/[lmdze]/trunk/phylmd/physiq.f
ViewVC logotype

Diff of /trunk/phylmd/physiq.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 204 by guez, Wed Jun 8 15:27:32 2016 UTC revision 206 by guez, Tue Aug 30 12:52:46 2016 UTC
# Line 56  contains Line 56  contains
56      USE phyredem0_m, ONLY: phyredem0      USE phyredem0_m, ONLY: phyredem0
57      USE phystokenc_m, ONLY: phystokenc      USE phystokenc_m, ONLY: phystokenc
58      USE phytrac_m, ONLY: phytrac      USE phytrac_m, ONLY: phytrac
     USE qcheck_m, ONLY: qcheck  
59      use radlwsw_m, only: radlwsw      use radlwsw_m, only: radlwsw
60      use yoegwd, only: sugwd      use yoegwd, only: sugwd
61      USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt      USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt
# Line 107  contains Line 106  contains
106    
107      LOGICAL:: firstcal = .true.      LOGICAL:: firstcal = .true.
108    
     LOGICAL, PARAMETER:: check = .FALSE.  
     ! Verifier la conservation du modele en eau  
   
109      LOGICAL, PARAMETER:: ok_stratus = .FALSE.      LOGICAL, PARAMETER:: ok_stratus = .FALSE.
110      ! Ajouter artificiellement les stratus      ! Ajouter artificiellement les stratus
111    
# Line 129  contains Line 125  contains
125    
126      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)
127    
128      REAL swdn0(klon, llm + 1), swdn(klon, llm + 1)      REAL, save:: swdn0(klon, llm + 1), swdn(klon, llm + 1)
129      REAL swup0(klon, llm + 1), swup(klon, llm + 1)      REAL, save:: swup0(klon, llm + 1), swup(klon, llm + 1)
130      SAVE swdn0, swdn, swup0, swup  
131        REAL, save:: lwdn0(klon, llm + 1), lwdn(klon, llm + 1)
132      REAL lwdn0(klon, llm + 1), lwdn(klon, llm + 1)      REAL, save:: lwup0(klon, llm + 1), lwup(klon, llm + 1)
     REAL lwup0(klon, llm + 1), lwup(klon, llm + 1)  
     SAVE lwdn0, lwdn, lwup0, lwup  
133    
134      ! prw: precipitable water      ! prw: precipitable water
135      real prw(klon)      real prw(klon)
# Line 151  contains Line 145  contains
145      ! Radiative transfer computations are made every "radpas" call to      ! Radiative transfer computations are made every "radpas" call to
146      ! "physiq".      ! "physiq".
147    
148      REAL radsol(klon)      REAL, save:: radsol(klon) ! bilan radiatif au sol calcule par code radiatif
     SAVE radsol ! bilan radiatif au sol calcule par code radiatif  
149    
150      REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction      REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction
151    
# Line 160  contains Line 153  contains
153      ! soil temperature of surface fraction      ! soil temperature of surface fraction
154    
155      REAL, save:: fevap(klon, nbsrf) ! evaporation      REAL, save:: fevap(klon, nbsrf) ! evaporation
156      REAL fluxlat(klon, nbsrf)      REAL, save:: fluxlat(klon, nbsrf)
     SAVE fluxlat  
157    
158      REAL, save:: fqsurf(klon, nbsrf)      REAL, save:: fqsurf(klon, nbsrf)
159      ! humidite de l'air au contact de la surface      ! humidite de l'air au contact de la surface
# Line 200  contains Line 192  contains
192      REAL ycoefh(klon, llm) ! coef d'echange pour phytrac      REAL ycoefh(klon, llm) ! coef d'echange pour phytrac
193      REAL yu1(klon) ! vents dans la premiere couche U      REAL yu1(klon) ! vents dans la premiere couche U
194      REAL yv1(klon) ! vents dans la premiere couche V      REAL yv1(klon) ! vents dans la premiere couche V
     REAL ffonte(klon, nbsrf) ! flux thermique utilise pour fondre la neige  
195    
196      REAL fqcalving(klon, nbsrf)      REAL, save:: ffonte(klon, nbsrf)
197        ! flux thermique utilise pour fondre la neige
198    
199        REAL, save:: fqcalving(klon, nbsrf)
200      ! flux d'eau "perdue" par la surface et necessaire pour limiter la      ! flux d'eau "perdue" par la surface et necessaire pour limiter la
201      ! hauteur de neige, en kg / m2 / s      ! hauteur de neige, en kg / m2 / s
202    
203      REAL zxffonte(klon), zxfqcalving(klon)      REAL zxffonte(klon), zxfqcalving(klon)
204    
205      REAL pfrac_impa(klon, llm)! Produits des coefs lessivage impaction      REAL, save:: pfrac_impa(klon, llm)! Produits des coefs lessivage impaction
206      save pfrac_impa      REAL, save:: pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation
207      REAL pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation  
208      save pfrac_nucl      REAL, save:: pfrac_1nucl(klon, llm)
209      REAL pfrac_1nucl(klon, llm)! Produits des coefs lessi nucl (alpha = 1)      ! Produits des coefs lessi nucl (alpha = 1)
210      save pfrac_1nucl  
211      REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction)      REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction)
212      REAL frac_nucl(klon, llm) ! idem (nucleation)      REAL frac_nucl(klon, llm) ! idem (nucleation)
213    
# Line 225  contains Line 219  contains
219    
220      REAL rain_tiedtke(klon), snow_tiedtke(klon)      REAL rain_tiedtke(klon), snow_tiedtke(klon)
221    
222      REAL evap(klon), devap(klon) ! evaporation and its derivative      REAL evap(klon) ! flux d'\'evaporation au sol
223      REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee      real devap(klon) ! derivative of the evaporation flux at the surface
224      REAL dlw(klon) ! derivee infra rouge      REAL sens(klon) ! flux de chaleur sensible au sol
225      SAVE dlw      real dsens(klon) ! derivee du flux de chaleur sensible au sol
226        REAL, save:: dlw(klon) ! derivee infra rouge
227      REAL bils(klon) ! bilan de chaleur au sol      REAL bils(klon) ! bilan de chaleur au sol
228      REAL, save:: fder(klon) ! Derive de flux (sensible et latente)      REAL, save:: fder(klon) ! Derive de flux (sensible et latente)
229      REAL ve(klon) ! integr. verticale du transport meri. de l'energie      REAL ve(klon) ! integr. verticale du transport meri. de l'energie
# Line 257  contains Line 252  contains
252      REAL cldtau(klon, llm) ! epaisseur optique      REAL cldtau(klon, llm) ! epaisseur optique
253      REAL cldemi(klon, llm) ! emissivite infrarouge      REAL cldemi(klon, llm) ! emissivite infrarouge
254    
255      REAL fluxq(klon, llm, nbsrf) ! flux turbulent d'humidite      REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface
256      REAL fluxt(klon, llm, nbsrf) ! flux turbulent de chaleur      REAL flux_t(klon, nbsrf) ! flux turbulent de chaleur à la surface
257      REAL fluxu(klon, llm, nbsrf) ! flux turbulent de vitesse u      REAL flux_u(klon, nbsrf) ! flux turbulent de vitesse u à la surface
258      REAL fluxv(klon, llm, nbsrf) ! flux turbulent de vitesse v      REAL flux_v(klon, nbsrf) ! flux turbulent de vitesse v à la surface
   
     REAL zxfluxt(klon, llm)  
     REAL zxfluxq(klon, llm)  
     REAL zxfluxu(klon, llm)  
     REAL zxfluxv(klon, llm)  
259    
260      ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que      ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que
261      ! les variables soient r\'emanentes.      ! les variables soient r\'emanentes.
# Line 287  contains Line 277  contains
277      REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut      REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut
278      REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree      REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree
279    
280      REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon)      REAL zxqsurf(klon), zxsnow(klon), zxfluxlat(klon)
281    
282      REAL dist, mu0(klon), fract(klon)      REAL dist, mu0(klon), fract(klon)
283      real longi      real longi
284      REAL z_avant(klon), z_apres(klon), z_factor(klon)      REAL z_avant(klon), z_apres(klon), z_factor(klon)
285      REAL za, zb      REAL zb
286      REAL zx_t, zx_qs, zcor      REAL zx_t, zx_qs, zcor
287      real zqsat(klon, llm)      real zqsat(klon, llm)
288      INTEGER i, k, iq, nsrf      INTEGER i, k, iq, nsrf
# Line 321  contains Line 311  contains
311    
312      REAL upwd(klon, llm) ! saturated updraft mass flux      REAL upwd(klon, llm) ! saturated updraft mass flux
313      REAL dnwd(klon, llm) ! saturated downdraft mass flux      REAL dnwd(klon, llm) ! saturated downdraft mass flux
314      REAL dnwd0(klon, llm) ! unsaturated downdraft mass flux      REAL, save:: cape(klon)
     REAL cape(klon) ! CAPE  
     SAVE cape  
315    
316      INTEGER iflagctrl(klon) ! flag fonctionnement de convect      INTEGER iflagctrl(klon) ! flag fonctionnement de convect
317    
# Line 335  contains Line 323  contains
323      ! eva: \'evaporation de l'eau liquide nuageuse      ! eva: \'evaporation de l'eau liquide nuageuse
324      ! vdf: vertical diffusion in boundary layer      ! vdf: vertical diffusion in boundary layer
325      REAL d_t_con(klon, llm), d_q_con(klon, llm)      REAL d_t_con(klon, llm), d_q_con(klon, llm)
326      REAL d_u_con(klon, llm), d_v_con(klon, llm)      REAL, save:: d_u_con(klon, llm), d_v_con(klon, llm)
327      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)
328      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)
329      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)
# Line 351  contains Line 339  contains
339      INTEGER, save:: ibas_con(klon), itop_con(klon)      INTEGER, save:: ibas_con(klon), itop_con(klon)
340      real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa      real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa
341    
342      REAL rain_con(klon), rain_lsc(klon)      REAL, save:: rain_con(klon)
343        real rain_lsc(klon)
344      REAL, save:: snow_con(klon) ! neige (mm / s)      REAL, save:: snow_con(klon) ! neige (mm / s)
345      real snow_lsc(klon)      real snow_lsc(klon)
346      REAL d_ts(klon, nbsrf)      REAL d_ts(klon, nbsrf)
# Line 397  contains Line 386  contains
386      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.
387    
388      real date0      real date0
   
     ! Variables li\'ees au bilan d'\'energie et d'enthalpie :  
389      REAL ztsol(klon)      REAL ztsol(klon)
390    
391      REAL d_t_ec(klon, llm)      REAL d_t_ec(klon, llm)
# Line 406  contains Line 393  contains
393    
394      REAL ZRCPD      REAL ZRCPD
395    
396      REAL t2m(klon, nbsrf), q2m(klon, nbsrf) ! temperature and humidity at 2 m      REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf)
397      REAL u10m(klon, nbsrf), v10m(klon, nbsrf) ! vents a 10 m      ! temperature and humidity at 2 m
398    
399        REAL, save:: u10m(klon, nbsrf), v10m(klon, nbsrf) ! vents a 10 m
400      REAL zt2m(klon), zq2m(klon) ! temp., hum. 2 m moyenne s/ 1 maille      REAL zt2m(klon), zq2m(klon) ! temp., hum. 2 m moyenne s/ 1 maille
401      REAL zu10m(klon), zv10m(klon) ! vents a 10 m moyennes s/1 maille      REAL zu10m(klon), zv10m(klon) ! vents a 10 m moyennes s/1 maille
402    
# Line 428  contains Line 417  contains
417      REAL, save:: tau_ae(klon, llm, 2), piz_ae(klon, llm, 2)      REAL, save:: tau_ae(klon, llm, 2), piz_ae(klon, llm, 2)
418      REAL, save:: cg_ae(klon, llm, 2)      REAL, save:: cg_ae(klon, llm, 2)
419    
420      REAL topswad(klon), solswad(klon) ! aerosol direct effect      REAL, save:: topswad(klon), solswad(klon) ! aerosol direct effect
421      REAL topswai(klon), solswai(klon) ! aerosol indirect effect      REAL, save:: topswai(klon), solswai(klon) ! aerosol indirect effect
422    
423      LOGICAL:: ok_ade = .false. ! apply aerosol direct effect      LOGICAL:: ok_ade = .false. ! apply aerosol direct effect
424      LOGICAL:: ok_aie = .false. ! apply aerosol indirect effect      LOGICAL:: ok_aie = .false. ! apply aerosol indirect effect
# Line 439  contains Line 428  contains
428      ! B). They link cloud droplet number concentration to aerosol mass      ! B). They link cloud droplet number concentration to aerosol mass
429      ! concentration.      ! concentration.
430    
     SAVE u10m  
     SAVE v10m  
     SAVE t2m  
     SAVE q2m  
     SAVE ffonte  
     SAVE fqcalving  
     SAVE rain_con  
     SAVE topswai  
     SAVE topswad  
     SAVE solswai  
     SAVE solswad  
     SAVE d_u_con  
     SAVE d_v_con  
   
431      real zmasse(klon, llm)      real zmasse(klon, llm)
432      ! (column-density of mass of air in a cell, in kg m-2)      ! (column-density of mass of air in a cell, in kg m-2)
433    
# Line 636  contains Line 611  contains
611    
612      fder = dlw      fder = dlw
613    
     ! Couche limite:  
   
614      CALL clmain(dtphys, pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, &      CALL clmain(dtphys, pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, &
615           ftsol, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, &           ftsol, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, &
616           paprs, play, fsnow, fqsurf, fevap, falbe, fluxlat, rain_fall, &           paprs, play, fsnow, fqsurf, fevap, falbe, fluxlat, rain_fall, &
617           snow_fall, fsolsw, fsollw, fder, rlat, frugs, agesno, rugoro, &           snow_fall, fsolsw, fsollw, fder, rlat, frugs, agesno, rugoro, &
618           d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, fluxt, fluxq, fluxu, &           d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, flux_t, flux_q, flux_u, &
619           fluxv, cdragh, cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, &           flux_v, cdragh, cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, &
620           u10m, v10m, pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, &           u10m, v10m, pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, &
621           trmb3, plcl, fqcalving, ffonte, run_off_lic_0)           trmb3, plcl, fqcalving, ffonte, run_off_lic_0)
622    
623      ! Incr\'ementation des flux      ! Incr\'ementation des flux
624    
625      zxfluxt = 0.      sens = - sum(flux_t * pctsrf, dim = 2)
626      zxfluxq = 0.      evap = - sum(flux_q * pctsrf, dim = 2)
627      zxfluxu = 0.      fder = dlw + dsens + devap
     zxfluxv = 0.  
     DO nsrf = 1, nbsrf  
        DO k = 1, llm  
           DO i = 1, klon  
              zxfluxt(i, k) = zxfluxt(i, k) + fluxt(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxq(i, k) = zxfluxq(i, k) + fluxq(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxu(i, k) = zxfluxu(i, k) + fluxu(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxv(i, k) = zxfluxv(i, k) + fluxv(i, k, nsrf) * pctsrf(i, nsrf)  
           END DO  
        END DO  
     END DO  
     DO i = 1, klon  
        sens(i) = - zxfluxt(i, 1) ! flux de chaleur sensible au sol  
        evap(i) = - zxfluxq(i, 1) ! flux d'\'evaporation au sol  
        fder(i) = dlw(i) + dsens(i) + devap(i)  
     ENDDO  
628    
629      DO k = 1, llm      DO k = 1, llm
630         DO i = 1, klon         DO i = 1, klon
# Line 705  contains Line 662  contains
662      call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf')      call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf')
663    
664      ftsol = ftsol + d_ts      ftsol = ftsol + d_ts
665      zxtsol = sum(ftsol * pctsrf, dim = 2)      ztsol = sum(ftsol * pctsrf, dim = 2)
666      DO nsrf = 1, nbsrf      DO nsrf = 1, nbsrf
667         DO i = 1, klon         DO i = 1, klon
668            zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf) * pctsrf(i, nsrf)            zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf) * pctsrf(i, nsrf)
# Line 730  contains Line 687  contains
687         ENDDO         ENDDO
688      ENDDO      ENDDO
689    
690      ! Si une sous-fraction n'existe pas, elle prend la température moyenne :      ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne :
691      DO nsrf = 1, nbsrf      DO nsrf = 1, nbsrf
692         DO i = 1, klon         DO i = 1, klon
693            IF (pctsrf(i, nsrf) < epsfra) ftsol(i, nsrf) = zxtsol(i)            IF (pctsrf(i, nsrf) < epsfra) then
694                 ftsol(i, nsrf) = ztsol(i)
695            IF (pctsrf(i, nsrf) < epsfra) t2m(i, nsrf) = zt2m(i)               t2m(i, nsrf) = zt2m(i)
696            IF (pctsrf(i, nsrf) < epsfra) q2m(i, nsrf) = zq2m(i)               q2m(i, nsrf) = zq2m(i)
697            IF (pctsrf(i, nsrf) < epsfra) u10m(i, nsrf) = zu10m(i)               u10m(i, nsrf) = zu10m(i)
698            IF (pctsrf(i, nsrf) < epsfra) v10m(i, nsrf) = zv10m(i)               v10m(i, nsrf) = zv10m(i)
699            IF (pctsrf(i, nsrf) < epsfra) ffonte(i, nsrf) = zxffonte(i)               ffonte(i, nsrf) = zxffonte(i)
700            IF (pctsrf(i, nsrf) < epsfra) &               fqcalving(i, nsrf) = zxfqcalving(i)
701                 fqcalving(i, nsrf) = zxfqcalving(i)               pblh(i, nsrf) = s_pblh(i)
702            IF (pctsrf(i, nsrf) < epsfra) pblh(i, nsrf) = s_pblh(i)               plcl(i, nsrf) = s_lcl(i)
703            IF (pctsrf(i, nsrf) < epsfra) plcl(i, nsrf) = s_lcl(i)               capCL(i, nsrf) = s_capCL(i)
704            IF (pctsrf(i, nsrf) < epsfra) capCL(i, nsrf) = s_capCL(i)               oliqCL(i, nsrf) = s_oliqCL(i)
705            IF (pctsrf(i, nsrf) < epsfra) oliqCL(i, nsrf) = s_oliqCL(i)               cteiCL(i, nsrf) = s_cteiCL(i)
706            IF (pctsrf(i, nsrf) < epsfra) cteiCL(i, nsrf) = s_cteiCL(i)               pblT(i, nsrf) = s_pblT(i)
707            IF (pctsrf(i, nsrf) < epsfra) pblT(i, nsrf) = s_pblT(i)               therm(i, nsrf) = s_therm(i)
708            IF (pctsrf(i, nsrf) < epsfra) therm(i, nsrf) = s_therm(i)               trmb1(i, nsrf) = s_trmb1(i)
709            IF (pctsrf(i, nsrf) < epsfra) trmb1(i, nsrf) = s_trmb1(i)               trmb2(i, nsrf) = s_trmb2(i)
710            IF (pctsrf(i, nsrf) < epsfra) trmb2(i, nsrf) = s_trmb2(i)               trmb3(i, nsrf) = s_trmb3(i)
711            IF (pctsrf(i, nsrf) < epsfra) trmb3(i, nsrf) = s_trmb3(i)            end IF
712         ENDDO         ENDDO
713      ENDDO      ENDDO
714    
715      ! Calculer la dérive du flux infrarouge      ! Calculer la dérive du flux infrarouge
716    
717      DO i = 1, klon      DO i = 1, klon
718         dlw(i) = - 4. * RSIGMA * zxtsol(i)**3         dlw(i) = - 4. * RSIGMA * ztsol(i)**3
719      ENDDO      ENDDO
720    
     IF (check) print *, "avantcon = ", qcheck(paprs, q_seri, ql_seri)  
   
721      ! Appeler la convection      ! Appeler la convection
722    
723      if (conv_emanuel) then      if (conv_emanuel) then
        da = 0.  
        mp = 0.  
        phi = 0.  
724         CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, &         CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, &
725              d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, &              d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, &
726              upwd, dnwd, dnwd0, Ma, cape, iflagctrl, qcondc, pmflxr, da, phi, mp)              upwd, dnwd, Ma, cape, iflagctrl, qcondc, pmflxr, da, phi, mp)
727         snow_con = 0.         snow_con = 0.
728         clwcon0 = qcondc         clwcon0 = qcondc
729         mfu = upwd + dnwd         mfu = upwd + dnwd
# Line 799  contains Line 751  contains
751         conv_t = d_t_dyn + d_t_vdf / dtphys         conv_t = d_t_dyn + d_t_vdf / dtphys
752         z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)         z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)
753         CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:- 1), &         CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:- 1), &
754              q_seri(:, llm:1:- 1), conv_t, conv_q, zxfluxq(:, 1), omega, &              q_seri(:, llm:1:- 1), conv_t, conv_q, - evap, omega, &
755              d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:- 1), &              d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:- 1), &
756              mfd(:, llm:1:- 1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, &              mfd(:, llm:1:- 1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, &
757              kdtop, pmflxr, pmflxs)              kdtop, pmflxr, pmflxs)
# Line 818  contains Line 770  contains
770         ENDDO         ENDDO
771      ENDDO      ENDDO
772    
     IF (check) THEN  
        za = qcheck(paprs, q_seri, ql_seri)  
        print *, "aprescon = ", za  
        zx_t = 0.  
        za = 0.  
        DO i = 1, klon  
           za = za + airephy(i) / REAL(klon)  
           zx_t = zx_t + (rain_con(i)+ &  
                snow_con(i)) * airephy(i) / REAL(klon)  
        ENDDO  
        zx_t = zx_t / za * dtphys  
        print *, "Precip = ", zx_t  
     ENDIF  
   
773      IF (.not. conv_emanuel) THEN      IF (.not. conv_emanuel) THEN
774         z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)         z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)
775         z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres         z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres
# Line 917  contains Line 855  contains
855            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)
856         ENDDO         ENDDO
857      ENDDO      ENDDO
     IF (check) THEN  
        za = qcheck(paprs, q_seri, ql_seri)  
        print *, "apresilp = ", za  
        zx_t = 0.  
        za = 0.  
        DO i = 1, klon  
           za = za + airephy(i) / REAL(klon)  
           zx_t = zx_t + (rain_lsc(i) &  
                + snow_lsc(i)) * airephy(i) / REAL(klon)  
        ENDDO  
        zx_t = zx_t / za * dtphys  
        print *, "Precip = ", zx_t  
     ENDIF  
858    
859      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
860    
# Line 1048  contains Line 973  contains
973         albsol = sum(falbe * pctsrf, dim = 2)         albsol = sum(falbe * pctsrf, dim = 2)
974    
975         ! Rayonnement (compatible Arpege-IFS) :         ! Rayonnement (compatible Arpege-IFS) :
976         CALL radlwsw(dist, mu0, fract, paprs, play, zxtsol, albsol, t_seri, &         CALL radlwsw(dist, mu0, fract, paprs, play, ztsol, albsol, t_seri, &
977              q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, &              q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, &
978              radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, &              radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, &
979              toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, &              toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, &
# Line 1228  contains Line 1153  contains
1153      CALL histwrite_phy("precip", rain_fall + snow_fall)      CALL histwrite_phy("precip", rain_fall + snow_fall)
1154      CALL histwrite_phy("plul", rain_lsc + snow_lsc)      CALL histwrite_phy("plul", rain_lsc + snow_lsc)
1155      CALL histwrite_phy("pluc", rain_con + snow_con)      CALL histwrite_phy("pluc", rain_con + snow_con)
1156      CALL histwrite_phy("tsol", zxtsol)      CALL histwrite_phy("tsol", ztsol)
1157      CALL histwrite_phy("t2m", zt2m)      CALL histwrite_phy("t2m", zt2m)
1158      CALL histwrite_phy("q2m", zq2m)      CALL histwrite_phy("q2m", zq2m)
1159      CALL histwrite_phy("u10m", zu10m)      CALL histwrite_phy("u10m", zu10m)
# Line 1252  contains Line 1177  contains
1177      DO nsrf = 1, nbsrf      DO nsrf = 1, nbsrf
1178         CALL histwrite_phy("pourc_"//clnsurf(nsrf), pctsrf(:, nsrf) * 100.)         CALL histwrite_phy("pourc_"//clnsurf(nsrf), pctsrf(:, nsrf) * 100.)
1179         CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf))         CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf))
1180         CALL histwrite_phy("sens_"//clnsurf(nsrf), fluxt(:, 1, nsrf))         CALL histwrite_phy("sens_"//clnsurf(nsrf), flux_t(:, nsrf))
1181         CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf))         CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf))
1182         CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf))         CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf))
1183         CALL histwrite_phy("taux_"//clnsurf(nsrf), fluxu(:, 1, nsrf))         CALL histwrite_phy("taux_"//clnsurf(nsrf), flux_u(:, nsrf))
1184         CALL histwrite_phy("tauy_"//clnsurf(nsrf), fluxv(:, 1, nsrf))         CALL histwrite_phy("tauy_"//clnsurf(nsrf), flux_v(:, nsrf))
1185         CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf))         CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf))
1186         CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf))         CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf))
1187      END DO      END DO
# Line 1273  contains Line 1198  contains
1198      CALL histwrite_phy("s_trmb1", s_trmb1)      CALL histwrite_phy("s_trmb1", s_trmb1)
1199      CALL histwrite_phy("s_trmb2", s_trmb2)      CALL histwrite_phy("s_trmb2", s_trmb2)
1200      CALL histwrite_phy("s_trmb3", s_trmb3)      CALL histwrite_phy("s_trmb3", s_trmb3)
1201      if (conv_emanuel) CALL histwrite_phy("ptop", ema_pct)  
1202        if (conv_emanuel) then
1203           CALL histwrite_phy("ptop", ema_pct)
1204           CALL histwrite_phy("dnwd0", - mp)
1205        end if
1206    
1207      CALL histwrite_phy("temp", t_seri)      CALL histwrite_phy("temp", t_seri)
1208      CALL histwrite_phy("vitu", u_seri)      CALL histwrite_phy("vitu", u_seri)
1209      CALL histwrite_phy("vitv", v_seri)      CALL histwrite_phy("vitv", v_seri)

Legend:
Removed from v.204  
changed lines
  Added in v.206

  ViewVC Help
Powered by ViewVC 1.1.21