/[lmdze]/trunk/phylmd/physiq.f
ViewVC logotype

Diff of /trunk/phylmd/physiq.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/phylmd/physiq.f90 revision 76 by guez, Fri Nov 15 18:45:49 2013 UTC trunk/Sources/phylmd/physiq.f revision 212 by guez, Thu Jan 12 12:31:31 2017 UTC
# Line 4  module physiq_m Line 4  module physiq_m
4    
5  contains  contains
6    
7    SUBROUTINE physiq(lafin, rdayvrai, time, dtphys, paprs, play, pphi, pphis, &    SUBROUTINE physiq(lafin, dayvrai, time, paprs, play, pphi, pphis, u, v, t, &
8         u, v, t, qx, omega, d_u, d_v, d_t, d_qx, d_ps, dudyn, PVteta)         qx, omega, d_u, d_v, d_t, d_qx)
9    
10      ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28      ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28
11      ! (subversion revision 678)      ! (subversion revision 678)
12    
13      ! Author: Z.X. Li (LMD/CNRS) 1993      ! Author: Z. X. Li (LMD/CNRS) 1993
14    
15      ! This is the main procedure for the "physics" part of the program.      ! This is the main procedure for the "physics" part of the program.
16    
17      use aaam_bud_m, only: aaam_bud      use aaam_bud_m, only: aaam_bud
18      USE abort_gcm_m, ONLY: abort_gcm      USE abort_gcm_m, ONLY: abort_gcm
     use aeropt_m, only: aeropt  
19      use ajsec_m, only: ajsec      use ajsec_m, only: ajsec
     USE calendar, ONLY: ymds2ju  
20      use calltherm_m, only: calltherm      use calltherm_m, only: calltherm
21      USE clesphys, ONLY: cdhmax, cdmmax, co2_ppm, ecrit_hf, ecrit_ins, &      USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ksta, ksta_ter, ok_kzmin, &
22           ecrit_mth, ecrit_reg, ecrit_tra, ksta, ksta_ter, ok_kzmin           ok_instan
23      USE clesphys2, ONLY: cycle_diurne, iflag_con, nbapp_rad, new_oliq, &      USE clesphys2, ONLY: conv_emanuel, nbapp_rad, new_oliq, ok_orodr, ok_orolf
          ok_orodr, ok_orolf, soil_model  
24      USE clmain_m, ONLY: clmain      USE clmain_m, ONLY: clmain
25      use clouds_gno_m, only: clouds_gno      use clouds_gno_m, only: clouds_gno
26      USE comgeomphy, ONLY: airephy, cuphy, cvphy      use comconst, only: dtphys
27        USE comgeomphy, ONLY: airephy
28      USE concvl_m, ONLY: concvl      USE concvl_m, ONLY: concvl
29      USE conf_gcm_m, ONLY: offline, raz_date      USE conf_gcm_m, ONLY: offline, lmt_pas
30      USE conf_phys_m, ONLY: conf_phys      USE conf_phys_m, ONLY: conf_phys
31      use conflx_m, only: conflx      use conflx_m, only: conflx
32      USE ctherm, ONLY: iflag_thermals, nsplit_thermals      USE ctherm, ONLY: iflag_thermals, nsplit_thermals
33      use diagcld2_m, only: diagcld2      use diagcld2_m, only: diagcld2
34      use diagetpq_m, only: diagetpq      USE dimens_m, ONLY: llm, nqmx
35      use diagphy_m, only: diagphy      USE dimphy, ONLY: klon
     USE dimens_m, ONLY: iim, jjm, llm, nqmx  
     USE dimphy, ONLY: klon, nbtr  
36      USE dimsoil, ONLY: nsoilmx      USE dimsoil, ONLY: nsoilmx
37      use drag_noro_m, only: drag_noro      use drag_noro_m, only: drag_noro
38      USE fcttre, ONLY: foeew, qsatl, qsats, thermcep      use dynetat0_m, only: day_ref, annee_ref
39        USE fcttre, ONLY: foeew, qsatl, qsats
40      use fisrtilp_m, only: fisrtilp      use fisrtilp_m, only: fisrtilp
41      USE hgardfou_m, ONLY: hgardfou      USE hgardfou_m, ONLY: hgardfou
42      USE histsync_m, ONLY: histsync      USE histsync_m, ONLY: histsync
43      USE histwrite_m, ONLY: histwrite      USE histwrite_phy_m, ONLY: histwrite_phy
44      USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &      USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &
45           nbsrf           nbsrf
46      USE ini_histhf_m, ONLY: ini_histhf      USE ini_histins_m, ONLY: ini_histins, nid_ins
47      USE ini_histday_m, ONLY: ini_histday      use netcdf95, only: NF95_CLOSE
     USE ini_histins_m, ONLY: ini_histins  
48      use newmicro_m, only: newmicro      use newmicro_m, only: newmicro
49      USE oasis_m, ONLY: ok_oasis      use nr_util, only: assert
50      USE orbite_m, ONLY: orbite, zenang      use nuage_m, only: nuage
51        USE orbite_m, ONLY: orbite
52      USE ozonecm_m, ONLY: ozonecm      USE ozonecm_m, ONLY: ozonecm
53      USE phyetat0_m, ONLY: phyetat0, rlat, rlon      USE phyetat0_m, ONLY: phyetat0, rlat, rlon
54      USE phyredem_m, ONLY: phyredem      USE phyredem_m, ONLY: phyredem
55        USE phyredem0_m, ONLY: phyredem0
56      USE phystokenc_m, ONLY: phystokenc      USE phystokenc_m, ONLY: phystokenc
57      USE phytrac_m, ONLY: phytrac      USE phytrac_m, ONLY: phytrac
     USE qcheck_m, ONLY: qcheck  
58      use radlwsw_m, only: radlwsw      use radlwsw_m, only: radlwsw
59      use readsulfate_m, only: readsulfate      use yoegwd, only: sugwd
60      use sugwd_m, only: sugwd      USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt, rmo3, md
61      USE suphec_m, ONLY: ra, rcpd, retv, rg, rlvtt, romega, rsigma, rtt      use time_phylmdz, only: itap, increment_itap
62      USE temps, ONLY: annee_ref, day_ref, itau_phy      use transp_m, only: transp
63        use transp_lay_m, only: transp_lay
64      use unit_nml_m, only: unit_nml      use unit_nml_m, only: unit_nml
65        USE ymds2ju_m, ONLY: ymds2ju
66      USE yoethf_m, ONLY: r2es, rvtmp2      USE yoethf_m, ONLY: r2es, rvtmp2
67        use zenang_m, only: zenang
68    
     ! Arguments:  
   
     REAL, intent(in):: rdayvrai  
     ! (elapsed time since January 1st 0h of the starting year, in days)  
   
     REAL, intent(in):: time ! heure de la journée en fraction de jour  
     REAL, intent(in):: dtphys ! pas d'integration pour la physique (seconde)  
69      logical, intent(in):: lafin ! dernier passage      logical, intent(in):: lafin ! dernier passage
70    
71      REAL, intent(in):: paprs(klon, llm + 1)      integer, intent(in):: dayvrai
72      ! (pression pour chaque inter-couche, en Pa)      ! current day number, based at value 1 on January 1st of annee_ref
73    
74      REAL, intent(in):: play(klon, llm)      REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour
     ! (input pression pour le mileu de chaque couche (en Pa))  
75    
76      REAL, intent(in):: pphi(klon, llm)      REAL, intent(in):: paprs(:, :) ! (klon, llm + 1)
77      ! (input geopotentiel de chaque couche (g z) (reference sol))      ! pression pour chaque inter-couche, en Pa
78    
79      REAL, intent(in):: pphis(klon) ! input geopotentiel du sol      REAL, intent(in):: play(:, :) ! (klon, llm)
80        ! pression pour le mileu de chaque couche (en Pa)
81    
82      REAL, intent(in):: u(klon, llm)      REAL, intent(in):: pphi(:, :) ! (klon, llm)
83      ! vitesse dans la direction X (de O a E) en m/s      ! géopotentiel de chaque couche (référence sol)
84    
85      REAL, intent(in):: v(klon, llm) ! vitesse Y (de S a N) en m/s      REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol
     REAL, intent(in):: t(klon, llm) ! input temperature (K)  
86    
87      REAL, intent(in):: qx(klon, llm, nqmx)      REAL, intent(in):: u(:, :) ! (klon, llm)
88      ! (humidité spécifique et fractions massiques des autres traceurs)      ! vitesse dans la direction X (de O a E) en m / s
89    
90      REAL omega(klon, llm) ! input vitesse verticale en Pa/s      REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m / s
91      REAL, intent(out):: d_u(klon, llm) ! tendance physique de "u" (m/s/s)      REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)
     REAL, intent(out):: d_v(klon, llm) ! tendance physique de "v" (m/s/s)  
     REAL, intent(out):: d_t(klon, llm) ! tendance physique de "t" (K/s)  
     REAL d_qx(klon, llm, nqmx) ! output tendance physique de "qx" (kg/kg/s)  
     REAL d_ps(klon) ! output tendance physique de la pression au sol  
92    
93      LOGICAL:: firstcal = .true.      REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)
94        ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)
95    
96      INTEGER nbteta      REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa / s
97      PARAMETER(nbteta = 3)      REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)
98        REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)
99        REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K / s)
100    
101      REAL PVteta(klon, nbteta)      REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)
102      ! (output vorticite potentielle a des thetas constantes)      ! tendance physique de "qx" (s-1)
103    
104      LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface      ! Local:
     PARAMETER (ok_gust = .FALSE.)  
105    
106      LOGICAL check ! Verifier la conservation du modele en eau      LOGICAL:: firstcal = .true.
     PARAMETER (check = .FALSE.)  
107    
108      LOGICAL, PARAMETER:: ok_stratus = .FALSE.      LOGICAL, PARAMETER:: ok_stratus = .FALSE.
109      ! Ajouter artificiellement les stratus      ! Ajouter artificiellement les stratus
110    
111      ! Parametres lies au coupleur OASIS:      ! pour phystoke avec thermiques
     INTEGER, SAVE:: npas, nexca  
     logical rnpb  
     parameter(rnpb = .true.)  
   
     character(len = 6):: ocean = 'force '  
     ! (type de modèle océan à utiliser: "force" ou "slab" mais pas "couple")  
   
     ! "slab" ocean  
     REAL, save:: tslab(klon) ! temperature of ocean slab  
     REAL, save:: seaice(klon) ! glace de mer (kg/m2)  
     REAL fluxo(klon) ! flux turbulents ocean-glace de mer  
     REAL fluxg(klon) ! flux turbulents ocean-atmosphere  
   
     ! Modele thermique du sol, a activer pour le cycle diurne:  
     logical:: ok_veget = .false. ! type de modele de vegetation utilise  
   
     logical:: ok_journe = .false., ok_mensuel = .true., ok_instan = .false.  
     ! sorties journalieres, mensuelles et instantanees dans les  
     ! fichiers histday, histmth et histins  
   
     LOGICAL ok_region ! sortir le fichier regional  
     PARAMETER (ok_region = .FALSE.)  
   
     ! pour phsystoke avec thermiques  
112      REAL fm_therm(klon, llm + 1)      REAL fm_therm(klon, llm + 1)
113      REAL entr_therm(klon, llm)      REAL entr_therm(klon, llm)
114      real, save:: q2(klon, llm + 1, nbsrf)      real, save:: q2(klon, llm + 1, nbsrf)
115    
116      INTEGER ivap ! indice de traceurs pour vapeur d'eau      INTEGER, PARAMETER:: ivap = 1 ! indice de traceur pour vapeur d'eau
117      PARAMETER (ivap = 1)      INTEGER, PARAMETER:: iliq = 2 ! indice de traceur pour eau liquide
     INTEGER iliq ! indice de traceurs pour eau liquide  
     PARAMETER (iliq = 2)  
118    
119      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)
120      LOGICAL, save:: ancien_ok      LOGICAL, save:: ancien_ok
121    
122      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K/s)      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K / s)
123      REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg/kg/s)      REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg / kg / s)
124    
125      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)
126    
127      !IM Amip2 PV a theta constante      REAL, save:: swdn0(klon, llm + 1), swdn(klon, llm + 1)
128        REAL, save:: swup0(klon, llm + 1), swup(klon, llm + 1)
129    
130      CHARACTER(LEN = 3) ctetaSTD(nbteta)      REAL, save:: lwdn0(klon, llm + 1), lwdn(klon, llm + 1)
131      DATA ctetaSTD/'350', '380', '405'/      REAL, save:: lwup0(klon, llm + 1), lwup(klon, llm + 1)
     REAL rtetaSTD(nbteta)  
     DATA rtetaSTD/350., 380., 405./  
   
     !MI Amip2 PV a theta constante  
   
     REAL swdn0(klon, llm + 1), swdn(klon, llm + 1)  
     REAL swup0(klon, llm + 1), swup(klon, llm + 1)  
     SAVE swdn0, swdn, swup0, swup  
   
     REAL lwdn0(klon, llm + 1), lwdn(klon, llm + 1)  
     REAL lwup0(klon, llm + 1), lwup(klon, llm + 1)  
     SAVE lwdn0, lwdn, lwup0, lwup  
   
     !IM Amip2  
     ! variables a une pression donnee  
   
     integer nlevSTD  
     PARAMETER(nlevSTD = 17)  
     real rlevSTD(nlevSTD)  
     DATA rlevSTD/100000., 92500., 85000., 70000., &  
          60000., 50000., 40000., 30000., 25000., 20000., &  
          15000., 10000., 7000., 5000., 3000., 2000., 1000./  
     CHARACTER(LEN = 4) clevSTD(nlevSTD)  
     DATA clevSTD/'1000', '925 ', '850 ', '700 ', '600 ', &  
          '500 ', '400 ', '300 ', '250 ', '200 ', '150 ', '100 ', &  
          '70 ', '50 ', '30 ', '20 ', '10 '/  
132    
133      ! prw: precipitable water      ! prw: precipitable water
134      real prw(klon)      real prw(klon)
135    
136      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg/m2)      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg / m2)
137      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg/kg)      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg / kg)
138      REAL flwp(klon), fiwp(klon)      REAL flwp(klon), fiwp(klon)
139      REAL flwc(klon, llm), fiwc(klon, llm)      REAL flwc(klon, llm), fiwc(klon, llm)
140    
     INTEGER kmax, lmax  
     PARAMETER(kmax = 8, lmax = 8)  
     INTEGER kmaxm1, lmaxm1  
     PARAMETER(kmaxm1 = kmax-1, lmaxm1 = lmax-1)  
   
     REAL zx_tau(kmaxm1), zx_pc(lmaxm1)  
     DATA zx_tau/0., 0.3, 1.3, 3.6, 9.4, 23., 60./  
     DATA zx_pc/50., 180., 310., 440., 560., 680., 800./  
   
     ! cldtopres pression au sommet des nuages  
     REAL cldtopres(lmaxm1)  
     DATA cldtopres/50., 180., 310., 440., 560., 680., 800./  
   
     ! taulev: numero du niveau de tau dans les sorties ISCCP  
     CHARACTER(LEN = 4) taulev(kmaxm1)  
   
     DATA taulev/'tau0', 'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'/  
     CHARACTER(LEN = 3) pclev(lmaxm1)  
     DATA pclev/'pc1', 'pc2', 'pc3', 'pc4', 'pc5', 'pc6', 'pc7'/  
   
     CHARACTER(LEN = 28) cnameisccp(lmaxm1, kmaxm1)  
     DATA cnameisccp/'pc< 50hPa, tau< 0.3', 'pc= 50-180hPa, tau< 0.3', &  
          'pc= 180-310hPa, tau< 0.3', 'pc= 310-440hPa, tau< 0.3', &  
          'pc= 440-560hPa, tau< 0.3', 'pc= 560-680hPa, tau< 0.3', &  
          'pc= 680-800hPa, tau< 0.3', 'pc< 50hPa, tau= 0.3-1.3', &  
          'pc= 50-180hPa, tau= 0.3-1.3', 'pc= 180-310hPa, tau= 0.3-1.3', &  
          'pc= 310-440hPa, tau= 0.3-1.3', 'pc= 440-560hPa, tau= 0.3-1.3', &  
          'pc= 560-680hPa, tau= 0.3-1.3', 'pc= 680-800hPa, tau= 0.3-1.3', &  
          'pc< 50hPa, tau= 1.3-3.6', 'pc= 50-180hPa, tau= 1.3-3.6', &  
          'pc= 180-310hPa, tau= 1.3-3.6', 'pc= 310-440hPa, tau= 1.3-3.6', &  
          'pc= 440-560hPa, tau= 1.3-3.6', 'pc= 560-680hPa, tau= 1.3-3.6', &  
          'pc= 680-800hPa, tau= 1.3-3.6', 'pc< 50hPa, tau= 3.6-9.4', &  
          'pc= 50-180hPa, tau= 3.6-9.4', 'pc= 180-310hPa, tau= 3.6-9.4', &  
          'pc= 310-440hPa, tau= 3.6-9.4', 'pc= 440-560hPa, tau= 3.6-9.4', &  
          'pc= 560-680hPa, tau= 3.6-9.4', 'pc= 680-800hPa, tau= 3.6-9.4', &  
          'pc< 50hPa, tau= 9.4-23', 'pc= 50-180hPa, tau= 9.4-23', &  
          'pc= 180-310hPa, tau= 9.4-23', 'pc= 310-440hPa, tau= 9.4-23', &  
          'pc= 440-560hPa, tau= 9.4-23', 'pc= 560-680hPa, tau= 9.4-23', &  
          'pc= 680-800hPa, tau= 9.4-23', 'pc< 50hPa, tau= 23-60', &  
          'pc= 50-180hPa, tau= 23-60', 'pc= 180-310hPa, tau= 23-60', &  
          'pc= 310-440hPa, tau= 23-60', 'pc= 440-560hPa, tau= 23-60', &  
          'pc= 560-680hPa, tau= 23-60', 'pc= 680-800hPa, tau= 23-60', &  
          'pc< 50hPa, tau> 60.', 'pc= 50-180hPa, tau> 60.', &  
          'pc= 180-310hPa, tau> 60.', 'pc= 310-440hPa, tau> 60.', &  
          'pc= 440-560hPa, tau> 60.', 'pc= 560-680hPa, tau> 60.', &  
          'pc= 680-800hPa, tau> 60.'/  
   
     !IM ISCCP simulator v3.4  
   
     integer nid_hf, nid_hf3d  
     save nid_hf, nid_hf3d  
   
141      ! Variables propres a la physique      ! Variables propres a la physique
142    
143      INTEGER, save:: radpas      INTEGER, save:: radpas
144      ! (Radiative transfer computations are made every "radpas" call to      ! Radiative transfer computations are made every "radpas" call to
145      ! "physiq".)      ! "physiq".
   
     REAL radsol(klon)  
     SAVE radsol ! bilan radiatif au sol calcule par code radiatif  
   
     INTEGER, SAVE:: itap ! number of calls to "physiq"  
146    
147        REAL, save:: radsol(klon) ! bilan radiatif au sol calcule par code radiatif
148      REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction      REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction
149    
150      REAL, save:: ftsoil(klon, nsoilmx, nbsrf)      REAL, save:: ftsoil(klon, nsoilmx, nbsrf)
151      ! soil temperature of surface fraction      ! soil temperature of surface fraction
152    
153      REAL, save:: fevap(klon, nbsrf) ! evaporation      REAL, save:: fevap(klon, nbsrf) ! evaporation
154      REAL fluxlat(klon, nbsrf)      REAL, save:: fluxlat(klon, nbsrf)
     SAVE fluxlat  
   
     REAL fqsurf(klon, nbsrf)  
     SAVE fqsurf ! humidite de l'air au contact de la surface  
155    
156      REAL, save:: qsol(klon) ! hauteur d'eau dans le sol      REAL, save:: fqsurf(klon, nbsrf)
157        ! humidite de l'air au contact de la surface
158    
159      REAL fsnow(klon, nbsrf)      REAL, save:: qsol(klon)
160      SAVE fsnow ! epaisseur neigeuse      ! column-density of water in soil, in kg m-2
161    
162      REAL falbe(klon, nbsrf)      REAL, save:: fsnow(klon, nbsrf) ! epaisseur neigeuse
163      SAVE falbe ! albedo par type de surface      REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface
     REAL falblw(klon, nbsrf)  
     SAVE falblw ! albedo par type de surface  
164    
165      ! Paramètres de l'orographie à l'échelle sous-maille (OESM) :      ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :
166      REAL, save:: zmea(klon) ! orographie moyenne      REAL, save:: zmea(klon) ! orographie moyenne
167      REAL, save:: zstd(klon) ! deviation standard de l'OESM      REAL, save:: zstd(klon) ! deviation standard de l'OESM
168      REAL, save:: zsig(klon) ! pente de l'OESM      REAL, save:: zsig(klon) ! pente de l'OESM
# Line 294  contains Line 171  contains
171      REAL, save:: zpic(klon) ! Maximum de l'OESM      REAL, save:: zpic(klon) ! Maximum de l'OESM
172      REAL, save:: zval(klon) ! Minimum de l'OESM      REAL, save:: zval(klon) ! Minimum de l'OESM
173      REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM      REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM
   
174      REAL zulow(klon), zvlow(klon)      REAL zulow(klon), zvlow(klon)
175        INTEGER igwd, itest(klon)
176    
177      INTEGER igwd, idx(klon), itest(klon)      REAL, save:: agesno(klon, nbsrf) ! age de la neige
178        REAL, save:: run_off_lic_0(klon)
     REAL agesno(klon, nbsrf)  
     SAVE agesno ! age de la neige  
179    
180      REAL run_off_lic_0(klon)      ! Variables li\'ees \`a la convection d'Emanuel :
181      SAVE run_off_lic_0      REAL, save:: Ma(klon, llm) ! undilute upward mass flux
182      !KE43      REAL, save:: qcondc(klon, llm) ! in-cld water content from convect
     ! Variables liees a la convection de K. Emanuel (sb):  
   
     REAL bas, top ! cloud base and top levels  
     SAVE bas  
     SAVE top  
   
     REAL Ma(klon, llm) ! undilute upward mass flux  
     SAVE Ma  
     REAL qcondc(klon, llm) ! in-cld water content from convect  
     SAVE qcondc  
183      REAL, save:: sig1(klon, llm), w01(klon, llm)      REAL, save:: sig1(klon, llm), w01(klon, llm)
     REAL, save:: wd(klon)  
   
     ! Variables locales pour la couche limite (al1):  
   
     ! Variables locales:  
184    
185        ! Variables pour la couche limite (Alain Lahellec) :
186      REAL cdragh(klon) ! drag coefficient pour T and Q      REAL cdragh(klon) ! drag coefficient pour T and Q
187      REAL cdragm(klon) ! drag coefficient pour vent      REAL cdragm(klon) ! drag coefficient pour vent
188    
# Line 329  contains Line 190  contains
190      REAL ycoefh(klon, llm) ! coef d'echange pour phytrac      REAL ycoefh(klon, llm) ! coef d'echange pour phytrac
191      REAL yu1(klon) ! vents dans la premiere couche U      REAL yu1(klon) ! vents dans la premiere couche U
192      REAL yv1(klon) ! vents dans la premiere couche V      REAL yv1(klon) ! vents dans la premiere couche V
193      REAL ffonte(klon, nbsrf) !Flux thermique utilise pour fondre la neige  
194      REAL fqcalving(klon, nbsrf) !Flux d'eau "perdue" par la surface      REAL, save:: ffonte(klon, nbsrf)
195      ! !et necessaire pour limiter la      ! flux thermique utilise pour fondre la neige
196      ! !hauteur de neige, en kg/m2/s  
197        REAL, save:: fqcalving(klon, nbsrf)
198        ! flux d'eau "perdue" par la surface et necessaire pour limiter la
199        ! hauteur de neige, en kg / m2 / s
200    
201      REAL zxffonte(klon), zxfqcalving(klon)      REAL zxffonte(klon), zxfqcalving(klon)
202    
203      REAL pfrac_impa(klon, llm)! Produits des coefs lessivage impaction      REAL, save:: pfrac_impa(klon, llm)! Produits des coefs lessivage impaction
204      save pfrac_impa      REAL, save:: pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation
205      REAL pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation  
206      save pfrac_nucl      REAL, save:: pfrac_1nucl(klon, llm)
207      REAL pfrac_1nucl(klon, llm)! Produits des coefs lessi nucl (alpha = 1)      ! Produits des coefs lessi nucl (alpha = 1)
208      save pfrac_1nucl  
209      REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction)      REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction)
210      REAL frac_nucl(klon, llm) ! idem (nucleation)      REAL frac_nucl(klon, llm) ! idem (nucleation)
211    
212      REAL, save:: rain_fall(klon) ! pluie      REAL, save:: rain_fall(klon)
213      REAL, save:: snow_fall(klon) ! neige      ! liquid water mass flux (kg / m2 / s), positive down
214    
215        REAL, save:: snow_fall(klon)
216        ! solid water mass flux (kg / m2 / s), positive down
217    
218      REAL rain_tiedtke(klon), snow_tiedtke(klon)      REAL rain_tiedtke(klon), snow_tiedtke(klon)
219    
220      REAL evap(klon), devap(klon) ! evaporation and its derivative      REAL evap(klon) ! flux d'\'evaporation au sol
221      REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee      real devap(klon) ! derivative of the evaporation flux at the surface
222      REAL dlw(klon) ! derivee infra rouge      REAL sens(klon) ! flux de chaleur sensible au sol
223      SAVE dlw      real dsens(klon) ! derivee du flux de chaleur sensible au sol
224        REAL, save:: dlw(klon) ! derivee infra rouge
225      REAL bils(klon) ! bilan de chaleur au sol      REAL bils(klon) ! bilan de chaleur au sol
226      REAL fder(klon) ! Derive de flux (sensible et latente)      REAL, save:: fder(klon) ! Derive de flux (sensible et latente)
     save fder  
227      REAL ve(klon) ! integr. verticale du transport meri. de l'energie      REAL ve(klon) ! integr. verticale du transport meri. de l'energie
228      REAL vq(klon) ! integr. verticale du transport meri. de l'eau      REAL vq(klon) ! integr. verticale du transport meri. de l'eau
229      REAL ue(klon) ! integr. verticale du transport zonal de l'energie      REAL ue(klon) ! integr. verticale du transport zonal de l'energie
230      REAL uq(klon) ! integr. verticale du transport zonal de l'eau      REAL uq(klon) ! integr. verticale du transport zonal de l'eau
231    
232      REAL frugs(klon, nbsrf) ! longueur de rugosite      REAL, save:: frugs(klon, nbsrf) ! longueur de rugosite
     save frugs  
233      REAL zxrugs(klon) ! longueur de rugosite      REAL zxrugs(klon) ! longueur de rugosite
234    
235      ! Conditions aux limites      ! Conditions aux limites
236    
237      INTEGER julien      INTEGER julien
   
     INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day  
238      REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface      REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface
239      REAL pctsrf_new(klon, nbsrf) ! pourcentage surfaces issus d'ORCHIDEE      REAL, save:: albsol(klon) ! albedo du sol total visible
   
     REAL albsol(klon)  
     SAVE albsol ! albedo du sol total  
     REAL albsollw(klon)  
     SAVE albsollw ! albedo du sol total  
   
240      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU
241        real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2
     ! Declaration des procedures appelees  
   
     EXTERNAL alboc ! calculer l'albedo sur ocean  
     !KE43  
     EXTERNAL conema3 ! convect4.3  
     EXTERNAL nuage ! calculer les proprietes radiatives  
     EXTERNAL transp ! transport total de l'eau et de l'energie  
   
     ! Variables locales  
242    
243      real, save:: clwcon(klon, llm), rnebcon(klon, llm)      real, save:: clwcon(klon, llm), rnebcon(klon, llm)
244      real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)      real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)
# Line 401  contains Line 251  contains
251      REAL cldtau(klon, llm) ! epaisseur optique      REAL cldtau(klon, llm) ! epaisseur optique
252      REAL cldemi(klon, llm) ! emissivite infrarouge      REAL cldemi(klon, llm) ! emissivite infrarouge
253    
254      REAL fluxq(klon, llm, nbsrf) ! flux turbulent d'humidite      REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface
255      REAL fluxt(klon, llm, nbsrf) ! flux turbulent de chaleur      REAL flux_t(klon, nbsrf) ! flux turbulent de chaleur à la surface
256      REAL fluxu(klon, llm, nbsrf) ! flux turbulent de vitesse u      REAL flux_u(klon, nbsrf) ! flux turbulent de vitesse u à la surface
257      REAL fluxv(klon, llm, nbsrf) ! flux turbulent de vitesse v      REAL flux_v(klon, nbsrf) ! flux turbulent de vitesse v à la surface
   
     REAL zxfluxt(klon, llm)  
     REAL zxfluxq(klon, llm)  
     REAL zxfluxu(klon, llm)  
     REAL zxfluxv(klon, llm)  
258    
259      ! Le rayonnement n'est pas calculé tous les pas, il faut donc que      ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que
260      ! les variables soient rémanentes.      ! les variables soient r\'emanentes.
261      REAL, save:: heat(klon, llm) ! chauffage solaire      REAL, save:: heat(klon, llm) ! chauffage solaire
262      REAL heat0(klon, llm) ! chauffage solaire ciel clair      REAL, save:: heat0(klon, llm) ! chauffage solaire ciel clair
263      REAL, save:: cool(klon, llm) ! refroidissement infrarouge      REAL, save:: cool(klon, llm) ! refroidissement infrarouge
264      REAL cool0(klon, llm) ! refroidissement infrarouge ciel clair      REAL, save:: cool0(klon, llm) ! refroidissement infrarouge ciel clair
265      REAL, save:: topsw(klon), toplw(klon), solsw(klon)      REAL, save:: topsw(klon), toplw(klon), solsw(klon)
266      REAL, save:: sollw(klon) ! rayonnement infrarouge montant à la surface      REAL, save:: sollw(klon) ! rayonnement infrarouge montant \`a la surface
267      real, save:: sollwdown(klon) ! downward LW flux at surface      real, save:: sollwdown(klon) ! downward LW flux at surface
268      REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)      REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)
269      REAL albpla(klon)      REAL, save:: albpla(klon)
270      REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous surface      REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous-surface
271      REAL fsolsw(klon, nbsrf) ! flux solaire absorb. pour chaque sous surface      REAL fsolsw(klon, nbsrf) ! flux solaire absorb\'e pour chaque sous-surface
272      SAVE albpla  
273      SAVE heat0, cool0      REAL conv_q(klon, llm) ! convergence de l'humidite (kg / kg / s)
274        REAL conv_t(klon, llm) ! convergence of temperature (K / s)
275      INTEGER itaprad  
276      SAVE itaprad      REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut
277        REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree
278      REAL conv_q(klon, llm) ! convergence de l'humidite (kg/kg/s)  
279      REAL conv_t(klon, llm) ! convergence of temperature (K/s)      REAL zxqsurf(klon), zxsnow(klon), zxfluxlat(klon)
280    
281      REAL cldl(klon), cldm(klon), cldh(klon) !nuages bas, moyen et haut      REAL dist, mu0(klon), fract(klon)
282      REAL cldt(klon), cldq(klon) !nuage total, eau liquide integree      real longi
   
     REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon)  
   
     REAL dist, rmu0(klon), fract(klon)  
     REAL zdtime ! pas de temps du rayonnement (s)  
     real zlongi  
283      REAL z_avant(klon), z_apres(klon), z_factor(klon)      REAL z_avant(klon), z_apres(klon), z_factor(klon)
284      REAL za, zb      REAL zb
285      REAL zx_t, zx_qs, zdelta, zcor      REAL zx_t, zx_qs, zcor
286      real zqsat(klon, llm)      real zqsat(klon, llm)
287      INTEGER i, k, iq, nsrf      INTEGER i, k, iq, nsrf
     REAL, PARAMETER:: t_coup = 234.  
288      REAL zphi(klon, llm)      REAL zphi(klon, llm)
289    
290      !IM cf. AM Variables locales pour la CLA (hbtm2)      ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm)
291    
292      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite
293      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA
294      REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite      REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite
295      REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite      REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite
296      REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite      REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite
297      REAL, SAVE:: pblt(klon, nbsrf) ! T a la Hauteur de couche limite      REAL, SAVE:: pblt(klon, nbsrf) ! T \`a la hauteur de couche limite
298      REAL, SAVE:: therm(klon, nbsrf)      REAL, SAVE:: therm(klon, nbsrf)
299      REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape      REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape
300      REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition      REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition
301      REAL, SAVE:: trmb3(klon, nbsrf) ! Point Omega      REAL, SAVE:: trmb3(klon, nbsrf) ! Point Omega
302      ! Grdeurs de sorties      ! Grandeurs de sorties
303      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)
304      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)
305      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)
306      REAL s_trmb3(klon)      REAL s_trmb3(klon)
307    
308      ! Variables locales pour la convection de K. Emanuel :      ! Variables pour la convection de K. Emanuel :
309    
310      REAL upwd(klon, llm) ! saturated updraft mass flux      REAL upwd(klon, llm) ! saturated updraft mass flux
311      REAL dnwd(klon, llm) ! saturated downdraft mass flux      REAL dnwd(klon, llm) ! saturated downdraft mass flux
312      REAL dnwd0(klon, llm) ! unsaturated downdraft mass flux      REAL, save:: cape(klon)
313      REAL tvp(klon, llm) ! virtual temp of lifted parcel  
     REAL cape(klon) ! CAPE  
     SAVE cape  
   
     REAL pbase(klon) ! cloud base pressure  
     SAVE pbase  
     REAL bbase(klon) ! cloud base buoyancy  
     SAVE bbase  
     REAL rflag(klon) ! flag fonctionnement de convect  
314      INTEGER iflagctrl(klon) ! flag fonctionnement de convect      INTEGER iflagctrl(klon) ! flag fonctionnement de convect
     ! -- convect43:  
     REAL dtvpdt1(klon, llm), dtvpdq1(klon, llm)  
     REAL dplcldt(klon), dplcldr(klon)  
315    
316      ! Variables du changement      ! Variables du changement
317    
318      ! con: convection      ! con: convection
319      ! lsc: large scale condensation      ! lsc: large scale condensation
320      ! ajs: ajustement sec      ! ajs: ajustement sec
321      ! eva: évaporation de l'eau liquide nuageuse      ! eva: \'evaporation de l'eau liquide nuageuse
322      ! vdf: vertical diffusion in boundary layer      ! vdf: vertical diffusion in boundary layer
323      REAL d_t_con(klon, llm), d_q_con(klon, llm)      REAL d_t_con(klon, llm), d_q_con(klon, llm)
324      REAL d_u_con(klon, llm), d_v_con(klon, llm)      REAL, save:: d_u_con(klon, llm), d_v_con(klon, llm)
325      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)
326      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)
327      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)
# Line 508  contains Line 335  contains
335      REAL prfl(klon, llm + 1), psfl(klon, llm + 1)      REAL prfl(klon, llm + 1), psfl(klon, llm + 1)
336    
337      INTEGER, save:: ibas_con(klon), itop_con(klon)      INTEGER, save:: ibas_con(klon), itop_con(klon)
338        real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa
339    
340      REAL rain_con(klon), rain_lsc(klon)      REAL, save:: rain_con(klon)
341      REAL snow_con(klon), snow_lsc(klon)      real rain_lsc(klon)
342        REAL, save:: snow_con(klon) ! neige (mm / s)
343        real snow_lsc(klon)
344      REAL d_ts(klon, nbsrf)      REAL d_ts(klon, nbsrf)
345    
346      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)
# Line 534  contains Line 364  contains
364      integer:: iflag_cldcon = 1      integer:: iflag_cldcon = 1
365      logical ptconv(klon, llm)      logical ptconv(klon, llm)
366    
367      ! Variables locales pour effectuer les appels en série :      ! Variables pour effectuer les appels en s\'erie :
368    
369      REAL t_seri(klon, llm), q_seri(klon, llm)      REAL t_seri(klon, llm), q_seri(klon, llm)
370      REAL ql_seri(klon, llm), qs_seri(klon, llm)      REAL ql_seri(klon, llm)
371      REAL u_seri(klon, llm), v_seri(klon, llm)      REAL u_seri(klon, llm), v_seri(klon, llm)
372        REAL tr_seri(klon, llm, nqmx - 2)
     REAL tr_seri(klon, llm, nbtr)  
     REAL d_tr(klon, llm, nbtr)  
373    
374      REAL zx_rh(klon, llm)      REAL zx_rh(klon, llm)
375    
# Line 550  contains Line 378  contains
378      REAL zustrph(klon), zvstrph(klon)      REAL zustrph(klon), zvstrph(klon)
379      REAL aam, torsfc      REAL aam, torsfc
380    
     REAL dudyn(iim + 1, jjm + 1, llm)  
   
     REAL zx_tmp_fi2d(klon) ! variable temporaire grille physique  
     REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm)  
   
     INTEGER, SAVE:: nid_day, nid_ins  
   
381      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.
382      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.
383      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.
384      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.
385    
     REAL zsto  
   
     logical ok_sync  
386      real date0      real date0
   
     ! Variables liées au bilan d'énergie et d'enthalpie :  
387      REAL ztsol(klon)      REAL ztsol(klon)
     REAL d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec  
     REAL, SAVE:: d_h_vcol_phy  
     REAL fs_bound, fq_bound  
     REAL zero_v(klon)  
     CHARACTER(LEN = 15) tit  
     INTEGER:: ip_ebil = 0 ! print level for energy conservation diagnostics  
     INTEGER:: if_ebil = 0 ! verbosity for diagnostics of energy conservation  
388    
389      REAL d_t_ec(klon, llm) ! tendance due à la conversion Ec -> E thermique      REAL d_t_ec(klon, llm)
390        ! tendance due \`a la conversion Ec en énergie thermique
391    
392      REAL ZRCPD      REAL ZRCPD
393    
394      REAL t2m(klon, nbsrf), q2m(klon, nbsrf) ! temperature and humidity at 2 m      REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf)
395      REAL u10m(klon, nbsrf), v10m(klon, nbsrf) ! vents a 10 m      ! temperature and humidity at 2 m
396      REAL zt2m(klon), zq2m(klon) ! temp., hum. 2 m moyenne s/ 1 maille  
397      REAL zu10m(klon), zv10m(klon) ! vents a 10 m moyennes s/1 maille      REAL, save:: u10m(klon, nbsrf), v10m(klon, nbsrf) ! vents a 10 m
398        REAL zt2m(klon), zq2m(klon) ! température, humidité 2 m moyenne sur 1 maille
399        REAL zu10m(klon), zv10m(klon) ! vents a 10 m moyennes sur 1 maille
400    
401      ! Aerosol effects:      ! Aerosol effects:
402    
403      REAL sulfate(klon, llm) ! SO4 aerosol concentration (micro g/m3)      REAL sulfate(klon, llm) ! SO4 aerosol concentration (micro g / m3)
404    
405      REAL, save:: sulfate_pi(klon, llm)      REAL, save:: sulfate_pi(klon, llm)
406      ! SO4 aerosol concentration, in micro g/m3, pre-industrial value      ! SO4 aerosol concentration, in \mu g / m3, pre-industrial value
407    
408      REAL cldtaupi(klon, llm)      REAL cldtaupi(klon, llm)
409      ! cloud optical thickness for pre-industrial (pi) aerosols      ! cloud optical thickness for pre-industrial aerosols
410    
411      REAL re(klon, llm) ! Cloud droplet effective radius      REAL re(klon, llm) ! Cloud droplet effective radius
412      REAL fl(klon, llm) ! denominator of re      REAL fl(klon, llm) ! denominator of re
# Line 602  contains Line 415  contains
415      REAL, save:: tau_ae(klon, llm, 2), piz_ae(klon, llm, 2)      REAL, save:: tau_ae(klon, llm, 2), piz_ae(klon, llm, 2)
416      REAL, save:: cg_ae(klon, llm, 2)      REAL, save:: cg_ae(klon, llm, 2)
417    
418      REAL topswad(klon), solswad(klon) ! aerosol direct effect      REAL, save:: topswad(klon), solswad(klon) ! aerosol direct effect
419      REAL topswai(klon), solswai(klon) ! aerosol indirect effect      REAL, save:: topswai(klon), solswai(klon) ! aerosol indirect effect
   
     REAL aerindex(klon) ! POLDER aerosol index  
420    
421      LOGICAL:: ok_ade = .false. ! apply aerosol direct effect      LOGICAL:: ok_ade = .false. ! apply aerosol direct effect
422      LOGICAL:: ok_aie = .false. ! apply aerosol indirect effect      LOGICAL:: ok_aie = .false. ! apply aerosol indirect effect
# Line 615  contains Line 426  contains
426      ! B). They link cloud droplet number concentration to aerosol mass      ! B). They link cloud droplet number concentration to aerosol mass
427      ! concentration.      ! concentration.
428    
429      SAVE u10m      real zmasse(klon, llm)
     SAVE v10m  
     SAVE t2m  
     SAVE q2m  
     SAVE ffonte  
     SAVE fqcalving  
     SAVE rain_con  
     SAVE snow_con  
     SAVE topswai  
     SAVE topswad  
     SAVE solswai  
     SAVE solswad  
     SAVE d_u_con  
     SAVE d_v_con  
   
     real zmasse(klon, llm)  
430      ! (column-density of mass of air in a cell, in kg m-2)      ! (column-density of mass of air in a cell, in kg m-2)
431    
432      real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2      integer, save:: ncid_startphy
433    
434      namelist /physiq_nml/ ocean, ok_veget, ok_journe, ok_mensuel, ok_instan, &      namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, &
435           fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, ratqsbas, &           ratqsbas, ratqshaut, ok_ade, ok_aie, bl95_b0, bl95_b1, &
436           ratqshaut, if_ebil, ok_ade, ok_aie, bl95_b0, bl95_b1, iflag_thermals, &           iflag_thermals, nsplit_thermals
          nsplit_thermals  
437    
438      !----------------------------------------------------------------      !----------------------------------------------------------------
439    
     IF (if_ebil >= 1) zero_v = 0.  
     ok_sync = .TRUE.  
440      IF (nqmx < 2) CALL abort_gcm('physiq', &      IF (nqmx < 2) CALL abort_gcm('physiq', &
441           'eaux vapeur et liquide sont indispensables', 1)           'eaux vapeur et liquide sont indispensables')
442    
443      test_firstcal: IF (firstcal) THEN      test_firstcal: IF (firstcal) THEN
444         ! initialiser         ! initialiser
# Line 658  contains Line 451  contains
451         piz_ae = 0.         piz_ae = 0.
452         tau_ae = 0.         tau_ae = 0.
453         cg_ae = 0.         cg_ae = 0.
454         rain_con(:) = 0.         rain_con = 0.
455         snow_con(:) = 0.         snow_con = 0.
456         topswai(:) = 0.         topswai = 0.
457         topswad(:) = 0.         topswad = 0.
458         solswai(:) = 0.         solswai = 0.
459         solswad(:) = 0.         solswad = 0.
460    
461         d_u_con = 0.         d_u_con = 0.
462         d_v_con = 0.         d_v_con = 0.
# Line 677  contains Line 470  contains
470         capCL =0. ! CAPE de couche limite         capCL =0. ! CAPE de couche limite
471         oliqCL =0. ! eau_liqu integree de couche limite         oliqCL =0. ! eau_liqu integree de couche limite
472         cteiCL =0. ! cloud top instab. crit. couche limite         cteiCL =0. ! cloud top instab. crit. couche limite
473         pblt =0. ! T a la Hauteur de couche limite         pblt =0.
474         therm =0.         therm =0.
475         trmb1 =0. ! deep_cape         trmb1 =0. ! deep_cape
476         trmb2 =0. ! inhibition         trmb2 =0. ! inhibition
477         trmb3 =0. ! Point Omega         trmb3 =0. ! Point Omega
478    
        IF (if_ebil >= 1) d_h_vcol_phy = 0.  
   
479         iflag_thermals = 0         iflag_thermals = 0
480         nsplit_thermals = 1         nsplit_thermals = 1
481         print *, "Enter namelist 'physiq_nml'."         print *, "Enter namelist 'physiq_nml'."
# Line 696  contains Line 487  contains
487         ! Initialiser les compteurs:         ! Initialiser les compteurs:
488    
489         frugs = 0.         frugs = 0.
490         itap = 0         CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
491         itaprad = 0              fevap, rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, &
492         CALL phyetat0("startphy.nc", pctsrf, ftsol, ftsoil, ocean, tslab, &              agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, &
493              seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, rain_fall, &              q_ancien, ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
494              snow_fall, solsw, sollw, dlw, radsol, frugs, agesno, zmea, &              w01, ncid_startphy)
             zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, &  
             ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01)  
495    
496         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial
497         q2 = 1e-8         q2 = 1e-8
498    
499         radpas = NINT(86400. / dtphys / nbapp_rad)         radpas = lmt_pas / nbapp_rad
500           print *, "radpas = ", radpas
        ! on remet le calendrier a zero  
        IF (raz_date) itau_phy = 0  
   
        PRINT *, 'cycle_diurne = ', cycle_diurne  
        CALL printflag(radpas, ocean /= 'force', ok_oasis, ok_journe, &  
             ok_instan, ok_region)  
   
        IF (dtphys * REAL(radpas) > 21600. .AND. cycle_diurne) THEN  
           print *, "Au minimum 4 appels par jour si cycle diurne"  
           call abort_gcm('physiq', &  
                "Nombre d'appels au rayonnement insuffisant", 1)  
        ENDIF  
501    
502         ! Initialisation pour le schéma de convection d'Emanuel :         ! Initialisation pour le sch\'ema de convection d'Emanuel :
503         IF (iflag_con >= 3) THEN         IF (conv_emanuel) THEN
504            ibas_con = 1            ibas_con = 1
505            itop_con = 1            itop_con = 1
506         ENDIF         ENDIF
# Line 735  contains Line 512  contains
512            rugoro = 0.            rugoro = 0.
513         ENDIF         ENDIF
514    
515         lmt_pas = NINT(86400. / dtphys) ! tous les jours         ecrit_ins = NINT(ecrit_ins / dtphys)
        print *, 'Number of time steps of "physics" per day: ', lmt_pas  
   
        ecrit_ins = NINT(ecrit_ins/dtphys)  
        ecrit_hf = NINT(ecrit_hf/dtphys)  
        ecrit_mth = NINT(ecrit_mth/dtphys)  
        ecrit_tra = NINT(86400.*ecrit_tra/dtphys)  
        ecrit_reg = NINT(ecrit_reg/dtphys)  
   
        ! Initialiser le couplage si necessaire  
   
        npas = 0  
        nexca = 0  
516    
517         ! Initialisation des sorties         ! Initialisation des sorties
518    
519         call ini_histhf(dtphys, nid_hf, nid_hf3d)         call ini_histins(dtphys)
520         call ini_histday(dtphys, ok_journe, nid_day, nqmx)         CALL ymds2ju(annee_ref, 1, day_ref, 0., date0)
        call ini_histins(dtphys, ok_instan, nid_ins)  
        CALL ymds2ju(annee_ref, 1, int(day_ref), 0., date0)  
521         ! Positionner date0 pour initialisation de ORCHIDEE         ! Positionner date0 pour initialisation de ORCHIDEE
522         print *, 'physiq date0: ', date0         print *, 'physiq date0: ', date0
523           CALL phyredem0
524      ENDIF test_firstcal      ENDIF test_firstcal
525    
526      ! Mettre a zero des variables de sortie (pour securite)      ! We will modify variables *_seri and we will not touch variables
527        ! u, v, t, qx:
528        t_seri = t
529        u_seri = u
530        v_seri = v
531        q_seri = qx(:, :, ivap)
532        ql_seri = qx(:, :, iliq)
533        tr_seri = qx(:, :, 3:nqmx)
534    
535      DO i = 1, klon      ztsol = sum(ftsol * pctsrf, dim = 2)
        d_ps(i) = 0.  
     ENDDO  
     DO iq = 1, nqmx  
        DO k = 1, llm  
           DO i = 1, klon  
              d_qx(i, k, iq) = 0.  
           ENDDO  
        ENDDO  
     ENDDO  
     da = 0.  
     mp = 0.  
     phi = 0.  
   
     ! Ne pas affecter les valeurs entrées de u, v, h, et q :  
   
     DO k = 1, llm  
        DO i = 1, klon  
           t_seri(i, k) = t(i, k)  
           u_seri(i, k) = u(i, k)  
           v_seri(i, k) = v(i, k)  
           q_seri(i, k) = qx(i, k, ivap)  
           ql_seri(i, k) = qx(i, k, iliq)  
           qs_seri(i, k) = 0.  
        ENDDO  
     ENDDO  
     IF (nqmx >= 3) THEN  
        tr_seri(:, :, :nqmx-2) = qx(:, :, 3:nqmx)  
     ELSE  
        tr_seri(:, :, 1) = 0.  
     ENDIF  
   
     DO i = 1, klon  
        ztsol(i) = 0.  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           ztsol(i) = ztsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     IF (if_ebil >= 1) THEN  
        tit = 'after dynamics'  
        CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        ! Comme les tendances de la physique sont ajoutés dans la  
        !  dynamique, la variation d'enthalpie par la dynamique devrait  
        !  être égale à la variation de la physique au pas de temps  
        !  précédent.  Donc la somme de ces 2 variations devrait être  
        !  nulle.  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol + d_h_vcol_phy, &  
             d_qt, 0., fs_bound, fq_bound)  
     END IF  
536    
537      ! Diagnostic de la tendance dynamique :      ! Diagnostic de la tendance dynamique :
538      IF (ancien_ok) THEN      IF (ancien_ok) THEN
# Line 845  contains Line 562  contains
562      ! Check temperatures:      ! Check temperatures:
563      CALL hgardfou(t_seri, ftsol)      CALL hgardfou(t_seri, ftsol)
564    
565      ! Incrementer le compteur de la physique      call increment_itap
566      itap = itap + 1      julien = MOD(dayvrai, 360)
     julien = MOD(NINT(rdayvrai), 360)  
567      if (julien == 0) julien = 360      if (julien == 0) julien = 360
568    
569      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k)-paprs(:, k + 1)) / rg      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg
570    
571      ! Mettre en action les conditions aux limites (albedo, sst etc.).      ! \'Evaporation de l'eau liquide nuageuse :
   
     ! Prescrire l'ozone et calculer l'albedo sur l'ocean.  
     wo = ozonecm(REAL(julien), paprs)  
   
     ! Évaporation de l'eau liquide nuageuse :  
572      DO k = 1, llm      DO k = 1, llm
573         DO i = 1, klon         DO i = 1, klon
574            zb = MAX(0., ql_seri(i, k))            zb = MAX(0., ql_seri(i, k))
# Line 868  contains Line 579  contains
579      ENDDO      ENDDO
580      ql_seri = 0.      ql_seri = 0.
581    
582      IF (if_ebil >= 2) THEN      frugs = MAX(frugs, 0.000015)
583         tit = 'after reevap'      zxrugs = sum(frugs * pctsrf, dim = 2)
        CALL diagetpq(airephy, tit, ip_ebil, 2, 1, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
584    
585      END IF      ! Calculs n\'ecessaires au calcul de l'albedo dans l'interface avec
586        ! la surface.
587    
588      ! Appeler la diffusion verticale (programme de couche limite)      CALL orbite(REAL(julien), longi, dist)
589        CALL zenang(longi, time, dtphys * radpas, mu0, fract)
     DO i = 1, klon  
        zxrugs(i) = 0.  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           frugs(i, nsrf) = MAX(frugs(i, nsrf), 0.000015)  
        ENDDO  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxrugs(i) = zxrugs(i) + frugs(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     ! calculs necessaires au calcul de l'albedo dans l'interface  
   
     CALL orbite(REAL(julien), zlongi, dist)  
     IF (cycle_diurne) THEN  
        zdtime = dtphys * REAL(radpas)  
        CALL zenang(zlongi, time, zdtime, rmu0, fract)  
     ELSE  
        rmu0 = -999.999  
     ENDIF  
590    
591      ! Calcul de l'abedo moyen par maille      ! Calcul de l'abedo moyen par maille
592      albsol(:) = 0.      albsol = sum(falbe * pctsrf, dim = 2)
     albsollw(:) = 0.  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           albsol(i) = albsol(i) + falbe(i, nsrf) * pctsrf(i, nsrf)  
           albsollw(i) = albsollw(i) + falblw(i, nsrf) * pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
593    
594      ! Répartition sous maille des flux longwave et shortwave      ! R\'epartition sous maille des flux longwave et shortwave
595      ! Répartition du longwave par sous-surface linéarisée      ! R\'epartition du longwave par sous-surface lin\'earis\'ee
596    
597      DO nsrf = 1, nbsrf      forall (nsrf = 1: nbsrf)
598         DO i = 1, klon         fsollw(:, nsrf) = sollw + 4. * RSIGMA * ztsol**3 &
599            fsollw(i, nsrf) = sollw(i) &              * (ztsol - ftsol(:, nsrf))
600                 + 4. * RSIGMA * ztsol(i)**3 * (ztsol(i) - ftsol(i, nsrf))         fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol)
601            fsolsw(i, nsrf) = solsw(i) * (1. - falbe(i, nsrf)) / (1. - albsol(i))      END forall
        ENDDO  
     ENDDO  
602    
603      fder = dlw      fder = dlw
604    
605      ! Couche limite:      CALL clmain(dtphys, pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, &
606             ftsol, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, &
607      CALL clmain(dtphys, itap, pctsrf, pctsrf_new, t_seri, q_seri, &           paprs, play, fsnow, fqsurf, fevap, falbe, fluxlat, rain_fall, &
608           u_seri, v_seri, julien, rmu0, co2_ppm, ok_veget, ocean, &           snow_fall, fsolsw, fsollw, fder, frugs, agesno, rugoro, d_t_vdf, &
609           ftsol, soil_model, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, &           d_q_vdf, d_u_vdf, d_v_vdf, d_ts, flux_t, flux_q, flux_u, flux_v, &
610           qsol, paprs, play, fsnow, fqsurf, fevap, falbe, falblw, fluxlat, &           cdragh, cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m, &
611           rain_fall, snow_fall, fsolsw, fsollw, fder, rlon, rlat, &           v10m, pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, &
612           frugs, firstcal, agesno, rugoro, d_t_vdf, &           plcl, fqcalving, ffonte, run_off_lic_0)
613           d_q_vdf, d_u_vdf, d_v_vdf, d_ts, fluxt, fluxq, fluxu, fluxv, cdragh, &  
614           cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, &      ! Incr\'ementation des flux
615           pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, plcl, &  
616           fqcalving, ffonte, run_off_lic_0, fluxo, fluxg, tslab, seaice)      sens = - sum(flux_t * pctsrf, dim = 2)
617        evap = - sum(flux_q * pctsrf, dim = 2)
618      ! Incrémentation des flux      fder = dlw + dsens + devap
   
     zxfluxt = 0.  
     zxfluxq = 0.  
     zxfluxu = 0.  
     zxfluxv = 0.  
     DO nsrf = 1, nbsrf  
        DO k = 1, llm  
           DO i = 1, klon  
              zxfluxt(i, k) = zxfluxt(i, k) + fluxt(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxq(i, k) = zxfluxq(i, k) + fluxq(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxu(i, k) = zxfluxu(i, k) + fluxu(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxv(i, k) = zxfluxv(i, k) + fluxv(i, k, nsrf) * pctsrf(i, nsrf)  
           END DO  
        END DO  
     END DO  
     DO i = 1, klon  
        sens(i) = - zxfluxt(i, 1) ! flux de chaleur sensible au sol  
        evap(i) = - zxfluxq(i, 1) ! flux d'évaporation au sol  
        fder(i) = dlw(i) + dsens(i) + devap(i)  
     ENDDO  
619    
620      DO k = 1, llm      DO k = 1, llm
621         DO i = 1, klon         DO i = 1, klon
# Line 972  contains Line 626  contains
626         ENDDO         ENDDO
627      ENDDO      ENDDO
628    
     IF (if_ebil >= 2) THEN  
        tit = 'after clmain'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             sens, evap, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
     END IF  
   
629      ! Update surface temperature:      ! Update surface temperature:
630    
631      DO i = 1, klon      call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf')
632         zxtsol(i) = 0.      ftsol = ftsol + d_ts
633         zxfluxlat(i) = 0.      ztsol = sum(ftsol * pctsrf, dim = 2)
634        zxfluxlat = sum(fluxlat * pctsrf, dim = 2)
635         zt2m(i) = 0.      zt2m = sum(t2m * pctsrf, dim = 2)
636         zq2m(i) = 0.      zq2m = sum(q2m * pctsrf, dim = 2)
637         zu10m(i) = 0.      zu10m = sum(u10m * pctsrf, dim = 2)
638         zv10m(i) = 0.      zv10m = sum(v10m * pctsrf, dim = 2)
639         zxffonte(i) = 0.      zxffonte = sum(ffonte * pctsrf, dim = 2)
640         zxfqcalving(i) = 0.      zxfqcalving = sum(fqcalving * pctsrf, dim = 2)
641        s_pblh = sum(pblh * pctsrf, dim = 2)
642         s_pblh(i) = 0.      s_lcl = sum(plcl * pctsrf, dim = 2)
643         s_lcl(i) = 0.      s_capCL = sum(capCL * pctsrf, dim = 2)
644         s_capCL(i) = 0.      s_oliqCL = sum(oliqCL * pctsrf, dim = 2)
645         s_oliqCL(i) = 0.      s_cteiCL = sum(cteiCL * pctsrf, dim = 2)
646         s_cteiCL(i) = 0.      s_pblT = sum(pblT * pctsrf, dim = 2)
647         s_pblT(i) = 0.      s_therm = sum(therm * pctsrf, dim = 2)
648         s_therm(i) = 0.      s_trmb1 = sum(trmb1 * pctsrf, dim = 2)
649         s_trmb1(i) = 0.      s_trmb2 = sum(trmb2 * pctsrf, dim = 2)
650         s_trmb2(i) = 0.      s_trmb3 = sum(trmb3 * pctsrf, dim = 2)
        s_trmb3(i) = 0.  
   
        IF (abs(pctsrf(i, is_ter) + pctsrf(i, is_lic) + pctsrf(i, is_oce) &  
             + pctsrf(i, is_sic) - 1.)  >  EPSFRA) print *, &  
             'physiq : problème sous surface au point ', i, pctsrf(i, 1 : nbsrf)  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           ftsol(i, nsrf) = ftsol(i, nsrf) + d_ts(i, nsrf)  
           zxtsol(i) = zxtsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)  
           zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf)*pctsrf(i, nsrf)  
   
           zt2m(i) = zt2m(i) + t2m(i, nsrf)*pctsrf(i, nsrf)  
           zq2m(i) = zq2m(i) + q2m(i, nsrf)*pctsrf(i, nsrf)  
           zu10m(i) = zu10m(i) + u10m(i, nsrf)*pctsrf(i, nsrf)  
           zv10m(i) = zv10m(i) + v10m(i, nsrf)*pctsrf(i, nsrf)  
           zxffonte(i) = zxffonte(i) + ffonte(i, nsrf)*pctsrf(i, nsrf)  
           zxfqcalving(i) = zxfqcalving(i) + &  
                fqcalving(i, nsrf)*pctsrf(i, nsrf)  
           s_pblh(i) = s_pblh(i) + pblh(i, nsrf)*pctsrf(i, nsrf)  
           s_lcl(i) = s_lcl(i) + plcl(i, nsrf)*pctsrf(i, nsrf)  
           s_capCL(i) = s_capCL(i) + capCL(i, nsrf) *pctsrf(i, nsrf)  
           s_oliqCL(i) = s_oliqCL(i) + oliqCL(i, nsrf) *pctsrf(i, nsrf)  
           s_cteiCL(i) = s_cteiCL(i) + cteiCL(i, nsrf) *pctsrf(i, nsrf)  
           s_pblT(i) = s_pblT(i) + pblT(i, nsrf) *pctsrf(i, nsrf)  
           s_therm(i) = s_therm(i) + therm(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb1(i) = s_trmb1(i) + trmb1(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb2(i) = s_trmb2(i) + trmb2(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb3(i) = s_trmb3(i) + trmb3(i, nsrf) *pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     ! Si une sous-fraction n'existe pas, elle prend la temp. moyenne  
651    
652        ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne :
653      DO nsrf = 1, nbsrf      DO nsrf = 1, nbsrf
654         DO i = 1, klon         DO i = 1, klon
655            IF (pctsrf(i, nsrf) < epsfra) ftsol(i, nsrf) = zxtsol(i)            IF (pctsrf(i, nsrf) < epsfra) then
656                 ftsol(i, nsrf) = ztsol(i)
657            IF (pctsrf(i, nsrf) < epsfra) t2m(i, nsrf) = zt2m(i)               t2m(i, nsrf) = zt2m(i)
658            IF (pctsrf(i, nsrf) < epsfra) q2m(i, nsrf) = zq2m(i)               q2m(i, nsrf) = zq2m(i)
659            IF (pctsrf(i, nsrf) < epsfra) u10m(i, nsrf) = zu10m(i)               u10m(i, nsrf) = zu10m(i)
660            IF (pctsrf(i, nsrf) < epsfra) v10m(i, nsrf) = zv10m(i)               v10m(i, nsrf) = zv10m(i)
661            IF (pctsrf(i, nsrf) < epsfra) ffonte(i, nsrf) = zxffonte(i)               ffonte(i, nsrf) = zxffonte(i)
662            IF (pctsrf(i, nsrf) < epsfra) &               fqcalving(i, nsrf) = zxfqcalving(i)
663                 fqcalving(i, nsrf) = zxfqcalving(i)               pblh(i, nsrf) = s_pblh(i)
664            IF (pctsrf(i, nsrf) < epsfra) pblh(i, nsrf) = s_pblh(i)               plcl(i, nsrf) = s_lcl(i)
665            IF (pctsrf(i, nsrf) < epsfra) plcl(i, nsrf) = s_lcl(i)               capCL(i, nsrf) = s_capCL(i)
666            IF (pctsrf(i, nsrf) < epsfra) capCL(i, nsrf) = s_capCL(i)               oliqCL(i, nsrf) = s_oliqCL(i)
667            IF (pctsrf(i, nsrf) < epsfra) oliqCL(i, nsrf) = s_oliqCL(i)               cteiCL(i, nsrf) = s_cteiCL(i)
668            IF (pctsrf(i, nsrf) < epsfra) cteiCL(i, nsrf) = s_cteiCL(i)               pblT(i, nsrf) = s_pblT(i)
669            IF (pctsrf(i, nsrf) < epsfra) pblT(i, nsrf) = s_pblT(i)               therm(i, nsrf) = s_therm(i)
670            IF (pctsrf(i, nsrf) < epsfra) therm(i, nsrf) = s_therm(i)               trmb1(i, nsrf) = s_trmb1(i)
671            IF (pctsrf(i, nsrf) < epsfra) trmb1(i, nsrf) = s_trmb1(i)               trmb2(i, nsrf) = s_trmb2(i)
672            IF (pctsrf(i, nsrf) < epsfra) trmb2(i, nsrf) = s_trmb2(i)               trmb3(i, nsrf) = s_trmb3(i)
673            IF (pctsrf(i, nsrf) < epsfra) trmb3(i, nsrf) = s_trmb3(i)            end IF
674         ENDDO         ENDDO
675      ENDDO      ENDDO
676    
677      ! Calculer la derive du flux infrarouge      ! Calculer la dérive du flux infrarouge
678    
679      DO i = 1, klon      DO i = 1, klon
680         dlw(i) = - 4. * RSIGMA * zxtsol(i)**3         dlw(i) = - 4. * RSIGMA * ztsol(i)**3
681      ENDDO      ENDDO
682    
683      ! Appeler la convection (au choix)      ! Appeler la convection
   
     DO k = 1, llm  
        DO i = 1, klon  
           conv_q(i, k) = d_q_dyn(i, k) + d_q_vdf(i, k)/dtphys  
           conv_t(i, k) = d_t_dyn(i, k) + d_t_vdf(i, k)/dtphys  
        ENDDO  
     ENDDO  
   
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        print *, "avantcon = ", za  
     ENDIF  
   
     if (iflag_con == 2) then  
        z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)  
        CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:-1), &  
             q_seri(:, llm:1:-1), conv_t, conv_q, zxfluxq(:, 1), omega, &  
             d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:-1), &  
             mfd(:, llm:1:-1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, &  
             kdtop, pmflxr, pmflxs)  
        WHERE (rain_con < 0.) rain_con = 0.  
        WHERE (snow_con < 0.) snow_con = 0.  
        ibas_con = llm + 1 - kcbot  
        itop_con = llm + 1 - kctop  
     else  
        ! iflag_con >= 3  
   
        CALL concvl(dtphys, paprs, play, t_seri, q_seri, u_seri, &  
             v_seri, tr_seri, sig1, w01, d_t_con, d_q_con, &  
             d_u_con, d_v_con, d_tr, rain_con, snow_con, ibas_con, &  
             itop_con, upwd, dnwd, dnwd0, Ma, cape, tvp, iflagctrl, &  
             pbase, bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr, qcondc, &  
             wd, pmflxr, pmflxs, da, phi, mp, ntra=1)  
        ! (number of tracers for the convection scheme of Kerry Emanuel:  
        ! la partie traceurs est faite dans phytrac  
        ! on met ntra = 1 pour limiter les appels mais on peut  
        ! supprimer les calculs / ftra.)  
684    
685        if (conv_emanuel) then
686           CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, &
687                d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, &
688                upwd, dnwd, Ma, cape, iflagctrl, qcondc, pmflxr, da, phi, mp)
689           snow_con = 0.
690         clwcon0 = qcondc         clwcon0 = qcondc
691         mfu = upwd + dnwd         mfu = upwd + dnwd
        IF (.NOT. ok_gust) wd = 0.  
692    
693         ! Calcul des propriétés des nuages convectifs         zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play)
694           zqsat = zqsat / (1. - retv * zqsat)
        DO k = 1, llm  
           DO i = 1, klon  
              zx_t = t_seri(i, k)  
              IF (thermcep) THEN  
                 zdelta = MAX(0., SIGN(1., rtt-zx_t))  
                 zx_qs = r2es * FOEEW(zx_t, zdelta) / play(i, k)  
                 zx_qs = MIN(0.5, zx_qs)  
                 zcor = 1./(1.-retv*zx_qs)  
                 zx_qs = zx_qs*zcor  
              ELSE  
                 IF (zx_t < t_coup) THEN  
                    zx_qs = qsats(zx_t)/play(i, k)  
                 ELSE  
                    zx_qs = qsatl(zx_t)/play(i, k)  
                 ENDIF  
              ENDIF  
              zqsat(i, k) = zx_qs  
           ENDDO  
        ENDDO  
695    
696         ! calcul des proprietes des nuages convectifs         ! Properties of convective clouds
697         clwcon0 = fact_cldcon * clwcon0         clwcon0 = fact_cldcon * clwcon0
698         call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &         call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &
699              rnebcon0)              rnebcon0)
700    
701           forall (i = 1:klon) ema_pct(i) = paprs(i, itop_con(i) + 1)
702         mfd = 0.         mfd = 0.
703         pen_u = 0.         pen_u = 0.
704         pen_d = 0.         pen_d = 0.
705         pde_d = 0.         pde_d = 0.
706         pde_u = 0.         pde_u = 0.
707        else
708           conv_q = d_q_dyn + d_q_vdf / dtphys
709           conv_t = d_t_dyn + d_t_vdf / dtphys
710           z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)
711           CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:- 1), &
712                q_seri(:, llm:1:- 1), conv_t, conv_q, - evap, omega, &
713                d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:- 1), &
714                mfd(:, llm:1:- 1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, &
715                kdtop, pmflxr, pmflxs)
716           WHERE (rain_con < 0.) rain_con = 0.
717           WHERE (snow_con < 0.) snow_con = 0.
718           ibas_con = llm + 1 - kcbot
719           itop_con = llm + 1 - kctop
720      END if      END if
721    
722      DO k = 1, llm      DO k = 1, llm
# Line 1154  contains Line 728  contains
728         ENDDO         ENDDO
729      ENDDO      ENDDO
730    
731      IF (if_ebil >= 2) THEN      IF (.not. conv_emanuel) THEN
        tit = 'after convect'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, rain_con, snow_con, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
     END IF  
   
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        print *, "aprescon = ", za  
        zx_t = 0.  
        za = 0.  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_con(i)+ &  
                snow_con(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtphys  
        print *, "Precip = ", zx_t  
     ENDIF  
   
     IF (iflag_con == 2) THEN  
732         z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)         z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)
733         z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres         z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres
734         DO k = 1, llm         DO k = 1, llm
# Line 1190  contains Line 740  contains
740         ENDDO         ENDDO
741      ENDIF      ENDIF
742    
743      ! Convection sèche (thermiques ou ajustement)      ! Convection s\`eche (thermiques ou ajustement)
744    
745      d_t_ajs = 0.      d_t_ajs = 0.
746      d_u_ajs = 0.      d_u_ajs = 0.
# Line 1205  contains Line 755  contains
755         t_seri = t_seri + d_t_ajs         t_seri = t_seri + d_t_ajs
756         q_seri = q_seri + d_q_ajs         q_seri = q_seri + d_q_ajs
757      else      else
        ! Thermiques  
758         call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, &         call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, &
759              q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)              q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)
760      endif      endif
761    
     IF (if_ebil >= 2) THEN  
        tit = 'after dry_adjust'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
     END IF  
   
762      ! Caclul des ratqs      ! Caclul des ratqs
763    
764      ! ratqs convectifs à l'ancienne en fonction de (q(z = 0) - q) / q      ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q
765      ! on écrase le tableau ratqsc calculé par clouds_gno      ! on \'ecrase le tableau ratqsc calcul\'e par clouds_gno
766      if (iflag_cldcon == 1) then      if (iflag_cldcon == 1) then
767         do k = 1, llm         do k = 1, llm
768            do i = 1, klon            do i = 1, klon
# Line 1238  contains Line 780  contains
780      do k = 1, llm      do k = 1, llm
781         do i = 1, klon         do i = 1, klon
782            ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &            ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &
783                 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)                 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)
784         enddo         enddo
785      enddo      enddo
786    
# Line 1271  contains Line 813  contains
813            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)
814         ENDDO         ENDDO
815      ENDDO      ENDDO
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        print *, "apresilp = ", za  
        zx_t = 0.  
        za = 0.  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_lsc(i) &  
                + snow_lsc(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtphys  
        print *, "Precip = ", zx_t  
     ENDIF  
   
     IF (if_ebil >= 2) THEN  
        tit = 'after fisrt'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, rain_lsc, snow_lsc, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
     END IF  
816    
817      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
818    
819      ! 1. NUAGES CONVECTIFS      ! 1. NUAGES CONVECTIFS
820    
821      IF (iflag_cldcon <= -1) THEN      IF (iflag_cldcon <= - 1) THEN
822         ! seulement pour Tiedtke         ! seulement pour Tiedtke
823         snow_tiedtke = 0.         snow_tiedtke = 0.
824         if (iflag_cldcon == -1) then         if (iflag_cldcon == - 1) then
825            rain_tiedtke = rain_con            rain_tiedtke = rain_con
826         else         else
827            rain_tiedtke = 0.            rain_tiedtke = 0.
828            do k = 1, llm            do k = 1, llm
829               do i = 1, klon               do i = 1, klon
830                  if (d_q_con(i, k) < 0.) then                  if (d_q_con(i, k) < 0.) then
831                     rain_tiedtke(i) = rain_tiedtke(i)-d_q_con(i, k)/dtphys &                     rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k) / dtphys &
832                          *zmasse(i, k)                          * zmasse(i, k)
833                  endif                  endif
834               enddo               enddo
835            enddo            enddo
# Line 1329  contains Line 848  contains
848         ENDDO         ENDDO
849      ELSE IF (iflag_cldcon == 3) THEN      ELSE IF (iflag_cldcon == 3) THEN
850         ! On prend pour les nuages convectifs le maximum du calcul de         ! On prend pour les nuages convectifs le maximum du calcul de
851         ! la convection et du calcul du pas de temps précédent diminué         ! la convection et du calcul du pas de temps pr\'ec\'edent diminu\'e
852         ! d'un facteur facttemps.         ! d'un facteur facttemps.
853         facteur = dtphys * facttemps         facteur = dtphys * facttemps
854         do k = 1, llm         do k = 1, llm
# Line 1345  contains Line 864  contains
864    
865         ! On prend la somme des fractions nuageuses et des contenus en eau         ! On prend la somme des fractions nuageuses et des contenus en eau
866         cldfra = min(max(cldfra, rnebcon), 1.)         cldfra = min(max(cldfra, rnebcon), 1.)
867         cldliq = cldliq + rnebcon*clwcon         cldliq = cldliq + rnebcon * clwcon
868      ENDIF      ENDIF
869    
870      ! 2. Nuages stratiformes      ! 2. Nuages stratiformes
# Line 1368  contains Line 887  contains
887         snow_fall(i) = snow_con(i) + snow_lsc(i)         snow_fall(i) = snow_con(i) + snow_lsc(i)
888      ENDDO      ENDDO
889    
890      IF (if_ebil >= 2) CALL diagetpq(airephy, "after diagcld", ip_ebil, 2, 2, &      ! Humidit\'e relative pour diagnostic :
          dtphys, t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, &  
          d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
   
     ! Humidité relative pour diagnostic :  
891      DO k = 1, llm      DO k = 1, llm
892         DO i = 1, klon         DO i = 1, klon
893            zx_t = t_seri(i, k)            zx_t = t_seri(i, k)
894            IF (thermcep) THEN            zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t) / play(i, k)
895               zdelta = MAX(0., SIGN(1., rtt-zx_t))            zx_qs = MIN(0.5, zx_qs)
896               zx_qs = r2es * FOEEW(zx_t, zdelta)/play(i, k)            zcor = 1. / (1. - retv * zx_qs)
897               zx_qs = MIN(0.5, zx_qs)            zx_qs = zx_qs * zcor
898               zcor = 1./(1.-retv*zx_qs)            zx_rh(i, k) = q_seri(i, k) / zx_qs
              zx_qs = zx_qs*zcor  
           ELSE  
              IF (zx_t < t_coup) THEN  
                 zx_qs = qsats(zx_t)/play(i, k)  
              ELSE  
                 zx_qs = qsatl(zx_t)/play(i, k)  
              ENDIF  
           ENDIF  
           zx_rh(i, k) = q_seri(i, k)/zx_qs  
899            zqsat(i, k) = zx_qs            zqsat(i, k) = zx_qs
900         ENDDO         ENDDO
901      ENDDO      ENDDO
902    
903      ! Introduce the aerosol direct and first indirect radiative forcings:      ! Introduce the aerosol direct and first indirect radiative forcings:
904      IF (ok_ade .OR. ok_aie) THEN      tau_ae = 0.
905         ! Get sulfate aerosol distribution :      piz_ae = 0.
906         CALL readsulfate(rdayvrai, firstcal, sulfate)      cg_ae = 0.
        CALL readsulfate_preind(rdayvrai, firstcal, sulfate_pi)  
907    
908         CALL aeropt(play, paprs, t_seri, sulfate, rhcl, tau_ae, piz_ae, cg_ae, &      ! Param\`etres optiques des nuages et quelques param\`etres pour
909              aerindex)      ! diagnostics :
     ELSE  
        tau_ae = 0.  
        piz_ae = 0.  
        cg_ae = 0.  
     ENDIF  
   
     ! Paramètres optiques des nuages et quelques paramètres pour diagnostics :  
910      if (ok_newmicro) then      if (ok_newmicro) then
911         CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &         CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &
912              cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc, ok_aie, &              cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc, ok_aie, &
# Line 1419  contains Line 917  contains
917              bl95_b1, cldtaupi, re, fl)              bl95_b1, cldtaupi, re, fl)
918      endif      endif
919    
920      ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.      IF (MOD(itap - 1, radpas) == 0) THEN
921      IF (MOD(itaprad, radpas) == 0) THEN         ! Prescrire l'ozone :
922         DO i = 1, klon         wo = ozonecm(REAL(julien), paprs)
923            albsol(i) = falbe(i, is_oce) * pctsrf(i, is_oce) &  
924                 + falbe(i, is_lic) * pctsrf(i, is_lic) &         ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.
925                 + falbe(i, is_ter) * pctsrf(i, is_ter) &         ! Calcul de l'abedo moyen par maille
926                 + falbe(i, is_sic) * pctsrf(i, is_sic)         albsol = sum(falbe * pctsrf, dim = 2)
927            albsollw(i) = falblw(i, is_oce) * pctsrf(i, is_oce) &  
                + falblw(i, is_lic) * pctsrf(i, is_lic) &  
                + falblw(i, is_ter) * pctsrf(i, is_ter) &  
                + falblw(i, is_sic) * pctsrf(i, is_sic)  
        ENDDO  
928         ! Rayonnement (compatible Arpege-IFS) :         ! Rayonnement (compatible Arpege-IFS) :
929         CALL radlwsw(dist, rmu0, fract, paprs, play, zxtsol, albsol, &         CALL radlwsw(dist, mu0, fract, paprs, play, ztsol, albsol, t_seri, &
930              albsollw, t_seri, q_seri, wo, cldfra, cldemi, cldtau, heat, &              q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, &
931              heat0, cool, cool0, radsol, albpla, topsw, toplw, solsw, sollw, &              radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, &
932              sollwdown, topsw0, toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, &              toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, &
933              lwup, swdn0, swdn, swup0, swup, ok_ade, ok_aie, tau_ae, piz_ae, &              swup0, swup, ok_ade, ok_aie, tau_ae, piz_ae, cg_ae, topswad, &
934              cg_ae, topswad, solswad, cldtaupi, topswai, solswai)              solswad, cldtaupi, topswai, solswai)
        itaprad = 0  
935      ENDIF      ENDIF
     itaprad = itaprad + 1  
936    
937      ! Ajouter la tendance des rayonnements (tous les pas)      ! Ajouter la tendance des rayonnements (tous les pas)
   
938      DO k = 1, llm      DO k = 1, llm
939         DO i = 1, klon         DO i = 1, klon
940            t_seri(i, k) = t_seri(i, k) + (heat(i, k)-cool(i, k)) * dtphys/86400.            t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys &
941                   / 86400.
942         ENDDO         ENDDO
943      ENDDO      ENDDO
944    
     IF (if_ebil >= 2) THEN  
        tit = 'after rad'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
     END IF  
   
945      ! Calculer l'hydrologie de la surface      ! Calculer l'hydrologie de la surface
946      DO i = 1, klon      zxqsurf = sum(fqsurf * pctsrf, dim = 2)
947         zxqsurf(i) = 0.      zxsnow = sum(fsnow * pctsrf, dim = 2)
        zxsnow(i) = 0.  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxqsurf(i) = zxqsurf(i) + fqsurf(i, nsrf)*pctsrf(i, nsrf)  
           zxsnow(i) = zxsnow(i) + fsnow(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     ! Calculer le bilan du sol et la dérive de température (couplage)  
948    
949        ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage)
950      DO i = 1, klon      DO i = 1, klon
951         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)
952      ENDDO      ENDDO
953    
954      ! Paramétrisation de l'orographie à l'échelle sous-maille :      ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille :
955    
956      IF (ok_orodr) THEN      IF (ok_orodr) THEN
957         ! selection des points pour lesquels le shema est actif:         ! S\'election des points pour lesquels le sch\'ema est actif :
958         igwd = 0         igwd = 0
959         DO i = 1, klon         DO i = 1, klon
960            itest(i) = 0            itest(i) = 0
961            IF (((zpic(i)-zmea(i)) > 100.).AND.(zstd(i) > 10.)) THEN            IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN
962               itest(i) = 1               itest(i) = 1
963               igwd = igwd + 1               igwd = igwd + 1
              idx(igwd) = i  
964            ENDIF            ENDIF
965         ENDDO         ENDDO
966    
967         CALL drag_noro(klon, llm, dtphys, paprs, play, zmea, zstd, zsig, zgam, &         CALL drag_noro(klon, llm, dtphys, paprs, play, zmea, zstd, zsig, zgam, &
968              zthe, zpic, zval, igwd, idx, itest, t_seri, u_seri, v_seri, &              zthe, zpic, zval, itest, t_seri, u_seri, v_seri, zulow, zvlow, &
969              zulow, zvlow, zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro)              zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro)
970    
971         ! ajout des tendances         ! ajout des tendances
972         DO k = 1, llm         DO k = 1, llm
# Line 1507  contains Line 979  contains
979      ENDIF      ENDIF
980    
981      IF (ok_orolf) THEN      IF (ok_orolf) THEN
982         ! Sélection des points pour lesquels le schéma est actif :         ! S\'election des points pour lesquels le sch\'ema est actif :
983         igwd = 0         igwd = 0
984         DO i = 1, klon         DO i = 1, klon
985            itest(i) = 0            itest(i) = 0
986            IF ((zpic(i) - zmea(i)) > 100.) THEN            IF (zpic(i) - zmea(i) > 100.) THEN
987               itest(i) = 1               itest(i) = 1
988               igwd = igwd + 1               igwd = igwd + 1
              idx(igwd) = i  
989            ENDIF            ENDIF
990         ENDDO         ENDDO
991    
# Line 1532  contains Line 1003  contains
1003         ENDDO         ENDDO
1004      ENDIF      ENDIF
1005    
1006      ! Stress nécessaires : toute la physique      ! Stress n\'ecessaires : toute la physique
1007    
1008      DO i = 1, klon      DO i = 1, klon
1009         zustrph(i) = 0.         zustrph(i) = 0.
# Line 1547  contains Line 1018  contains
1018         ENDDO         ENDDO
1019      ENDDO      ENDDO
1020    
1021      CALL aaam_bud(ra, rg, romega, rlat, rlon, pphis, zustrdr, zustrli, &      CALL aaam_bud(rg, romega, rlat, rlon, pphis, zustrdr, zustrli, zustrph, &
1022           zustrph, zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc)           zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc)
   
     IF (if_ebil >= 2) CALL diagetpq(airephy, 'after orography', ip_ebil, 2, &  
          2, dtphys, t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, &  
          d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
1023    
1024      ! Calcul des tendances traceurs      ! Calcul des tendances traceurs
1025      call phytrac(rnpb, itap, lmt_pas, julien, time, firstcal, lafin, nqmx-2, &      call phytrac(julien, time, firstcal, lafin, dtphys, t, paprs, play, mfu, &
1026           dtphys, u, t, paprs, play, mfu, mfd, pen_u, pde_u, pen_d, pde_d, &           mfd, pde_u, pen_d, ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, &
1027           ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, pctsrf, frac_impa, &           pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, dnwd, tr_seri, &
1028           frac_nucl, pphis, albsol, rhcl, cldfra, rneb, diafra, cldliq, &           zmasse, ncid_startphy)
1029           pmflxr, pmflxs, prfl, psfl, da, phi, mp, upwd, dnwd, tr_seri, zmasse)  
1030        IF (offline) call phystokenc(dtphys, t, mfu, mfd, pen_u, pde_u, pen_d, &
1031      IF (offline) THEN           pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, pctsrf, &
1032         call phystokenc(dtphys, rlon, rlat, t, mfu, mfd, pen_u, pde_u, &           frac_impa, frac_nucl, pphis, airephy, dtphys)
             pen_d, pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, &  
             pctsrf, frac_impa, frac_nucl, pphis, airephy, dtphys, itap)  
     ENDIF  
1033    
1034      ! Calculer le transport de l'eau et de l'energie (diagnostique)      ! Calculer le transport de l'eau et de l'energie (diagnostique)
1035      CALL transp(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, &      CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq)
          ue, uq)  
1036    
1037      ! diag. bilKP      ! diag. bilKP
1038    
1039      CALL transp_lay(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, &      CALL transp_lay(paprs, t_seri, q_seri, u_seri, v_seri, zphi, &
1040           ve_lay, vq_lay, ue_lay, uq_lay)           ve_lay, vq_lay, ue_lay, uq_lay)
1041    
1042      ! Accumuler les variables a stocker dans les fichiers histoire:      ! Accumuler les variables a stocker dans les fichiers histoire:
1043    
1044      ! conversion Ec -> E thermique      ! conversion Ec en énergie thermique
1045      DO k = 1, llm      DO k = 1, llm
1046         DO i = 1, klon         DO i = 1, klon
1047            ZRCPD = RCPD * (1. + RVTMP2 * q_seri(i, k))            ZRCPD = RCPD * (1. + RVTMP2 * q_seri(i, k))
# Line 1589  contains Line 1052  contains
1052         END DO         END DO
1053      END DO      END DO
1054    
     IF (if_ebil >= 1) THEN  
        tit = 'after physic'  
        CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        ! Comme les tendances de la physique sont ajoute dans la dynamique,  
        ! on devrait avoir que la variation d'entalpie par la dynamique  
        ! est egale a la variation de la physique au pas de temps precedent.  
        ! Donc la somme de ces 2 variations devrait etre nulle.  
        call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, sens, &  
             evap, rain_fall, snow_fall, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
   
        d_h_vcol_phy = d_h_vcol  
   
     END IF  
   
1055      ! SORTIES      ! SORTIES
1056    
1057      ! prw = eau precipitable      ! prw = eau precipitable
1058      DO i = 1, klon      DO i = 1, klon
1059         prw(i) = 0.         prw(i) = 0.
1060         DO k = 1, llm         DO k = 1, llm
1061            prw(i) = prw(i) + q_seri(i, k)*zmasse(i, k)            prw(i) = prw(i) + q_seri(i, k) * zmasse(i, k)
1062         ENDDO         ENDDO
1063      ENDDO      ENDDO
1064    
# Line 1628  contains Line 1074  contains
1074         ENDDO         ENDDO
1075      ENDDO      ENDDO
1076    
1077      IF (nqmx >= 3) THEN      DO iq = 3, nqmx
1078         DO iq = 3, nqmx         DO k = 1, llm
1079            DO k = 1, llm            DO i = 1, klon
1080               DO i = 1, klon               d_qx(i, k, iq) = (tr_seri(i, k, iq - 2) - qx(i, k, iq)) / dtphys
                 d_qx(i, k, iq) = (tr_seri(i, k, iq-2) - qx(i, k, iq)) / dtphys  
              ENDDO  
1081            ENDDO            ENDDO
1082         ENDDO         ENDDO
1083      ENDIF      ENDDO
1084    
1085      ! Sauvegarder les valeurs de t et q a la fin de la physique:      ! Sauvegarder les valeurs de t et q a la fin de la physique:
1086      DO k = 1, llm      DO k = 1, llm
# Line 1646  contains Line 1090  contains
1090         ENDDO         ENDDO
1091      ENDDO      ENDDO
1092    
1093      ! Ecriture des sorties      CALL histwrite_phy("phis", pphis)
1094      call write_histhf      CALL histwrite_phy("aire", airephy)
1095      call write_histday      CALL histwrite_phy("psol", paprs(:, 1))
1096      call write_histins      CALL histwrite_phy("precip", rain_fall + snow_fall)
1097        CALL histwrite_phy("plul", rain_lsc + snow_lsc)
1098      ! Si c'est la fin, il faut conserver l'etat de redemarrage      CALL histwrite_phy("pluc", rain_con + snow_con)
1099      IF (lafin) THEN      CALL histwrite_phy("tsol", ztsol)
1100         itau_phy = itau_phy + itap      CALL histwrite_phy("t2m", zt2m)
1101         CALL phyredem("restartphy.nc", rlat, rlon, pctsrf, ftsol, ftsoil, &      CALL histwrite_phy("q2m", zq2m)
1102              tslab, seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, &      CALL histwrite_phy("u10m", zu10m)
1103              rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, &      CALL histwrite_phy("v10m", zv10m)
1104              agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, &      CALL histwrite_phy("snow", snow_fall)
1105              q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01)      CALL histwrite_phy("cdrm", cdragm)
1106      ENDIF      CALL histwrite_phy("cdrh", cdragh)
1107        CALL histwrite_phy("topl", toplw)
1108      firstcal = .FALSE.      CALL histwrite_phy("evap", evap)
1109        CALL histwrite_phy("sols", solsw)
1110    contains      CALL histwrite_phy("soll", sollw)
1111        CALL histwrite_phy("solldown", sollwdown)
1112      subroutine write_histday      CALL histwrite_phy("bils", bils)
1113        CALL histwrite_phy("sens", - sens)
1114        use gr_phy_write_3d_m, only: gr_phy_write_3d      CALL histwrite_phy("fder", fder)
1115        integer itau_w ! pas de temps ecriture      CALL histwrite_phy("dtsvdfo", d_ts(:, is_oce))
1116        CALL histwrite_phy("dtsvdft", d_ts(:, is_ter))
1117        !------------------------------------------------      CALL histwrite_phy("dtsvdfg", d_ts(:, is_lic))
1118        CALL histwrite_phy("dtsvdfi", d_ts(:, is_sic))
       if (ok_journe) THEN  
          itau_w = itau_phy + itap  
          if (nqmx <= 4) then  
             call histwrite(nid_day, "Sigma_O3_Royer", itau_w, &  
                  gr_phy_write_3d(wo) * 1e3)  
             ! (convert "wo" from kDU to DU)  
          end if  
          if (ok_sync) then  
             call histsync(nid_day)  
          endif  
       ENDIF  
   
     End subroutine write_histday  
   
     !****************************  
   
     subroutine write_histhf  
   
       ! From phylmd/write_histhf.h, version 1.5 2005/05/25 13:10:09  
   
       !------------------------------------------------  
   
       call write_histhf3d  
   
       IF (ok_sync) THEN  
          call histsync(nid_hf)  
       ENDIF  
   
     end subroutine write_histhf  
   
     !***************************************************************  
   
     subroutine write_histins  
   
       ! From phylmd/write_histins.h, version 1.2 2005/05/25 13:10:09  
   
       real zout  
       integer itau_w ! pas de temps ecriture  
   
       !--------------------------------------------------  
   
       IF (ok_instan) THEN  
          ! Champs 2D:  
   
          zsto = dtphys * ecrit_ins  
          zout = dtphys * ecrit_ins  
          itau_w = itau_phy + itap  
   
          i = NINT(zout/zsto)  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, pphis, zx_tmp_2d)  
          CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d)  
1119    
1120           i = NINT(zout/zsto)      DO nsrf = 1, nbsrf
1121           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, airephy, zx_tmp_2d)         CALL histwrite_phy("pourc_"//clnsurf(nsrf), pctsrf(:, nsrf) * 100.)
1122           CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d)         CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf))
1123           CALL histwrite_phy("sens_"//clnsurf(nsrf), flux_t(:, nsrf))
1124           DO i = 1, klon         CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf))
1125              zx_tmp_fi2d(i) = paprs(i, 1)         CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf))
1126           ENDDO         CALL histwrite_phy("taux_"//clnsurf(nsrf), flux_u(:, nsrf))
1127           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)         CALL histwrite_phy("tauy_"//clnsurf(nsrf), flux_v(:, nsrf))
1128           CALL histwrite(nid_ins, "psol", itau_w, zx_tmp_2d)         CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf))
1129           CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf))
1130           DO i = 1, klon      END DO
             zx_tmp_fi2d(i) = rain_fall(i) + snow_fall(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "precip", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_lsc(i) + snow_lsc(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "plul", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_con(i) + snow_con(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "pluc", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxtsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "tsol", itau_w, zx_tmp_2d)  
          !ccIM  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zt2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "t2m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zq2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "q2m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zu10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "u10m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zv10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "v10m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, snow_fall, zx_tmp_2d)  
          CALL histwrite(nid_ins, "snow", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrm", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrh", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, toplw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "topl", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, evap, zx_tmp_2d)  
          CALL histwrite(nid_ins, "evap", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, solsw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sols", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "soll", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollwdown, zx_tmp_2d)  
          CALL histwrite(nid_ins, "solldown", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, bils, zx_tmp_2d)  
          CALL histwrite(nid_ins, "bils", itau_w, zx_tmp_2d)  
   
          zx_tmp_fi2d(1:klon) = -1*sens(1:klon)  
          ! CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sens, zx_tmp_2d)  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sens", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, fder, zx_tmp_2d)  
          CALL histwrite(nid_ins, "fder", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_oce), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfo", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_ter), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdft", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_lic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfg", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_sic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfi", itau_w, zx_tmp_2d)  
   
          DO nsrf = 1, nbsrf  
             !XXX  
             zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf)*100.  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "pourc_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "fract_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxt(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "sens_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxlat(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "lat_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = ftsol(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tsol_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxu(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "taux_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxv(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tauy_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = frugs(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "rugs_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = falbe(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "albe_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
          END DO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albs", itau_w, zx_tmp_2d)  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albslw", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxrugs, zx_tmp_2d)  
          CALL histwrite(nid_ins, "rugs", itau_w, zx_tmp_2d)  
   
          !HBTM2  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblh", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblt, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblt", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_lcl, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_lcl", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_capCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_capCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_oliqCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_oliqCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_cteiCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_cteiCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_therm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_therm", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb1, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb1", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb2, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb2", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb3, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb3", itau_w, zx_tmp_2d)  
   
          ! Champs 3D:  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, t_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "temp", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, u_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitu", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, v_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitv", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, zphi, zx_tmp_3d)  
          CALL histwrite(nid_ins, "geop", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, play, zx_tmp_3d)  
          CALL histwrite(nid_ins, "pres", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_t_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dtvdf", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_q_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d)  
   
          if (ok_sync) then  
             call histsync(nid_ins)  
          endif  
       ENDIF  
   
     end subroutine write_histins  
   
     !****************************************************  
   
     subroutine write_histhf3d  
   
       ! From phylmd/write_histhf3d.h, version 1.2 2005/05/25 13:10:09  
   
       integer itau_w ! pas de temps ecriture  
   
       !-------------------------------------------------------  
   
       itau_w = itau_phy + itap  
   
       ! Champs 3D:  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, t_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "temp", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, qx(1, 1, ivap), zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "ovap", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, u_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitu", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, v_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitv", itau_w, zx_tmp_3d)  
   
       if (nbtr >= 3) then  
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, tr_seri(1, 1, 3), &  
               zx_tmp_3d)  
          CALL histwrite(nid_hf3d, "O3", itau_w, zx_tmp_3d)  
       end if  
1131    
1132        if (ok_sync) then      CALL histwrite_phy("albs", albsol)
1133           call histsync(nid_hf3d)      CALL histwrite_phy("tro3", wo * dobson_u * 1e3 / zmasse / rmo3 * md)
1134        endif      CALL histwrite_phy("rugs", zxrugs)
1135        CALL histwrite_phy("s_pblh", s_pblh)
1136        CALL histwrite_phy("s_pblt", s_pblt)
1137        CALL histwrite_phy("s_lcl", s_lcl)
1138        CALL histwrite_phy("s_capCL", s_capCL)
1139        CALL histwrite_phy("s_oliqCL", s_oliqCL)
1140        CALL histwrite_phy("s_cteiCL", s_cteiCL)
1141        CALL histwrite_phy("s_therm", s_therm)
1142        CALL histwrite_phy("s_trmb1", s_trmb1)
1143        CALL histwrite_phy("s_trmb2", s_trmb2)
1144        CALL histwrite_phy("s_trmb3", s_trmb3)
1145    
1146        if (conv_emanuel) then
1147           CALL histwrite_phy("ptop", ema_pct)
1148           CALL histwrite_phy("dnwd0", - mp)
1149        end if
1150    
1151        CALL histwrite_phy("temp", t_seri)
1152        CALL histwrite_phy("vitu", u_seri)
1153        CALL histwrite_phy("vitv", v_seri)
1154        CALL histwrite_phy("geop", zphi)
1155        CALL histwrite_phy("pres", play)
1156        CALL histwrite_phy("dtvdf", d_t_vdf)
1157        CALL histwrite_phy("dqvdf", d_q_vdf)
1158        CALL histwrite_phy("rhum", zx_rh)
1159    
1160        if (ok_instan) call histsync(nid_ins)
1161    
1162        IF (lafin) then
1163           call NF95_CLOSE(ncid_startphy)
1164           CALL phyredem(pctsrf, ftsol, ftsoil, fqsurf, qsol, &
1165                fsnow, falbe, fevap, rain_fall, snow_fall, solsw, sollw, dlw, &
1166                radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, &
1167                t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
1168                w01)
1169        end IF
1170    
1171      end subroutine write_histhf3d      firstcal = .FALSE.
1172    
1173    END SUBROUTINE physiq    END SUBROUTINE physiq
1174    

Legend:
Removed from v.76  
changed lines
  Added in v.212

  ViewVC Help
Powered by ViewVC 1.1.21