_seri, ftsol) - ! Incrémenter le compteur de la physique - itap = itap + 1 + call increment_itap julien = MOD(dayvrai, 360) if (julien == 0) julien = 360 @@ -681,7 +634,7 @@ ENDDO ql_seri = 0. - IF (if_ebil >= 2) THEN + IF (if_ebil >= 2) THEN tit = 'after reevap' CALL diagetpq(airephy, tit, ip_ebil, 2, 1, dtphys, t_seri, q_seri, & ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) @@ -692,7 +645,7 @@ frugs = MAX(frugs, 0.000015) zxrugs = sum(frugs * pctsrf, dim = 2) - ! Calculs nécessaires au calcul de l'albedo dans l'interface avec + ! Calculs n\'ecessaires au calcul de l'albedo dans l'interface avec ! la surface. CALL orbite(REAL(julien), longi, dist) @@ -718,15 +671,14 @@ ! Couche limite: - CALL clmain(dtphys, itap, pctsrf, pctsrf_new, t_seri, q_seri, u_seri, & - v_seri, julien, mu0, ftsol, cdmmax, cdhmax, ksta, ksta_ter, & - ok_kzmin, ftsoil, qsol, paprs, play, fsnow, fqsurf, fevap, falbe, & - fluxlat, rain_fall, snow_fall, fsolsw, fsollw, fder, rlat, frugs, & - firstcal, agesno, rugoro, d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, & - fluxt, fluxq, fluxu, fluxv, cdragh, cdragm, q2, dsens, devap, & - ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, pblh, capCL, oliqCL, cteiCL, & - pblT, therm, trmb1, trmb2, trmb3, plcl, fqcalving, ffonte, & - run_off_lic_0) + CALL clmain(dtphys, pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, & + ftsol, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, & + paprs, play, fsnow, fqsurf, fevap, falbe, fluxlat, rain_fall, & + snow_fall, fsolsw, fsollw, fder, rlat, frugs, agesno, rugoro, & + d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, fluxt, fluxq, fluxu, & + fluxv, cdragh, cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, & + u10m, v10m, pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, & + trmb3, plcl, fqcalving, ffonte, run_off_lic_0) ! Incr\'ementation des flux @@ -759,7 +711,7 @@ ENDDO ENDDO - IF (if_ebil >= 2) THEN + IF (if_ebil >= 2) THEN tit = 'after clmain' CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) @@ -770,7 +722,6 @@ ! Update surface temperature: DO i = 1, klon - zxtsol(i) = 0. zxfluxlat(i) = 0. zt2m(i) = 0. @@ -780,8 +731,8 @@ zxffonte(i) = 0. zxfqcalving(i) = 0. - s_pblh(i) = 0. - s_lcl(i) = 0. + s_pblh(i) = 0. + s_lcl(i) = 0. s_capCL(i) = 0. s_oliqCL(i) = 0. s_cteiCL(i) = 0. @@ -790,35 +741,33 @@ s_trmb1(i) = 0. s_trmb2(i) = 0. s_trmb3(i) = 0. - - IF (abs(pctsrf(i, is_ter) + pctsrf(i, is_lic) + pctsrf(i, is_oce) & - + pctsrf(i, is_sic) - 1.) > EPSFRA) print *, & - 'physiq : probl\`eme sous surface au point ', i, & - pctsrf(i, 1 : nbsrf) ENDDO + + call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf') + + ftsol = ftsol + d_ts + zxtsol = sum(ftsol * pctsrf, dim = 2) DO nsrf = 1, nbsrf DO i = 1, klon - ftsol(i, nsrf) = ftsol(i, nsrf) + d_ts(i, nsrf) - zxtsol(i) = zxtsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf) - zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf)*pctsrf(i, nsrf) - - zt2m(i) = zt2m(i) + t2m(i, nsrf)*pctsrf(i, nsrf) - zq2m(i) = zq2m(i) + q2m(i, nsrf)*pctsrf(i, nsrf) - zu10m(i) = zu10m(i) + u10m(i, nsrf)*pctsrf(i, nsrf) - zv10m(i) = zv10m(i) + v10m(i, nsrf)*pctsrf(i, nsrf) - zxffonte(i) = zxffonte(i) + ffonte(i, nsrf)*pctsrf(i, nsrf) + zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf) * pctsrf(i, nsrf) + + zt2m(i) = zt2m(i) + t2m(i, nsrf) * pctsrf(i, nsrf) + zq2m(i) = zq2m(i) + q2m(i, nsrf) * pctsrf(i, nsrf) + zu10m(i) = zu10m(i) + u10m(i, nsrf) * pctsrf(i, nsrf) + zv10m(i) = zv10m(i) + v10m(i, nsrf) * pctsrf(i, nsrf) + zxffonte(i) = zxffonte(i) + ffonte(i, nsrf) * pctsrf(i, nsrf) zxfqcalving(i) = zxfqcalving(i) + & - fqcalving(i, nsrf)*pctsrf(i, nsrf) - s_pblh(i) = s_pblh(i) + pblh(i, nsrf)*pctsrf(i, nsrf) - s_lcl(i) = s_lcl(i) + plcl(i, nsrf)*pctsrf(i, nsrf) - s_capCL(i) = s_capCL(i) + capCL(i, nsrf) *pctsrf(i, nsrf) - s_oliqCL(i) = s_oliqCL(i) + oliqCL(i, nsrf) *pctsrf(i, nsrf) - s_cteiCL(i) = s_cteiCL(i) + cteiCL(i, nsrf) *pctsrf(i, nsrf) - s_pblT(i) = s_pblT(i) + pblT(i, nsrf) *pctsrf(i, nsrf) - s_therm(i) = s_therm(i) + therm(i, nsrf) *pctsrf(i, nsrf) - s_trmb1(i) = s_trmb1(i) + trmb1(i, nsrf) *pctsrf(i, nsrf) - s_trmb2(i) = s_trmb2(i) + trmb2(i, nsrf) *pctsrf(i, nsrf) - s_trmb3(i) = s_trmb3(i) + trmb3(i, nsrf) *pctsrf(i, nsrf) + fqcalving(i, nsrf) * pctsrf(i, nsrf) + s_pblh(i) = s_pblh(i) + pblh(i, nsrf) * pctsrf(i, nsrf) + s_lcl(i) = s_lcl(i) + plcl(i, nsrf) * pctsrf(i, nsrf) + s_capCL(i) = s_capCL(i) + capCL(i, nsrf) * pctsrf(i, nsrf) + s_oliqCL(i) = s_oliqCL(i) + oliqCL(i, nsrf) * pctsrf(i, nsrf) + s_cteiCL(i) = s_cteiCL(i) + cteiCL(i, nsrf) * pctsrf(i, nsrf) + s_pblT(i) = s_pblT(i) + pblT(i, nsrf) * pctsrf(i, nsrf) + s_therm(i) = s_therm(i) + therm(i, nsrf) * pctsrf(i, nsrf) + s_trmb1(i) = s_trmb1(i) + trmb1(i, nsrf) * pctsrf(i, nsrf) + s_trmb2(i) = s_trmb2(i) + trmb2(i, nsrf) * pctsrf(i, nsrf) + s_trmb3(i) = s_trmb3(i) + trmb3(i, nsrf) * pctsrf(i, nsrf) ENDDO ENDDO @@ -850,25 +799,23 @@ ! Calculer la dérive du flux infrarouge DO i = 1, klon - dlw(i) = - 4. * RSIGMA * zxtsol(i)**3 + dlw(i) = - 4. * RSIGMA * zxtsol(i)**3 ENDDO IF (check) print *, "avantcon = ", qcheck(paprs, q_seri, ql_seri) - ! Appeler la convection (au choix) + ! Appeler la convection if (conv_emanuel) then da = 0. mp = 0. phi = 0. - CALL concvl(dtphys, paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, & - w01, d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, & - itop_con, upwd, dnwd, dnwd0, Ma, cape, iflagctrl, qcondc, wd, & - pmflxr, da, phi, mp) + CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, & + d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, & + upwd, dnwd, dnwd0, Ma, cape, iflagctrl, qcondc, pmflxr, da, phi, mp) snow_con = 0. clwcon0 = qcondc mfu = upwd + dnwd - IF (.NOT. ok_gust) wd = 0. IF (thermcep) THEN zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play) @@ -882,7 +829,7 @@ call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, & rnebcon0) - forall (i = 1:klon) ema_pct(i) = paprs(i,itop_con(i) + 1) + forall (i = 1:klon) ema_pct(i) = paprs(i, itop_con(i) + 1) mfd = 0. pen_u = 0. pen_d = 0. @@ -912,7 +859,7 @@ ENDDO ENDDO - IF (if_ebil >= 2) THEN + IF (if_ebil >= 2) THEN tit = 'after convect' CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) @@ -926,11 +873,11 @@ zx_t = 0. za = 0. DO i = 1, klon - za = za + airephy(i)/REAL(klon) + za = za + airephy(i) / REAL(klon) zx_t = zx_t + (rain_con(i)+ & - snow_con(i))*airephy(i)/REAL(klon) + snow_con(i)) * airephy(i) / REAL(klon) ENDDO - zx_t = zx_t/za*dtphys + zx_t = zx_t / za * dtphys print *, "Precip = ", zx_t ENDIF @@ -961,12 +908,11 @@ t_seri = t_seri + d_t_ajs q_seri = q_seri + d_q_ajs else - ! Thermiques call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, & q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm) endif - IF (if_ebil >= 2) THEN + IF (if_ebil >= 2) THEN tit = 'after dry_adjust' CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) @@ -993,7 +939,7 @@ do k = 1, llm do i = 1, klon ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) & - * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.) + * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.) enddo enddo @@ -1032,15 +978,15 @@ zx_t = 0. za = 0. DO i = 1, klon - za = za + airephy(i)/REAL(klon) + za = za + airephy(i) / REAL(klon) zx_t = zx_t + (rain_lsc(i) & - + snow_lsc(i))*airephy(i)/REAL(klon) + + snow_lsc(i)) * airephy(i) / REAL(klon) ENDDO - zx_t = zx_t/za*dtphys + zx_t = zx_t / za * dtphys print *, "Precip = ", zx_t ENDIF - IF (if_ebil >= 2) THEN + IF (if_ebil >= 2) THEN tit = 'after fisrt' CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) @@ -1062,8 +1008,8 @@ do k = 1, llm do i = 1, klon if (d_q_con(i, k) < 0.) then - rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k)/dtphys & - *zmasse(i, k) + rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k) / dtphys & + * zmasse(i, k) endif enddo enddo @@ -1098,7 +1044,7 @@ ! On prend la somme des fractions nuageuses et des contenus en eau cldfra = min(max(cldfra, rnebcon), 1.) - cldliq = cldliq + rnebcon*clwcon + cldliq = cldliq + rnebcon * clwcon ENDIF ! 2. Nuages stratiformes @@ -1130,35 +1076,26 @@ DO i = 1, klon zx_t = t_seri(i, k) IF (thermcep) THEN - zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t)/play(i, k) + zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t) / play(i, k) zx_qs = MIN(0.5, zx_qs) - zcor = 1./(1. - retv*zx_qs) - zx_qs = zx_qs*zcor + zcor = 1. / (1. - retv * zx_qs) + zx_qs = zx_qs * zcor ELSE IF (zx_t < t_coup) THEN - zx_qs = qsats(zx_t)/play(i, k) + zx_qs = qsats(zx_t) / play(i, k) ELSE - zx_qs = qsatl(zx_t)/play(i, k) + zx_qs = qsatl(zx_t) / play(i, k) ENDIF ENDIF - zx_rh(i, k) = q_seri(i, k)/zx_qs + zx_rh(i, k) = q_seri(i, k) / zx_qs zqsat(i, k) = zx_qs ENDDO ENDDO ! Introduce the aerosol direct and first indirect radiative forcings: - IF (ok_ade .OR. ok_aie) THEN - ! Get sulfate aerosol distribution : - CALL readsulfate(dayvrai, time, firstcal, sulfate) - CALL readsulfate_preind(dayvrai, time, firstcal, sulfate_pi) - - CALL aeropt(play, paprs, t_seri, sulfate, rhcl, tau_ae, piz_ae, cg_ae, & - aerindex) - ELSE - tau_ae = 0. - piz_ae = 0. - cg_ae = 0. - ENDIF + tau_ae = 0. + piz_ae = 0. + cg_ae = 0. ! Param\`etres optiques des nuages et quelques param\`etres pour ! diagnostics : @@ -1190,11 +1127,12 @@ DO k = 1, llm DO i = 1, klon - t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys/86400. + t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys & + / 86400. ENDDO ENDDO - IF (if_ebil >= 2) THEN + IF (if_ebil >= 2) THEN tit = 'after rad' CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) @@ -1209,8 +1147,8 @@ ENDDO DO nsrf = 1, nbsrf DO i = 1, klon - zxqsurf(i) = zxqsurf(i) + fqsurf(i, nsrf)*pctsrf(i, nsrf) - zxsnow(i) = zxsnow(i) + fsnow(i, nsrf)*pctsrf(i, nsrf) + zxqsurf(i) = zxqsurf(i) + fqsurf(i, nsrf) * pctsrf(i, nsrf) + zxsnow(i) = zxsnow(i) + fsnow(i, nsrf) * pctsrf(i, nsrf) ENDDO ENDDO @@ -1295,14 +1233,14 @@ d_qt, d_ec) ! Calcul des tendances traceurs - call phytrac(itap, lmt_pas, julien, time, firstcal, lafin, dtphys, t, & - paprs, play, mfu, mfd, pde_u, pen_d, ycoefh, fm_therm, entr_therm, & - yu1, yv1, ftsol, pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, & - dnwd, tr_seri, zmasse, ncid_startphy, nid_ins, itau_phy) - - IF (offline) call phystokenc(dtphys, rlon, rlat, t, mfu, mfd, pen_u, & - pde_u, pen_d, pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, & - pctsrf, frac_impa, frac_nucl, pphis, airephy, dtphys, itap) + call phytrac(julien, time, firstcal, lafin, dtphys, t, paprs, play, mfu, & + mfd, pde_u, pen_d, ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, & + pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, dnwd, tr_seri, & + zmasse, ncid_startphy) + + IF (offline) call phystokenc(dtphys, t, mfu, mfd, pen_u, pde_u, pen_d, & + pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, pctsrf, & + frac_impa, frac_nucl, pphis, airephy, dtphys) ! Calculer le transport de l'eau et de l'energie (diagnostique) CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq) @@ -1314,7 +1252,7 @@ ! Accumuler les variables a stocker dans les fichiers histoire: - ! conversion Ec -> E thermique + ! conversion Ec en énergie thermique DO k = 1, llm DO i = 1, klon ZRCPD = RCPD * (1. + RVTMP2 * q_seri(i, k)) @@ -1325,11 +1263,11 @@ END DO END DO - IF (if_ebil >= 1) THEN + IF (if_ebil >= 1) THEN tit = 'after physic' CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, & ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) - ! Comme les tendances de la physique sont ajoute dans la dynamique, + ! Comme les tendances de la physique sont ajoute dans la dynamique, ! on devrait avoir que la variation d'entalpie par la dynamique ! est egale a la variation de la physique au pas de temps precedent. ! Donc la somme de ces 2 variations devrait etre nulle. @@ -1344,7 +1282,7 @@ DO i = 1, klon prw(i) = 0. DO k = 1, llm - prw(i) = prw(i) + q_seri(i, k)*zmasse(i, k) + prw(i) = prw(i) + q_seri(i, k) * zmasse(i, k) ENDDO ENDDO @@ -1376,7 +1314,68 @@ ENDDO ENDDO - call write_histins + CALL histwrite_phy("phis", pphis) + CALL histwrite_phy("aire", airephy) + CALL histwrite_phy("psol", paprs(:, 1)) + CALL histwrite_phy("precip", rain_fall + snow_fall) + CALL histwrite_phy("plul", rain_lsc + snow_lsc) + CALL histwrite_phy("pluc", rain_con + snow_con) + CALL histwrite_phy("tsol", zxtsol) + CALL histwrite_phy("t2m", zt2m) + CALL histwrite_phy("q2m", zq2m) + CALL histwrite_phy("u10m", zu10m) + CALL histwrite_phy("v10m", zv10m) + CALL histwrite_phy("snow", snow_fall) + CALL histwrite_phy("cdrm", cdragm) + CALL histwrite_phy("cdrh", cdragh) + CALL histwrite_phy("topl", toplw) + CALL histwrite_phy("evap", evap) + CALL histwrite_phy("sols", solsw) + CALL histwrite_phy("soll", sollw) + CALL histwrite_phy("solldown", sollwdown) + CALL histwrite_phy("bils", bils) + CALL histwrite_phy("sens", - sens) + CALL histwrite_phy("fder", fder) + CALL histwrite_phy("dtsvdfo", d_ts(:, is_oce)) + CALL histwrite_phy("dtsvdft", d_ts(:, is_ter)) + CALL histwrite_phy("dtsvdfg", d_ts(:, is_lic)) + CALL histwrite_phy("dtsvdfi", d_ts(:, is_sic)) + + DO nsrf = 1, nbsrf + CALL histwrite_phy("pourc_"//clnsurf(nsrf), pctsrf(:, nsrf) * 100.) + CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf)) + CALL histwrite_phy("sens_"//clnsurf(nsrf), fluxt(:, 1, nsrf)) + CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf)) + CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf)) + CALL histwrite_phy("taux_"//clnsurf(nsrf), fluxu(:, 1, nsrf)) + CALL histwrite_phy("tauy_"//clnsurf(nsrf), fluxv(:, 1, nsrf)) + CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf)) + CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf)) + END DO + + CALL histwrite_phy("albs", albsol) + CALL histwrite_phy("rugs", zxrugs) + CALL histwrite_phy("s_pblh", s_pblh) + CALL histwrite_phy("s_pblt", s_pblt) + CALL histwrite_phy("s_lcl", s_lcl) + CALL histwrite_phy("s_capCL", s_capCL) + CALL histwrite_phy("s_oliqCL", s_oliqCL) + CALL histwrite_phy("s_cteiCL", s_cteiCL) + CALL histwrite_phy("s_therm", s_therm) + CALL histwrite_phy("s_trmb1", s_trmb1) + CALL histwrite_phy("s_trmb2", s_trmb2) + CALL histwrite_phy("s_trmb3", s_trmb3) + if (conv_emanuel) CALL histwrite_phy("ptop", ema_pct) + CALL histwrite_phy("temp", t_seri) + CALL histwrite_phy("vitu", u_seri) + CALL histwrite_phy("vitv", v_seri) + CALL histwrite_phy("geop", zphi) + CALL histwrite_phy("pres", play) + CALL histwrite_phy("dtvdf", d_t_vdf) + CALL histwrite_phy("dqvdf", d_q_vdf) + CALL histwrite_phy("rhum", zx_rh) + + if (ok_instan) call histsync(nid_ins) IF (lafin) then call NF95_CLOSE(ncid_startphy) @@ -1389,243 +1388,6 @@ firstcal = .FALSE. - contains - - subroutine write_histins - - ! From phylmd/write_histins.h, version 1.2 2005/05/25 13:10:09 - - ! Ecriture des sorties - - use dimens_m, only: iim, jjm - use gr_fi_ecrit_m, only: gr_fi_ecrit - USE histsync_m, ONLY: histsync - USE histwrite_m, ONLY: histwrite - - integer i, itau_w ! pas de temps ecriture - REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm) - - !-------------------------------------------------- - - IF (ok_instan) THEN - ! Champs 2D: - - itau_w = itau_phy + itap - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, pphis, zx_tmp_2d) - CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, airephy, zx_tmp_2d) - CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d) - - DO i = 1, klon - zx_tmp_fi2d(i) = paprs(i, 1) - ENDDO - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "psol", itau_w, zx_tmp_2d) - - DO i = 1, klon - zx_tmp_fi2d(i) = rain_fall(i) + snow_fall(i) - ENDDO - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "precip", itau_w, zx_tmp_2d) - - DO i = 1, klon - zx_tmp_fi2d(i) = rain_lsc(i) + snow_lsc(i) - ENDDO - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "plul", itau_w, zx_tmp_2d) - - DO i = 1, klon - zx_tmp_fi2d(i) = rain_con(i) + snow_con(i) - ENDDO - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "pluc", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxtsol, zx_tmp_2d) - CALL histwrite(nid_ins, "tsol", itau_w, zx_tmp_2d) - !ccIM - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zt2m, zx_tmp_2d) - CALL histwrite(nid_ins, "t2m", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zq2m, zx_tmp_2d) - CALL histwrite(nid_ins, "q2m", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zu10m, zx_tmp_2d) - CALL histwrite(nid_ins, "u10m", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zv10m, zx_tmp_2d) - CALL histwrite(nid_ins, "v10m", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, snow_fall, zx_tmp_2d) - CALL histwrite(nid_ins, "snow", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragm, zx_tmp_2d) - CALL histwrite(nid_ins, "cdrm", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragh, zx_tmp_2d) - CALL histwrite(nid_ins, "cdrh", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, toplw, zx_tmp_2d) - CALL histwrite(nid_ins, "topl", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, evap, zx_tmp_2d) - CALL histwrite(nid_ins, "evap", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, solsw, zx_tmp_2d) - CALL histwrite(nid_ins, "sols", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollw, zx_tmp_2d) - CALL histwrite(nid_ins, "soll", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollwdown, zx_tmp_2d) - CALL histwrite(nid_ins, "solldown", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, bils, zx_tmp_2d) - CALL histwrite(nid_ins, "bils", itau_w, zx_tmp_2d) - - zx_tmp_fi2d(1:klon) = - sens(1:klon) - ! CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sens, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "sens", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, fder, zx_tmp_2d) - CALL histwrite(nid_ins, "fder", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_oce), zx_tmp_2d) - CALL histwrite(nid_ins, "dtsvdfo", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_ter), zx_tmp_2d) - CALL histwrite(nid_ins, "dtsvdft", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_lic), zx_tmp_2d) - CALL histwrite(nid_ins, "dtsvdfg", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_sic), zx_tmp_2d) - CALL histwrite(nid_ins, "dtsvdfi", itau_w, zx_tmp_2d) - - DO nsrf = 1, nbsrf - !XXX - zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf)*100. - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "pourc_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d) - - zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "fract_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d) - - zx_tmp_fi2d(1 : klon) = fluxt(1 : klon, 1, nsrf) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "sens_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d) - - zx_tmp_fi2d(1 : klon) = fluxlat(1 : klon, nsrf) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "lat_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d) - - zx_tmp_fi2d(1 : klon) = ftsol(1 : klon, nsrf) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "tsol_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d) - - zx_tmp_fi2d(1 : klon) = fluxu(1 : klon, 1, nsrf) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "taux_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d) - - zx_tmp_fi2d(1 : klon) = fluxv(1 : klon, 1, nsrf) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "tauy_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d) - - zx_tmp_fi2d(1 : klon) = frugs(1 : klon, nsrf) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "rugs_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d) - - zx_tmp_fi2d(1 : klon) = falbe(:, nsrf) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "albe_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d) - - END DO - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsol, zx_tmp_2d) - CALL histwrite(nid_ins, "albs", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxrugs, zx_tmp_2d) - CALL histwrite(nid_ins, "rugs", itau_w, zx_tmp_2d) - - !HBTM2 - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblh, zx_tmp_2d) - CALL histwrite(nid_ins, "s_pblh", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblt, zx_tmp_2d) - CALL histwrite(nid_ins, "s_pblt", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_lcl, zx_tmp_2d) - CALL histwrite(nid_ins, "s_lcl", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_capCL, zx_tmp_2d) - CALL histwrite(nid_ins, "s_capCL", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_oliqCL, zx_tmp_2d) - CALL histwrite(nid_ins, "s_oliqCL", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_cteiCL, zx_tmp_2d) - CALL histwrite(nid_ins, "s_cteiCL", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_therm, zx_tmp_2d) - CALL histwrite(nid_ins, "s_therm", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb1, zx_tmp_2d) - CALL histwrite(nid_ins, "s_trmb1", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb2, zx_tmp_2d) - CALL histwrite(nid_ins, "s_trmb2", itau_w, zx_tmp_2d) - - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb3, zx_tmp_2d) - CALL histwrite(nid_ins, "s_trmb3", itau_w, zx_tmp_2d) - - if (conv_emanuel) then - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, ema_pct, zx_tmp_2d) - CALL histwrite(nid_ins, "ptop", itau_w, zx_tmp_2d) - end if - - ! Champs 3D: - - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, t_seri, zx_tmp_3d) - CALL histwrite(nid_ins, "temp", itau_w, zx_tmp_3d) - - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, u_seri, zx_tmp_3d) - CALL histwrite(nid_ins, "vitu", itau_w, zx_tmp_3d) - - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, v_seri, zx_tmp_3d) - CALL histwrite(nid_ins, "vitv", itau_w, zx_tmp_3d) - - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, zphi, zx_tmp_3d) - CALL histwrite(nid_ins, "geop", itau_w, zx_tmp_3d) - - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, play, zx_tmp_3d) - CALL histwrite(nid_ins, "pres", itau_w, zx_tmp_3d) - - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_t_vdf, zx_tmp_3d) - CALL histwrite(nid_ins, "dtvdf", itau_w, zx_tmp_3d) - - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_q_vdf, zx_tmp_3d) - CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d) - - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, zx_rh, zx_tmp_3d) - CALL histwrite(nid_ins, "rhum", itau_w, zx_tmp_3d) - - call histsync(nid_ins) - ENDIF - - end subroutine write_histins - END SUBROUTINE physiq end module physiq_m