--- trunk/libf/phylmd/physiq.f90 2013/02/18 16:33:12 69 +++ trunk/libf/phylmd/physiq.f90 2013/07/08 18:12:18 71 @@ -167,15 +167,12 @@ !MI Amip2 PV a theta constante - INTEGER klevp1 - PARAMETER(klevp1 = llm + 1) - - REAL swdn0(klon, klevp1), swdn(klon, klevp1) - REAL swup0(klon, klevp1), swup(klon, klevp1) + REAL swdn0(klon, llm + 1), swdn(klon, llm + 1) + REAL swup0(klon, llm + 1), swup(klon, llm + 1) SAVE swdn0, swdn, swup0, swup - REAL lwdn0(klon, klevp1), lwdn(klon, klevp1) - REAL lwup0(klon, klevp1), lwup(klon, klevp1) + REAL lwdn0(klon, llm + 1), lwdn(klon, llm + 1) + REAL lwup0(klon, llm + 1), lwup(klon, llm + 1) SAVE lwdn0, lwdn, lwup0, lwup !IM Amip2 @@ -268,8 +265,7 @@ REAL, save:: ftsoil(klon, nsoilmx, nbsrf) ! soil temperature of surface fraction - REAL fevap(klon, nbsrf) - SAVE fevap ! evaporation + REAL, save:: fevap(klon, nbsrf) ! evaporation REAL fluxlat(klon, nbsrf) SAVE fluxlat @@ -351,7 +347,7 @@ REAL rain_tiedtke(klon), snow_tiedtke(klon) - REAL evap(klon), devap(klon) ! evaporation et sa derivee + REAL evap(klon), devap(klon) ! evaporation and its derivative REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee REAL dlw(klon) ! derivee infra rouge SAVE dlw @@ -372,11 +368,9 @@ INTEGER julien INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day - REAL pctsrf(klon, nbsrf) - !IM - REAL pctsrf_new(klon, nbsrf) !pourcentage surfaces issus d'ORCHIDEE + REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface + REAL pctsrf_new(klon, nbsrf) ! pourcentage surfaces issus d'ORCHIDEE - SAVE pctsrf ! sous-fraction du sol REAL albsol(klon) SAVE albsol ! albedo du sol total REAL albsollw(klon) @@ -505,7 +499,7 @@ REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm) REAL rneb(klon, llm) - REAL pmfu(klon, llm), pmfd(klon, llm) + REAL mfu(klon, llm), mfd(klon, llm) REAL pen_u(klon, llm), pen_d(klon, llm) REAL pde_u(klon, llm), pde_d(klon, llm) INTEGER kcbot(klon), kctop(klon), kdtop(klon) @@ -957,14 +951,10 @@ DO nsrf = 1, nbsrf DO k = 1, llm DO i = 1, klon - zxfluxt(i, k) = zxfluxt(i, k) + & - fluxt(i, k, nsrf) * pctsrf(i, nsrf) - zxfluxq(i, k) = zxfluxq(i, k) + & - fluxq(i, k, nsrf) * pctsrf(i, nsrf) - zxfluxu(i, k) = zxfluxu(i, k) + & - fluxu(i, k, nsrf) * pctsrf(i, nsrf) - zxfluxv(i, k) = zxfluxv(i, k) + & - fluxv(i, k, nsrf) * pctsrf(i, nsrf) + zxfluxt(i, k) = zxfluxt(i, k) + fluxt(i, k, nsrf) * pctsrf(i, nsrf) + zxfluxq(i, k) = zxfluxq(i, k) + fluxq(i, k, nsrf) * pctsrf(i, nsrf) + zxfluxu(i, k) = zxfluxu(i, k) + fluxu(i, k, nsrf) * pctsrf(i, nsrf) + zxfluxv(i, k) = zxfluxv(i, k) + fluxv(i, k, nsrf) * pctsrf(i, nsrf) END DO END DO END DO @@ -1095,16 +1085,15 @@ if (iflag_con == 2) then z_avant = sum((q_seri + ql_seri) * zmasse, dim=2) - CALL conflx(dtphys, paprs, play, t_seri, q_seri, conv_t, conv_q, & - zxfluxq(1, 1), omega, d_t_con, d_q_con, rain_con, snow_con, pmfu, & - pmfd, pen_u, pde_u, pen_d, pde_d, kcbot, kctop, kdtop, pmflxr, & - pmflxs) + CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:-1), & + q_seri(:, llm:1:-1), conv_t, conv_q, zxfluxq(:, 1), omega, & + d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:-1), & + mfd(:, llm:1:-1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, & + kdtop, pmflxr, pmflxs) WHERE (rain_con < 0.) rain_con = 0. WHERE (snow_con < 0.) snow_con = 0. - DO i = 1, klon - ibas_con(i) = llm + 1 - kcbot(i) - itop_con(i) = llm + 1 - kctop(i) - ENDDO + ibas_con = llm + 1 - kcbot + itop_con = llm + 1 - kctop else ! iflag_con >= 3 CALL concvl(dtphys, paprs, play, t_seri, q_seri, u_seri, & @@ -1119,7 +1108,7 @@ ! supprimer les calculs / ftra.) clwcon0 = qcondc - pmfu = upwd + dnwd + mfu = upwd + dnwd IF (.NOT. ok_gust) wd = 0. ! Calcul des propriétés des nuages convectifs @@ -1129,7 +1118,7 @@ zx_t = t_seri(i, k) IF (thermcep) THEN zdelta = MAX(0., SIGN(1., rtt-zx_t)) - zx_qs = r2es * FOEEW(zx_t, zdelta)/play(i, k) + zx_qs = r2es * FOEEW(zx_t, zdelta) / play(i, k) zx_qs = MIN(0.5, zx_qs) zcor = 1./(1.-retv*zx_qs) zx_qs = zx_qs*zcor @@ -1145,7 +1134,7 @@ ENDDO ! calcul des proprietes des nuages convectifs - clwcon0 = fact_cldcon*clwcon0 + clwcon0 = fact_cldcon * clwcon0 call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, & rnebcon0) END if @@ -1224,14 +1213,14 @@ ! Caclul des ratqs - ! ratqs convectifs a l'ancienne en fonction de q(z = 0)-q / q - ! on ecrase le tableau ratqsc calcule par clouds_gno + ! ratqs convectifs à l'ancienne en fonction de (q(z = 0) - q) / q + ! on écrase le tableau ratqsc calculé par clouds_gno if (iflag_cldcon == 1) then do k = 1, llm do i = 1, klon if(ptconv(i, k)) then - ratqsc(i, k) = ratqsbas & - +fact_cldcon*(q_seri(i, 1)-q_seri(i, k))/q_seri(i, k) + ratqsc(i, k) = ratqsbas + fact_cldcon & + * (q_seri(i, 1) - q_seri(i, k)) / q_seri(i, k) else ratqsc(i, k) = 0. endif @@ -1242,8 +1231,8 @@ ! ratqs stables do k = 1, llm do i = 1, klon - ratqss(i, k) = ratqsbas + (ratqshaut-ratqsbas)* & - min((paprs(i, 1)-play(i, k))/(paprs(i, 1)-30000.), 1.) + ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) & + * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.) enddo enddo @@ -1253,8 +1242,7 @@ ! ratqs final ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de ! relaxation des ratqs - facteur = exp(-dtphys*facttemps) - ratqs = max(ratqs*facteur, ratqss) + ratqs = max(ratqs * exp(- dtphys * facttemps), ratqss) ratqs = max(ratqs, ratqsc) else ! on ne prend que le ratqs stable pour fisrtilp @@ -1342,7 +1330,7 @@ facteur = dtphys *facttemps do k = 1, llm do i = 1, klon - rnebcon(i, k) = rnebcon(i, k)*facteur + rnebcon(i, k) = rnebcon(i, k) * facteur if (rnebcon0(i, k)*clwcon0(i, k) > rnebcon(i, k)*clwcon(i, k)) & then rnebcon(i, k) = rnebcon0(i, k) @@ -1564,13 +1552,13 @@ ! Calcul des tendances traceurs call phytrac(rnpb, itap, lmt_pas, julien, time, firstcal, lafin, nqmx-2, & - dtphys, u, t, paprs, play, pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, & + dtphys, u, t, paprs, play, mfu, mfd, pen_u, pde_u, pen_d, pde_d, & ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, pctsrf, frac_impa, & frac_nucl, pphis, albsol, rhcl, cldfra, rneb, diafra, cldliq, & pmflxr, pmflxs, prfl, psfl, da, phi, mp, upwd, dnwd, tr_seri, zmasse) IF (offline) THEN - call phystokenc(dtphys, rlon, rlat, t, pmfu, pmfd, pen_u, pde_u, & + call phystokenc(dtphys, rlon, rlat, t, mfu, mfd, pen_u, pde_u, & pen_d, pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, & pctsrf, frac_impa, frac_nucl, pphis, airephy, dtphys, itap) ENDIF