/[lmdze]/trunk/phylmd/physiq.f
ViewVC logotype

Diff of /trunk/phylmd/physiq.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/phylmd/physiq.f90 revision 76 by guez, Fri Nov 15 18:45:49 2013 UTC trunk/Sources/phylmd/physiq.f revision 150 by guez, Thu Jun 18 13:49:26 2015 UTC
# Line 4  module physiq_m Line 4  module physiq_m
4    
5  contains  contains
6    
7    SUBROUTINE physiq(lafin, rdayvrai, time, dtphys, paprs, play, pphi, pphis, &    SUBROUTINE physiq(lafin, dayvrai, time, dtphys, paprs, play, pphi, pphis, &
8         u, v, t, qx, omega, d_u, d_v, d_t, d_qx, d_ps, dudyn, PVteta)         u, v, t, qx, omega, d_u, d_v, d_t, d_qx)
9    
10      ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28      ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28
11      ! (subversion revision 678)      ! (subversion revision 678)
# Line 18  contains Line 18  contains
18      USE abort_gcm_m, ONLY: abort_gcm      USE abort_gcm_m, ONLY: abort_gcm
19      use aeropt_m, only: aeropt      use aeropt_m, only: aeropt
20      use ajsec_m, only: ajsec      use ajsec_m, only: ajsec
     USE calendar, ONLY: ymds2ju  
21      use calltherm_m, only: calltherm      use calltherm_m, only: calltherm
22      USE clesphys, ONLY: cdhmax, cdmmax, co2_ppm, ecrit_hf, ecrit_ins, &      USE clesphys, ONLY: cdhmax, cdmmax, co2_ppm, ecrit_hf, ecrit_ins, &
23           ecrit_mth, ecrit_reg, ecrit_tra, ksta, ksta_ter, ok_kzmin           ecrit_mth, ecrit_reg, ecrit_tra, ksta, ksta_ter, ok_kzmin
24      USE clesphys2, ONLY: cycle_diurne, iflag_con, nbapp_rad, new_oliq, &      USE clesphys2, ONLY: cycle_diurne, iflag_con, nbapp_rad, new_oliq, &
25           ok_orodr, ok_orolf, soil_model           ok_orodr, ok_orolf
26      USE clmain_m, ONLY: clmain      USE clmain_m, ONLY: clmain
27      use clouds_gno_m, only: clouds_gno      use clouds_gno_m, only: clouds_gno
28      USE comgeomphy, ONLY: airephy, cuphy, cvphy      USE comgeomphy, ONLY: airephy
29      USE concvl_m, ONLY: concvl      USE concvl_m, ONLY: concvl
30      USE conf_gcm_m, ONLY: offline, raz_date      USE conf_gcm_m, ONLY: offline, raz_date
31      USE conf_phys_m, ONLY: conf_phys      USE conf_phys_m, ONLY: conf_phys
# Line 35  contains Line 34  contains
34      use diagcld2_m, only: diagcld2      use diagcld2_m, only: diagcld2
35      use diagetpq_m, only: diagetpq      use diagetpq_m, only: diagetpq
36      use diagphy_m, only: diagphy      use diagphy_m, only: diagphy
37      USE dimens_m, ONLY: iim, jjm, llm, nqmx      USE dimens_m, ONLY: llm, nqmx
38      USE dimphy, ONLY: klon, nbtr      USE dimphy, ONLY: klon
39      USE dimsoil, ONLY: nsoilmx      USE dimsoil, ONLY: nsoilmx
40      use drag_noro_m, only: drag_noro      use drag_noro_m, only: drag_noro
41        use dynetat0_m, only: day_ref, annee_ref
42      USE fcttre, ONLY: foeew, qsatl, qsats, thermcep      USE fcttre, ONLY: foeew, qsatl, qsats, thermcep
43      use fisrtilp_m, only: fisrtilp      use fisrtilp_m, only: fisrtilp
44      USE hgardfou_m, ONLY: hgardfou      USE hgardfou_m, ONLY: hgardfou
     USE histsync_m, ONLY: histsync  
     USE histwrite_m, ONLY: histwrite  
45      USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &      USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &
46           nbsrf           nbsrf
     USE ini_histhf_m, ONLY: ini_histhf  
     USE ini_histday_m, ONLY: ini_histday  
47      USE ini_histins_m, ONLY: ini_histins      USE ini_histins_m, ONLY: ini_histins
48      use newmicro_m, only: newmicro      use newmicro_m, only: newmicro
49      USE oasis_m, ONLY: ok_oasis      USE orbite_m, ONLY: orbite
     USE orbite_m, ONLY: orbite, zenang  
50      USE ozonecm_m, ONLY: ozonecm      USE ozonecm_m, ONLY: ozonecm
51      USE phyetat0_m, ONLY: phyetat0, rlat, rlon      USE phyetat0_m, ONLY: phyetat0, rlat, rlon
52      USE phyredem_m, ONLY: phyredem      USE phyredem_m, ONLY: phyredem
# Line 60  contains Line 55  contains
55      USE qcheck_m, ONLY: qcheck      USE qcheck_m, ONLY: qcheck
56      use radlwsw_m, only: radlwsw      use radlwsw_m, only: radlwsw
57      use readsulfate_m, only: readsulfate      use readsulfate_m, only: readsulfate
58        use readsulfate_preind_m, only: readsulfate_preind
59      use sugwd_m, only: sugwd      use sugwd_m, only: sugwd
60      USE suphec_m, ONLY: ra, rcpd, retv, rg, rlvtt, romega, rsigma, rtt      USE suphec_m, ONLY: ra, rcpd, retv, rg, rlvtt, romega, rsigma, rtt
61      USE temps, ONLY: annee_ref, day_ref, itau_phy      USE temps, ONLY: itau_phy
62      use unit_nml_m, only: unit_nml      use unit_nml_m, only: unit_nml
63        USE ymds2ju_m, ONLY: ymds2ju
64      USE yoethf_m, ONLY: r2es, rvtmp2      USE yoethf_m, ONLY: r2es, rvtmp2
65        use zenang_m, only: zenang
66    
67      ! Arguments:      logical, intent(in):: lafin ! dernier passage
68    
69      REAL, intent(in):: rdayvrai      integer, intent(in):: dayvrai
70      ! (elapsed time since January 1st 0h of the starting year, in days)      ! current day number, based at value 1 on January 1st of annee_ref
71    
72      REAL, intent(in):: time ! heure de la journée en fraction de jour      REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour
73      REAL, intent(in):: dtphys ! pas d'integration pour la physique (seconde)      REAL, intent(in):: dtphys ! pas d'integration pour la physique (seconde)
     logical, intent(in):: lafin ! dernier passage  
74    
75      REAL, intent(in):: paprs(klon, llm + 1)      REAL, intent(in):: paprs(:, :) ! (klon, llm + 1)
76      ! (pression pour chaque inter-couche, en Pa)      ! pression pour chaque inter-couche, en Pa
77    
78      REAL, intent(in):: play(klon, llm)      REAL, intent(in):: play(:, :) ! (klon, llm)
79      ! (input pression pour le mileu de chaque couche (en Pa))      ! pression pour le mileu de chaque couche (en Pa)
80    
81      REAL, intent(in):: pphi(klon, llm)      REAL, intent(in):: pphi(:, :) ! (klon, llm)
82      ! (input geopotentiel de chaque couche (g z) (reference sol))      ! géopotentiel de chaque couche (référence sol)
83    
84      REAL, intent(in):: pphis(klon) ! input geopotentiel du sol      REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol
85    
86      REAL, intent(in):: u(klon, llm)      REAL, intent(in):: u(:, :) ! (klon, llm)
87      ! vitesse dans la direction X (de O a E) en m/s      ! vitesse dans la direction X (de O a E) en m/s
88    
89      REAL, intent(in):: v(klon, llm) ! vitesse Y (de S a N) en m/s      REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m/s
90      REAL, intent(in):: t(klon, llm) ! input temperature (K)      REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)
91    
92      REAL, intent(in):: qx(klon, llm, nqmx)      REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)
93      ! (humidité spécifique et fractions massiques des autres traceurs)      ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)
94    
95      REAL omega(klon, llm) ! input vitesse verticale en Pa/s      REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa/s
96      REAL, intent(out):: d_u(klon, llm) ! tendance physique de "u" (m/s/s)      REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)
97      REAL, intent(out):: d_v(klon, llm) ! tendance physique de "v" (m/s/s)      REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)
98      REAL, intent(out):: d_t(klon, llm) ! tendance physique de "t" (K/s)      REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K/s)
     REAL d_qx(klon, llm, nqmx) ! output tendance physique de "qx" (kg/kg/s)  
     REAL d_ps(klon) ! output tendance physique de la pression au sol  
99    
100      LOGICAL:: firstcal = .true.      REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)
101        ! tendance physique de "qx" (s-1)
102    
103      INTEGER nbteta      ! Local:
     PARAMETER(nbteta = 3)  
104    
105      REAL PVteta(klon, nbteta)      LOGICAL:: firstcal = .true.
     ! (output vorticite potentielle a des thetas constantes)  
106    
107      LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface      LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface
108      PARAMETER (ok_gust = .FALSE.)      PARAMETER (ok_gust = .FALSE.)
109    
110      LOGICAL check ! Verifier la conservation du modele en eau      LOGICAL, PARAMETER:: check = .FALSE.
111      PARAMETER (check = .FALSE.)      ! Verifier la conservation du modele en eau
112    
113      LOGICAL, PARAMETER:: ok_stratus = .FALSE.      LOGICAL, PARAMETER:: ok_stratus = .FALSE.
114      ! Ajouter artificiellement les stratus      ! Ajouter artificiellement les stratus
115    
     ! Parametres lies au coupleur OASIS:  
     INTEGER, SAVE:: npas, nexca  
     logical rnpb  
     parameter(rnpb = .true.)  
   
     character(len = 6):: ocean = 'force '  
     ! (type de modèle océan à utiliser: "force" ou "slab" mais pas "couple")  
   
116      ! "slab" ocean      ! "slab" ocean
117      REAL, save:: tslab(klon) ! temperature of ocean slab      REAL, save:: tslab(klon) ! temperature of ocean slab
118      REAL, save:: seaice(klon) ! glace de mer (kg/m2)      REAL, save:: seaice(klon) ! glace de mer (kg/m2)
119      REAL fluxo(klon) ! flux turbulents ocean-glace de mer      REAL fluxo(klon) ! flux turbulents ocean-glace de mer
120      REAL fluxg(klon) ! flux turbulents ocean-atmosphere      REAL fluxg(klon) ! flux turbulents ocean-atmosphere
121    
     ! Modele thermique du sol, a activer pour le cycle diurne:  
     logical:: ok_veget = .false. ! type de modele de vegetation utilise  
   
122      logical:: ok_journe = .false., ok_mensuel = .true., ok_instan = .false.      logical:: ok_journe = .false., ok_mensuel = .true., ok_instan = .false.
123      ! sorties journalieres, mensuelles et instantanees dans les      ! sorties journalieres, mensuelles et instantanees dans les
124      ! fichiers histday, histmth et histins      ! fichiers histday, histmth et histins
# Line 148  contains Line 131  contains
131      REAL entr_therm(klon, llm)      REAL entr_therm(klon, llm)
132      real, save:: q2(klon, llm + 1, nbsrf)      real, save:: q2(klon, llm + 1, nbsrf)
133    
134      INTEGER ivap ! indice de traceurs pour vapeur d'eau      INTEGER, PARAMETER:: ivap = 1 ! indice de traceur pour vapeur d'eau
135      PARAMETER (ivap = 1)      INTEGER, PARAMETER:: iliq = 2 ! indice de traceur pour eau liquide
     INTEGER iliq ! indice de traceurs pour eau liquide  
     PARAMETER (iliq = 2)  
136    
137      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)
138      LOGICAL, save:: ancien_ok      LOGICAL, save:: ancien_ok
# Line 161  contains Line 142  contains
142    
143      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)
144    
     !IM Amip2 PV a theta constante  
   
     CHARACTER(LEN = 3) ctetaSTD(nbteta)  
     DATA ctetaSTD/'350', '380', '405'/  
     REAL rtetaSTD(nbteta)  
     DATA rtetaSTD/350., 380., 405./  
   
     !MI Amip2 PV a theta constante  
   
145      REAL swdn0(klon, llm + 1), swdn(klon, llm + 1)      REAL swdn0(klon, llm + 1), swdn(klon, llm + 1)
146      REAL swup0(klon, llm + 1), swup(klon, llm + 1)      REAL swup0(klon, llm + 1), swup(klon, llm + 1)
147      SAVE swdn0, swdn, swup0, swup      SAVE swdn0, swdn, swup0, swup
# Line 178  contains Line 150  contains
150      REAL lwup0(klon, llm + 1), lwup(klon, llm + 1)      REAL lwup0(klon, llm + 1), lwup(klon, llm + 1)
151      SAVE lwdn0, lwdn, lwup0, lwup      SAVE lwdn0, lwdn, lwup0, lwup
152    
153      !IM Amip2      ! Amip2
154      ! variables a une pression donnee      ! variables a une pression donnee
155    
156      integer nlevSTD      integer nlevSTD
# Line 247  contains Line 219  contains
219           'pc= 440-560hPa, tau> 60.', 'pc= 560-680hPa, tau> 60.', &           'pc= 440-560hPa, tau> 60.', 'pc= 560-680hPa, tau> 60.', &
220           'pc= 680-800hPa, tau> 60.'/           'pc= 680-800hPa, tau> 60.'/
221    
222      !IM ISCCP simulator v3.4      ! ISCCP simulator v3.4
   
     integer nid_hf, nid_hf3d  
     save nid_hf, nid_hf3d  
223    
224      ! Variables propres a la physique      ! Variables propres a la physique
225    
226      INTEGER, save:: radpas      INTEGER, save:: radpas
227      ! (Radiative transfer computations are made every "radpas" call to      ! Radiative transfer computations are made every "radpas" call to
228      ! "physiq".)      ! "physiq".
229    
230      REAL radsol(klon)      REAL radsol(klon)
231      SAVE radsol ! bilan radiatif au sol calcule par code radiatif      SAVE radsol ! bilan radiatif au sol calcule par code radiatif
# Line 272  contains Line 241  contains
241      REAL fluxlat(klon, nbsrf)      REAL fluxlat(klon, nbsrf)
242      SAVE fluxlat      SAVE fluxlat
243    
244      REAL fqsurf(klon, nbsrf)      REAL, save:: fqsurf(klon, nbsrf)
245      SAVE fqsurf ! humidite de l'air au contact de la surface      ! humidite de l'air au contact de la surface
   
     REAL, save:: qsol(klon) ! hauteur d'eau dans le sol  
246    
247      REAL fsnow(klon, nbsrf)      REAL, save:: qsol(klon)
248      SAVE fsnow ! epaisseur neigeuse      ! column-density of water in soil, in kg m-2
249    
250      REAL falbe(klon, nbsrf)      REAL, save:: fsnow(klon, nbsrf) ! epaisseur neigeuse
251      SAVE falbe ! albedo par type de surface      REAL, save:: falbe(klon, nbsrf) ! albedo par type de surface
252      REAL falblw(klon, nbsrf)      REAL, save:: falblw(klon, nbsrf) ! albedo par type de surface
     SAVE falblw ! albedo par type de surface  
253    
254      ! Paramètres de l'orographie à l'échelle sous-maille (OESM) :      ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :
255      REAL, save:: zmea(klon) ! orographie moyenne      REAL, save:: zmea(klon) ! orographie moyenne
256      REAL, save:: zstd(klon) ! deviation standard de l'OESM      REAL, save:: zstd(klon) ! deviation standard de l'OESM
257      REAL, save:: zsig(klon) ! pente de l'OESM      REAL, save:: zsig(klon) ! pente de l'OESM
# Line 307  contains Line 273  contains
273      !KE43      !KE43
274      ! Variables liees a la convection de K. Emanuel (sb):      ! Variables liees a la convection de K. Emanuel (sb):
275    
     REAL bas, top ! cloud base and top levels  
     SAVE bas  
     SAVE top  
   
276      REAL Ma(klon, llm) ! undilute upward mass flux      REAL Ma(klon, llm) ! undilute upward mass flux
277      SAVE Ma      SAVE Ma
278      REAL qcondc(klon, llm) ! in-cld water content from convect      REAL qcondc(klon, llm) ! in-cld water content from convect
# Line 344  contains Line 306  contains
306      REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction)      REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction)
307      REAL frac_nucl(klon, llm) ! idem (nucleation)      REAL frac_nucl(klon, llm) ! idem (nucleation)
308    
309      REAL, save:: rain_fall(klon) ! pluie      REAL, save:: rain_fall(klon)
310      REAL, save:: snow_fall(klon) ! neige      ! liquid water mass flux (kg/m2/s), positive down
311    
312        REAL, save:: snow_fall(klon)
313        ! solid water mass flux (kg/m2/s), positive down
314    
315      REAL rain_tiedtke(klon), snow_tiedtke(klon)      REAL rain_tiedtke(klon), snow_tiedtke(klon)
316    
# Line 361  contains Line 326  contains
326      REAL ue(klon) ! integr. verticale du transport zonal de l'energie      REAL ue(klon) ! integr. verticale du transport zonal de l'energie
327      REAL uq(klon) ! integr. verticale du transport zonal de l'eau      REAL uq(klon) ! integr. verticale du transport zonal de l'eau
328    
329      REAL frugs(klon, nbsrf) ! longueur de rugosite      REAL, save:: frugs(klon, nbsrf) ! longueur de rugosite
     save frugs  
330      REAL zxrugs(klon) ! longueur de rugosite      REAL zxrugs(klon) ! longueur de rugosite
331    
332      ! Conditions aux limites      ! Conditions aux limites
333    
334      INTEGER julien      INTEGER julien
   
335      INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day      INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day
336      REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface      REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface
337      REAL pctsrf_new(klon, nbsrf) ! pourcentage surfaces issus d'ORCHIDEE      REAL pctsrf_new(klon, nbsrf) ! pourcentage surfaces issus d'ORCHIDEE
338        REAL, save:: albsol(klon) ! albedo du sol total
339      REAL albsol(klon)      REAL, save:: albsollw(klon) ! albedo du sol total
     SAVE albsol ! albedo du sol total  
     REAL albsollw(klon)  
     SAVE albsollw ! albedo du sol total  
   
340      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU
341    
342      ! Declaration des procedures appelees      ! Declaration des procedures appelees
343    
     EXTERNAL alboc ! calculer l'albedo sur ocean  
     !KE43  
     EXTERNAL conema3 ! convect4.3  
344      EXTERNAL nuage ! calculer les proprietes radiatives      EXTERNAL nuage ! calculer les proprietes radiatives
345      EXTERNAL transp ! transport total de l'eau et de l'energie      EXTERNAL transp ! transport total de l'eau et de l'energie
346    
# Line 411  contains Line 367  contains
367      REAL zxfluxu(klon, llm)      REAL zxfluxu(klon, llm)
368      REAL zxfluxv(klon, llm)      REAL zxfluxv(klon, llm)
369    
370      ! Le rayonnement n'est pas calculé tous les pas, il faut donc que      ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que
371      ! les variables soient rémanentes.      ! les variables soient r\'emanentes.
372      REAL, save:: heat(klon, llm) ! chauffage solaire      REAL, save:: heat(klon, llm) ! chauffage solaire
373      REAL heat0(klon, llm) ! chauffage solaire ciel clair      REAL heat0(klon, llm) ! chauffage solaire ciel clair
374      REAL, save:: cool(klon, llm) ! refroidissement infrarouge      REAL, save:: cool(klon, llm) ! refroidissement infrarouge
375      REAL cool0(klon, llm) ! refroidissement infrarouge ciel clair      REAL cool0(klon, llm) ! refroidissement infrarouge ciel clair
376      REAL, save:: topsw(klon), toplw(klon), solsw(klon)      REAL, save:: topsw(klon), toplw(klon), solsw(klon)
377      REAL, save:: sollw(klon) ! rayonnement infrarouge montant à la surface      REAL, save:: sollw(klon) ! rayonnement infrarouge montant \`a la surface
378      real, save:: sollwdown(klon) ! downward LW flux at surface      real, save:: sollwdown(klon) ! downward LW flux at surface
379      REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)      REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)
380      REAL albpla(klon)      REAL albpla(klon)
# Line 438  contains Line 394  contains
394    
395      REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon)      REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon)
396    
397      REAL dist, rmu0(klon), fract(klon)      REAL dist, mu0(klon), fract(klon)
398      REAL zdtime ! pas de temps du rayonnement (s)      real longi
     real zlongi  
399      REAL z_avant(klon), z_apres(klon), z_factor(klon)      REAL z_avant(klon), z_apres(klon), z_factor(klon)
400      REAL za, zb      REAL za, zb
401      REAL zx_t, zx_qs, zdelta, zcor      REAL zx_t, zx_qs, zcor
402      real zqsat(klon, llm)      real zqsat(klon, llm)
403      INTEGER i, k, iq, nsrf      INTEGER i, k, iq, nsrf
404      REAL, PARAMETER:: t_coup = 234.      REAL, PARAMETER:: t_coup = 234.
405      REAL zphi(klon, llm)      REAL zphi(klon, llm)
406    
407      !IM cf. AM Variables locales pour la CLA (hbtm2)      ! cf. AM Variables locales pour la CLA (hbtm2)
408    
409      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite
410      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA
# Line 472  contains Line 427  contains
427      REAL upwd(klon, llm) ! saturated updraft mass flux      REAL upwd(klon, llm) ! saturated updraft mass flux
428      REAL dnwd(klon, llm) ! saturated downdraft mass flux      REAL dnwd(klon, llm) ! saturated downdraft mass flux
429      REAL dnwd0(klon, llm) ! unsaturated downdraft mass flux      REAL dnwd0(klon, llm) ! unsaturated downdraft mass flux
     REAL tvp(klon, llm) ! virtual temp of lifted parcel  
430      REAL cape(klon) ! CAPE      REAL cape(klon) ! CAPE
431      SAVE cape      SAVE cape
432    
     REAL pbase(klon) ! cloud base pressure  
     SAVE pbase  
     REAL bbase(klon) ! cloud base buoyancy  
     SAVE bbase  
     REAL rflag(klon) ! flag fonctionnement de convect  
433      INTEGER iflagctrl(klon) ! flag fonctionnement de convect      INTEGER iflagctrl(klon) ! flag fonctionnement de convect
     ! -- convect43:  
     REAL dtvpdt1(klon, llm), dtvpdq1(klon, llm)  
     REAL dplcldt(klon), dplcldr(klon)  
434    
435      ! Variables du changement      ! Variables du changement
436    
437      ! con: convection      ! con: convection
438      ! lsc: large scale condensation      ! lsc: large scale condensation
439      ! ajs: ajustement sec      ! ajs: ajustement sec
440      ! eva: évaporation de l'eau liquide nuageuse      ! eva: \'evaporation de l'eau liquide nuageuse
441      ! vdf: vertical diffusion in boundary layer      ! vdf: vertical diffusion in boundary layer
442      REAL d_t_con(klon, llm), d_q_con(klon, llm)      REAL d_t_con(klon, llm), d_q_con(klon, llm)
443      REAL d_u_con(klon, llm), d_v_con(klon, llm)      REAL d_u_con(klon, llm), d_v_con(klon, llm)
# Line 534  contains Line 480  contains
480      integer:: iflag_cldcon = 1      integer:: iflag_cldcon = 1
481      logical ptconv(klon, llm)      logical ptconv(klon, llm)
482    
483      ! Variables locales pour effectuer les appels en série :      ! Variables locales pour effectuer les appels en s\'erie :
484    
485      REAL t_seri(klon, llm), q_seri(klon, llm)      REAL t_seri(klon, llm), q_seri(klon, llm)
486      REAL ql_seri(klon, llm), qs_seri(klon, llm)      REAL ql_seri(klon, llm)
487      REAL u_seri(klon, llm), v_seri(klon, llm)      REAL u_seri(klon, llm), v_seri(klon, llm)
488        REAL tr_seri(klon, llm, nqmx - 2)
     REAL tr_seri(klon, llm, nbtr)  
     REAL d_tr(klon, llm, nbtr)  
489    
490      REAL zx_rh(klon, llm)      REAL zx_rh(klon, llm)
491    
# Line 550  contains Line 494  contains
494      REAL zustrph(klon), zvstrph(klon)      REAL zustrph(klon), zvstrph(klon)
495      REAL aam, torsfc      REAL aam, torsfc
496    
     REAL dudyn(iim + 1, jjm + 1, llm)  
   
497      REAL zx_tmp_fi2d(klon) ! variable temporaire grille physique      REAL zx_tmp_fi2d(klon) ! variable temporaire grille physique
     REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm)  
498    
499      INTEGER, SAVE:: nid_day, nid_ins      INTEGER, SAVE:: nid_ins
500    
501      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.
502      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.
# Line 563  contains Line 504  contains
504      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.
505    
506      REAL zsto      REAL zsto
   
     logical ok_sync  
507      real date0      real date0
508    
509      ! Variables liées au bilan d'énergie et d'enthalpie :      ! Variables li\'ees au bilan d'\'energie et d'enthalpie :
510      REAL ztsol(klon)      REAL ztsol(klon)
511      REAL d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec      REAL d_h_vcol, d_qt, d_ec
512      REAL, SAVE:: d_h_vcol_phy      REAL, SAVE:: d_h_vcol_phy
     REAL fs_bound, fq_bound  
513      REAL zero_v(klon)      REAL zero_v(klon)
514      CHARACTER(LEN = 15) tit      CHARACTER(LEN = 20) tit
515      INTEGER:: ip_ebil = 0 ! print level for energy conservation diagnostics      INTEGER:: ip_ebil = 0 ! print level for energy conservation diagnostics
516      INTEGER:: if_ebil = 0 ! verbosity for diagnostics of energy conservation      INTEGER:: if_ebil = 0 ! verbosity for diagnostics of energy conservation
517    
518      REAL d_t_ec(klon, llm) ! tendance due à la conversion Ec -> E thermique      REAL d_t_ec(klon, llm) ! tendance due \`a la conversion Ec -> E thermique
519      REAL ZRCPD      REAL ZRCPD
520    
521      REAL t2m(klon, nbsrf), q2m(klon, nbsrf) ! temperature and humidity at 2 m      REAL t2m(klon, nbsrf), q2m(klon, nbsrf) ! temperature and humidity at 2 m
# Line 635  contains Line 573  contains
573    
574      real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2      real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2
575    
576      namelist /physiq_nml/ ocean, ok_veget, ok_journe, ok_mensuel, ok_instan, &      namelist /physiq_nml/ ok_journe, ok_mensuel, ok_instan, fact_cldcon, &
577           fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, ratqsbas, &           facttemps, ok_newmicro, iflag_cldcon, ratqsbas, ratqshaut, if_ebil, &
578           ratqshaut, if_ebil, ok_ade, ok_aie, bl95_b0, bl95_b1, iflag_thermals, &           ok_ade, ok_aie, bl95_b0, bl95_b1, iflag_thermals, nsplit_thermals
          nsplit_thermals  
579    
580      !----------------------------------------------------------------      !----------------------------------------------------------------
581    
582      IF (if_ebil >= 1) zero_v = 0.      IF (if_ebil >= 1) zero_v = 0.
     ok_sync = .TRUE.  
583      IF (nqmx < 2) CALL abort_gcm('physiq', &      IF (nqmx < 2) CALL abort_gcm('physiq', &
584           'eaux vapeur et liquide sont indispensables', 1)           'eaux vapeur et liquide sont indispensables', 1)
585    
# Line 658  contains Line 594  contains
594         piz_ae = 0.         piz_ae = 0.
595         tau_ae = 0.         tau_ae = 0.
596         cg_ae = 0.         cg_ae = 0.
597         rain_con(:) = 0.         rain_con = 0.
598         snow_con(:) = 0.         snow_con = 0.
599         topswai(:) = 0.         topswai = 0.
600         topswad(:) = 0.         topswad = 0.
601         solswai(:) = 0.         solswai = 0.
602         solswad(:) = 0.         solswad = 0.
603    
604         d_u_con = 0.         d_u_con = 0.
605         d_v_con = 0.         d_v_con = 0.
# Line 698  contains Line 634  contains
634         frugs = 0.         frugs = 0.
635         itap = 0         itap = 0
636         itaprad = 0         itaprad = 0
637         CALL phyetat0("startphy.nc", pctsrf, ftsol, ftsoil, ocean, tslab, &         CALL phyetat0(pctsrf, ftsol, ftsoil, tslab, seaice, fqsurf, qsol, &
638              seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, rain_fall, &              fsnow, falbe, falblw, fevap, rain_fall, snow_fall, solsw, sollw, &
639              snow_fall, solsw, sollw, dlw, radsol, frugs, agesno, zmea, &              dlw, radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, &
640              zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, &              zval, t_ancien, q_ancien, ancien_ok, rnebcon, ratqs, clwcon, &
641              ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01)              run_off_lic_0, sig1, w01)
642    
643         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial
644         q2 = 1e-8         q2 = 1e-8
# Line 712  contains Line 648  contains
648         ! on remet le calendrier a zero         ! on remet le calendrier a zero
649         IF (raz_date) itau_phy = 0         IF (raz_date) itau_phy = 0
650    
651         PRINT *, 'cycle_diurne = ', cycle_diurne         CALL printflag(radpas, ok_journe, ok_instan, ok_region)
        CALL printflag(radpas, ocean /= 'force', ok_oasis, ok_journe, &  
             ok_instan, ok_region)  
652    
653         IF (dtphys * REAL(radpas) > 21600. .AND. cycle_diurne) THEN         IF (dtphys * radpas > 21600. .AND. cycle_diurne) THEN
654            print *, "Au minimum 4 appels par jour si cycle diurne"            print *, "Au minimum 4 appels par jour si cycle diurne"
655            call abort_gcm('physiq', &            call abort_gcm('physiq', &
656                 "Nombre d'appels au rayonnement insuffisant", 1)                 "Nombre d'appels au rayonnement insuffisant", 1)
657         ENDIF         ENDIF
658    
659         ! Initialisation pour le schéma de convection d'Emanuel :         ! Initialisation pour le sch\'ema de convection d'Emanuel :
660         IF (iflag_con >= 3) THEN         IF (iflag_con >= 3) THEN
661            ibas_con = 1            ibas_con = 1
662            itop_con = 1            itop_con = 1
# Line 744  contains Line 678  contains
678         ecrit_tra = NINT(86400.*ecrit_tra/dtphys)         ecrit_tra = NINT(86400.*ecrit_tra/dtphys)
679         ecrit_reg = NINT(ecrit_reg/dtphys)         ecrit_reg = NINT(ecrit_reg/dtphys)
680    
        ! Initialiser le couplage si necessaire  
   
        npas = 0  
        nexca = 0  
   
681         ! Initialisation des sorties         ! Initialisation des sorties
682    
        call ini_histhf(dtphys, nid_hf, nid_hf3d)  
        call ini_histday(dtphys, ok_journe, nid_day, nqmx)  
683         call ini_histins(dtphys, ok_instan, nid_ins)         call ini_histins(dtphys, ok_instan, nid_ins)
684         CALL ymds2ju(annee_ref, 1, int(day_ref), 0., date0)         CALL ymds2ju(annee_ref, 1, day_ref, 0., date0)
685         ! Positionner date0 pour initialisation de ORCHIDEE         ! Positionner date0 pour initialisation de ORCHIDEE
686         print *, 'physiq date0: ', date0         print *, 'physiq date0: ', date0
687      ENDIF test_firstcal      ENDIF test_firstcal
688    
689      ! Mettre a zero des variables de sortie (pour securite)      ! We will modify variables *_seri and we will not touch variables
690        ! u, v, t, qx:
691      DO i = 1, klon      t_seri = t
692         d_ps(i) = 0.      u_seri = u
693      ENDDO      v_seri = v
694      DO iq = 1, nqmx      q_seri = qx(:, :, ivap)
695         DO k = 1, llm      ql_seri = qx(:, :, iliq)
696            DO i = 1, klon      tr_seri = qx(:, :, 3: nqmx)
              d_qx(i, k, iq) = 0.  
           ENDDO  
        ENDDO  
     ENDDO  
     da = 0.  
     mp = 0.  
     phi = 0.  
697    
698      ! Ne pas affecter les valeurs entrées de u, v, h, et q :      ztsol = sum(ftsol * pctsrf, dim = 2)
   
     DO k = 1, llm  
        DO i = 1, klon  
           t_seri(i, k) = t(i, k)  
           u_seri(i, k) = u(i, k)  
           v_seri(i, k) = v(i, k)  
           q_seri(i, k) = qx(i, k, ivap)  
           ql_seri(i, k) = qx(i, k, iliq)  
           qs_seri(i, k) = 0.  
        ENDDO  
     ENDDO  
     IF (nqmx >= 3) THEN  
        tr_seri(:, :, :nqmx-2) = qx(:, :, 3:nqmx)  
     ELSE  
        tr_seri(:, :, 1) = 0.  
     ENDIF  
   
     DO i = 1, klon  
        ztsol(i) = 0.  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           ztsol(i) = ztsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
699    
700      IF (if_ebil >= 1) THEN      IF (if_ebil >= 1) THEN
701         tit = 'after dynamics'         tit = 'after dynamics'
702         CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &         CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &
703              ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &              ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)
704              d_ql, d_qs, d_ec)         ! Comme les tendances de la physique sont ajout\'es dans la
        ! Comme les tendances de la physique sont ajoutés dans la  
705         !  dynamique, la variation d'enthalpie par la dynamique devrait         !  dynamique, la variation d'enthalpie par la dynamique devrait
706         !  être égale à la variation de la physique au pas de temps         !  \^etre \'egale \`a la variation de la physique au pas de temps
707         !  précédent.  Donc la somme de ces 2 variations devrait être         !  pr\'ec\'edent.  Donc la somme de ces 2 variations devrait \^etre
708         !  nulle.         !  nulle.
709         call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &         call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &
710              zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol + d_h_vcol_phy, &              zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol + d_h_vcol_phy, &
711              d_qt, 0., fs_bound, fq_bound)              d_qt, 0.)
712      END IF      END IF
713    
714      ! Diagnostic de la tendance dynamique :      ! Diagnostic de la tendance dynamique :
# Line 845  contains Line 739  contains
739      ! Check temperatures:      ! Check temperatures:
740      CALL hgardfou(t_seri, ftsol)      CALL hgardfou(t_seri, ftsol)
741    
742      ! Incrementer le compteur de la physique      ! Incrémenter le compteur de la physique
743      itap = itap + 1      itap = itap + 1
744      julien = MOD(NINT(rdayvrai), 360)      julien = MOD(dayvrai, 360)
745      if (julien == 0) julien = 360      if (julien == 0) julien = 360
746    
747      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k)-paprs(:, k + 1)) / rg      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg
   
     ! Mettre en action les conditions aux limites (albedo, sst etc.).  
748    
749      ! Prescrire l'ozone et calculer l'albedo sur l'ocean.      ! Prescrire l'ozone :
750      wo = ozonecm(REAL(julien), paprs)      wo = ozonecm(REAL(julien), paprs)
751    
752      ! Évaporation de l'eau liquide nuageuse :      ! \'Evaporation de l'eau liquide nuageuse :
753      DO k = 1, llm      DO k = 1, llm
754         DO i = 1, klon         DO i = 1, klon
755            zb = MAX(0., ql_seri(i, k))            zb = MAX(0., ql_seri(i, k))
# Line 871  contains Line 763  contains
763      IF (if_ebil >= 2) THEN      IF (if_ebil >= 2) THEN
764         tit = 'after reevap'         tit = 'after reevap'
765         CALL diagetpq(airephy, tit, ip_ebil, 2, 1, dtphys, t_seri, q_seri, &         CALL diagetpq(airephy, tit, ip_ebil, 2, 1, dtphys, t_seri, q_seri, &
766              ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &              ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)
             d_ql, d_qs, d_ec)  
767         call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &         call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &
768              zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &              zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec)
             fs_bound, fq_bound)  
   
769      END IF      END IF
770    
771      ! Appeler la diffusion verticale (programme de couche limite)      frugs = MAX(frugs, 0.000015)
772        zxrugs = sum(frugs * pctsrf, dim = 2)
773    
774      DO i = 1, klon      ! Calculs nécessaires au calcul de l'albedo dans l'interface avec
775         zxrugs(i) = 0.      ! la surface.
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           frugs(i, nsrf) = MAX(frugs(i, nsrf), 0.000015)  
        ENDDO  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxrugs(i) = zxrugs(i) + frugs(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     ! calculs necessaires au calcul de l'albedo dans l'interface  
776    
777      CALL orbite(REAL(julien), zlongi, dist)      CALL orbite(REAL(julien), longi, dist)
778      IF (cycle_diurne) THEN      IF (cycle_diurne) THEN
779         zdtime = dtphys * REAL(radpas)         CALL zenang(longi, time, dtphys * radpas, mu0, fract)
        CALL zenang(zlongi, time, zdtime, rmu0, fract)  
780      ELSE      ELSE
781         rmu0 = -999.999         mu0 = -999.999
782      ENDIF      ENDIF
783    
784      ! Calcul de l'abedo moyen par maille      ! Calcul de l'abedo moyen par maille
785      albsol(:) = 0.      albsol = sum(falbe * pctsrf, dim = 2)
786      albsollw(:) = 0.      albsollw = sum(falblw * pctsrf, dim = 2)
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           albsol(i) = albsol(i) + falbe(i, nsrf) * pctsrf(i, nsrf)  
           albsollw(i) = albsollw(i) + falblw(i, nsrf) * pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
787    
788      ! Répartition sous maille des flux longwave et shortwave      ! R\'epartition sous maille des flux longwave et shortwave
789      ! Répartition du longwave par sous-surface linéarisée      ! R\'epartition du longwave par sous-surface lin\'earis\'ee
790    
791      DO nsrf = 1, nbsrf      forall (nsrf = 1: nbsrf)
792         DO i = 1, klon         fsollw(:, nsrf) = sollw + 4. * RSIGMA * ztsol**3 &
793            fsollw(i, nsrf) = sollw(i) &              * (ztsol - ftsol(:, nsrf))
794                 + 4. * RSIGMA * ztsol(i)**3 * (ztsol(i) - ftsol(i, nsrf))         fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol)
795            fsolsw(i, nsrf) = solsw(i) * (1. - falbe(i, nsrf)) / (1. - albsol(i))      END forall
        ENDDO  
     ENDDO  
796    
797      fder = dlw      fder = dlw
798    
799      ! Couche limite:      ! Couche limite:
800    
801      CALL clmain(dtphys, itap, pctsrf, pctsrf_new, t_seri, q_seri, &      CALL clmain(dtphys, itap, pctsrf, pctsrf_new, t_seri, q_seri, u_seri, &
802           u_seri, v_seri, julien, rmu0, co2_ppm, ok_veget, ocean, &           v_seri, julien, mu0, co2_ppm, ftsol, cdmmax, cdhmax, &
803           ftsol, soil_model, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, &           ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, play, fsnow, fqsurf, &
804           qsol, paprs, play, fsnow, fqsurf, fevap, falbe, falblw, fluxlat, &           fevap, falbe, falblw, fluxlat, rain_fall, snow_fall, fsolsw, fsollw, &
805           rain_fall, snow_fall, fsolsw, fsollw, fder, rlon, rlat, &           fder, rlat, frugs, firstcal, agesno, rugoro, d_t_vdf, d_q_vdf, &
806           frugs, firstcal, agesno, rugoro, d_t_vdf, &           d_u_vdf, d_v_vdf, d_ts, fluxt, fluxq, fluxu, fluxv, cdragh, cdragm, &
807           d_q_vdf, d_u_vdf, d_v_vdf, d_ts, fluxt, fluxq, fluxu, fluxv, cdragh, &           q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, pblh, &
808           cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, &           capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, plcl, &
809           pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, plcl, &           fqcalving, ffonte, run_off_lic_0, fluxo, fluxg, tslab)
          fqcalving, ffonte, run_off_lic_0, fluxo, fluxg, tslab, seaice)  
810    
811      ! Incrémentation des flux      ! Incr\'ementation des flux
812    
813      zxfluxt = 0.      zxfluxt = 0.
814      zxfluxq = 0.      zxfluxq = 0.
# Line 959  contains Line 826  contains
826      END DO      END DO
827      DO i = 1, klon      DO i = 1, klon
828         sens(i) = - zxfluxt(i, 1) ! flux de chaleur sensible au sol         sens(i) = - zxfluxt(i, 1) ! flux de chaleur sensible au sol
829         evap(i) = - zxfluxq(i, 1) ! flux d'évaporation au sol         evap(i) = - zxfluxq(i, 1) ! flux d'\'evaporation au sol
830         fder(i) = dlw(i) + dsens(i) + devap(i)         fder(i) = dlw(i) + dsens(i) + devap(i)
831      ENDDO      ENDDO
832    
# Line 975  contains Line 842  contains
842      IF (if_ebil >= 2) THEN      IF (if_ebil >= 2) THEN
843         tit = 'after clmain'         tit = 'after clmain'
844         CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &         CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &
845              ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &              ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)
             d_ql, d_qs, d_ec)  
846         call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &         call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &
847              sens, evap, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &              sens, evap, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec)
             fs_bound, fq_bound)  
848      END IF      END IF
849    
850      ! Update surface temperature:      ! Update surface temperature:
# Line 1008  contains Line 873  contains
873    
874         IF (abs(pctsrf(i, is_ter) + pctsrf(i, is_lic) + pctsrf(i, is_oce) &         IF (abs(pctsrf(i, is_ter) + pctsrf(i, is_lic) + pctsrf(i, is_oce) &
875              + pctsrf(i, is_sic) - 1.)  >  EPSFRA) print *, &              + pctsrf(i, is_sic) - 1.)  >  EPSFRA) print *, &
876              'physiq : problème sous surface au point ', i, pctsrf(i, 1 : nbsrf)              'physiq : probl\`eme sous surface au point ', i, &
877                pctsrf(i, 1 : nbsrf)
878      ENDDO      ENDDO
879      DO nsrf = 1, nbsrf      DO nsrf = 1, nbsrf
880         DO i = 1, klon         DO i = 1, klon
# Line 1036  contains Line 902  contains
902         ENDDO         ENDDO
903      ENDDO      ENDDO
904    
905      ! Si une sous-fraction n'existe pas, elle prend la temp. moyenne      ! Si une sous-fraction n'existe pas, elle prend la température moyenne :
   
906      DO nsrf = 1, nbsrf      DO nsrf = 1, nbsrf
907         DO i = 1, klon         DO i = 1, klon
908            IF (pctsrf(i, nsrf) < epsfra) ftsol(i, nsrf) = zxtsol(i)            IF (pctsrf(i, nsrf) < epsfra) ftsol(i, nsrf) = zxtsol(i)
# Line 1062  contains Line 927  contains
927         ENDDO         ENDDO
928      ENDDO      ENDDO
929    
930      ! Calculer la derive du flux infrarouge      ! Calculer la dérive du flux infrarouge
931    
932      DO i = 1, klon      DO i = 1, klon
933         dlw(i) = - 4. * RSIGMA * zxtsol(i)**3         dlw(i) = - 4. * RSIGMA * zxtsol(i)**3
934      ENDDO      ENDDO
935    
936      ! Appeler la convection (au choix)      IF (check) print *, "avantcon = ", qcheck(paprs, q_seri, ql_seri)
   
     DO k = 1, llm  
        DO i = 1, klon  
           conv_q(i, k) = d_q_dyn(i, k) + d_q_vdf(i, k)/dtphys  
           conv_t(i, k) = d_t_dyn(i, k) + d_t_vdf(i, k)/dtphys  
        ENDDO  
     ENDDO  
937    
938      IF (check) THEN      ! Appeler la convection (au choix)
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        print *, "avantcon = ", za  
     ENDIF  
939    
940      if (iflag_con == 2) then      if (iflag_con == 2) then
941           conv_q = d_q_dyn + d_q_vdf / dtphys
942           conv_t = d_t_dyn + d_t_vdf / dtphys
943         z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)         z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)
944         CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:-1), &         CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:-1), &
945              q_seri(:, llm:1:-1), conv_t, conv_q, zxfluxq(:, 1), omega, &              q_seri(:, llm:1:-1), conv_t, conv_q, zxfluxq(:, 1), omega, &
# Line 1096  contains Line 953  contains
953      else      else
954         ! iflag_con >= 3         ! iflag_con >= 3
955    
956         CALL concvl(dtphys, paprs, play, t_seri, q_seri, u_seri, &         da = 0.
957              v_seri, tr_seri, sig1, w01, d_t_con, d_q_con, &         mp = 0.
958              d_u_con, d_v_con, d_tr, rain_con, snow_con, ibas_con, &         phi = 0.
959              itop_con, upwd, dnwd, dnwd0, Ma, cape, tvp, iflagctrl, &         CALL concvl(dtphys, paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, &
960              pbase, bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr, qcondc, &              w01, d_t_con, d_q_con, d_u_con, d_v_con, rain_con, snow_con, &
961              wd, pmflxr, pmflxs, da, phi, mp, ntra=1)              ibas_con, itop_con, upwd, dnwd, dnwd0, Ma, cape, iflagctrl, &
962         ! (number of tracers for the convection scheme of Kerry Emanuel:              qcondc, wd, pmflxr, pmflxs, da, phi, mp)
        ! la partie traceurs est faite dans phytrac  
        ! on met ntra = 1 pour limiter les appels mais on peut  
        ! supprimer les calculs / ftra.)  
   
963         clwcon0 = qcondc         clwcon0 = qcondc
964         mfu = upwd + dnwd         mfu = upwd + dnwd
965         IF (.NOT. ok_gust) wd = 0.         IF (.NOT. ok_gust) wd = 0.
966    
967         ! Calcul des propriétés des nuages convectifs         IF (thermcep) THEN
968              zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play)
969         DO k = 1, llm            zqsat = zqsat / (1. - retv * zqsat)
970            DO i = 1, klon         ELSE
971               zx_t = t_seri(i, k)            zqsat = merge(qsats(t_seri), qsatl(t_seri), t_seri < t_coup) / play
972               IF (thermcep) THEN         ENDIF
                 zdelta = MAX(0., SIGN(1., rtt-zx_t))  
                 zx_qs = r2es * FOEEW(zx_t, zdelta) / play(i, k)  
                 zx_qs = MIN(0.5, zx_qs)  
                 zcor = 1./(1.-retv*zx_qs)  
                 zx_qs = zx_qs*zcor  
              ELSE  
                 IF (zx_t < t_coup) THEN  
                    zx_qs = qsats(zx_t)/play(i, k)  
                 ELSE  
                    zx_qs = qsatl(zx_t)/play(i, k)  
                 ENDIF  
              ENDIF  
              zqsat(i, k) = zx_qs  
           ENDDO  
        ENDDO  
973    
974         ! calcul des proprietes des nuages convectifs         ! Properties of convective clouds
975         clwcon0 = fact_cldcon * clwcon0         clwcon0 = fact_cldcon * clwcon0
976         call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &         call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &
977              rnebcon0)              rnebcon0)
# Line 1157  contains Line 995  contains
995      IF (if_ebil >= 2) THEN      IF (if_ebil >= 2) THEN
996         tit = 'after convect'         tit = 'after convect'
997         CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &         CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &
998              ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &              ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)
             d_ql, d_qs, d_ec)  
999         call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &         call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &
1000              zero_v, zero_v, rain_con, snow_con, ztsol, d_h_vcol, d_qt, d_ec, &              zero_v, zero_v, rain_con, snow_con, ztsol, d_h_vcol, d_qt, d_ec)
             fs_bound, fq_bound)  
1001      END IF      END IF
1002    
1003      IF (check) THEN      IF (check) THEN
1004         za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)         za = qcheck(paprs, q_seri, ql_seri)
1005         print *, "aprescon = ", za         print *, "aprescon = ", za
1006         zx_t = 0.         zx_t = 0.
1007         za = 0.         za = 0.
# Line 1190  contains Line 1026  contains
1026         ENDDO         ENDDO
1027      ENDIF      ENDIF
1028    
1029      ! Convection sèche (thermiques ou ajustement)      ! Convection s\`eche (thermiques ou ajustement)
1030    
1031      d_t_ajs = 0.      d_t_ajs = 0.
1032      d_u_ajs = 0.      d_u_ajs = 0.
# Line 1213  contains Line 1049  contains
1049      IF (if_ebil >= 2) THEN      IF (if_ebil >= 2) THEN
1050         tit = 'after dry_adjust'         tit = 'after dry_adjust'
1051         CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &         CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &
1052              ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &              ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)
             d_ql, d_qs, d_ec)  
1053      END IF      END IF
1054    
1055      ! Caclul des ratqs      ! Caclul des ratqs
1056    
1057      ! ratqs convectifs à l'ancienne en fonction de (q(z = 0) - q) / q      ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q
1058      ! on écrase le tableau ratqsc calculé par clouds_gno      ! on \'ecrase le tableau ratqsc calcul\'e par clouds_gno
1059      if (iflag_cldcon == 1) then      if (iflag_cldcon == 1) then
1060         do k = 1, llm         do k = 1, llm
1061            do i = 1, klon            do i = 1, klon
# Line 1272  contains Line 1107  contains
1107         ENDDO         ENDDO
1108      ENDDO      ENDDO
1109      IF (check) THEN      IF (check) THEN
1110         za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)         za = qcheck(paprs, q_seri, ql_seri)
1111         print *, "apresilp = ", za         print *, "apresilp = ", za
1112         zx_t = 0.         zx_t = 0.
1113         za = 0.         za = 0.
# Line 1288  contains Line 1123  contains
1123      IF (if_ebil >= 2) THEN      IF (if_ebil >= 2) THEN
1124         tit = 'after fisrt'         tit = 'after fisrt'
1125         CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &         CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &
1126              ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &              ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)
             d_ql, d_qs, d_ec)  
1127         call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &         call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &
1128              zero_v, zero_v, rain_lsc, snow_lsc, ztsol, d_h_vcol, d_qt, d_ec, &              zero_v, zero_v, rain_lsc, snow_lsc, ztsol, d_h_vcol, d_qt, d_ec)
             fs_bound, fq_bound)  
1129      END IF      END IF
1130    
1131      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
# Line 1329  contains Line 1162  contains
1162         ENDDO         ENDDO
1163      ELSE IF (iflag_cldcon == 3) THEN      ELSE IF (iflag_cldcon == 3) THEN
1164         ! On prend pour les nuages convectifs le maximum du calcul de         ! On prend pour les nuages convectifs le maximum du calcul de
1165         ! la convection et du calcul du pas de temps précédent diminué         ! la convection et du calcul du pas de temps pr\'ec\'edent diminu\'e
1166         ! d'un facteur facttemps.         ! d'un facteur facttemps.
1167         facteur = dtphys * facttemps         facteur = dtphys * facttemps
1168         do k = 1, llm         do k = 1, llm
# Line 1369  contains Line 1202  contains
1202      ENDDO      ENDDO
1203    
1204      IF (if_ebil >= 2) CALL diagetpq(airephy, "after diagcld", ip_ebil, 2, 2, &      IF (if_ebil >= 2) CALL diagetpq(airephy, "after diagcld", ip_ebil, 2, 2, &
1205           dtphys, t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, &           dtphys, t_seri, q_seri, ql_seri, u_seri, v_seri, paprs, d_h_vcol, &
1206           d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)           d_qt, d_ec)
1207    
1208      ! Humidité relative pour diagnostic :      ! Humidit\'e relative pour diagnostic :
1209      DO k = 1, llm      DO k = 1, llm
1210         DO i = 1, klon         DO i = 1, klon
1211            zx_t = t_seri(i, k)            zx_t = t_seri(i, k)
1212            IF (thermcep) THEN            IF (thermcep) THEN
1213               zdelta = MAX(0., SIGN(1., rtt-zx_t))               zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t)/play(i, k)
              zx_qs = r2es * FOEEW(zx_t, zdelta)/play(i, k)  
1214               zx_qs = MIN(0.5, zx_qs)               zx_qs = MIN(0.5, zx_qs)
1215               zcor = 1./(1.-retv*zx_qs)               zcor = 1./(1.-retv*zx_qs)
1216               zx_qs = zx_qs*zcor               zx_qs = zx_qs*zcor
# Line 1397  contains Line 1229  contains
1229      ! Introduce the aerosol direct and first indirect radiative forcings:      ! Introduce the aerosol direct and first indirect radiative forcings:
1230      IF (ok_ade .OR. ok_aie) THEN      IF (ok_ade .OR. ok_aie) THEN
1231         ! Get sulfate aerosol distribution :         ! Get sulfate aerosol distribution :
1232         CALL readsulfate(rdayvrai, firstcal, sulfate)         CALL readsulfate(dayvrai, time, firstcal, sulfate)
1233         CALL readsulfate_preind(rdayvrai, firstcal, sulfate_pi)         CALL readsulfate_preind(dayvrai, time, firstcal, sulfate_pi)
1234    
1235         CALL aeropt(play, paprs, t_seri, sulfate, rhcl, tau_ae, piz_ae, cg_ae, &         CALL aeropt(play, paprs, t_seri, sulfate, rhcl, tau_ae, piz_ae, cg_ae, &
1236              aerindex)              aerindex)
# Line 1408  contains Line 1240  contains
1240         cg_ae = 0.         cg_ae = 0.
1241      ENDIF      ENDIF
1242    
1243      ! Paramètres optiques des nuages et quelques paramètres pour diagnostics :      ! Param\`etres optiques des nuages et quelques param\`etres pour
1244        ! diagnostics :
1245      if (ok_newmicro) then      if (ok_newmicro) then
1246         CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &         CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &
1247              cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc, ok_aie, &              cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc, ok_aie, &
# Line 1419  contains Line 1252  contains
1252              bl95_b1, cldtaupi, re, fl)              bl95_b1, cldtaupi, re, fl)
1253      endif      endif
1254    
     ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.  
1255      IF (MOD(itaprad, radpas) == 0) THEN      IF (MOD(itaprad, radpas) == 0) THEN
1256           ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.
1257         DO i = 1, klon         DO i = 1, klon
1258            albsol(i) = falbe(i, is_oce) * pctsrf(i, is_oce) &            albsol(i) = falbe(i, is_oce) * pctsrf(i, is_oce) &
1259                 + falbe(i, is_lic) * pctsrf(i, is_lic) &                 + falbe(i, is_lic) * pctsrf(i, is_lic) &
# Line 1432  contains Line 1265  contains
1265                 + falblw(i, is_sic) * pctsrf(i, is_sic)                 + falblw(i, is_sic) * pctsrf(i, is_sic)
1266         ENDDO         ENDDO
1267         ! Rayonnement (compatible Arpege-IFS) :         ! Rayonnement (compatible Arpege-IFS) :
1268         CALL radlwsw(dist, rmu0, fract, paprs, play, zxtsol, albsol, &         CALL radlwsw(dist, mu0, fract, paprs, play, zxtsol, albsol, &
1269              albsollw, t_seri, q_seri, wo, cldfra, cldemi, cldtau, heat, &              albsollw, t_seri, q_seri, wo, cldfra, cldemi, cldtau, heat, &
1270              heat0, cool, cool0, radsol, albpla, topsw, toplw, solsw, sollw, &              heat0, cool, cool0, radsol, albpla, topsw, toplw, solsw, sollw, &
1271              sollwdown, topsw0, toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, &              sollwdown, topsw0, toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, &
# Line 1440  contains Line 1273  contains
1273              cg_ae, topswad, solswad, cldtaupi, topswai, solswai)              cg_ae, topswad, solswad, cldtaupi, topswai, solswai)
1274         itaprad = 0         itaprad = 0
1275      ENDIF      ENDIF
1276    
1277      itaprad = itaprad + 1      itaprad = itaprad + 1
1278    
1279      ! Ajouter la tendance des rayonnements (tous les pas)      ! Ajouter la tendance des rayonnements (tous les pas)
# Line 1453  contains Line 1287  contains
1287      IF (if_ebil >= 2) THEN      IF (if_ebil >= 2) THEN
1288         tit = 'after rad'         tit = 'after rad'
1289         CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &         CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &
1290              ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &              ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)
             d_ql, d_qs, d_ec)  
1291         call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, &         call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, &
1292              zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &              zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec)
             fs_bound, fq_bound)  
1293      END IF      END IF
1294    
1295      ! Calculer l'hydrologie de la surface      ! Calculer l'hydrologie de la surface
# Line 1472  contains Line 1304  contains
1304         ENDDO         ENDDO
1305      ENDDO      ENDDO
1306    
1307      ! Calculer le bilan du sol et la dérive de température (couplage)      ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage)
1308    
1309      DO i = 1, klon      DO i = 1, klon
1310         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)
1311      ENDDO      ENDDO
1312    
1313      ! Paramétrisation de l'orographie à l'échelle sous-maille :      ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille :
1314    
1315      IF (ok_orodr) THEN      IF (ok_orodr) THEN
1316         ! selection des points pour lesquels le shema est actif:         ! selection des points pour lesquels le shema est actif:
# Line 1493  contains Line 1325  contains
1325         ENDDO         ENDDO
1326    
1327         CALL drag_noro(klon, llm, dtphys, paprs, play, zmea, zstd, zsig, zgam, &         CALL drag_noro(klon, llm, dtphys, paprs, play, zmea, zstd, zsig, zgam, &
1328              zthe, zpic, zval, igwd, idx, itest, t_seri, u_seri, v_seri, &              zthe, zpic, zval, itest, t_seri, u_seri, v_seri, zulow, zvlow, &
1329              zulow, zvlow, zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro)              zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro)
1330    
1331         ! ajout des tendances         ! ajout des tendances
1332         DO k = 1, llm         DO k = 1, llm
# Line 1507  contains Line 1339  contains
1339      ENDIF      ENDIF
1340    
1341      IF (ok_orolf) THEN      IF (ok_orolf) THEN
1342         ! Sélection des points pour lesquels le schéma est actif :         ! S\'election des points pour lesquels le sch\'ema est actif :
1343         igwd = 0         igwd = 0
1344         DO i = 1, klon         DO i = 1, klon
1345            itest(i) = 0            itest(i) = 0
# Line 1532  contains Line 1364  contains
1364         ENDDO         ENDDO
1365      ENDIF      ENDIF
1366    
1367      ! Stress nécessaires : toute la physique      ! Stress n\'ecessaires : toute la physique
1368    
1369      DO i = 1, klon      DO i = 1, klon
1370         zustrph(i) = 0.         zustrph(i) = 0.
# Line 1551  contains Line 1383  contains
1383           zustrph, zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc)           zustrph, zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc)
1384    
1385      IF (if_ebil >= 2) CALL diagetpq(airephy, 'after orography', ip_ebil, 2, &      IF (if_ebil >= 2) CALL diagetpq(airephy, 'after orography', ip_ebil, 2, &
1386           2, dtphys, t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, &           2, dtphys, t_seri, q_seri, ql_seri, u_seri, v_seri, paprs, d_h_vcol, &
1387           d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)           d_qt, d_ec)
1388    
1389      ! Calcul des tendances traceurs      ! Calcul des tendances traceurs
1390      call phytrac(rnpb, itap, lmt_pas, julien, time, firstcal, lafin, nqmx-2, &      call phytrac(itap, lmt_pas, julien, time, firstcal, lafin, dtphys, t, &
1391           dtphys, u, t, paprs, play, mfu, mfd, pen_u, pde_u, pen_d, pde_d, &           paprs, play, mfu, mfd, pde_u, pen_d, ycoefh, fm_therm, entr_therm, &
1392           ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, pctsrf, frac_impa, &           yu1, yv1, ftsol, pctsrf, frac_impa, frac_nucl, pphis, da, phi, mp, &
1393           frac_nucl, pphis, albsol, rhcl, cldfra, rneb, diafra, cldliq, &           upwd, dnwd, tr_seri, zmasse)
1394           pmflxr, pmflxs, prfl, psfl, da, phi, mp, upwd, dnwd, tr_seri, zmasse)  
1395        IF (offline) call phystokenc(dtphys, rlon, rlat, t, mfu, mfd, pen_u, &
1396      IF (offline) THEN           pde_u, pen_d, pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, &
1397         call phystokenc(dtphys, rlon, rlat, t, mfu, mfd, pen_u, pde_u, &           pctsrf, frac_impa, frac_nucl, pphis, airephy, dtphys, itap)
             pen_d, pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, &  
             pctsrf, frac_impa, frac_nucl, pphis, airephy, dtphys, itap)  
     ENDIF  
1398    
1399      ! Calculer le transport de l'eau et de l'energie (diagnostique)      ! Calculer le transport de l'eau et de l'energie (diagnostique)
1400      CALL transp(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, &      CALL transp(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, &
# Line 1592  contains Line 1421  contains
1421      IF (if_ebil >= 1) THEN      IF (if_ebil >= 1) THEN
1422         tit = 'after physic'         tit = 'after physic'
1423         CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &         CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &
1424              ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &              ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec)
             d_ql, d_qs, d_ec)  
1425         ! Comme les tendances de la physique sont ajoute dans la dynamique,         ! Comme les tendances de la physique sont ajoute dans la dynamique,
1426         ! on devrait avoir que la variation d'entalpie par la dynamique         ! on devrait avoir que la variation d'entalpie par la dynamique
1427         ! est egale a la variation de la physique au pas de temps precedent.         ! est egale a la variation de la physique au pas de temps precedent.
1428         ! Donc la somme de ces 2 variations devrait etre nulle.         ! Donc la somme de ces 2 variations devrait etre nulle.
1429         call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, sens, &         call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, sens, &
1430              evap, rain_fall, snow_fall, ztsol, d_h_vcol, d_qt, d_ec, &              evap, rain_fall, snow_fall, ztsol, d_h_vcol, d_qt, d_ec)
             fs_bound, fq_bound)  
   
1431         d_h_vcol_phy = d_h_vcol         d_h_vcol_phy = d_h_vcol
   
1432      END IF      END IF
1433    
1434      ! SORTIES      ! SORTIES
# Line 1628  contains Line 1453  contains
1453         ENDDO         ENDDO
1454      ENDDO      ENDDO
1455    
1456      IF (nqmx >= 3) THEN      DO iq = 3, nqmx
1457         DO iq = 3, nqmx         DO k = 1, llm
1458            DO k = 1, llm            DO i = 1, klon
1459               DO i = 1, klon               d_qx(i, k, iq) = (tr_seri(i, k, iq-2) - qx(i, k, iq)) / dtphys
                 d_qx(i, k, iq) = (tr_seri(i, k, iq-2) - qx(i, k, iq)) / dtphys  
              ENDDO  
1460            ENDDO            ENDDO
1461         ENDDO         ENDDO
1462      ENDIF      ENDDO
1463    
1464      ! Sauvegarder les valeurs de t et q a la fin de la physique:      ! Sauvegarder les valeurs de t et q a la fin de la physique:
1465      DO k = 1, llm      DO k = 1, llm
# Line 1647  contains Line 1470  contains
1470      ENDDO      ENDDO
1471    
1472      ! Ecriture des sorties      ! Ecriture des sorties
     call write_histhf  
     call write_histday  
1473      call write_histins      call write_histins
1474    
1475      ! Si c'est la fin, il faut conserver l'etat de redemarrage      ! Si c'est la fin, il faut conserver l'etat de redemarrage
1476      IF (lafin) THEN      IF (lafin) THEN
1477         itau_phy = itau_phy + itap         itau_phy = itau_phy + itap
1478         CALL phyredem("restartphy.nc", rlat, rlon, pctsrf, ftsol, ftsoil, &         CALL phyredem("restartphy.nc", pctsrf, ftsol, ftsoil, tslab, seaice, &
1479              tslab, seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, &              fqsurf, qsol, fsnow, falbe, falblw, fevap, rain_fall, snow_fall, &
1480              rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, &              solsw, sollw, dlw, radsol, frugs, agesno, zmea, zstd, zsig, zgam, &
1481              agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, &              zthe, zpic, zval, t_ancien, q_ancien, rnebcon, ratqs, clwcon, &
1482              q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01)              run_off_lic_0, sig1, w01)
1483      ENDIF      ENDIF
1484    
1485      firstcal = .FALSE.      firstcal = .FALSE.
1486    
1487    contains    contains
1488    
     subroutine write_histday  
   
       use gr_phy_write_3d_m, only: gr_phy_write_3d  
       integer itau_w ! pas de temps ecriture  
   
       !------------------------------------------------  
   
       if (ok_journe) THEN  
          itau_w = itau_phy + itap  
          if (nqmx <= 4) then  
             call histwrite(nid_day, "Sigma_O3_Royer", itau_w, &  
                  gr_phy_write_3d(wo) * 1e3)  
             ! (convert "wo" from kDU to DU)  
          end if  
          if (ok_sync) then  
             call histsync(nid_day)  
          endif  
       ENDIF  
   
     End subroutine write_histday  
   
     !****************************  
   
     subroutine write_histhf  
   
       ! From phylmd/write_histhf.h, version 1.5 2005/05/25 13:10:09  
   
       !------------------------------------------------  
   
       call write_histhf3d  
   
       IF (ok_sync) THEN  
          call histsync(nid_hf)  
       ENDIF  
   
     end subroutine write_histhf  
   
     !***************************************************************  
   
1489      subroutine write_histins      subroutine write_histins
1490    
1491        ! From phylmd/write_histins.h, version 1.2 2005/05/25 13:10:09        ! From phylmd/write_histins.h, version 1.2 2005/05/25 13:10:09
1492    
1493          use dimens_m, only: iim, jjm
1494          USE histsync_m, ONLY: histsync
1495          USE histwrite_m, ONLY: histwrite
1496    
1497        real zout        real zout
1498        integer itau_w ! pas de temps ecriture        integer itau_w ! pas de temps ecriture
1499          REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm)
1500    
1501        !--------------------------------------------------        !--------------------------------------------------
1502    
# Line 1925  contains Line 1712  contains
1712           CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_q_vdf, zx_tmp_3d)           CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_q_vdf, zx_tmp_3d)
1713           CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d)           CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d)
1714    
1715           if (ok_sync) then           call histsync(nid_ins)
             call histsync(nid_ins)  
          endif  
1716        ENDIF        ENDIF
1717    
1718      end subroutine write_histins      end subroutine write_histins
1719    
     !****************************************************  
   
     subroutine write_histhf3d  
   
       ! From phylmd/write_histhf3d.h, version 1.2 2005/05/25 13:10:09  
   
       integer itau_w ! pas de temps ecriture  
   
       !-------------------------------------------------------  
   
       itau_w = itau_phy + itap  
   
       ! Champs 3D:  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, t_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "temp", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, qx(1, 1, ivap), zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "ovap", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, u_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitu", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, v_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitv", itau_w, zx_tmp_3d)  
   
       if (nbtr >= 3) then  
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, tr_seri(1, 1, 3), &  
               zx_tmp_3d)  
          CALL histwrite(nid_hf3d, "O3", itau_w, zx_tmp_3d)  
       end if  
   
       if (ok_sync) then  
          call histsync(nid_hf3d)  
       endif  
   
     end subroutine write_histhf3d  
   
1720    END SUBROUTINE physiq    END SUBROUTINE physiq
1721    
1722  end module physiq_m  end module physiq_m

Legend:
Removed from v.76  
changed lines
  Added in v.150

  ViewVC Help
Powered by ViewVC 1.1.21