--- trunk/Sources/phylmd/physiq.f 2016/06/08 12:23:41 202 +++ trunk/Sources/phylmd/physiq.f 2017/11/14 14:56:42 244 @@ -20,26 +20,23 @@ use calltherm_m, only: calltherm USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ksta, ksta_ter, ok_kzmin, & ok_instan - USE clesphys2, ONLY: cycle_diurne, conv_emanuel, nbapp_rad, new_oliq, & - ok_orodr, ok_orolf + USE clesphys2, ONLY: conv_emanuel, nbapp_rad, new_oliq, ok_orodr, ok_orolf USE clmain_m, ONLY: clmain use clouds_gno_m, only: clouds_gno use comconst, only: dtphys USE comgeomphy, ONLY: airephy USE concvl_m, ONLY: concvl - USE conf_gcm_m, ONLY: offline, day_step, iphysiq, lmt_pas + USE conf_gcm_m, ONLY: lmt_pas USE conf_phys_m, ONLY: conf_phys use conflx_m, only: conflx USE ctherm, ONLY: iflag_thermals, nsplit_thermals use diagcld2_m, only: diagcld2 - use diagetpq_m, only: diagetpq - use diagphy_m, only: diagphy USE dimens_m, ONLY: llm, nqmx USE dimphy, ONLY: klon USE dimsoil, ONLY: nsoilmx use drag_noro_m, only: drag_noro use dynetat0_m, only: day_ref, annee_ref - USE fcttre, ONLY: foeew, qsatl, qsats, thermcep + USE fcttre, ONLY: foeew use fisrtilp_m, only: fisrtilp USE hgardfou_m, ONLY: hgardfou USE histsync_m, ONLY: histsync @@ -47,21 +44,20 @@ USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, & nbsrf USE ini_histins_m, ONLY: ini_histins, nid_ins + use lift_noro_m, only: lift_noro use netcdf95, only: NF95_CLOSE use newmicro_m, only: newmicro use nr_util, only: assert use nuage_m, only: nuage USE orbite_m, ONLY: orbite USE ozonecm_m, ONLY: ozonecm - USE phyetat0_m, ONLY: phyetat0, rlat, rlon + USE phyetat0_m, ONLY: phyetat0 USE phyredem_m, ONLY: phyredem USE phyredem0_m, ONLY: phyredem0 - USE phystokenc_m, ONLY: phystokenc USE phytrac_m, ONLY: phytrac - USE qcheck_m, ONLY: qcheck use radlwsw_m, only: radlwsw use yoegwd, only: sugwd - USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt + USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt, rmo3, md use time_phylmdz, only: itap, increment_itap use transp_m, only: transp use transp_lay_m, only: transp_lay @@ -109,9 +105,6 @@ LOGICAL:: firstcal = .true. - LOGICAL, PARAMETER:: check = .FALSE. - ! Verifier la conservation du modele en eau - LOGICAL, PARAMETER:: ok_stratus = .FALSE. ! Ajouter artificiellement les stratus @@ -131,13 +124,11 @@ real da(klon, llm), phi(klon, llm, llm), mp(klon, llm) - REAL swdn0(klon, llm + 1), swdn(klon, llm + 1) - REAL swup0(klon, llm + 1), swup(klon, llm + 1) - SAVE swdn0, swdn, swup0, swup - - REAL lwdn0(klon, llm + 1), lwdn(klon, llm + 1) - REAL lwup0(klon, llm + 1), lwup(klon, llm + 1) - SAVE lwdn0, lwdn, lwup0, lwup + REAL, save:: swdn0(klon, llm + 1), swdn(klon, llm + 1) + REAL, save:: swup0(klon, llm + 1), swup(klon, llm + 1) + + REAL, save:: lwdn0(klon, llm + 1), lwdn(klon, llm + 1) + REAL, save:: lwup0(klon, llm + 1), lwup(klon, llm + 1) ! prw: precipitable water real prw(klon) @@ -153,9 +144,7 @@ ! Radiative transfer computations are made every "radpas" call to ! "physiq". - REAL radsol(klon) - SAVE radsol ! bilan radiatif au sol calcule par code radiatif - + REAL, save:: radsol(klon) ! bilan radiatif au sol calcule par code radiatif REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction REAL, save:: ftsoil(klon, nsoilmx, nbsrf) @@ -163,15 +152,12 @@ REAL, save:: fevap(klon, nbsrf) ! evaporation REAL fluxlat(klon, nbsrf) - SAVE fluxlat REAL, save:: fqsurf(klon, nbsrf) ! humidite de l'air au contact de la surface - REAL, save:: qsol(klon) - ! column-density of water in soil, in kg m-2 - - REAL, save:: fsnow(klon, nbsrf) ! epaisseur neigeuse + REAL, save:: qsol(klon) ! column-density of water in soil, in kg m-2 + REAL, save:: fsnow(klon, nbsrf) ! \'epaisseur neigeuse REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) : @@ -198,25 +184,24 @@ REAL cdragh(klon) ! drag coefficient pour T and Q REAL cdragm(klon) ! drag coefficient pour vent - ! Pour phytrac : - REAL ycoefh(klon, llm) ! coef d'echange pour phytrac - REAL yu1(klon) ! vents dans la premiere couche U - REAL yv1(klon) ! vents dans la premiere couche V - REAL ffonte(klon, nbsrf) ! flux thermique utilise pour fondre la neige + REAL coefh(klon, 2:llm) ! coef d'echange pour phytrac + + REAL, save:: ffonte(klon, nbsrf) + ! flux thermique utilise pour fondre la neige - REAL fqcalving(klon, nbsrf) + REAL, save:: fqcalving(klon, nbsrf) ! flux d'eau "perdue" par la surface et necessaire pour limiter la ! hauteur de neige, en kg / m2 / s REAL zxffonte(klon), zxfqcalving(klon) - REAL pfrac_impa(klon, llm)! Produits des coefs lessivage impaction - save pfrac_impa - REAL pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation - save pfrac_nucl - REAL pfrac_1nucl(klon, llm)! Produits des coefs lessi nucl (alpha = 1) - save pfrac_1nucl - REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction) + REAL, save:: pfrac_impa(klon, llm)! Produits des coefs lessivage impaction + REAL, save:: pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation + + REAL, save:: pfrac_1nucl(klon, llm) + ! Produits des coefs lessi nucl (alpha = 1) + + REAL frac_impa(klon, llm) ! fraction d'a\'erosols lessiv\'es (impaction) REAL frac_nucl(klon, llm) ! idem (nucleation) REAL, save:: rain_fall(klon) @@ -227,12 +212,13 @@ REAL rain_tiedtke(klon), snow_tiedtke(klon) - REAL evap(klon), devap(klon) ! evaporation and its derivative - REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee - REAL dlw(klon) ! derivee infra rouge - SAVE dlw + REAL evap(klon) ! flux d'\'evaporation au sol + real devap(klon) ! derivative of the evaporation flux at the surface + REAL sens(klon) ! flux de chaleur sensible au sol + real dsens(klon) ! derivee du flux de chaleur sensible au sol + REAL, save:: dlw(klon) ! derivative of infra-red flux REAL bils(klon) ! bilan de chaleur au sol - REAL, save:: fder(klon) ! Derive de flux (sensible et latente) + REAL fder(klon) ! Derive de flux (sensible et latente) REAL ve(klon) ! integr. verticale du transport meri. de l'energie REAL vq(klon) ! integr. verticale du transport meri. de l'eau REAL ue(klon) ! integr. verticale du transport zonal de l'energie @@ -245,8 +231,9 @@ INTEGER julien REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface - REAL, save:: albsol(klon) ! albedo du sol total visible + REAL, save:: albsol(klon) ! albedo du sol total, visible, moyen par maille REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU + real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2 real, save:: clwcon(klon, llm), rnebcon(klon, llm) real, save:: clwcon0(klon, llm), rnebcon0(klon, llm) @@ -259,15 +246,11 @@ REAL cldtau(klon, llm) ! epaisseur optique REAL cldemi(klon, llm) ! emissivite infrarouge - REAL fluxq(klon, llm, nbsrf) ! flux turbulent d'humidite - REAL fluxt(klon, llm, nbsrf) ! flux turbulent de chaleur - REAL fluxu(klon, llm, nbsrf) ! flux turbulent de vitesse u - REAL fluxv(klon, llm, nbsrf) ! flux turbulent de vitesse v - - REAL zxfluxt(klon, llm) - REAL zxfluxq(klon, llm) - REAL zxfluxu(klon, llm) - REAL zxfluxv(klon, llm) + REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface + REAL flux_t(klon, nbsrf) ! flux turbulent de chaleur à la surface + + REAL flux_u(klon, nbsrf), flux_v(klon, nbsrf) + ! tension du vent (flux turbulent de vent) à la surface, en Pa ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que ! les variables soient r\'emanentes. @@ -289,16 +272,14 @@ REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree - REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon) - + REAL zxfluxlat(klon) REAL dist, mu0(klon), fract(klon) real longi REAL z_avant(klon), z_apres(klon), z_factor(klon) - REAL za, zb + REAL zb REAL zx_t, zx_qs, zcor real zqsat(klon, llm) INTEGER i, k, iq, nsrf - REAL, PARAMETER:: t_coup = 234. REAL zphi(klon, llm) ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm) @@ -308,7 +289,7 @@ REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite - REAL, SAVE:: pblt(klon, nbsrf) ! T a la Hauteur de couche limite + REAL, SAVE:: pblt(klon, nbsrf) ! T \`a la hauteur de couche limite REAL, SAVE:: therm(klon, nbsrf) REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition @@ -323,9 +304,7 @@ REAL upwd(klon, llm) ! saturated updraft mass flux REAL dnwd(klon, llm) ! saturated downdraft mass flux - REAL dnwd0(klon, llm) ! unsaturated downdraft mass flux - REAL cape(klon) ! CAPE - SAVE cape + REAL, save:: cape(klon) INTEGER iflagctrl(klon) ! flag fonctionnement de convect @@ -337,7 +316,7 @@ ! eva: \'evaporation de l'eau liquide nuageuse ! vdf: vertical diffusion in boundary layer REAL d_t_con(klon, llm), d_q_con(klon, llm) - REAL d_u_con(klon, llm), d_v_con(klon, llm) + REAL, save:: d_u_con(klon, llm), d_v_con(klon, llm) REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm) REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm) REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm) @@ -353,10 +332,11 @@ INTEGER, save:: ibas_con(klon), itop_con(klon) real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa - REAL rain_con(klon), rain_lsc(klon) + REAL, save:: rain_con(klon) + real rain_lsc(klon) REAL, save:: snow_con(klon) ! neige (mm / s) real snow_lsc(klon) - REAL d_ts(klon, nbsrf) + REAL d_ts(klon, nbsrf) ! variation of ftsol REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm) REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm) @@ -390,7 +370,6 @@ REAL zustrdr(klon), zvstrdr(klon) REAL zustrli(klon), zvstrli(klon) - REAL zustrph(klon), zvstrph(klon) REAL aam, torsfc REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert. @@ -399,121 +378,72 @@ REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert. real date0 - - ! Variables li\'ees au bilan d'\'energie et d'enthalpie : - REAL ztsol(klon) - REAL d_h_vcol, d_qt, d_ec - REAL, SAVE:: d_h_vcol_phy - REAL zero_v(klon) - CHARACTER(LEN = 20) tit - INTEGER:: ip_ebil = 0 ! print level for energy conservation diagnostics - INTEGER:: if_ebil = 0 ! verbosity for diagnostics of energy conservation + REAL tsol(klon) REAL d_t_ec(klon, llm) - ! tendance due \`a la conversion Ec en énergie thermique + ! tendance due \`a la conversion d'\'energie cin\'etique en + ! énergie thermique - REAL ZRCPD + REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf) + ! temperature and humidity at 2 m - REAL t2m(klon, nbsrf), q2m(klon, nbsrf) ! temperature and humidity at 2 m - REAL u10m(klon, nbsrf), v10m(klon, nbsrf) ! vents a 10 m - REAL zt2m(klon), zq2m(klon) ! temp., hum. 2 m moyenne s/ 1 maille - REAL zu10m(klon), zv10m(klon) ! vents a 10 m moyennes s/1 maille + REAL, save:: u10m_srf(klon, nbsrf), v10m_srf(klon, nbsrf) + ! composantes du vent \`a 10 m + + REAL zt2m(klon), zq2m(klon) ! température, humidité 2 m moyenne sur 1 maille + REAL u10m(klon), v10m(klon) ! vent \`a 10 m moyenn\' sur les sous-surfaces ! Aerosol effects: - REAL sulfate(klon, llm) ! SO4 aerosol concentration (micro g / m3) - - REAL, save:: sulfate_pi(klon, llm) - ! SO4 aerosol concentration, in \mu g / m3, pre-industrial value - - REAL cldtaupi(klon, llm) - ! cloud optical thickness for pre-industrial aerosols - - REAL re(klon, llm) ! Cloud droplet effective radius - REAL fl(klon, llm) ! denominator of re - - ! Aerosol optical properties - REAL, save:: tau_ae(klon, llm, 2), piz_ae(klon, llm, 2) - REAL, save:: cg_ae(klon, llm, 2) - - REAL topswad(klon), solswad(klon) ! aerosol direct effect - REAL topswai(klon), solswai(klon) ! aerosol indirect effect - + REAL, save:: topswad(klon), solswad(klon) ! aerosol direct effect LOGICAL:: ok_ade = .false. ! apply aerosol direct effect - LOGICAL:: ok_aie = .false. ! apply aerosol indirect effect REAL:: bl95_b0 = 2., bl95_b1 = 0.2 ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus ! B). They link cloud droplet number concentration to aerosol mass ! concentration. - SAVE u10m - SAVE v10m - SAVE t2m - SAVE q2m - SAVE ffonte - SAVE fqcalving - SAVE rain_con - SAVE topswai - SAVE topswad - SAVE solswai - SAVE solswad - SAVE d_u_con - SAVE d_v_con - real zmasse(klon, llm) ! (column-density of mass of air in a cell, in kg m-2) integer, save:: ncid_startphy - namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, & - iflag_cldcon, ratqsbas, ratqshaut, if_ebil, ok_ade, ok_aie, bl95_b0, & - bl95_b1, iflag_thermals, nsplit_thermals + namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, & + ratqsbas, ratqshaut, ok_ade, bl95_b0, bl95_b1, iflag_thermals, & + nsplit_thermals !---------------------------------------------------------------- - IF (if_ebil >= 1) zero_v = 0. IF (nqmx < 2) CALL abort_gcm('physiq', & 'eaux vapeur et liquide sont indispensables') test_firstcal: IF (firstcal) THEN ! initialiser - u10m = 0. - v10m = 0. + u10m_srf = 0. + v10m_srf = 0. t2m = 0. q2m = 0. ffonte = 0. fqcalving = 0. - piz_ae = 0. - tau_ae = 0. - cg_ae = 0. rain_con = 0. snow_con = 0. - topswai = 0. - topswad = 0. - solswai = 0. - solswad = 0. - d_u_con = 0. d_v_con = 0. rnebcon0 = 0. clwcon0 = 0. rnebcon = 0. clwcon = 0. - pblh =0. ! Hauteur de couche limite plcl =0. ! Niveau de condensation de la CLA capCL =0. ! CAPE de couche limite oliqCL =0. ! eau_liqu integree de couche limite cteiCL =0. ! cloud top instab. crit. couche limite - pblt =0. ! T a la Hauteur de couche limite + pblt =0. therm =0. trmb1 =0. ! deep_cape trmb2 =0. ! inhibition trmb3 =0. ! Point Omega - IF (if_ebil >= 1) d_h_vcol_phy = 0. - iflag_thermals = 0 nsplit_thermals = 1 print *, "Enter namelist 'physiq_nml'." @@ -554,7 +484,7 @@ ! Initialisation des sorties - call ini_histins(dtphys) + call ini_histins(dtphys, ok_newmicro) CALL ymds2ju(annee_ref, 1, day_ref, 0., date0) ! Positionner date0 pour initialisation de ORCHIDEE print *, 'physiq date0: ', date0 @@ -570,21 +500,7 @@ ql_seri = qx(:, :, iliq) tr_seri = qx(:, :, 3:nqmx) - ztsol = sum(ftsol * pctsrf, dim = 2) - - IF (if_ebil >= 1) THEN - tit = 'after dynamics' - CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, & - ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) - ! Comme les tendances de la physique sont ajout\'es dans la - ! dynamique, la variation d'enthalpie par la dynamique devrait - ! \^etre \'egale \`a la variation de la physique au pas de temps - ! pr\'ec\'edent. Donc la somme de ces 2 variations devrait \^etre - ! nulle. - call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, & - zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol + d_h_vcol_phy, & - d_qt, 0.) - END IF + tsol = sum(ftsol * pctsrf, dim = 2) ! Diagnostic de la tendance dynamique : IF (ancien_ok) THEN @@ -620,9 +536,6 @@ forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg - ! Prescrire l'ozone : - wo = ozonecm(REAL(julien), paprs) - ! \'Evaporation de l'eau liquide nuageuse : DO k = 1, llm DO i = 1, klon @@ -634,14 +547,6 @@ ENDDO ql_seri = 0. - IF (if_ebil >= 2) THEN - tit = 'after reevap' - CALL diagetpq(airephy, tit, ip_ebil, 2, 1, dtphys, t_seri, q_seri, & - ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) - call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, & - zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec) - END IF - frugs = MAX(frugs, 0.000015) zxrugs = sum(frugs * pctsrf, dim = 2) @@ -649,58 +554,32 @@ ! la surface. CALL orbite(REAL(julien), longi, dist) - IF (cycle_diurne) THEN - CALL zenang(longi, time, dtphys * radpas, mu0, fract) - ELSE - mu0 = - 999.999 - ENDIF - - ! Calcul de l'abedo moyen par maille + CALL zenang(longi, time, dtphys * radpas, mu0, fract) albsol = sum(falbe * pctsrf, dim = 2) ! R\'epartition sous maille des flux longwave et shortwave ! R\'epartition du longwave par sous-surface lin\'earis\'ee forall (nsrf = 1: nbsrf) - fsollw(:, nsrf) = sollw + 4. * RSIGMA * ztsol**3 & - * (ztsol - ftsol(:, nsrf)) + fsollw(:, nsrf) = sollw + 4. * RSIGMA * tsol**3 & + * (tsol - ftsol(:, nsrf)) fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol) END forall - fder = dlw - - ! Couche limite: - CALL clmain(dtphys, pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, & ftsol, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, & paprs, play, fsnow, fqsurf, fevap, falbe, fluxlat, rain_fall, & - snow_fall, fsolsw, fsollw, fder, rlat, frugs, agesno, rugoro, & - d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, fluxt, fluxq, fluxu, & - fluxv, cdragh, cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, & - u10m, v10m, pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, & - trmb3, plcl, fqcalving, ffonte, run_off_lic_0) + snow_fall, fsolsw, fsollw, frugs, agesno, rugoro, d_t_vdf, d_q_vdf, & + d_u_vdf, d_v_vdf, d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, & + cdragm, q2, dsens, devap, coefh, t2m, q2m, u10m_srf, v10m_srf, & + pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, plcl, & + fqcalving, ffonte, run_off_lic_0) ! Incr\'ementation des flux - zxfluxt = 0. - zxfluxq = 0. - zxfluxu = 0. - zxfluxv = 0. - DO nsrf = 1, nbsrf - DO k = 1, llm - DO i = 1, klon - zxfluxt(i, k) = zxfluxt(i, k) + fluxt(i, k, nsrf) * pctsrf(i, nsrf) - zxfluxq(i, k) = zxfluxq(i, k) + fluxq(i, k, nsrf) * pctsrf(i, nsrf) - zxfluxu(i, k) = zxfluxu(i, k) + fluxu(i, k, nsrf) * pctsrf(i, nsrf) - zxfluxv(i, k) = zxfluxv(i, k) + fluxv(i, k, nsrf) * pctsrf(i, nsrf) - END DO - END DO - END DO - DO i = 1, klon - sens(i) = - zxfluxt(i, 1) ! flux de chaleur sensible au sol - evap(i) = - zxfluxq(i, 1) ! flux d'\'evaporation au sol - fder(i) = dlw(i) + dsens(i) + devap(i) - ENDDO + sens = - sum(flux_t * pctsrf, dim = 2) + evap = - sum(flux_q * pctsrf, dim = 2) + fder = dlw + dsens + devap DO k = 1, llm DO i = 1, klon @@ -711,118 +590,68 @@ ENDDO ENDDO - IF (if_ebil >= 2) THEN - tit = 'after clmain' - CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & - ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) - call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, & - sens, evap, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec) - END IF - ! Update surface temperature: - DO i = 1, klon - zxfluxlat(i) = 0. - - zt2m(i) = 0. - zq2m(i) = 0. - zu10m(i) = 0. - zv10m(i) = 0. - zxffonte(i) = 0. - zxfqcalving(i) = 0. - - s_pblh(i) = 0. - s_lcl(i) = 0. - s_capCL(i) = 0. - s_oliqCL(i) = 0. - s_cteiCL(i) = 0. - s_pblT(i) = 0. - s_therm(i) = 0. - s_trmb1(i) = 0. - s_trmb2(i) = 0. - s_trmb3(i) = 0. - ENDDO - call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf') - ftsol = ftsol + d_ts - zxtsol = sum(ftsol * pctsrf, dim = 2) - DO nsrf = 1, nbsrf - DO i = 1, klon - zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf) * pctsrf(i, nsrf) + tsol = sum(ftsol * pctsrf, dim = 2) + zxfluxlat = sum(fluxlat * pctsrf, dim = 2) + zt2m = sum(t2m * pctsrf, dim = 2) + zq2m = sum(q2m * pctsrf, dim = 2) + u10m = sum(u10m_srf * pctsrf, dim = 2) + v10m = sum(v10m_srf * pctsrf, dim = 2) + zxffonte = sum(ffonte * pctsrf, dim = 2) + zxfqcalving = sum(fqcalving * pctsrf, dim = 2) + s_pblh = sum(pblh * pctsrf, dim = 2) + s_lcl = sum(plcl * pctsrf, dim = 2) + s_capCL = sum(capCL * pctsrf, dim = 2) + s_oliqCL = sum(oliqCL * pctsrf, dim = 2) + s_cteiCL = sum(cteiCL * pctsrf, dim = 2) + s_pblT = sum(pblT * pctsrf, dim = 2) + s_therm = sum(therm * pctsrf, dim = 2) + s_trmb1 = sum(trmb1 * pctsrf, dim = 2) + s_trmb2 = sum(trmb2 * pctsrf, dim = 2) + s_trmb3 = sum(trmb3 * pctsrf, dim = 2) - zt2m(i) = zt2m(i) + t2m(i, nsrf) * pctsrf(i, nsrf) - zq2m(i) = zq2m(i) + q2m(i, nsrf) * pctsrf(i, nsrf) - zu10m(i) = zu10m(i) + u10m(i, nsrf) * pctsrf(i, nsrf) - zv10m(i) = zv10m(i) + v10m(i, nsrf) * pctsrf(i, nsrf) - zxffonte(i) = zxffonte(i) + ffonte(i, nsrf) * pctsrf(i, nsrf) - zxfqcalving(i) = zxfqcalving(i) + & - fqcalving(i, nsrf) * pctsrf(i, nsrf) - s_pblh(i) = s_pblh(i) + pblh(i, nsrf) * pctsrf(i, nsrf) - s_lcl(i) = s_lcl(i) + plcl(i, nsrf) * pctsrf(i, nsrf) - s_capCL(i) = s_capCL(i) + capCL(i, nsrf) * pctsrf(i, nsrf) - s_oliqCL(i) = s_oliqCL(i) + oliqCL(i, nsrf) * pctsrf(i, nsrf) - s_cteiCL(i) = s_cteiCL(i) + cteiCL(i, nsrf) * pctsrf(i, nsrf) - s_pblT(i) = s_pblT(i) + pblT(i, nsrf) * pctsrf(i, nsrf) - s_therm(i) = s_therm(i) + therm(i, nsrf) * pctsrf(i, nsrf) - s_trmb1(i) = s_trmb1(i) + trmb1(i, nsrf) * pctsrf(i, nsrf) - s_trmb2(i) = s_trmb2(i) + trmb2(i, nsrf) * pctsrf(i, nsrf) - s_trmb3(i) = s_trmb3(i) + trmb3(i, nsrf) * pctsrf(i, nsrf) - ENDDO - ENDDO - - ! Si une sous-fraction n'existe pas, elle prend la température moyenne : + ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne : DO nsrf = 1, nbsrf DO i = 1, klon - IF (pctsrf(i, nsrf) < epsfra) ftsol(i, nsrf) = zxtsol(i) - - IF (pctsrf(i, nsrf) < epsfra) t2m(i, nsrf) = zt2m(i) - IF (pctsrf(i, nsrf) < epsfra) q2m(i, nsrf) = zq2m(i) - IF (pctsrf(i, nsrf) < epsfra) u10m(i, nsrf) = zu10m(i) - IF (pctsrf(i, nsrf) < epsfra) v10m(i, nsrf) = zv10m(i) - IF (pctsrf(i, nsrf) < epsfra) ffonte(i, nsrf) = zxffonte(i) - IF (pctsrf(i, nsrf) < epsfra) & - fqcalving(i, nsrf) = zxfqcalving(i) - IF (pctsrf(i, nsrf) < epsfra) pblh(i, nsrf) = s_pblh(i) - IF (pctsrf(i, nsrf) < epsfra) plcl(i, nsrf) = s_lcl(i) - IF (pctsrf(i, nsrf) < epsfra) capCL(i, nsrf) = s_capCL(i) - IF (pctsrf(i, nsrf) < epsfra) oliqCL(i, nsrf) = s_oliqCL(i) - IF (pctsrf(i, nsrf) < epsfra) cteiCL(i, nsrf) = s_cteiCL(i) - IF (pctsrf(i, nsrf) < epsfra) pblT(i, nsrf) = s_pblT(i) - IF (pctsrf(i, nsrf) < epsfra) therm(i, nsrf) = s_therm(i) - IF (pctsrf(i, nsrf) < epsfra) trmb1(i, nsrf) = s_trmb1(i) - IF (pctsrf(i, nsrf) < epsfra) trmb2(i, nsrf) = s_trmb2(i) - IF (pctsrf(i, nsrf) < epsfra) trmb3(i, nsrf) = s_trmb3(i) + IF (pctsrf(i, nsrf) < epsfra) then + ftsol(i, nsrf) = tsol(i) + t2m(i, nsrf) = zt2m(i) + q2m(i, nsrf) = zq2m(i) + u10m_srf(i, nsrf) = u10m(i) + v10m_srf(i, nsrf) = v10m(i) + ffonte(i, nsrf) = zxffonte(i) + fqcalving(i, nsrf) = zxfqcalving(i) + pblh(i, nsrf) = s_pblh(i) + plcl(i, nsrf) = s_lcl(i) + capCL(i, nsrf) = s_capCL(i) + oliqCL(i, nsrf) = s_oliqCL(i) + cteiCL(i, nsrf) = s_cteiCL(i) + pblT(i, nsrf) = s_pblT(i) + therm(i, nsrf) = s_therm(i) + trmb1(i, nsrf) = s_trmb1(i) + trmb2(i, nsrf) = s_trmb2(i) + trmb3(i, nsrf) = s_trmb3(i) + end IF ENDDO ENDDO - ! Calculer la dérive du flux infrarouge - - DO i = 1, klon - dlw(i) = - 4. * RSIGMA * zxtsol(i)**3 - ENDDO - - IF (check) print *, "avantcon = ", qcheck(paprs, q_seri, ql_seri) + dlw = - 4. * RSIGMA * tsol**3 ! Appeler la convection if (conv_emanuel) then - da = 0. - mp = 0. - phi = 0. CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, & d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, & - upwd, dnwd, dnwd0, Ma, cape, iflagctrl, qcondc, pmflxr, da, phi, mp) + upwd, dnwd, Ma, cape, iflagctrl, qcondc, pmflxr, da, phi, mp) snow_con = 0. clwcon0 = qcondc mfu = upwd + dnwd - IF (thermcep) THEN - zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play) - zqsat = zqsat / (1. - retv * zqsat) - ELSE - zqsat = merge(qsats(t_seri), qsatl(t_seri), t_seri < t_coup) / play - ENDIF + zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play) + zqsat = zqsat / (1. - retv * zqsat) ! Properties of convective clouds clwcon0 = fact_cldcon * clwcon0 @@ -840,7 +669,7 @@ conv_t = d_t_dyn + d_t_vdf / dtphys z_avant = sum((q_seri + ql_seri) * zmasse, dim=2) CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:- 1), & - q_seri(:, llm:1:- 1), conv_t, conv_q, zxfluxq(:, 1), omega, & + q_seri(:, llm:1:- 1), conv_t, conv_q, - evap, omega, & d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:- 1), & mfd(:, llm:1:- 1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, & kdtop, pmflxr, pmflxs) @@ -859,28 +688,6 @@ ENDDO ENDDO - IF (if_ebil >= 2) THEN - tit = 'after convect' - CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & - ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) - call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, & - zero_v, zero_v, rain_con, snow_con, ztsol, d_h_vcol, d_qt, d_ec) - END IF - - IF (check) THEN - za = qcheck(paprs, q_seri, ql_seri) - print *, "aprescon = ", za - zx_t = 0. - za = 0. - DO i = 1, klon - za = za + airephy(i) / REAL(klon) - zx_t = zx_t + (rain_con(i)+ & - snow_con(i)) * airephy(i) / REAL(klon) - ENDDO - zx_t = zx_t / za * dtphys - print *, "Precip = ", zx_t - ENDIF - IF (.not. conv_emanuel) THEN z_apres = sum((q_seri + ql_seri) * zmasse, dim=2) z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres @@ -912,12 +719,6 @@ q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm) endif - IF (if_ebil >= 2) THEN - tit = 'after dry_adjust' - CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & - ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) - END IF - ! Caclul des ratqs ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q @@ -972,27 +773,6 @@ IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k) ENDDO ENDDO - IF (check) THEN - za = qcheck(paprs, q_seri, ql_seri) - print *, "apresilp = ", za - zx_t = 0. - za = 0. - DO i = 1, klon - za = za + airephy(i) / REAL(klon) - zx_t = zx_t + (rain_lsc(i) & - + snow_lsc(i)) * airephy(i) / REAL(klon) - ENDDO - zx_t = zx_t / za * dtphys - print *, "Precip = ", zx_t - ENDIF - - IF (if_ebil >= 2) THEN - tit = 'after fisrt' - CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & - ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) - call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, & - zero_v, zero_v, rain_lsc, snow_lsc, ztsol, d_h_vcol, d_qt, d_ec) - END IF ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT @@ -1067,64 +847,40 @@ snow_fall(i) = snow_con(i) + snow_lsc(i) ENDDO - IF (if_ebil >= 2) CALL diagetpq(airephy, "after diagcld", ip_ebil, 2, 2, & - dtphys, t_seri, q_seri, ql_seri, u_seri, v_seri, paprs, d_h_vcol, & - d_qt, d_ec) - ! Humidit\'e relative pour diagnostic : DO k = 1, llm DO i = 1, klon zx_t = t_seri(i, k) - IF (thermcep) THEN - zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t) / play(i, k) - zx_qs = MIN(0.5, zx_qs) - zcor = 1. / (1. - retv * zx_qs) - zx_qs = zx_qs * zcor - ELSE - IF (zx_t < t_coup) THEN - zx_qs = qsats(zx_t) / play(i, k) - ELSE - zx_qs = qsatl(zx_t) / play(i, k) - ENDIF - ENDIF + zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t) / play(i, k) + zx_qs = MIN(0.5, zx_qs) + zcor = 1. / (1. - retv * zx_qs) + zx_qs = zx_qs * zcor zx_rh(i, k) = q_seri(i, k) / zx_qs zqsat(i, k) = zx_qs ENDDO ENDDO - ! Introduce the aerosol direct and first indirect radiative forcings: - tau_ae = 0. - piz_ae = 0. - cg_ae = 0. - ! Param\`etres optiques des nuages et quelques param\`etres pour ! diagnostics : if (ok_newmicro) then CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, & - cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc, ok_aie, & - sulfate, sulfate_pi, bl95_b0, bl95_b1, cldtaupi, re, fl) + cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc) else CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, & - cldl, cldm, cldt, cldq, ok_aie, sulfate, sulfate_pi, bl95_b0, & - bl95_b1, cldtaupi, re, fl) + cldl, cldm, cldt, cldq) endif IF (MOD(itap - 1, radpas) == 0) THEN - ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol. - ! Calcul de l'abedo moyen par maille + wo = ozonecm(REAL(julien), paprs) albsol = sum(falbe * pctsrf, dim = 2) - - ! Rayonnement (compatible Arpege-IFS) : - CALL radlwsw(dist, mu0, fract, paprs, play, zxtsol, albsol, t_seri, & + CALL radlwsw(dist, mu0, fract, paprs, play, tsol, albsol, t_seri, & q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, & radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, & toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, & - swup0, swup, ok_ade, ok_aie, tau_ae, piz_ae, cg_ae, topswad, & - solswad, cldtaupi, topswai, solswai) + swup0, swup, ok_ade, topswad, solswad) ENDIF ! Ajouter la tendance des rayonnements (tous les pas) - DO k = 1, llm DO i = 1, klon t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys & @@ -1132,28 +888,7 @@ ENDDO ENDDO - IF (if_ebil >= 2) THEN - tit = 'after rad' - CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & - ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) - call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, & - zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec) - END IF - - ! Calculer l'hydrologie de la surface - DO i = 1, klon - zxqsurf(i) = 0. - zxsnow(i) = 0. - ENDDO - DO nsrf = 1, nbsrf - DO i = 1, klon - zxqsurf(i) = zxqsurf(i) + fqsurf(i, nsrf) * pctsrf(i, nsrf) - zxsnow(i) = zxsnow(i) + fsnow(i, nsrf) * pctsrf(i, nsrf) - ENDDO - ENDDO - ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage) - DO i = 1, klon bils(i) = radsol(i) - sens(i) + zxfluxlat(i) ENDDO @@ -1196,9 +931,9 @@ ENDIF ENDDO - CALL lift_noro(klon, llm, dtphys, paprs, play, rlat, zmea, zstd, zpic, & - itest, t_seri, u_seri, v_seri, zulow, zvlow, zustrli, zvstrli, & - d_t_lif, d_u_lif, d_v_lif) + CALL lift_noro(dtphys, paprs, play, zmea, zstd, zpic, itest, t_seri, & + u_seri, v_seri, zulow, zvlow, zustrli, zvstrli, d_t_lif, & + d_u_lif, d_v_lif) ! Ajout des tendances : DO k = 1, llm @@ -1210,37 +945,16 @@ ENDDO ENDIF - ! Stress n\'ecessaires : toute la physique - - DO i = 1, klon - zustrph(i) = 0. - zvstrph(i) = 0. - ENDDO - DO k = 1, llm - DO i = 1, klon - zustrph(i) = zustrph(i) + (u_seri(i, k) - u(i, k)) / dtphys & - * zmasse(i, k) - zvstrph(i) = zvstrph(i) + (v_seri(i, k) - v(i, k)) / dtphys & - * zmasse(i, k) - ENDDO - ENDDO - - CALL aaam_bud(rg, romega, rlat, rlon, pphis, zustrdr, zustrli, zustrph, & - zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc) - - IF (if_ebil >= 2) CALL diagetpq(airephy, 'after orography', ip_ebil, 2, & - 2, dtphys, t_seri, q_seri, ql_seri, u_seri, v_seri, paprs, d_h_vcol, & - d_qt, d_ec) + CALL aaam_bud(rg, romega, pphis, zustrdr, zustrli, & + sum((u_seri - u) / dtphys * zmasse, dim = 2), zvstrdr, & + zvstrli, sum((v_seri - v) / dtphys * zmasse, dim = 2), paprs, u, v, & + aam, torsfc) ! Calcul des tendances traceurs call phytrac(julien, time, firstcal, lafin, dtphys, t, paprs, play, mfu, & - mfd, pde_u, pen_d, ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, & - pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, dnwd, tr_seri, & - zmasse, ncid_startphy) - - IF (offline) call phystokenc(dtphys, t, mfu, mfd, pen_u, pde_u, pen_d, & - pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, pctsrf, & - frac_impa, frac_nucl, pphis, airephy, dtphys) + mfd, pde_u, pen_d, coefh, cdragh, fm_therm, entr_therm, u(:, 1), & + v(:, 1), ftsol, pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, & + dnwd, tr_seri, zmasse, ncid_startphy) ! Calculer le transport de l'eau et de l'energie (diagnostique) CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq) @@ -1255,27 +969,13 @@ ! conversion Ec en énergie thermique DO k = 1, llm DO i = 1, klon - ZRCPD = RCPD * (1. + RVTMP2 * q_seri(i, k)) - d_t_ec(i, k) = 0.5 / ZRCPD & + d_t_ec(i, k) = 0.5 / (RCPD * (1. + RVTMP2 * q_seri(i, k))) & * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2) t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k) d_t_ec(i, k) = d_t_ec(i, k) / dtphys END DO END DO - IF (if_ebil >= 1) THEN - tit = 'after physic' - CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, & - ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) - ! Comme les tendances de la physique sont ajoute dans la dynamique, - ! on devrait avoir que la variation d'entalpie par la dynamique - ! est egale a la variation de la physique au pas de temps precedent. - ! Donc la somme de ces 2 variations devrait etre nulle. - call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, sens, & - evap, rain_fall, snow_fall, ztsol, d_h_vcol, d_qt, d_ec) - d_h_vcol_phy = d_h_vcol - END IF - ! SORTIES ! prw = eau precipitable @@ -1320,11 +1020,11 @@ CALL histwrite_phy("precip", rain_fall + snow_fall) CALL histwrite_phy("plul", rain_lsc + snow_lsc) CALL histwrite_phy("pluc", rain_con + snow_con) - CALL histwrite_phy("tsol", zxtsol) + CALL histwrite_phy("tsol", tsol) CALL histwrite_phy("t2m", zt2m) CALL histwrite_phy("q2m", zq2m) - CALL histwrite_phy("u10m", zu10m) - CALL histwrite_phy("v10m", zv10m) + CALL histwrite_phy("u10m", u10m) + CALL histwrite_phy("v10m", v10m) CALL histwrite_phy("snow", snow_fall) CALL histwrite_phy("cdrm", cdragm) CALL histwrite_phy("cdrh", cdragh) @@ -1344,16 +1044,19 @@ DO nsrf = 1, nbsrf CALL histwrite_phy("pourc_"//clnsurf(nsrf), pctsrf(:, nsrf) * 100.) CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf)) - CALL histwrite_phy("sens_"//clnsurf(nsrf), fluxt(:, 1, nsrf)) + CALL histwrite_phy("sens_"//clnsurf(nsrf), flux_t(:, nsrf)) CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf)) CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf)) - CALL histwrite_phy("taux_"//clnsurf(nsrf), fluxu(:, 1, nsrf)) - CALL histwrite_phy("tauy_"//clnsurf(nsrf), fluxv(:, 1, nsrf)) + CALL histwrite_phy("taux_"//clnsurf(nsrf), flux_u(:, nsrf)) + CALL histwrite_phy("tauy_"//clnsurf(nsrf), flux_v(:, nsrf)) CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf)) CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf)) + CALL histwrite_phy("u10m_"//clnsurf(nsrf), u10m_srf(:, nsrf)) + CALL histwrite_phy("v10m_"//clnsurf(nsrf), v10m_srf(:, nsrf)) END DO CALL histwrite_phy("albs", albsol) + CALL histwrite_phy("tro3", wo * dobson_u * 1e3 / zmasse / rmo3 * md) CALL histwrite_phy("rugs", zxrugs) CALL histwrite_phy("s_pblh", s_pblh) CALL histwrite_phy("s_pblt", s_pblt) @@ -1365,7 +1068,12 @@ CALL histwrite_phy("s_trmb1", s_trmb1) CALL histwrite_phy("s_trmb2", s_trmb2) CALL histwrite_phy("s_trmb3", s_trmb3) - if (conv_emanuel) CALL histwrite_phy("ptop", ema_pct) + + if (conv_emanuel) then + CALL histwrite_phy("ptop", ema_pct) + CALL histwrite_phy("dnwd0", - mp) + end if + CALL histwrite_phy("temp", t_seri) CALL histwrite_phy("vitu", u_seri) CALL histwrite_phy("vitv", v_seri) @@ -1374,6 +1082,11 @@ CALL histwrite_phy("dtvdf", d_t_vdf) CALL histwrite_phy("dqvdf", d_q_vdf) CALL histwrite_phy("rhum", zx_rh) + CALL histwrite_phy("d_t_ec", d_t_ec) + CALL histwrite_phy("dtsw0", heat0 / 86400.) + CALL histwrite_phy("dtlw0", - cool0 / 86400.) + CALL histwrite_phy("msnow", sum(fsnow * pctsrf, dim = 2)) + call histwrite_phy("qsurf", sum(fqsurf * pctsrf, dim = 2)) if (ok_instan) call histsync(nid_ins)