--- trunk/libf/phylmd/physiq.f90 2008/07/21 16:05:07 12 +++ trunk/phylmd/physiq.f 2018/07/24 16:27:12 288 @@ -1,635 +1,336 @@ module physiq_m - ! This module is clean: no C preprocessor directive, no include line. - IMPLICIT none - private - public physiq - contains - SUBROUTINE physiq(nq, firstcal, lafin, rdayvrai, gmtime, pdtphys, paprs, & - pplay, pphi, pphis, presnivs, clesphy0, u, v, t, qx, omega, d_u, d_v, & - d_t, d_qx, d_ps, dudyn, PVteta) - - ! From phylmd/physiq.F, v 1.22 2006/02/20 09:38:28 - - ! Author : Z.X. Li (LMD/CNRS), date: 1993/08/18 - - ! Objet: Moniteur general de la physique du modele - !AA Modifications quant aux traceurs : - !AA - uniformisation des parametrisations ds phytrac - !AA - stockage des moyennes des champs necessaires - !AA en mode traceur off-line - - USE ioipsl, only: ymds2ju, histwrite, histsync - use dimens_m, only: jjm, iim, llm - use indicesol, only: nbsrf, is_ter, is_lic, is_sic, is_oce, & - clnsurf, epsfra - use dimphy, only: klon, nbtr - use conf_gcm_m, only: raz_date, offline, iphysiq - use dimsoil, only: nsoilmx - use temps, only: itau_phy, day_ref, annee_ref, itaufin - use clesphys, only: ecrit_hf, ecrit_hf2mth, & - ecrit_ins, ecrit_mth, ecrit_day, & - cdmmax, cdhmax, & - co2_ppm, ecrit_reg, ecrit_tra, ksta, ksta_ter, & - ok_kzmin - use clesphys2, only: iflag_con, ok_orolf, ok_orodr, nbapp_rad, & - cycle_diurne, new_oliq, soil_model - use iniprint, only: prt_level - use abort_gcm_m, only: abort_gcm - use YOMCST, only: rcpd, rtt, rlvtt, rg, ra, rsigma, retv, romega - use comgeomphy - use ctherm - use phytrac_m, only: phytrac - use oasis_m - use radepsi - use radopt - use yoethf - use ini_hist, only: ini_histhf, ini_histday, ini_histins - use orbite_m, only: orbite, zenang - use phyetat0_m, only: phyetat0, rlat, rlon - use hgardfou_m, only: hgardfou - use conf_phys_m, only: conf_phys - - ! Declaration des constantes et des fonctions thermodynamiques : - use fcttre, only: thermcep, foeew, qsats, qsatl - - ! Variables argument: - - INTEGER nq ! input nombre de traceurs (y compris vapeur d'eau) - REAL, intent(in):: rdayvrai ! input numero du jour de l'experience - REAL, intent(in):: gmtime ! heure de la journée en fraction de jour - REAL, intent(in):: pdtphys ! pas d'integration pour la physique (seconde) - LOGICAL, intent(in):: firstcal ! first call to "calfis" - logical, intent(in):: lafin ! dernier passage - - REAL, intent(in):: paprs(klon, llm+1) - ! (pression pour chaque inter-couche, en Pa) - - REAL, intent(in):: pplay(klon, llm) - ! (input pression pour le mileu de chaque couche (en Pa)) + SUBROUTINE physiq(lafin, dayvrai, time, paprs, play, pphi, pphis, u, v, t, & + qx, omega, d_u, d_v, d_t, d_qx) - REAL pphi(klon, llm) - ! (input geopotentiel de chaque couche (g z) (reference sol)) + ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28 + ! (subversion revision 678) - REAL pphis(klon) ! input geopotentiel du sol + ! Author: Z. X. Li (LMD/CNRS) 1993 - REAL presnivs(llm) - ! (input pressions approximat. des milieux couches ( en PA)) - - REAL u(klon, llm) ! input vitesse dans la direction X (de O a E) en m/s - REAL v(klon, llm) ! input vitesse Y (de S a N) en m/s - REAL t(klon, llm) ! input temperature (K) - - REAL, intent(in):: qx(klon, llm, nq) - ! (humidite specifique (kg/kg) et fractions massiques des autres traceurs) - - REAL omega(klon, llm) ! input vitesse verticale en Pa/s - REAL d_u(klon, llm) ! output tendance physique de "u" (m/s/s) - REAL d_v(klon, llm) ! output tendance physique de "v" (m/s/s) - REAL d_t(klon, llm) ! output tendance physique de "t" (K/s) - REAL d_qx(klon, llm, nq) ! output tendance physique de "qx" (kg/kg/s) - REAL d_ps(klon) ! output tendance physique de la pression au sol - - INTEGER nbteta - PARAMETER(nbteta=3) - - REAL PVteta(klon, nbteta) - ! (output vorticite potentielle a des thetas constantes) - - LOGICAL ok_cvl ! pour activer le nouveau driver pour convection KE - PARAMETER (ok_cvl=.TRUE.) - LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface - PARAMETER (ok_gust=.FALSE.) - - LOGICAL check ! Verifier la conservation du modele en eau - PARAMETER (check=.FALSE.) - LOGICAL ok_stratus ! Ajouter artificiellement les stratus - PARAMETER (ok_stratus=.FALSE.) - - ! Parametres lies au coupleur OASIS: - INTEGER, SAVE :: npas, nexca - logical rnpb - parameter(rnpb=.true.) - - character(len=6), save:: ocean - ! (type de modèle océan à utiliser: "force" ou "slab" mais pas "couple") - - logical ok_ocean - SAVE ok_ocean - - !IM "slab" ocean - REAL tslab(klon) !Temperature du slab-ocean - SAVE tslab - REAL seaice(klon) !glace de mer (kg/m2) - SAVE seaice - REAL fluxo(klon) !flux turbulents ocean-glace de mer - REAL fluxg(klon) !flux turbulents ocean-atmosphere - - ! Modele thermique du sol, a activer pour le cycle diurne: - logical ok_veget - save ok_veget - LOGICAL ok_journe ! sortir le fichier journalier - save ok_journe - - LOGICAL ok_mensuel ! sortir le fichier mensuel + ! This is the main procedure for the "physics" part of the program. + + use aaam_bud_m, only: aaam_bud + USE abort_gcm_m, ONLY: abort_gcm + use ajsec_m, only: ajsec + use calltherm_m, only: calltherm + USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ok_instan + USE clesphys2, ONLY: conv_emanuel, nbapp_rad, new_oliq, ok_orodr, ok_orolf + USE pbl_surface_m, ONLY: pbl_surface + use clouds_gno_m, only: clouds_gno + use comconst, only: dtphys + USE comgeomphy, ONLY: airephy + USE concvl_m, ONLY: concvl + USE conf_gcm_m, ONLY: lmt_pas + USE conf_phys_m, ONLY: conf_phys + use conflx_m, only: conflx + USE ctherm, ONLY: iflag_thermals, nsplit_thermals + use diagcld2_m, only: diagcld2 + USE dimensions, ONLY: llm, nqmx + USE dimphy, ONLY: klon + USE dimsoil, ONLY: nsoilmx + use drag_noro_m, only: drag_noro + use dynetat0_m, only: day_ref, annee_ref + USE fcttre, ONLY: foeew + use fisrtilp_m, only: fisrtilp + USE hgardfou_m, ONLY: hgardfou + USE histsync_m, ONLY: histsync + USE histwrite_phy_m, ONLY: histwrite_phy + USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, & + nbsrf + USE ini_histins_m, ONLY: ini_histins, nid_ins + use lift_noro_m, only: lift_noro + use netcdf95, only: NF95_CLOSE + use newmicro_m, only: newmicro + use nr_util, only: assert + use nuage_m, only: nuage + USE orbite_m, ONLY: orbite + USE ozonecm_m, ONLY: ozonecm + USE phyetat0_m, ONLY: phyetat0 + USE phyredem_m, ONLY: phyredem + USE phyredem0_m, ONLY: phyredem0 + USE phytrac_m, ONLY: phytrac + use radlwsw_m, only: radlwsw + use yoegwd, only: sugwd + USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt, rmo3, md + use time_phylmdz, only: itap, increment_itap + use transp_m, only: transp + use transp_lay_m, only: transp_lay + use unit_nml_m, only: unit_nml + USE ymds2ju_m, ONLY: ymds2ju + USE yoethf_m, ONLY: r2es, rvtmp2 + use zenang_m, only: zenang - LOGICAL ok_instan ! sortir le fichier instantane - save ok_instan - - LOGICAL ok_region ! sortir le fichier regional - PARAMETER (ok_region=.FALSE.) + logical, intent(in):: lafin ! dernier passage - ! pour phsystoke avec thermiques - REAL fm_therm(klon, llm+1) - REAL entr_therm(klon, llm) - real q2(klon, llm+1, nbsrf) - save q2 + integer, intent(in):: dayvrai + ! current day number, based at value 1 on January 1st of annee_ref - INTEGER ivap ! indice de traceurs pour vapeur d'eau - PARAMETER (ivap=1) - INTEGER iliq ! indice de traceurs pour eau liquide - PARAMETER (iliq=2) - - REAL t_ancien(klon, llm), q_ancien(klon, llm) - SAVE t_ancien, q_ancien - LOGICAL ancien_ok - SAVE ancien_ok + REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour - REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K/s) - REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg/kg/s) + REAL, intent(in):: paprs(:, :) ! (klon, llm + 1) + ! pression pour chaque inter-couche, en Pa - real da(klon, llm), phi(klon, llm, llm), mp(klon, llm) + REAL, intent(in):: play(:, :) ! (klon, llm) + ! pression pour le mileu de chaque couche (en Pa) - !IM Amip2 PV a theta constante + REAL, intent(in):: pphi(:, :) ! (klon, llm) + ! géopotentiel de chaque couche (référence sol) - CHARACTER(LEN=3) ctetaSTD(nbteta) - DATA ctetaSTD/'350', '380', '405'/ - REAL rtetaSTD(nbteta) - DATA rtetaSTD/350., 380., 405./ - - !MI Amip2 PV a theta constante - - INTEGER klevp1 - PARAMETER(klevp1=llm+1) - - REAL swdn0(klon, klevp1), swdn(klon, klevp1) - REAL swup0(klon, klevp1), swup(klon, klevp1) - SAVE swdn0, swdn, swup0, swup - - REAL SWdn200clr(klon), SWdn200(klon) - REAL SWup200clr(klon), SWup200(klon) - SAVE SWdn200clr, SWdn200, SWup200clr, SWup200 - - REAL lwdn0(klon, klevp1), lwdn(klon, klevp1) - REAL lwup0(klon, klevp1), lwup(klon, klevp1) - SAVE lwdn0, lwdn, lwup0, lwup - - REAL LWdn200clr(klon), LWdn200(klon) - REAL LWup200clr(klon), LWup200(klon) - SAVE LWdn200clr, LWdn200, LWup200clr, LWup200 - - !IM Amip2 - ! variables a une pression donnee - - integer nlevSTD - PARAMETER(nlevSTD=17) - real rlevSTD(nlevSTD) - DATA rlevSTD/100000., 92500., 85000., 70000., & - 60000., 50000., 40000., 30000., 25000., 20000., & - 15000., 10000., 7000., 5000., 3000., 2000., 1000./ - CHARACTER(LEN=4) clevSTD(nlevSTD) - DATA clevSTD/'1000', '925 ', '850 ', '700 ', '600 ', & - '500 ', '400 ', '300 ', '250 ', '200 ', '150 ', '100 ', & - '70 ', '50 ', '30 ', '20 ', '10 '/ - - real tlevSTD(klon, nlevSTD), qlevSTD(klon, nlevSTD) - real rhlevSTD(klon, nlevSTD), philevSTD(klon, nlevSTD) - real ulevSTD(klon, nlevSTD), vlevSTD(klon, nlevSTD) - real wlevSTD(klon, nlevSTD) - - ! nout : niveau de output des variables a une pression donnee - INTEGER nout - PARAMETER(nout=3) !nout=1 : day; =2 : mth; =3 : NMC - - REAL tsumSTD(klon, nlevSTD, nout) - REAL usumSTD(klon, nlevSTD, nout), vsumSTD(klon, nlevSTD, nout) - REAL wsumSTD(klon, nlevSTD, nout), phisumSTD(klon, nlevSTD, nout) - REAL qsumSTD(klon, nlevSTD, nout), rhsumSTD(klon, nlevSTD, nout) - - SAVE tsumSTD, usumSTD, vsumSTD, wsumSTD, phisumSTD, & - qsumSTD, rhsumSTD - - logical oknondef(klon, nlevSTD, nout) - real tnondef(klon, nlevSTD, nout) - save tnondef - - ! les produits uvSTD, vqSTD, .., T2STD sont calcules - ! a partir des valeurs instantannees toutes les 6 h - ! qui sont moyennees sur le mois - - real uvSTD(klon, nlevSTD) - real vqSTD(klon, nlevSTD) - real vTSTD(klon, nlevSTD) - real wqSTD(klon, nlevSTD) - - real uvsumSTD(klon, nlevSTD, nout) - real vqsumSTD(klon, nlevSTD, nout) - real vTsumSTD(klon, nlevSTD, nout) - real wqsumSTD(klon, nlevSTD, nout) - - real vphiSTD(klon, nlevSTD) - real wTSTD(klon, nlevSTD) - real u2STD(klon, nlevSTD) - real v2STD(klon, nlevSTD) - real T2STD(klon, nlevSTD) - - real vphisumSTD(klon, nlevSTD, nout) - real wTsumSTD(klon, nlevSTD, nout) - real u2sumSTD(klon, nlevSTD, nout) - real v2sumSTD(klon, nlevSTD, nout) - real T2sumSTD(klon, nlevSTD, nout) - - SAVE uvsumSTD, vqsumSTD, vTsumSTD, wqsumSTD - SAVE vphisumSTD, wTsumSTD, u2sumSTD, v2sumSTD, T2sumSTD - !MI Amip2 + REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol - ! prw: precipitable water - real prw(klon) + REAL, intent(in):: u(:, :) ! (klon, llm) + ! vitesse dans la direction X (de O a E) en m / s - ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg/m2) - ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg/kg) - REAL flwp(klon), fiwp(klon) - REAL flwc(klon, llm), fiwc(klon, llm) + REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m / s + REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K) - INTEGER l, kmax, lmax - PARAMETER(kmax=8, lmax=8) - INTEGER kmaxm1, lmaxm1 - PARAMETER(kmaxm1=kmax-1, lmaxm1=lmax-1) - - REAL zx_tau(kmaxm1), zx_pc(lmaxm1) - DATA zx_tau/0.0, 0.3, 1.3, 3.6, 9.4, 23., 60./ - DATA zx_pc/50., 180., 310., 440., 560., 680., 800./ - - ! cldtopres pression au sommet des nuages - REAL cldtopres(lmaxm1) - DATA cldtopres/50., 180., 310., 440., 560., 680., 800./ - - ! taulev: numero du niveau de tau dans les sorties ISCCP - CHARACTER(LEN=4) taulev(kmaxm1) - - DATA taulev/'tau0', 'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'/ - CHARACTER(LEN=3) pclev(lmaxm1) - DATA pclev/'pc1', 'pc2', 'pc3', 'pc4', 'pc5', 'pc6', 'pc7'/ - - CHARACTER(LEN=28) cnameisccp(lmaxm1, kmaxm1) - DATA cnameisccp/'pc< 50hPa, tau< 0.3', 'pc= 50-180hPa, tau< 0.3', & - 'pc= 180-310hPa, tau< 0.3', 'pc= 310-440hPa, tau< 0.3', & - 'pc= 440-560hPa, tau< 0.3', 'pc= 560-680hPa, tau< 0.3', & - 'pc= 680-800hPa, tau< 0.3', 'pc< 50hPa, tau= 0.3-1.3', & - 'pc= 50-180hPa, tau= 0.3-1.3', 'pc= 180-310hPa, tau= 0.3-1.3', & - 'pc= 310-440hPa, tau= 0.3-1.3', 'pc= 440-560hPa, tau= 0.3-1.3', & - 'pc= 560-680hPa, tau= 0.3-1.3', 'pc= 680-800hPa, tau= 0.3-1.3', & - 'pc< 50hPa, tau= 1.3-3.6', 'pc= 50-180hPa, tau= 1.3-3.6', & - 'pc= 180-310hPa, tau= 1.3-3.6', 'pc= 310-440hPa, tau= 1.3-3.6', & - 'pc= 440-560hPa, tau= 1.3-3.6', 'pc= 560-680hPa, tau= 1.3-3.6', & - 'pc= 680-800hPa, tau= 1.3-3.6', 'pc< 50hPa, tau= 3.6-9.4', & - 'pc= 50-180hPa, tau= 3.6-9.4', 'pc= 180-310hPa, tau= 3.6-9.4', & - 'pc= 310-440hPa, tau= 3.6-9.4', 'pc= 440-560hPa, tau= 3.6-9.4', & - 'pc= 560-680hPa, tau= 3.6-9.4', 'pc= 680-800hPa, tau= 3.6-9.4', & - 'pc< 50hPa, tau= 9.4-23', 'pc= 50-180hPa, tau= 9.4-23', & - 'pc= 180-310hPa, tau= 9.4-23', 'pc= 310-440hPa, tau= 9.4-23', & - 'pc= 440-560hPa, tau= 9.4-23', 'pc= 560-680hPa, tau= 9.4-23', & - 'pc= 680-800hPa, tau= 9.4-23', 'pc< 50hPa, tau= 23-60', & - 'pc= 50-180hPa, tau= 23-60', 'pc= 180-310hPa, tau= 23-60', & - 'pc= 310-440hPa, tau= 23-60', 'pc= 440-560hPa, tau= 23-60', & - 'pc= 560-680hPa, tau= 23-60', 'pc= 680-800hPa, tau= 23-60', & - 'pc< 50hPa, tau> 60.', 'pc= 50-180hPa, tau> 60.', & - 'pc= 180-310hPa, tau> 60.', 'pc= 310-440hPa, tau> 60.', & - 'pc= 440-560hPa, tau> 60.', 'pc= 560-680hPa, tau> 60.', & - 'pc= 680-800hPa, tau> 60.'/ - - !IM ISCCP simulator v3.4 - - integer nid_hf, nid_hf3d - save nid_hf, nid_hf3d - - INTEGER longcles - PARAMETER ( longcles = 20 ) - REAL, intent(in):: clesphy0( longcles ) + REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx) + ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs) - ! Variables propres a la physique + REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa / s + REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2) + REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2) + REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K / s) - INTEGER, save:: radpas - ! (Radiative transfer computations are made every "radpas" call to - ! "physiq".) + REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx) + ! tendance physique de "qx" (s-1) - REAL radsol(klon) - SAVE radsol ! bilan radiatif au sol calcule par code radiatif + ! Local: - INTEGER, SAVE:: itap ! number of calls to "physiq" + LOGICAL:: firstcal = .true. - REAL ftsol(klon, nbsrf) - SAVE ftsol ! temperature du sol + LOGICAL, PARAMETER:: ok_stratus = .FALSE. + ! Ajouter artificiellement les stratus - REAL ftsoil(klon, nsoilmx, nbsrf) - SAVE ftsoil ! temperature dans le sol + ! pour phystoke avec thermiques + REAL fm_therm(klon, llm + 1) + REAL entr_therm(klon, llm) + real, save:: q2(klon, llm + 1, nbsrf) - REAL fevap(klon, nbsrf) - SAVE fevap ! evaporation - REAL fluxlat(klon, nbsrf) - SAVE fluxlat + INTEGER, PARAMETER:: ivap = 1 ! indice de traceur pour vapeur d'eau + INTEGER, PARAMETER:: iliq = 2 ! indice de traceur pour eau liquide - REAL fqsurf(klon, nbsrf) - SAVE fqsurf ! humidite de l'air au contact de la surface + REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm) + LOGICAL, save:: ancien_ok - REAL qsol(klon) - SAVE qsol ! hauteur d'eau dans le sol + REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K / s) + REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg / kg / s) - REAL fsnow(klon, nbsrf) - SAVE fsnow ! epaisseur neigeuse + real da(klon, llm), phi(klon, llm, llm), mp(klon, llm) - REAL falbe(klon, nbsrf) - SAVE falbe ! albedo par type de surface - REAL falblw(klon, nbsrf) - SAVE falblw ! albedo par type de surface + REAL, save:: swdn0(klon, llm + 1), swdn(klon, llm + 1) + REAL, save:: swup0(klon, llm + 1), swup(klon, llm + 1) - ! Parametres de l'Orographie a l'Echelle Sous-Maille (OESM): + REAL, save:: lwdn0(klon, llm + 1), lwdn(klon, llm + 1) + REAL, save:: lwup0(klon, llm + 1), lwup(klon, llm + 1) - REAL zmea(klon) - SAVE zmea ! orographie moyenne + ! prw: precipitable water + real prw(klon) - REAL zstd(klon) - SAVE zstd ! deviation standard de l'OESM + ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg / m2) + ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg / kg) + REAL flwp(klon), fiwp(klon) + REAL flwc(klon, llm), fiwc(klon, llm) - REAL zsig(klon) - SAVE zsig ! pente de l'OESM + ! Variables propres a la physique - REAL zgam(klon) - save zgam ! anisotropie de l'OESM + INTEGER, save:: radpas + ! Radiative transfer computations are made every "radpas" call to + ! "physiq". - REAL zthe(klon) - SAVE zthe ! orientation de l'OESM + REAL, save:: radsol(klon) ! bilan radiatif au sol calcule par code radiatif + REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction - REAL zpic(klon) - SAVE zpic ! Maximum de l'OESM + REAL, save:: ftsoil(klon, nsoilmx, nbsrf) + ! soil temperature of surface fraction - REAL zval(klon) - SAVE zval ! Minimum de l'OESM + REAL, save:: fevap(klon, nbsrf) ! evaporation + REAL fluxlat(klon, nbsrf) - REAL rugoro(klon) - SAVE rugoro ! longueur de rugosite de l'OESM + REAL, save:: fqsurf(klon, nbsrf) + ! humidite de l'air au contact de la surface + REAL, save:: qsol(klon) ! column-density of water in soil, in kg m-2 + REAL, save:: fsnow(klon, nbsrf) ! \'epaisseur neigeuse + REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface + + ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) : + REAL, save:: zmea(klon) ! orographie moyenne + REAL, save:: zstd(klon) ! deviation standard de l'OESM + REAL, save:: zsig(klon) ! pente de l'OESM + REAL, save:: zgam(klon) ! anisotropie de l'OESM + REAL, save:: zthe(klon) ! orientation de l'OESM + REAL, save:: zpic(klon) ! Maximum de l'OESM + REAL, save:: zval(klon) ! Minimum de l'OESM + REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM REAL zulow(klon), zvlow(klon) + INTEGER ktest(klon) - INTEGER igwd, idx(klon), itest(klon) + REAL, save:: agesno(klon, nbsrf) ! age de la neige + REAL, save:: run_off_lic_0(klon) - REAL agesno(klon, nbsrf) - SAVE agesno ! age de la neige + ! Variables li\'ees \`a la convection d'Emanuel : + REAL, save:: Ma(klon, llm) ! undilute upward mass flux + REAL, save:: sig1(klon, llm), w01(klon, llm) - REAL run_off_lic_0(klon) - SAVE run_off_lic_0 - !KE43 - ! Variables liees a la convection de K. Emanuel (sb): + ! Variables pour la couche limite (Alain Lahellec) : + REAL cdragh(klon) ! drag coefficient pour T and Q + REAL cdragm(klon) ! drag coefficient pour vent - REAL bas, top ! cloud base and top levels - SAVE bas - SAVE top + REAL coefh(klon, 2:llm) ! coef d'echange pour phytrac - REAL Ma(klon, llm) ! undilute upward mass flux - SAVE Ma - REAL qcondc(klon, llm) ! in-cld water content from convect - SAVE qcondc - REAL ema_work1(klon, llm), ema_work2(klon, llm) - SAVE ema_work1, ema_work2 + REAL, save:: ffonte(klon, nbsrf) + ! flux thermique utilise pour fondre la neige - REAL wd(klon) ! sb - SAVE wd ! sb + REAL fqcalving(klon, nbsrf) + ! flux d'eau "perdue" par la surface et n\'ecessaire pour limiter + ! la hauteur de neige, en kg / m2 / s - ! Variables locales pour la couche limite (al1): + REAL zxffonte(klon) - ! Variables locales: + REAL, save:: pfrac_impa(klon, llm)! Produits des coefs lessivage impaction + REAL, save:: pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation - REAL cdragh(klon) ! drag coefficient pour T and Q - REAL cdragm(klon) ! drag coefficient pour vent + REAL, save:: pfrac_1nucl(klon, llm) + ! Produits des coefs lessi nucl (alpha = 1) - !AA Pour phytrac - REAL ycoefh(klon, llm) ! coef d'echange pour phytrac - REAL yu1(klon) ! vents dans la premiere couche U - REAL yv1(klon) ! vents dans la premiere couche V - REAL ffonte(klon, nbsrf) !Flux thermique utilise pour fondre la neige - REAL fqcalving(klon, nbsrf) !Flux d'eau "perdue" par la surface - ! !et necessaire pour limiter la - ! !hauteur de neige, en kg/m2/s - REAL zxffonte(klon), zxfqcalving(klon) - - REAL pfrac_impa(klon, llm)! Produits des coefs lessivage impaction - save pfrac_impa - REAL pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation - save pfrac_nucl - REAL pfrac_1nucl(klon, llm)! Produits des coefs lessi nucl (alpha = 1) - save pfrac_1nucl - REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction) + REAL frac_impa(klon, llm) ! fraction d'a\'erosols lessiv\'es (impaction) REAL frac_nucl(klon, llm) ! idem (nucleation) - !AA - REAL rain_fall(klon) ! pluie - REAL snow_fall(klon) ! neige - save snow_fall, rain_fall - !IM cf FH pour Tiedtke 080604 - REAL rain_tiedtke(klon), snow_tiedtke(klon) + REAL, save:: rain_fall(klon) + ! liquid water mass flux (kg / m2 / s), positive down + + REAL, save:: snow_fall(klon) + ! solid water mass flux (kg / m2 / s), positive down - REAL total_rain(klon), nday_rain(klon) - save nday_rain + REAL rain_tiedtke(klon), snow_tiedtke(klon) - REAL evap(klon), devap(klon) ! evaporation et sa derivee - REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee - REAL dlw(klon) ! derivee infra rouge - SAVE dlw + REAL evap(klon) ! flux d'\'evaporation au sol + real devap(klon) ! derivative of the evaporation flux at the surface + REAL sens(klon) ! flux de chaleur sensible au sol + real dsens(klon) ! derivee du flux de chaleur sensible au sol + REAL, save:: dlw(klon) ! derivative of infra-red flux REAL bils(klon) ! bilan de chaleur au sol - REAL fder(klon) ! Derive de flux (sensible et latente) - save fder + REAL fder(klon) ! Derive de flux (sensible et latente) REAL ve(klon) ! integr. verticale du transport meri. de l'energie REAL vq(klon) ! integr. verticale du transport meri. de l'eau REAL ue(klon) ! integr. verticale du transport zonal de l'energie REAL uq(klon) ! integr. verticale du transport zonal de l'eau - REAL frugs(klon, nbsrf) ! longueur de rugosite - save frugs + REAL, save:: frugs(klon, nbsrf) ! longueur de rugosite REAL zxrugs(klon) ! longueur de rugosite ! Conditions aux limites INTEGER julien - - INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day - REAL pctsrf(klon, nbsrf) - !IM - REAL pctsrf_new(klon, nbsrf) !pourcentage surfaces issus d'ORCHIDEE - - SAVE pctsrf ! sous-fraction du sol - REAL albsol(klon) - SAVE albsol ! albedo du sol total - REAL albsollw(klon) - SAVE albsollw ! albedo du sol total - - REAL, SAVE:: wo(klon, llm) ! ozone - - ! Declaration des procedures appelees - - EXTERNAL alboc ! calculer l'albedo sur ocean - EXTERNAL ajsec ! ajustement sec - EXTERNAL clmain ! couche limite - !KE43 - EXTERNAL conema3 ! convect4.3 - EXTERNAL fisrtilp ! schema de condensation a grande echelle (pluie) - EXTERNAL nuage ! calculer les proprietes radiatives - EXTERNAL ozonecm ! prescrire l'ozone - EXTERNAL phyredem ! ecrire l'etat de redemarrage de la physique - EXTERNAL radlwsw ! rayonnements solaire et infrarouge - EXTERNAL transp ! transport total de l'eau et de l'energie - - EXTERNAL ini_undefSTD !initialise a 0 une variable a 1 niveau de pression - - EXTERNAL undefSTD - ! (somme les valeurs definies d'1 var a 1 niveau de pression) - - ! Variables locales - - real clwcon(klon, llm), rnebcon(klon, llm) - real clwcon0(klon, llm), rnebcon0(klon, llm) - - save rnebcon, clwcon - - REAL rhcl(klon, llm) ! humiditi relative ciel clair - REAL dialiq(klon, llm) ! eau liquide nuageuse - REAL diafra(klon, llm) ! fraction nuageuse - REAL cldliq(klon, llm) ! eau liquide nuageuse - REAL cldfra(klon, llm) ! fraction nuageuse - REAL cldtau(klon, llm) ! epaisseur optique - REAL cldemi(klon, llm) ! emissivite infrarouge - - REAL fluxq(klon, llm, nbsrf) ! flux turbulent d'humidite - REAL fluxt(klon, llm, nbsrf) ! flux turbulent de chaleur - REAL fluxu(klon, llm, nbsrf) ! flux turbulent de vitesse u - REAL fluxv(klon, llm, nbsrf) ! flux turbulent de vitesse v - - REAL zxfluxt(klon, llm) - REAL zxfluxq(klon, llm) - REAL zxfluxu(klon, llm) - REAL zxfluxv(klon, llm) - - REAL heat(klon, llm) ! chauffage solaire - REAL heat0(klon, llm) ! chauffage solaire ciel clair - REAL cool(klon, llm) ! refroidissement infrarouge - REAL cool0(klon, llm) ! refroidissement infrarouge ciel clair - REAL topsw(klon), toplw(klon), solsw(klon), sollw(klon) - real sollwdown(klon) ! downward LW flux at surface - REAL topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon) - REAL albpla(klon) - REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous surface - REAL fsolsw(klon, nbsrf) ! flux solaire absorb. pour chaque sous surface - ! Le rayonnement n'est pas calcule tous les pas, il faut donc - ! sauvegarder les sorties du rayonnement - SAVE heat, cool, albpla, topsw, toplw, solsw, sollw, sollwdown - SAVE topsw0, toplw0, solsw0, sollw0, heat0, cool0 - - INTEGER itaprad - SAVE itaprad - - REAL conv_q(klon, llm) ! convergence de l'humidite (kg/kg/s) - REAL conv_t(klon, llm) ! convergence de la temperature(K/s) - - REAL cldl(klon), cldm(klon), cldh(klon) !nuages bas, moyen et haut - REAL cldt(klon), cldq(klon) !nuage total, eau liquide integree - - REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon) - - REAL dist, rmu0(klon), fract(klon) - REAL zdtime ! pas de temps du rayonnement (s) - real zlongi - + REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface + REAL, save:: albsol(klon) ! albedo du sol total, visible, moyen par maille + REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU + real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2 + + real, save:: clwcon(klon, llm), rnebcon(klon, llm) + real, save:: clwcon0(klon, llm), rnebcon0(klon, llm) + + REAL rhcl(klon, llm) ! humidit\'e relative ciel clair + REAL dialiq(klon, llm) ! eau liquide nuageuse + REAL diafra(klon, llm) ! fraction nuageuse + REAL cldliq(klon, llm) ! eau liquide nuageuse + REAL cldfra(klon, llm) ! fraction nuageuse + REAL cldtau(klon, llm) ! epaisseur optique + REAL cldemi(klon, llm) ! emissivite infrarouge + + REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface + REAL flux_t(klon, nbsrf) ! flux turbulent de chaleur à la surface + + REAL flux_u(klon, nbsrf), flux_v(klon, nbsrf) + ! tension du vent (flux turbulent de vent) à la surface, en Pa + + ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que + ! les variables soient r\'emanentes. + REAL, save:: heat(klon, llm) ! chauffage solaire + REAL, save:: heat0(klon, llm) ! chauffage solaire ciel clair + REAL, save:: cool(klon, llm) ! refroidissement infrarouge + REAL, save:: cool0(klon, llm) ! refroidissement infrarouge ciel clair + REAL, save:: topsw(klon), toplw(klon), solsw(klon) + REAL, save:: sollw(klon) ! rayonnement infrarouge montant \`a la surface + real, save:: sollwdown(klon) ! downward LW flux at surface + REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon) + REAL, save:: albpla(klon) + REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous-surface + REAL fsolsw(klon, nbsrf) ! flux solaire absorb\'e pour chaque sous-surface + + REAL conv_q(klon, llm) ! convergence de l'humidite (kg / kg / s) + REAL conv_t(klon, llm) ! convergence of temperature (K / s) + + REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut + REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree + + REAL zxfluxlat(klon) + REAL dist, mu0(klon), fract(klon) + real longi REAL z_avant(klon), z_apres(klon), z_factor(klon) - LOGICAL zx_ajustq - - REAL za, zb - REAL zx_t, zx_qs, zdelta, zcor, zlvdcp, zlsdcp + REAL zb + REAL zx_t, zx_qs, zcor real zqsat(klon, llm) INTEGER i, k, iq, nsrf - REAL t_coup - PARAMETER (t_coup=234.0) - REAL zphi(klon, llm) - !IM cf. AM Variables locales pour la CLA (hbtm2) + ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm) - REAL pblh(klon, nbsrf) ! Hauteur de couche limite - REAL plcl(klon, nbsrf) ! Niveau de condensation de la CLA - REAL capCL(klon, nbsrf) ! CAPE de couche limite - REAL oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite - REAL cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite - REAL pblt(klon, nbsrf) ! T a la Hauteur de couche limite - REAL therm(klon, nbsrf) - REAL trmb1(klon, nbsrf) ! deep_cape - REAL trmb2(klon, nbsrf) ! inhibition - REAL trmb3(klon, nbsrf) ! Point Omega - ! Grdeurs de sorties + REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite + REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA + REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite + REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite + REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite + REAL, SAVE:: pblt(klon, nbsrf) ! T \`a la hauteur de couche limite + REAL, SAVE:: therm(klon, nbsrf) + ! Grandeurs de sorties REAL s_pblh(klon), s_lcl(klon), s_capCL(klon) REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon) - REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon) - REAL s_trmb3(klon) + REAL s_therm(klon) + + ! Variables pour la convection de K. Emanuel : - ! Variables locales pour la convection de K. Emanuel (sb): + REAL upwd(klon, llm) ! saturated updraft mass flux + REAL dnwd(klon, llm) ! saturated downdraft mass flux + REAL, save:: cape(klon) - REAL upwd(klon, llm) ! saturated updraft mass flux - REAL dnwd(klon, llm) ! saturated downdraft mass flux - REAL dnwd0(klon, llm) ! unsaturated downdraft mass flux - REAL tvp(klon, llm) ! virtual temp of lifted parcel - REAL cape(klon) ! CAPE - SAVE cape - - REAL pbase(klon) ! cloud base pressure - SAVE pbase - REAL bbase(klon) ! cloud base buoyancy - SAVE bbase - REAL rflag(klon) ! flag fonctionnement de convect - INTEGER iflagctrl(klon) ! flag fonctionnement de convect - ! -- convect43: - INTEGER ntra ! nb traceurs pour convect4.3 - REAL dtvpdt1(klon, llm), dtvpdq1(klon, llm) - REAL dplcldt(klon), dplcldr(klon) + INTEGER iflagctrl(klon) ! flag fonctionnement de convect ! Variables du changement ! con: convection - ! lsc: condensation a grande echelle (Large-Scale-Condensation) + ! lsc: large scale condensation ! ajs: ajustement sec - ! eva: evaporation de l'eau liquide nuageuse - ! vdf: couche limite (Vertical DiFfusion) + ! eva: \'evaporation de l'eau liquide nuageuse + ! vdf: vertical diffusion in boundary layer REAL d_t_con(klon, llm), d_q_con(klon, llm) - REAL d_u_con(klon, llm), d_v_con(klon, llm) + REAL, save:: d_u_con(klon, llm), d_v_con(klon, llm) REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm) REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm) REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm) REAL rneb(klon, llm) - REAL pmfu(klon, llm), pmfd(klon, llm) + REAL mfu(klon, llm), mfd(klon, llm) REAL pen_u(klon, llm), pen_d(klon, llm) REAL pde_u(klon, llm), pde_d(klon, llm) INTEGER kcbot(klon), kctop(klon), kdtop(klon) - REAL pmflxr(klon, llm+1), pmflxs(klon, llm+1) - REAL prfl(klon, llm+1), psfl(klon, llm+1) - - INTEGER ibas_con(klon), itop_con(klon) + REAL pmflxr(klon, llm + 1), pmflxs(klon, llm + 1) + REAL prfl(klon, llm + 1), psfl(klon, llm + 1) - SAVE ibas_con, itop_con + INTEGER, save:: ibas_con(klon), itop_con(klon) + real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa - REAL rain_con(klon), rain_lsc(klon) - REAL snow_con(klon), snow_lsc(klon) - REAL d_ts(klon, nbsrf) + REAL, save:: rain_con(klon) + real rain_lsc(klon) + REAL, save:: snow_con(klon) ! neige (mm / s) + real snow_lsc(klon) + REAL d_ts(klon, nbsrf) ! variation of ftsol REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm) REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm) @@ -639,537 +340,228 @@ REAL d_u_lif(klon, llm), d_v_lif(klon, llm) REAL d_t_lif(klon, llm) - REAL ratqs(klon, llm), ratqss(klon, llm), ratqsc(klon, llm) - real ratqsbas, ratqshaut - save ratqsbas, ratqshaut, ratqs + REAL, save:: ratqs(klon, llm) + real ratqss(klon, llm), ratqsc(klon, llm) + real:: ratqsbas = 0.01, ratqshaut = 0.3 ! Parametres lies au nouveau schema de nuages (SB, PDF) - real fact_cldcon - real facttemps - logical ok_newmicro - save ok_newmicro - save fact_cldcon, facttemps + real:: fact_cldcon = 0.375 + real:: facttemps = 1.e-4 + logical:: ok_newmicro = .true. real facteur - integer iflag_cldcon - save iflag_cldcon - + integer:: iflag_cldcon = 1 logical ptconv(klon, llm) - ! Variables liees a l'ecriture de la bande histoire physique - - integer itau_w ! pas de temps ecriture = itap + itau_phy - - ! Variables locales pour effectuer les appels en serie + ! Variables pour effectuer les appels en s\'erie : REAL t_seri(klon, llm), q_seri(klon, llm) - REAL ql_seri(klon, llm), qs_seri(klon, llm) + REAL ql_seri(klon, llm) REAL u_seri(klon, llm), v_seri(klon, llm) - - REAL tr_seri(klon, llm, nbtr) - REAL d_tr(klon, llm, nbtr) + REAL tr_seri(klon, llm, nqmx - 2) REAL zx_rh(klon, llm) - INTEGER ndex2d(iim*(jjm + 1)), ndex3d(iim*(jjm + 1)*llm) REAL zustrdr(klon), zvstrdr(klon) REAL zustrli(klon), zvstrli(klon) - REAL zustrph(klon), zvstrph(klon) REAL aam, torsfc - REAL dudyn(iim+1, jjm + 1, llm) - - REAL zx_tmp_fi2d(klon) ! variable temporaire grille physique - REAL zx_tmp_fi3d(klon, llm) ! variable temporaire pour champs 3D - - REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm) - - INTEGER nid_day, nid_ins - SAVE nid_day, nid_ins - REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert. REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert. REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert. REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert. - REAL zsto - - character(len=20) modname - character(len=80) abort_message - logical ok_sync - real date0 - - ! Variables liees au bilan d'energie et d'enthalpi - REAL ztsol(klon) - REAL d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec - REAL d_h_vcol_phy - REAL fs_bound, fq_bound - SAVE d_h_vcol_phy - REAL zero_v(klon) - CHARACTER(LEN=15) ztit - INTEGER ip_ebil ! PRINT level for energy conserv. diag. - SAVE ip_ebil - DATA ip_ebil/0/ - INTEGER if_ebil ! level for energy conserv. dignostics - SAVE if_ebil - !+jld ec_conser - REAL d_t_ec(klon, llm) ! tendance du a la conersion Ec -> E thermique - REAL ZRCPD - !-jld ec_conser - !IM: t2m, q2m, u10m, v10m - REAL t2m(klon, nbsrf), q2m(klon, nbsrf) !temperature, humidite a 2m - REAL u10m(klon, nbsrf), v10m(klon, nbsrf) !vents a 10m - REAL zt2m(klon), zq2m(klon) !temp., hum. 2m moyenne s/ 1 maille - REAL zu10m(klon), zv10m(klon) !vents a 10m moyennes s/1 maille - !jq Aerosol effects (Johannes Quaas, 27/11/2003) - REAL sulfate(klon, llm) ! SO4 aerosol concentration [ug/m3] - - REAL sulfate_pi(klon, llm) - ! (SO4 aerosol concentration [ug/m3] (pre-industrial value)) - SAVE sulfate_pi - - REAL cldtaupi(klon, llm) - ! (Cloud optical thickness for pre-industrial (pi) aerosols) - - REAL re(klon, llm) ! Cloud droplet effective radius - REAL fl(klon, llm) ! denominator of re - - ! Aerosol optical properties - REAL tau_ae(klon, llm, 2), piz_ae(klon, llm, 2) - REAL cg_ae(klon, llm, 2) - - REAL topswad(klon), solswad(klon) ! Aerosol direct effect. - ! ok_ade=T -ADE=topswad-topsw - - REAL topswai(klon), solswai(klon) ! Aerosol indirect effect. - ! ok_aie=T -> - ! ok_ade=T -AIE=topswai-topswad - ! ok_ade=F -AIE=topswai-topsw - - REAL aerindex(klon) ! POLDER aerosol index - - ! Parameters - LOGICAL ok_ade, ok_aie ! Apply aerosol (in)direct effects or not - REAL bl95_b0, bl95_b1 ! Parameter in Boucher and Lohmann (1995) - - SAVE ok_ade, ok_aie, bl95_b0, bl95_b1 - SAVE u10m - SAVE v10m - SAVE t2m - SAVE q2m - SAVE ffonte - SAVE fqcalving - SAVE piz_ae - SAVE tau_ae - SAVE cg_ae - SAVE rain_con - SAVE snow_con - SAVE topswai - SAVE topswad - SAVE solswai - SAVE solswad - SAVE d_u_con - SAVE d_v_con - SAVE rnebcon0 - SAVE clwcon0 - SAVE pblh - SAVE plcl - SAVE capCL - SAVE oliqCL - SAVE cteiCL - SAVE pblt - SAVE therm - SAVE trmb1 - SAVE trmb2 - SAVE trmb3 - - !---------------------------------------------------------------- + REAL tsol(klon) - modname = 'physiq' - IF (if_ebil >= 1) THEN - DO i=1, klon - zero_v(i)=0. - END DO - END IF - ok_sync=.TRUE. - IF (nq < 2) THEN - abort_message = 'eaux vapeur et liquide sont indispensables' - CALL abort_gcm (modname, abort_message, 1) - ENDIF + REAL d_t_ec(klon, llm) + ! tendance due \`a la conversion d'\'energie cin\'etique en + ! énergie thermique - test_firstcal: IF (firstcal) THEN - ! initialiser - u10m(:, :)=0. - v10m(:, :)=0. - t2m(:, :)=0. - q2m(:, :)=0. - ffonte(:, :)=0. - fqcalving(:, :)=0. - piz_ae(:, :, :)=0. - tau_ae(:, :, :)=0. - cg_ae(:, :, :)=0. - rain_con(:)=0. - snow_con(:)=0. - bl95_b0=0. - bl95_b1=0. - topswai(:)=0. - topswad(:)=0. - solswai(:)=0. - solswad(:)=0. - - d_u_con(:, :) = 0.0 - d_v_con(:, :) = 0.0 - rnebcon0(:, :) = 0.0 - clwcon0(:, :) = 0.0 - rnebcon(:, :) = 0.0 - clwcon(:, :) = 0.0 - - pblh(:, :) =0. ! Hauteur de couche limite - plcl(:, :) =0. ! Niveau de condensation de la CLA - capCL(:, :) =0. ! CAPE de couche limite - oliqCL(:, :) =0. ! eau_liqu integree de couche limite - cteiCL(:, :) =0. ! cloud top instab. crit. couche limite - pblt(:, :) =0. ! T a la Hauteur de couche limite - therm(:, :) =0. - trmb1(:, :) =0. ! deep_cape - trmb2(:, :) =0. ! inhibition - trmb3(:, :) =0. ! Point Omega - - IF (if_ebil >= 1) d_h_vcol_phy=0. - - ! appel a la lecture du run.def physique - - call conf_phys(ocean, ok_veget, ok_journe, ok_mensuel, & - ok_instan, fact_cldcon, facttemps, ok_newmicro, & - iflag_cldcon, ratqsbas, ratqshaut, if_ebil, & - ok_ade, ok_aie, & - bl95_b0, bl95_b1, & - iflag_thermals, nsplit_thermals) + REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf) + ! temperature and humidity at 2 m - ! Initialiser les compteurs: + REAL, save:: u10m_srf(klon, nbsrf), v10m_srf(klon, nbsrf) + ! composantes du vent \`a 10 m + + REAL zt2m(klon), zq2m(klon) ! température, humidité 2 m moyenne sur 1 maille + REAL u10m(klon), v10m(klon) ! vent \`a 10 m moyenn\' sur les sous-surfaces - frugs = 0. - itap = 0 - itaprad = 0 - CALL phyetat0("startphy.nc", pctsrf, ftsol, ftsoil, ocean, tslab, & - seaice, fqsurf, qsol, fsnow, & - falbe, falblw, fevap, rain_fall, snow_fall, solsw, sollwdown, & - dlw, radsol, frugs, agesno, clesphy0, & - zmea, zstd, zsig, zgam, zthe, zpic, zval, rugoro, & - t_ancien, q_ancien, ancien_ok, rnebcon, ratqs, clwcon, & - run_off_lic_0) - - ! ATTENTION : il faudra a terme relire q2 dans l'etat initial - q2(:, :, :)=1.e-8 + ! Aerosol effects: - radpas = NINT( 86400. / pdtphys / nbapp_rad) + REAL, save:: topswad(klon), solswad(klon) ! aerosol direct effect + LOGICAL:: ok_ade = .false. ! apply aerosol direct effect - ! on remet le calendrier a zero + REAL:: bl95_b0 = 2., bl95_b1 = 0.2 + ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus + ! B). They link cloud droplet number concentration to aerosol mass + ! concentration. - IF (raz_date == 1) THEN - itau_phy = 0 - ENDIF + real zmasse(klon, llm) + ! (column-density of mass of air in a cell, in kg m-2) - PRINT *, 'cycle_diurne = ', cycle_diurne + integer, save:: ncid_startphy - IF(ocean.NE.'force ') THEN - ok_ocean=.TRUE. - ENDIF + namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, & + ratqsbas, ratqshaut, ok_ade, bl95_b0, bl95_b1, iflag_thermals, & + nsplit_thermals - CALL printflag(radpas, ok_ocean, ok_oasis, ok_journe, ok_instan, & - ok_region) + !---------------------------------------------------------------- - IF (pdtphys*REAL(radpas).GT.21600..AND.cycle_diurne) THEN - print *,'Nbre d appels au rayonnement insuffisant' - print *,"Au minimum 4 appels par jour si cycle diurne" - abort_message='Nbre d appels au rayonnement insuffisant' - call abort_gcm(modname, abort_message, 1) - ENDIF - print *,"Clef pour la convection, iflag_con=", iflag_con - print *,"Clef pour le driver de la convection, ok_cvl=", & - ok_cvl + IF (nqmx < 2) CALL abort_gcm('physiq', & + 'eaux vapeur et liquide sont indispensables') - ! Initialisation pour la convection de K.E. (sb): - IF (iflag_con >= 3) THEN + test_firstcal: IF (firstcal) THEN + ! initialiser + u10m_srf = 0. + v10m_srf = 0. + t2m = 0. + q2m = 0. + ffonte = 0. + rain_con = 0. + snow_con = 0. + d_u_con = 0. + d_v_con = 0. + rnebcon0 = 0. + clwcon0 = 0. + rnebcon = 0. + clwcon = 0. + pblh =0. ! Hauteur de couche limite + plcl =0. ! Niveau de condensation de la CLA + capCL =0. ! CAPE de couche limite + oliqCL =0. ! eau_liqu integree de couche limite + cteiCL =0. ! cloud top instab. crit. couche limite + pblt =0. + therm =0. + + iflag_thermals = 0 + nsplit_thermals = 1 + print *, "Enter namelist 'physiq_nml'." + read(unit=*, nml=physiq_nml) + write(unit_nml, nml=physiq_nml) - print *,"*** Convection de Kerry Emanuel 4.3 " + call conf_phys - !IM15/11/02 rajout initialisation ibas_con, itop_con cf. SB =>BEG - DO i = 1, klon - ibas_con(i) = 1 - itop_con(i) = 1 - ENDDO - !IM15/11/02 rajout initialisation ibas_con, itop_con cf. SB =>END + ! Initialiser les compteurs: + frugs = 0. + CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, & + fevap, rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, & + agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, & + q_ancien, ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, & + w01, ncid_startphy) + + ! ATTENTION : il faudra a terme relire q2 dans l'etat initial + q2 = 1e-8 + + radpas = lmt_pas / nbapp_rad + print *, "radpas = ", radpas + + ! Initialisation pour le sch\'ema de convection d'Emanuel : + IF (conv_emanuel) THEN + ibas_con = 1 + itop_con = 1 ENDIF IF (ok_orodr) THEN - DO i=1, klon - rugoro(i) = MAX(1.0e-05, zstd(i)*zsig(i)/2.0) - ENDDO - CALL SUGWD(klon, llm, paprs, pplay) + rugoro = MAX(1e-5, zstd * zsig / 2) + CALL SUGWD(paprs, play) + else + rugoro = 0. ENDIF - lmt_pas = NINT(86400. / pdtphys) ! tous les jours - print *, 'Number of time steps of "physics" per day: ', lmt_pas - - ecrit_ins = NINT(ecrit_ins/pdtphys) - ecrit_hf = NINT(ecrit_hf/pdtphys) - ecrit_day = NINT(ecrit_day/pdtphys) - ecrit_mth = NINT(ecrit_mth/pdtphys) - ecrit_tra = NINT(86400.*ecrit_tra/pdtphys) - ecrit_reg = NINT(ecrit_reg/pdtphys) - - ! Initialiser le couplage si necessaire - - npas = 0 - nexca = 0 - - print *,'AVANT HIST IFLAG_CON=', iflag_con - - ! Initialisation des sorties - - call ini_histhf(pdtphys, presnivs, nid_hf, nid_hf3d) - call ini_histday(pdtphys, presnivs, ok_journe, nid_day) - call ini_histins(pdtphys, presnivs, ok_instan, nid_ins) - CALL ymds2ju(annee_ref, 1, int(day_ref), 0., date0) - !XXXPB Positionner date0 pour initialisation de ORCHIDEE - WRITE(*, *) 'physiq date0 : ', date0 + ! Initialisation des sorties + call ini_histins(dtphys, ok_newmicro) + CALL phyredem0 ENDIF test_firstcal - ! Mettre a zero des variables de sortie (pour securite) - - DO i = 1, klon - d_ps(i) = 0.0 - ENDDO - DO k = 1, llm - DO i = 1, klon - d_t(i, k) = 0.0 - d_u(i, k) = 0.0 - d_v(i, k) = 0.0 - ENDDO - ENDDO - DO iq = 1, nq - DO k = 1, llm - DO i = 1, klon - d_qx(i, k, iq) = 0.0 - ENDDO - ENDDO - ENDDO - da(:, :)=0. - mp(:, :)=0. - phi(:, :, :)=0. - - ! Ne pas affecter les valeurs entrees de u, v, h, et q + ! We will modify variables *_seri and we will not touch variables + ! u, v, t, qx: + t_seri = t + u_seri = u + v_seri = v + q_seri = qx(:, :, ivap) + ql_seri = qx(:, :, iliq) + tr_seri = qx(:, :, 3:nqmx) - DO k = 1, llm - DO i = 1, klon - t_seri(i, k) = t(i, k) - u_seri(i, k) = u(i, k) - v_seri(i, k) = v(i, k) - q_seri(i, k) = qx(i, k, ivap) - ql_seri(i, k) = qx(i, k, iliq) - qs_seri(i, k) = 0. - ENDDO - ENDDO - IF (nq >= 3) THEN - tr_seri(:, :, :nq-2) = qx(:, :, 3:nq) - ELSE - tr_seri(:, :, 1) = 0. - ENDIF - - DO i = 1, klon - ztsol(i) = 0. - ENDDO - DO nsrf = 1, nbsrf - DO i = 1, klon - ztsol(i) = ztsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf) - ENDDO - ENDDO - - IF (if_ebil >= 1) THEN - ztit='after dynamic' - CALL diagetpq(airephy, ztit, ip_ebil, 1, 1, pdtphys & - , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs & - , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) - ! Comme les tendances de la physique sont ajoute dans la dynamique, - ! on devrait avoir que la variation d'entalpie par la dynamique - ! est egale a la variation de la physique au pas de temps precedent. - ! Donc la somme de ces 2 variations devrait etre nulle. - call diagphy(airephy, ztit, ip_ebil & - , zero_v, zero_v, zero_v, zero_v, zero_v & - , zero_v, zero_v, zero_v, ztsol & - , d_h_vcol+d_h_vcol_phy, d_qt, 0. & - , fs_bound, fq_bound ) - END IF - - ! Diagnostiquer la tendance dynamique + tsol = sum(ftsol * pctsrf, dim = 2) + ! Diagnostic de la tendance dynamique : IF (ancien_ok) THEN DO k = 1, llm DO i = 1, klon - d_t_dyn(i, k) = (t_seri(i, k)-t_ancien(i, k))/pdtphys - d_q_dyn(i, k) = (q_seri(i, k)-q_ancien(i, k))/pdtphys + d_t_dyn(i, k) = (t_seri(i, k) - t_ancien(i, k)) / dtphys + d_q_dyn(i, k) = (q_seri(i, k) - q_ancien(i, k)) / dtphys ENDDO ENDDO ELSE DO k = 1, llm DO i = 1, klon - d_t_dyn(i, k) = 0.0 - d_q_dyn(i, k) = 0.0 + d_t_dyn(i, k) = 0. + d_q_dyn(i, k) = 0. ENDDO ENDDO ancien_ok = .TRUE. ENDIF ! Ajouter le geopotentiel du sol: - DO k = 1, llm DO i = 1, klon zphi(i, k) = pphi(i, k) + pphis(i) ENDDO ENDDO - ! Verifier les temperatures - + ! Check temperatures: CALL hgardfou(t_seri, ftsol) - ! Incrementer le compteur de la physique - - itap = itap + 1 - julien = MOD(NINT(rdayvrai), 360) + call increment_itap + julien = MOD(dayvrai, 360) if (julien == 0) julien = 360 - ! Mettre en action les conditions aux limites (albedo, sst, etc.). - ! Prescrire l'ozone et calculer l'albedo sur l'ocean. - - IF (MOD(itap - 1, lmt_pas) == 0) THEN - CALL ozonecm(REAL(julien), rlat, paprs, wo) - ENDIF - - ! Re-evaporer l'eau liquide nuageuse + forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg - DO k = 1, llm ! re-evaporation de l'eau liquide nuageuse + ! \'Evaporation de l'eau liquide nuageuse : + DO k = 1, llm DO i = 1, klon - zlvdcp=RLVTT/RCPD/(1.0+RVTMP2*q_seri(i, k)) - zlsdcp=RLVTT/RCPD/(1.0+RVTMP2*q_seri(i, k)) - zdelta = MAX(0., SIGN(1., RTT-t_seri(i, k))) - zb = MAX(0.0, ql_seri(i, k)) - za = - MAX(0.0, ql_seri(i, k)) & - * (zlvdcp*(1.-zdelta)+zlsdcp*zdelta) - t_seri(i, k) = t_seri(i, k) + za + zb = MAX(0., ql_seri(i, k)) + t_seri(i, k) = t_seri(i, k) & + - zb * RLVTT / RCPD / (1. + RVTMP2 * q_seri(i, k)) q_seri(i, k) = q_seri(i, k) + zb - ql_seri(i, k) = 0.0 ENDDO ENDDO + ql_seri = 0. - IF (if_ebil >= 2) THEN - ztit='after reevap' - CALL diagetpq(airephy, ztit, ip_ebil, 2, 1, pdtphys & - , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs & - , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) - call diagphy(airephy, ztit, ip_ebil & - , zero_v, zero_v, zero_v, zero_v, zero_v & - , zero_v, zero_v, zero_v, ztsol & - , d_h_vcol, d_qt, d_ec & - , fs_bound, fq_bound ) - - END IF + frugs = MAX(frugs, 0.000015) + zxrugs = sum(frugs * pctsrf, dim = 2) - ! Appeler la diffusion verticale (programme de couche limite) + ! Calculs n\'ecessaires au calcul de l'albedo dans l'interface avec + ! la surface. - DO i = 1, klon - zxrugs(i) = 0.0 - ENDDO - DO nsrf = 1, nbsrf - DO i = 1, klon - frugs(i, nsrf) = MAX(frugs(i, nsrf), 0.000015) - ENDDO - ENDDO - DO nsrf = 1, nbsrf - DO i = 1, klon - zxrugs(i) = zxrugs(i) + frugs(i, nsrf)*pctsrf(i, nsrf) - ENDDO - ENDDO - - ! calculs necessaires au calcul de l'albedo dans l'interface - - CALL orbite(REAL(julien), zlongi, dist) - IF (cycle_diurne) THEN - zdtime = pdtphys * REAL(radpas) - CALL zenang(zlongi, gmtime, zdtime, rmu0, fract) - ELSE - rmu0 = -999.999 - ENDIF - - ! Calcul de l'abedo moyen par maille - albsol(:)=0. - albsollw(:)=0. - DO nsrf = 1, nbsrf - DO i = 1, klon - albsol(i) = albsol(i) + falbe(i, nsrf) * pctsrf(i, nsrf) - albsollw(i) = albsollw(i) + falblw(i, nsrf) * pctsrf(i, nsrf) - ENDDO - ENDDO - - ! Repartition sous maille des flux LW et SW - ! Repartition du longwave par sous-surface linearisee - - DO nsrf = 1, nbsrf - DO i = 1, klon - fsollw(i, nsrf) = sollw(i) & - + 4.0*RSIGMA*ztsol(i)**3 * (ztsol(i)-ftsol(i, nsrf)) - fsolsw(i, nsrf) = solsw(i)*(1.-falbe(i, nsrf))/(1.-albsol(i)) - ENDDO - ENDDO - - fder = dlw - - CALL clmain(pdtphys, itap, date0, pctsrf, pctsrf_new, & - t_seri, q_seri, u_seri, v_seri, & - julien, rmu0, co2_ppm, & - ok_veget, ocean, npas, nexca, ftsol, & - soil_model, cdmmax, cdhmax, & - ksta, ksta_ter, ok_kzmin, ftsoil, qsol, & - paprs, pplay, fsnow, fqsurf, fevap, falbe, falblw, & - fluxlat, rain_fall, snow_fall, & - fsolsw, fsollw, sollwdown, fder, & - rlon, rlat, cuphy, cvphy, frugs, & - firstcal, lafin, agesno, rugoro, & - d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, & - fluxt, fluxq, fluxu, fluxv, cdragh, cdragm, & - q2, dsens, devap, & - ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, & - pblh, capCL, oliqCL, cteiCL, pblT, & - therm, trmb1, trmb2, trmb3, plcl, & - fqcalving, ffonte, run_off_lic_0, & - fluxo, fluxg, tslab, seaice) - - !XXX Incrementation des flux - - zxfluxt=0. - zxfluxq=0. - zxfluxu=0. - zxfluxv=0. - DO nsrf = 1, nbsrf - DO k = 1, llm - DO i = 1, klon - zxfluxt(i, k) = zxfluxt(i, k) + & - fluxt(i, k, nsrf) * pctsrf( i, nsrf) - zxfluxq(i, k) = zxfluxq(i, k) + & - fluxq(i, k, nsrf) * pctsrf( i, nsrf) - zxfluxu(i, k) = zxfluxu(i, k) + & - fluxu(i, k, nsrf) * pctsrf( i, nsrf) - zxfluxv(i, k) = zxfluxv(i, k) + & - fluxv(i, k, nsrf) * pctsrf( i, nsrf) - END DO - END DO - END DO - DO i = 1, klon - sens(i) = - zxfluxt(i, 1) ! flux de chaleur sensible au sol - evap(i) = - zxfluxq(i, 1) ! flux d'evaporation au sol - fder(i) = dlw(i) + dsens(i) + devap(i) - ENDDO + CALL orbite(REAL(julien), longi, dist) + CALL zenang(longi, time, dtphys * radpas, mu0, fract) + albsol = sum(falbe * pctsrf, dim = 2) + + ! R\'epartition sous maille des flux longwave et shortwave + ! R\'epartition du longwave par sous-surface lin\'earis\'ee + + forall (nsrf = 1: nbsrf) + fsollw(:, nsrf) = sollw + 4. * RSIGMA * tsol**3 & + * (tsol - ftsol(:, nsrf)) + fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol) + END forall + + CALL pbl_surface(dtphys, pctsrf, t_seri, q_seri, u_seri, v_seri, julien, & + mu0, ftsol, cdmmax, cdhmax, ftsoil, qsol, paprs, play, fsnow, fqsurf, & + fevap, falbe, fluxlat, rain_fall, snow_fall, fsolsw, fsollw, frugs, & + agesno, rugoro, d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, flux_t, & + flux_q, flux_u, flux_v, cdragh, cdragm, q2, dsens, devap, coefh, t2m, & + q2m, u10m_srf, v10m_srf, pblh, capCL, oliqCL, cteiCL, pblT, therm, & + plcl, fqcalving, ffonte, run_off_lic_0) + + ! Incr\'ementation des flux + + sens = - sum(flux_t * pctsrf, dim = 2) + evap = - sum(flux_q * pctsrf, dim = 2) + fder = dlw + dsens + devap DO k = 1, llm DO i = 1, klon @@ -1180,226 +572,84 @@ ENDDO ENDDO - IF (if_ebil >= 2) THEN - ztit='after clmain' - CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys & - , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs & - , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) - call diagphy(airephy, ztit, ip_ebil & - , zero_v, zero_v, zero_v, zero_v, sens & - , evap, zero_v, zero_v, ztsol & - , d_h_vcol, d_qt, d_ec & - , fs_bound, fq_bound ) - END IF + ! Update surface temperature: - ! Incrementer la temperature du sol - - DO i = 1, klon - zxtsol(i) = 0.0 - zxfluxlat(i) = 0.0 - - zt2m(i) = 0.0 - zq2m(i) = 0.0 - zu10m(i) = 0.0 - zv10m(i) = 0.0 - zxffonte(i) = 0.0 - zxfqcalving(i) = 0.0 - - s_pblh(i) = 0.0 - s_lcl(i) = 0.0 - s_capCL(i) = 0.0 - s_oliqCL(i) = 0.0 - s_cteiCL(i) = 0.0 - s_pblT(i) = 0.0 - s_therm(i) = 0.0 - s_trmb1(i) = 0.0 - s_trmb2(i) = 0.0 - s_trmb3(i) = 0.0 - - IF ( abs( pctsrf(i, is_ter) + pctsrf(i, is_lic) + & - pctsrf(i, is_oce) + pctsrf(i, is_sic) - 1.) .GT. EPSFRA) & - THEN - WRITE(*, *) 'physiq : pb sous surface au point ', i, & - pctsrf(i, 1 : nbsrf) - ENDIF - ENDDO - DO nsrf = 1, nbsrf - DO i = 1, klon - ftsol(i, nsrf) = ftsol(i, nsrf) + d_ts(i, nsrf) - zxtsol(i) = zxtsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf) - zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf)*pctsrf(i, nsrf) - - zt2m(i) = zt2m(i) + t2m(i, nsrf)*pctsrf(i, nsrf) - zq2m(i) = zq2m(i) + q2m(i, nsrf)*pctsrf(i, nsrf) - zu10m(i) = zu10m(i) + u10m(i, nsrf)*pctsrf(i, nsrf) - zv10m(i) = zv10m(i) + v10m(i, nsrf)*pctsrf(i, nsrf) - zxffonte(i) = zxffonte(i) + ffonte(i, nsrf)*pctsrf(i, nsrf) - zxfqcalving(i) = zxfqcalving(i) + & - fqcalving(i, nsrf)*pctsrf(i, nsrf) - s_pblh(i) = s_pblh(i) + pblh(i, nsrf)*pctsrf(i, nsrf) - s_lcl(i) = s_lcl(i) + plcl(i, nsrf)*pctsrf(i, nsrf) - s_capCL(i) = s_capCL(i) + capCL(i, nsrf) *pctsrf(i, nsrf) - s_oliqCL(i) = s_oliqCL(i) + oliqCL(i, nsrf) *pctsrf(i, nsrf) - s_cteiCL(i) = s_cteiCL(i) + cteiCL(i, nsrf) *pctsrf(i, nsrf) - s_pblT(i) = s_pblT(i) + pblT(i, nsrf) *pctsrf(i, nsrf) - s_therm(i) = s_therm(i) + therm(i, nsrf) *pctsrf(i, nsrf) - s_trmb1(i) = s_trmb1(i) + trmb1(i, nsrf) *pctsrf(i, nsrf) - s_trmb2(i) = s_trmb2(i) + trmb2(i, nsrf) *pctsrf(i, nsrf) - s_trmb3(i) = s_trmb3(i) + trmb3(i, nsrf) *pctsrf(i, nsrf) - ENDDO - ENDDO - - ! Si une sous-fraction n'existe pas, elle prend la temp. moyenne + call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf') + ftsol = ftsol + d_ts + tsol = sum(ftsol * pctsrf, dim = 2) + zxfluxlat = sum(fluxlat * pctsrf, dim = 2) + zt2m = sum(t2m * pctsrf, dim = 2) + zq2m = sum(q2m * pctsrf, dim = 2) + u10m = sum(u10m_srf * pctsrf, dim = 2) + v10m = sum(v10m_srf * pctsrf, dim = 2) + zxffonte = sum(ffonte * pctsrf, dim = 2) + s_pblh = sum(pblh * pctsrf, dim = 2) + s_lcl = sum(plcl * pctsrf, dim = 2) + s_capCL = sum(capCL * pctsrf, dim = 2) + s_oliqCL = sum(oliqCL * pctsrf, dim = 2) + s_cteiCL = sum(cteiCL * pctsrf, dim = 2) + s_pblT = sum(pblT * pctsrf, dim = 2) + s_therm = sum(therm * pctsrf, dim = 2) + ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne : DO nsrf = 1, nbsrf DO i = 1, klon - IF (pctsrf(i, nsrf) < epsfra) ftsol(i, nsrf) = zxtsol(i) - - IF (pctsrf(i, nsrf) < epsfra) t2m(i, nsrf) = zt2m(i) - IF (pctsrf(i, nsrf) < epsfra) q2m(i, nsrf) = zq2m(i) - IF (pctsrf(i, nsrf) < epsfra) u10m(i, nsrf) = zu10m(i) - IF (pctsrf(i, nsrf) < epsfra) v10m(i, nsrf) = zv10m(i) - IF (pctsrf(i, nsrf) < epsfra) ffonte(i, nsrf) = zxffonte(i) - IF (pctsrf(i, nsrf) < epsfra) & - fqcalving(i, nsrf) = zxfqcalving(i) - IF (pctsrf(i, nsrf) < epsfra) pblh(i, nsrf)=s_pblh(i) - IF (pctsrf(i, nsrf) < epsfra) plcl(i, nsrf)=s_lcl(i) - IF (pctsrf(i, nsrf) < epsfra) capCL(i, nsrf)=s_capCL(i) - IF (pctsrf(i, nsrf) < epsfra) oliqCL(i, nsrf)=s_oliqCL(i) - IF (pctsrf(i, nsrf) < epsfra) cteiCL(i, nsrf)=s_cteiCL(i) - IF (pctsrf(i, nsrf) < epsfra) pblT(i, nsrf)=s_pblT(i) - IF (pctsrf(i, nsrf) < epsfra) therm(i, nsrf)=s_therm(i) - IF (pctsrf(i, nsrf) < epsfra) trmb1(i, nsrf)=s_trmb1(i) - IF (pctsrf(i, nsrf) < epsfra) trmb2(i, nsrf)=s_trmb2(i) - IF (pctsrf(i, nsrf) < epsfra) trmb3(i, nsrf)=s_trmb3(i) + IF (pctsrf(i, nsrf) < epsfra) then + ftsol(i, nsrf) = tsol(i) + t2m(i, nsrf) = zt2m(i) + q2m(i, nsrf) = zq2m(i) + u10m_srf(i, nsrf) = u10m(i) + v10m_srf(i, nsrf) = v10m(i) + ffonte(i, nsrf) = zxffonte(i) + pblh(i, nsrf) = s_pblh(i) + plcl(i, nsrf) = s_lcl(i) + capCL(i, nsrf) = s_capCL(i) + oliqCL(i, nsrf) = s_oliqCL(i) + cteiCL(i, nsrf) = s_cteiCL(i) + pblT(i, nsrf) = s_pblT(i) + therm(i, nsrf) = s_therm(i) + end IF ENDDO ENDDO - ! Calculer la derive du flux infrarouge - - DO i = 1, klon - dlw(i) = - 4.0*RSIGMA*zxtsol(i)**3 - ENDDO - - ! Appeler la convection (au choix) - - DO k = 1, llm - DO i = 1, klon - conv_q(i, k) = d_q_dyn(i, k) & - + d_q_vdf(i, k)/pdtphys - conv_t(i, k) = d_t_dyn(i, k) & - + d_t_vdf(i, k)/pdtphys - ENDDO - ENDDO - IF (check) THEN - za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy) - print *, "avantcon=", za - ENDIF - zx_ajustq = .FALSE. - IF (iflag_con == 2) zx_ajustq=.TRUE. - IF (zx_ajustq) THEN - DO i = 1, klon - z_avant(i) = 0.0 - ENDDO - DO k = 1, llm - DO i = 1, klon - z_avant(i) = z_avant(i) + (q_seri(i, k)+ql_seri(i, k)) & - *(paprs(i, k)-paprs(i, k+1))/RG - ENDDO - ENDDO - ENDIF - IF (iflag_con == 1) THEN - stop 'reactiver le call conlmd dans physiq.F' - ELSE IF (iflag_con == 2) THEN - CALL conflx(pdtphys, paprs, pplay, t_seri, q_seri, & - conv_t, conv_q, zxfluxq(1, 1), omega, & - d_t_con, d_q_con, rain_con, snow_con, & - pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, & - kcbot, kctop, kdtop, pmflxr, pmflxs) + dlw = - 4. * RSIGMA * tsol**3 + + ! Appeler la convection + + if (conv_emanuel) then + CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, & + d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, & + upwd, dnwd, Ma, cape, iflagctrl, clwcon0, pmflxr, da, phi, mp) + snow_con = 0. + mfu = upwd + dnwd + + zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play) + zqsat = zqsat / (1. - retv * zqsat) + + ! Properties of convective clouds + clwcon0 = fact_cldcon * clwcon0 + call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, & + rnebcon0) + + forall (i = 1:klon) ema_pct(i) = paprs(i, itop_con(i) + 1) + mfd = 0. + pen_u = 0. + pen_d = 0. + pde_d = 0. + pde_u = 0. + else + conv_q = d_q_dyn + d_q_vdf / dtphys + conv_t = d_t_dyn + d_t_vdf / dtphys + z_avant = sum((q_seri + ql_seri) * zmasse, dim=2) + CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:- 1), & + q_seri(:, llm:1:- 1), conv_t, conv_q, - evap, omega, d_t_con, & + d_q_con, rain_con, snow_con, mfu(:, llm:1:- 1), mfd(:, llm:1:- 1), & + pen_u, pde_u, pen_d, pde_d, kcbot, kctop, kdtop, pmflxr, pmflxs) WHERE (rain_con < 0.) rain_con = 0. WHERE (snow_con < 0.) snow_con = 0. - DO i = 1, klon - ibas_con(i) = llm+1 - kcbot(i) - itop_con(i) = llm+1 - kctop(i) - ENDDO - ELSE IF (iflag_con >= 3) THEN - ! nb of tracers for the KE convection: - ! MAF la partie traceurs est faite dans phytrac - ! on met ntra=1 pour limiter les appels mais on peut - ! supprimer les calculs / ftra. - ntra = 1 - ! Schema de convection modularise et vectorise: - ! (driver commun aux versions 3 et 4) - - IF (ok_cvl) THEN ! new driver for convectL - - CALL concvl (iflag_con, & - pdtphys, paprs, pplay, t_seri, q_seri, & - u_seri, v_seri, tr_seri, ntra, & - ema_work1, ema_work2, & - d_t_con, d_q_con, d_u_con, d_v_con, d_tr, & - rain_con, snow_con, ibas_con, itop_con, & - upwd, dnwd, dnwd0, & - Ma, cape, tvp, iflagctrl, & - pbase, bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr, qcondc, wd, & - pmflxr, pmflxs, & - da, phi, mp) - - clwcon0=qcondc - pmfu(:, :)=upwd(:, :)+dnwd(:, :) - - ELSE ! ok_cvl - ! MAF conema3 ne contient pas les traceurs - CALL conema3 (pdtphys, & - paprs, pplay, t_seri, q_seri, & - u_seri, v_seri, tr_seri, ntra, & - ema_work1, ema_work2, & - d_t_con, d_q_con, d_u_con, d_v_con, d_tr, & - rain_con, snow_con, ibas_con, itop_con, & - upwd, dnwd, dnwd0, bas, top, & - Ma, cape, tvp, rflag, & - pbase & - , bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr & - , clwcon0) - - ENDIF ! ok_cvl - - IF (.NOT. ok_gust) THEN - do i = 1, klon - wd(i)=0.0 - enddo - ENDIF - - ! Calcul des proprietes des nuages convectifs - - DO k = 1, llm - DO i = 1, klon - zx_t = t_seri(i, k) - IF (thermcep) THEN - zdelta = MAX(0., SIGN(1., rtt-zx_t)) - zx_qs = r2es * FOEEW(zx_t, zdelta)/pplay(i, k) - zx_qs = MIN(0.5, zx_qs) - zcor = 1./(1.-retv*zx_qs) - zx_qs = zx_qs*zcor - ELSE - IF (zx_t < t_coup) THEN - zx_qs = qsats(zx_t)/pplay(i, k) - ELSE - zx_qs = qsatl(zx_t)/pplay(i, k) - ENDIF - ENDIF - zqsat(i, k)=zx_qs - ENDDO - ENDDO - - ! calcul des proprietes des nuages convectifs - clwcon0(:, :)=fact_cldcon*clwcon0(:, :) - call clouds_gno & - (klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, rnebcon0) - ELSE - print *, "iflag_con non-prevu", iflag_con - stop 1 - ENDIF + ibas_con = llm + 1 - kcbot + itop_con = llm + 1 - kctop + END if DO k = 1, llm DO i = 1, klon @@ -1410,143 +660,78 @@ ENDDO ENDDO - IF (if_ebil >= 2) THEN - ztit='after convect' - CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys & - , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs & - , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) - call diagphy(airephy, ztit, ip_ebil & - , zero_v, zero_v, zero_v, zero_v, zero_v & - , zero_v, rain_con, snow_con, ztsol & - , d_h_vcol, d_qt, d_ec & - , fs_bound, fq_bound ) - END IF - - IF (check) THEN - za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy) - print *,"aprescon=", za - zx_t = 0.0 - za = 0.0 - DO i = 1, klon - za = za + airephy(i)/REAL(klon) - zx_t = zx_t + (rain_con(i)+ & - snow_con(i))*airephy(i)/REAL(klon) - ENDDO - zx_t = zx_t/za*pdtphys - print *,"Precip=", zx_t - ENDIF - IF (zx_ajustq) THEN - DO i = 1, klon - z_apres(i) = 0.0 - ENDDO - DO k = 1, llm - DO i = 1, klon - z_apres(i) = z_apres(i) + (q_seri(i, k)+ql_seri(i, k)) & - *(paprs(i, k)-paprs(i, k+1))/RG - ENDDO - ENDDO - DO i = 1, klon - z_factor(i) = (z_avant(i)-(rain_con(i)+snow_con(i))*pdtphys) & - /z_apres(i) - ENDDO + IF (.not. conv_emanuel) THEN + z_apres = sum((q_seri + ql_seri) * zmasse, dim=2) + z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres DO k = 1, llm DO i = 1, klon - IF (z_factor(i).GT.(1.0+1.0E-08) .OR. & - z_factor(i) < (1.0-1.0E-08)) THEN + IF (z_factor(i) > 1. + 1E-8 .OR. z_factor(i) < 1. - 1E-8) THEN q_seri(i, k) = q_seri(i, k) * z_factor(i) ENDIF ENDDO ENDDO ENDIF - zx_ajustq=.FALSE. - ! Convection seche (thermiques ou ajustement) + ! Convection s\`eche (thermiques ou ajustement) - d_t_ajs(:, :)=0. - d_u_ajs(:, :)=0. - d_v_ajs(:, :)=0. - d_q_ajs(:, :)=0. - fm_therm(:, :)=0. - entr_therm(:, :)=0. - - IF(prt_level>9)print *, & - 'AVANT LA CONVECTION SECHE, iflag_thermals=' & - , iflag_thermals, ' nsplit_thermals=', nsplit_thermals - if(iflag_thermals < 0) then - ! Rien - IF(prt_level>9)print *,'pas de convection' - else if(iflag_thermals == 0) then - ! Ajustement sec - IF(prt_level>9)print *,'ajsec' - CALL ajsec(paprs, pplay, t_seri, q_seri, d_t_ajs, d_q_ajs) - t_seri(:, :) = t_seri(:, :) + d_t_ajs(:, :) - q_seri(:, :) = q_seri(:, :) + d_q_ajs(:, :) + d_t_ajs = 0. + d_u_ajs = 0. + d_v_ajs = 0. + d_q_ajs = 0. + fm_therm = 0. + entr_therm = 0. + + if (iflag_thermals == 0) then + ! Ajustement sec + CALL ajsec(paprs, play, t_seri, q_seri, d_t_ajs, d_q_ajs) + t_seri = t_seri + d_t_ajs + q_seri = q_seri + d_q_ajs else - ! Thermiques - IF(prt_level>9)print *,'JUSTE AVANT, iflag_thermals=' & - , iflag_thermals, ' nsplit_thermals=', nsplit_thermals - call calltherm(pdtphys & - , pplay, paprs, pphi & - , u_seri, v_seri, t_seri, q_seri & - , d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs & - , fm_therm, entr_therm) + call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, & + q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm) endif - IF (if_ebil >= 2) THEN - ztit='after dry_adjust' - CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys & - , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs & - , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) - END IF + ! Caclul des ratqs - ! Caclul des ratqs - - ! ratqs convectifs a l'ancienne en fonction de q(z=0)-q / q - ! on ecrase le tableau ratqsc calcule par clouds_gno if (iflag_cldcon == 1) then - do k=1, llm - do i=1, klon + ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q + ! on \'ecrase le tableau ratqsc calcul\'e par clouds_gno + do k = 1, llm + do i = 1, klon if(ptconv(i, k)) then - ratqsc(i, k)=ratqsbas & - +fact_cldcon*(q_seri(i, 1)-q_seri(i, k))/q_seri(i, k) + ratqsc(i, k) = ratqsbas + fact_cldcon & + * (q_seri(i, 1) - q_seri(i, k)) / q_seri(i, k) else - ratqsc(i, k)=0. + ratqsc(i, k) = 0. endif enddo enddo endif - ! ratqs stables - do k=1, llm - do i=1, klon - ratqss(i, k)=ratqsbas+(ratqshaut-ratqsbas)* & - min((paprs(i, 1)-pplay(i, k))/(paprs(i, 1)-30000.), 1.) + ! ratqs stables + do k = 1, llm + do i = 1, klon + ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) & + * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.) enddo enddo - ! ratqs final - if (iflag_cldcon == 1 .or.iflag_cldcon == 2) then - ! les ratqs sont une conbinaison de ratqss et ratqsc - ! ratqs final - ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de - ! relaxation des ratqs - facteur=exp(-pdtphys*facttemps) - ratqs(:, :)=max(ratqs(:, :)*facteur, ratqss(:, :)) - ratqs(:, :)=max(ratqs(:, :), ratqsc(:, :)) + ! ratqs final + if (iflag_cldcon == 1 .or. iflag_cldcon == 2) then + ! les ratqs sont une conbinaison de ratqss et ratqsc + ! ratqs final + ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de + ! relaxation des ratqs + ratqs = max(ratqs * exp(- dtphys * facttemps), ratqss) + ratqs = max(ratqs, ratqsc) else - ! on ne prend que le ratqs stable pour fisrtilp - ratqs(:, :)=ratqss(:, :) + ! on ne prend que le ratqs stable pour fisrtilp + ratqs = ratqss endif - ! Appeler le processus de condensation a grande echelle - ! et le processus de precipitation - CALL fisrtilp(pdtphys, paprs, pplay, & - t_seri, q_seri, ptconv, ratqs, & - d_t_lsc, d_q_lsc, d_ql_lsc, rneb, cldliq, & - rain_lsc, snow_lsc, & - pfrac_impa, pfrac_nucl, pfrac_1nucl, & - frac_impa, frac_nucl, & - prfl, psfl, rhcl) + CALL fisrtilp(dtphys, paprs, play, t_seri, q_seri, ptconv, ratqs, d_t_lsc, & + d_q_lsc, d_ql_lsc, rneb, cldliq, rain_lsc, snow_lsc, pfrac_impa, & + pfrac_nucl, pfrac_1nucl, frac_impa, frac_nucl, prfl, psfl, rhcl) WHERE (rain_lsc < 0) rain_lsc = 0. WHERE (snow_lsc < 0) snow_lsc = 0. @@ -1559,94 +744,67 @@ IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k) ENDDO ENDDO - IF (check) THEN - za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy) - print *,"apresilp=", za - zx_t = 0.0 - za = 0.0 - DO i = 1, klon - za = za + airephy(i)/REAL(klon) - zx_t = zx_t + (rain_lsc(i) & - + snow_lsc(i))*airephy(i)/REAL(klon) - ENDDO - zx_t = zx_t/za*pdtphys - print *,"Precip=", zx_t - ENDIF - - IF (if_ebil >= 2) THEN - ztit='after fisrt' - CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys & - , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs & - , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) - call diagphy(airephy, ztit, ip_ebil & - , zero_v, zero_v, zero_v, zero_v, zero_v & - , zero_v, rain_lsc, snow_lsc, ztsol & - , d_h_vcol, d_qt, d_ec & - , fs_bound, fq_bound ) - END IF - ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT + ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT ! 1. NUAGES CONVECTIFS - IF (iflag_cldcon.le.-1) THEN ! seulement pour Tiedtke - snow_tiedtke=0. - if (iflag_cldcon == -1) then - rain_tiedtke=rain_con + IF (iflag_cldcon <= - 1) THEN + ! seulement pour Tiedtke + snow_tiedtke = 0. + if (iflag_cldcon == - 1) then + rain_tiedtke = rain_con else - rain_tiedtke=0. - do k=1, llm - do i=1, klon + rain_tiedtke = 0. + do k = 1, llm + do i = 1, klon if (d_q_con(i, k) < 0.) then - rain_tiedtke(i)=rain_tiedtke(i)-d_q_con(i, k)/pdtphys & - *(paprs(i, k)-paprs(i, k+1))/rg + rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k) / dtphys & + * zmasse(i, k) endif enddo enddo endif ! Nuages diagnostiques pour Tiedtke - CALL diagcld1(paprs, pplay, & - rain_tiedtke, snow_tiedtke, ibas_con, itop_con, & - diafra, dialiq) + CALL diagcld1(paprs, play, rain_tiedtke, snow_tiedtke, ibas_con, & + itop_con, diafra, dialiq) DO k = 1, llm DO i = 1, klon - IF (diafra(i, k).GT.cldfra(i, k)) THEN + IF (diafra(i, k) > cldfra(i, k)) THEN cldliq(i, k) = dialiq(i, k) cldfra(i, k) = diafra(i, k) ENDIF ENDDO ENDDO - ELSE IF (iflag_cldcon == 3) THEN - ! On prend pour les nuages convectifs le max du calcul de la - ! convection et du calcul du pas de temps précédent diminué d'un facteur - ! facttemps - facteur = pdtphys *facttemps - do k=1, llm - do i=1, klon - rnebcon(i, k)=rnebcon(i, k)*facteur - if (rnebcon0(i, k)*clwcon0(i, k).gt.rnebcon(i, k)*clwcon(i, k)) & - then - rnebcon(i, k)=rnebcon0(i, k) - clwcon(i, k)=clwcon0(i, k) + ! On prend pour les nuages convectifs le maximum du calcul de + ! la convection et du calcul du pas de temps pr\'ec\'edent diminu\'e + ! d'un facteur facttemps. + facteur = dtphys * facttemps + do k = 1, llm + do i = 1, klon + rnebcon(i, k) = rnebcon(i, k) * facteur + if (rnebcon0(i, k) * clwcon0(i, k) & + > rnebcon(i, k) * clwcon(i, k)) then + rnebcon(i, k) = rnebcon0(i, k) + clwcon(i, k) = clwcon0(i, k) endif enddo enddo - ! On prend la somme des fractions nuageuses et des contenus en eau - cldfra(:, :)=min(max(cldfra(:, :), rnebcon(:, :)), 1.) - cldliq(:, :)=cldliq(:, :)+rnebcon(:, :)*clwcon(:, :) - + ! On prend la somme des fractions nuageuses et des contenus en eau + cldfra = min(max(cldfra, rnebcon), 1.) + cldliq = cldliq + rnebcon * clwcon ENDIF - ! 2. NUAGES STARTIFORMES + ! 2. Nuages stratiformes IF (ok_stratus) THEN - CALL diagcld2(paprs, pplay, t_seri, q_seri, diafra, dialiq) + CALL diagcld2(paprs, play, t_seri, q_seri, diafra, dialiq) DO k = 1, llm DO i = 1, klon - IF (diafra(i, k).GT.cldfra(i, k)) THEN + IF (diafra(i, k) > cldfra(i, k)) THEN cldliq(i, k) = dialiq(i, k) cldfra(i, k) = diafra(i, k) ENDIF @@ -1655,178 +813,73 @@ ENDIF ! Precipitation totale - DO i = 1, klon rain_fall(i) = rain_con(i) + rain_lsc(i) snow_fall(i) = snow_con(i) + snow_lsc(i) ENDDO - IF (if_ebil >= 2) THEN - ztit="after diagcld" - CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys & - , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs & - , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) - END IF - - ! Calculer l'humidite relative pour diagnostique - + ! Humidit\'e relative pour diagnostic : DO k = 1, llm DO i = 1, klon zx_t = t_seri(i, k) - IF (thermcep) THEN - zdelta = MAX(0., SIGN(1., rtt-zx_t)) - zx_qs = r2es * FOEEW(zx_t, zdelta)/pplay(i, k) - zx_qs = MIN(0.5, zx_qs) - zcor = 1./(1.-retv*zx_qs) - zx_qs = zx_qs*zcor - ELSE - IF (zx_t < t_coup) THEN - zx_qs = qsats(zx_t)/pplay(i, k) - ELSE - zx_qs = qsatl(zx_t)/pplay(i, k) - ENDIF - ENDIF - zx_rh(i, k) = q_seri(i, k)/zx_qs - zqsat(i, k)=zx_qs + zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t) / play(i, k) + zx_qs = MIN(0.5, zx_qs) + zcor = 1. / (1. - retv * zx_qs) + zx_qs = zx_qs * zcor + zx_rh(i, k) = q_seri(i, k) / zx_qs + zqsat(i, k) = zx_qs ENDDO ENDDO - !jq - introduce the aerosol direct and first indirect radiative forcings - !jq - Johannes Quaas, 27/11/2003 (quaas@lmd.jussieu.fr) - IF (ok_ade.OR.ok_aie) THEN - ! Get sulfate aerosol distribution - CALL readsulfate(rdayvrai, firstcal, sulfate) - CALL readsulfate_preind(rdayvrai, firstcal, sulfate_pi) - - ! Calculate aerosol optical properties (Olivier Boucher) - CALL aeropt(pplay, paprs, t_seri, sulfate, rhcl, & - tau_ae, piz_ae, cg_ae, aerindex) - ELSE - tau_ae(:, :, :)=0.0 - piz_ae(:, :, :)=0.0 - cg_ae(:, :, :)=0.0 - ENDIF - - ! Calculer les parametres optiques des nuages et quelques - ! parametres pour diagnostiques: + ! Param\`etres optiques des nuages et quelques param\`etres pour + ! diagnostics : if (ok_newmicro) then - CALL newmicro (paprs, pplay, ok_newmicro, & - t_seri, cldliq, cldfra, cldtau, cldemi, & - cldh, cldl, cldm, cldt, cldq, & - flwp, fiwp, flwc, fiwc, & - ok_aie, & - sulfate, sulfate_pi, & - bl95_b0, bl95_b1, & - cldtaupi, re, fl) + CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, & + cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc) else - CALL nuage (paprs, pplay, & - t_seri, cldliq, cldfra, cldtau, cldemi, & - cldh, cldl, cldm, cldt, cldq, & - ok_aie, & - sulfate, sulfate_pi, & - bl95_b0, bl95_b1, & - cldtaupi, re, fl) - + CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, & + cldl, cldm, cldt, cldq) endif - ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol. - - IF (MOD(itaprad, radpas) == 0) THEN - DO i = 1, klon - albsol(i) = falbe(i, is_oce) * pctsrf(i, is_oce) & - + falbe(i, is_lic) * pctsrf(i, is_lic) & - + falbe(i, is_ter) * pctsrf(i, is_ter) & - + falbe(i, is_sic) * pctsrf(i, is_sic) - albsollw(i) = falblw(i, is_oce) * pctsrf(i, is_oce) & - + falblw(i, is_lic) * pctsrf(i, is_lic) & - + falblw(i, is_ter) * pctsrf(i, is_ter) & - + falblw(i, is_sic) * pctsrf(i, is_sic) - ENDDO - ! nouveau rayonnement (compatible Arpege-IFS): - CALL radlwsw(dist, rmu0, fract, & - paprs, pplay, zxtsol, albsol, albsollw, t_seri, q_seri, & - wo, & - cldfra, cldemi, cldtau, & - heat, heat0, cool, cool0, radsol, albpla, & - topsw, toplw, solsw, sollw, & - sollwdown, & - topsw0, toplw0, solsw0, sollw0, & - lwdn0, lwdn, lwup0, lwup, & - swdn0, swdn, swup0, swup, & - ok_ade, ok_aie, & ! new for aerosol radiative effects - tau_ae, piz_ae, cg_ae, & - topswad, solswad, & - cldtaupi, & - topswai, solswai) - itaprad = 0 + IF (MOD(itap - 1, radpas) == 0) THEN + wo = ozonecm(REAL(julien), paprs) + albsol = sum(falbe * pctsrf, dim = 2) + CALL radlwsw(dist, mu0, fract, paprs, play, tsol, albsol, t_seri, & + q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, & + radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, & + toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, & + swup0, swup, ok_ade, topswad, solswad) ENDIF - itaprad = itaprad + 1 ! Ajouter la tendance des rayonnements (tous les pas) - DO k = 1, llm DO i = 1, klon - t_seri(i, k) = t_seri(i, k) & - + (heat(i, k)-cool(i, k)) * pdtphys/86400. + t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys & + / 86400. ENDDO ENDDO - IF (if_ebil >= 2) THEN - ztit='after rad' - CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys & - , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs & - , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) - call diagphy(airephy, ztit, ip_ebil & - , topsw, toplw, solsw, sollw, zero_v & - , zero_v, zero_v, zero_v, ztsol & - , d_h_vcol, d_qt, d_ec & - , fs_bound, fq_bound ) - END IF - - ! Calculer l'hydrologie de la surface - - DO i = 1, klon - zxqsurf(i) = 0.0 - zxsnow(i) = 0.0 - ENDDO - DO nsrf = 1, nbsrf - DO i = 1, klon - zxqsurf(i) = zxqsurf(i) + fqsurf(i, nsrf)*pctsrf(i, nsrf) - zxsnow(i) = zxsnow(i) + fsnow(i, nsrf)*pctsrf(i, nsrf) - ENDDO - ENDDO - - ! Calculer le bilan du sol et la derive de temperature (couplage) - + ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage) DO i = 1, klon bils(i) = radsol(i) - sens(i) + zxfluxlat(i) ENDDO - !moddeblott(jan95) - ! Appeler le programme de parametrisation de l'orographie - ! a l'echelle sous-maille: + ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille : IF (ok_orodr) THEN - - ! selection des points pour lesquels le shema est actif: - igwd=0 - DO i=1, klon - itest(i)=0 - IF (((zpic(i)-zmea(i)).GT.100.).AND.(zstd(i).GT.10.0)) THEN - itest(i)=1 - igwd=igwd+1 - idx(igwd)=i + ! S\'election des points pour lesquels le sch\'ema est actif : + DO i = 1, klon + ktest(i) = 0 + IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN + ktest(i) = 1 ENDIF ENDDO - CALL drag_noro(klon, llm, pdtphys, paprs, pplay, & - zmea, zstd, zsig, zgam, zthe, zpic, zval, & - igwd, idx, itest, & - t_seri, u_seri, v_seri, & - zulow, zvlow, zustrdr, zvstrdr, & - d_t_oro, d_u_oro, d_v_oro) + CALL drag_noro(dtphys, paprs, play, zmea, zstd, zsig, zgam, zthe, & + zpic, zval, ktest, t_seri, u_seri, v_seri, zulow, zvlow, zustrdr, & + zvstrdr, d_t_oro, d_u_oro, d_v_oro) - ! ajout des tendances + ! ajout des tendances DO k = 1, llm DO i = 1, klon t_seri(i, k) = t_seri(i, k) + d_t_oro(i, k) @@ -1834,30 +887,22 @@ v_seri(i, k) = v_seri(i, k) + d_v_oro(i, k) ENDDO ENDDO - - ENDIF ! fin de test sur ok_orodr + ENDIF IF (ok_orolf) THEN - - ! selection des points pour lesquels le shema est actif: - igwd=0 - DO i=1, klon - itest(i)=0 - IF ((zpic(i)-zmea(i)).GT.100.) THEN - itest(i)=1 - igwd=igwd+1 - idx(igwd)=i + ! S\'election des points pour lesquels le sch\'ema est actif : + DO i = 1, klon + ktest(i) = 0 + IF (zpic(i) - zmea(i) > 100.) THEN + ktest(i) = 1 ENDIF ENDDO - CALL lift_noro(klon, llm, pdtphys, paprs, pplay, & - rlat, zmea, zstd, zpic, & - itest, & - t_seri, u_seri, v_seri, & - zulow, zvlow, zustrli, zvstrli, & - d_t_lif, d_u_lif, d_v_lif) + CALL lift_noro(dtphys, paprs, play, zmea, zstd, zpic, ktest, t_seri, & + u_seri, v_seri, zulow, zvlow, zustrli, zvstrli, d_t_lif, & + d_u_lif, d_v_lif) - ! ajout des tendances + ! Ajout des tendances : DO k = 1, llm DO i = 1, klon t_seri(i, k) = t_seri(i, k) + d_t_lif(i, k) @@ -1865,149 +910,70 @@ v_seri(i, k) = v_seri(i, k) + d_v_lif(i, k) ENDDO ENDDO + ENDIF - ENDIF ! fin de test sur ok_orolf - - ! STRESS NECESSAIRES: TOUTE LA PHYSIQUE - - DO i = 1, klon - zustrph(i)=0. - zvstrph(i)=0. - ENDDO - DO k = 1, llm - DO i = 1, klon - zustrph(i)=zustrph(i)+(u_seri(i, k)-u(i, k))/pdtphys* & - (paprs(i, k)-paprs(i, k+1))/rg - zvstrph(i)=zvstrph(i)+(v_seri(i, k)-v(i, k))/pdtphys* & - (paprs(i, k)-paprs(i, k+1))/rg - ENDDO - ENDDO - - !IM calcul composantes axiales du moment angulaire et couple des montagnes - - CALL aaam_bud (27, klon, llm, gmtime, & - ra, rg, romega, & - rlat, rlon, pphis, & - zustrdr, zustrli, zustrph, & - zvstrdr, zvstrli, zvstrph, & - paprs, u, v, & + CALL aaam_bud(rg, romega, pphis, zustrdr, zustrli, & + sum((u_seri - u) / dtphys * zmasse, dim = 2), zvstrdr, & + zvstrli, sum((v_seri - v) / dtphys * zmasse, dim = 2), paprs, u, v, & aam, torsfc) - IF (if_ebil >= 2) THEN - ztit='after orography' - CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys & - , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs & - , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) - END IF - - !AA Installation de l'interface online-offline pour traceurs - - ! Calcul des tendances traceurs - - call phytrac(rnpb, itap, lmt_pas, julien, gmtime, firstcal, lafin, nq-2, & - pdtphys, u, v, t, paprs, pplay, pmfu, pmfd, pen_u, pde_u, pen_d, & - pde_d, ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, pctsrf, & - frac_impa, frac_nucl, presnivs, pphis, pphi, albsol, rhcl, cldfra, & - rneb, diafra, cldliq, itop_con, ibas_con, pmflxr, pmflxs, prfl, & - psfl, da, phi, mp, upwd, dnwd, tr_seri) - - IF (offline) THEN - - print*, 'Attention on met a 0 les thermiques pour phystoke' - call phystokenc(pdtphys, rlon, rlat, & - t, pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, & - fm_therm, entr_therm, & - ycoefh, yu1, yv1, ftsol, pctsrf, & - frac_impa, frac_nucl, & - pphis, airephy, pdtphys, itap) - - ENDIF + ! Calcul des tendances traceurs + call phytrac(julien, time, firstcal, lafin, dtphys, t, paprs, play, mfu, & + mfd, pde_u, pen_d, coefh, cdragh, fm_therm, entr_therm, u(:, 1), & + v(:, 1), ftsol, pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, & + dnwd, tr_seri, zmasse, ncid_startphy) ! Calculer le transport de l'eau et de l'energie (diagnostique) + CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq) - CALL transp (paprs, zxtsol, & - t_seri, q_seri, u_seri, v_seri, zphi, & - ve, vq, ue, uq) - - !IM diag. bilKP + ! diag. bilKP - CALL transp_lay (paprs, zxtsol, & - t_seri, q_seri, u_seri, v_seri, zphi, & + CALL transp_lay(paprs, t_seri, q_seri, u_seri, v_seri, zphi, & ve_lay, vq_lay, ue_lay, uq_lay) ! Accumuler les variables a stocker dans les fichiers histoire: - !+jld ec_conser + ! conversion Ec en énergie thermique DO k = 1, llm DO i = 1, klon - ZRCPD = RCPD*(1.0+RVTMP2*q_seri(i, k)) - d_t_ec(i, k)=0.5/ZRCPD & - *(u(i, k)**2+v(i, k)**2-u_seri(i, k)**2-v_seri(i, k)**2) - t_seri(i, k)=t_seri(i, k)+d_t_ec(i, k) - d_t_ec(i, k) = d_t_ec(i, k)/pdtphys + d_t_ec(i, k) = 0.5 / (RCPD * (1. + RVTMP2 * q_seri(i, k))) & + * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2) + t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k) + d_t_ec(i, k) = d_t_ec(i, k) / dtphys END DO END DO - !-jld ec_conser - IF (if_ebil >= 1) THEN - ztit='after physic' - CALL diagetpq(airephy, ztit, ip_ebil, 1, 1, pdtphys & - , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs & - , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) - ! Comme les tendances de la physique sont ajoute dans la dynamique, - ! on devrait avoir que la variation d'entalpie par la dynamique - ! est egale a la variation de la physique au pas de temps precedent. - ! Donc la somme de ces 2 variations devrait etre nulle. - call diagphy(airephy, ztit, ip_ebil & - , topsw, toplw, solsw, sollw, sens & - , evap, rain_fall, snow_fall, ztsol & - , d_h_vcol, d_qt, d_ec & - , fs_bound, fq_bound ) - - d_h_vcol_phy=d_h_vcol - END IF + ! SORTIES - ! SORTIES - - !IM Interpolation sur les niveaux de pression du NMC - call calcul_STDlev - - !cc prw = eau precipitable + ! prw = eau precipitable DO i = 1, klon prw(i) = 0. DO k = 1, llm - prw(i) = prw(i) + & - q_seri(i, k)*(paprs(i, k)-paprs(i, k+1))/RG + prw(i) = prw(i) + q_seri(i, k) * zmasse(i, k) ENDDO ENDDO - !IM initialisation + calculs divers diag AMIP2 - call calcul_divers - ! Convertir les incrementations en tendances DO k = 1, llm DO i = 1, klon - d_u(i, k) = ( u_seri(i, k) - u(i, k) ) / pdtphys - d_v(i, k) = ( v_seri(i, k) - v(i, k) ) / pdtphys - d_t(i, k) = ( t_seri(i, k)-t(i, k) ) / pdtphys - d_qx(i, k, ivap) = ( q_seri(i, k) - qx(i, k, ivap) ) / pdtphys - d_qx(i, k, iliq) = ( ql_seri(i, k) - qx(i, k, iliq) ) / pdtphys + d_u(i, k) = (u_seri(i, k) - u(i, k)) / dtphys + d_v(i, k) = (v_seri(i, k) - v(i, k)) / dtphys + d_t(i, k) = (t_seri(i, k) - t(i, k)) / dtphys + d_qx(i, k, ivap) = (q_seri(i, k) - qx(i, k, ivap)) / dtphys + d_qx(i, k, iliq) = (ql_seri(i, k) - qx(i, k, iliq)) / dtphys ENDDO ENDDO - IF (nq >= 3) THEN - DO iq = 3, nq - DO k = 1, llm - DO i = 1, klon - d_qx(i, k, iq) = ( tr_seri(i, k, iq-2) - qx(i, k, iq) ) / pdtphys - ENDDO + DO iq = 3, nqmx + DO k = 1, llm + DO i = 1, klon + d_qx(i, k, iq) = (tr_seri(i, k, iq - 2) - qx(i, k, iq)) / dtphys ENDDO ENDDO - ENDIF + ENDDO ! Sauvegarder les valeurs de t et q a la fin de la physique: - DO k = 1, llm DO i = 1, klon t_ancien(i, k) = t_seri(i, k) @@ -2015,756 +981,91 @@ ENDDO ENDDO - ! Ecriture des sorties - - call write_histhf - call write_histday - call write_histins - - ! Si c'est la fin, il faut conserver l'etat de redemarrage - - IF (lafin) THEN - itau_phy = itau_phy + itap - CALL phyredem ("restartphy.nc", radpas, rlat, rlon, pctsrf, ftsol, & - ftsoil, tslab, seaice, fqsurf, qsol, & - fsnow, falbe, falblw, fevap, rain_fall, snow_fall, & - solsw, sollwdown, dlw, & - radsol, frugs, agesno, & - zmea, zstd, zsig, zgam, zthe, zpic, zval, rugoro, & - t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0) - ENDIF - - contains - - subroutine calcul_STDlev + CALL histwrite_phy("phis", pphis) + CALL histwrite_phy("aire", airephy) + CALL histwrite_phy("psol", paprs(:, 1)) + CALL histwrite_phy("precip", rain_fall + snow_fall) + CALL histwrite_phy("plul", rain_lsc + snow_lsc) + CALL histwrite_phy("pluc", rain_con + snow_con) + CALL histwrite_phy("tsol", tsol) + CALL histwrite_phy("t2m", zt2m) + CALL histwrite_phy("q2m", zq2m) + CALL histwrite_phy("u10m", u10m) + CALL histwrite_phy("v10m", v10m) + CALL histwrite_phy("snow", snow_fall) + CALL histwrite_phy("cdrm", cdragm) + CALL histwrite_phy("cdrh", cdragh) + CALL histwrite_phy("topl", toplw) + CALL histwrite_phy("evap", evap) + CALL histwrite_phy("sols", solsw) + CALL histwrite_phy("soll", sollw) + CALL histwrite_phy("solldown", sollwdown) + CALL histwrite_phy("bils", bils) + CALL histwrite_phy("sens", - sens) + CALL histwrite_phy("fder", fder) + CALL histwrite_phy("dtsvdfo", d_ts(:, is_oce)) + CALL histwrite_phy("dtsvdft", d_ts(:, is_ter)) + CALL histwrite_phy("dtsvdfg", d_ts(:, is_lic)) + CALL histwrite_phy("dtsvdfi", d_ts(:, is_sic)) + CALL histwrite_phy("zxfqcalving", sum(fqcalving * pctsrf, dim = 2)) - ! From phylmd/calcul_STDlev.h, v 1.1 2005/05/25 13:10:09 - - !IM on initialise les champs en debut du jour ou du mois + DO nsrf = 1, nbsrf + CALL histwrite_phy("pourc_"//clnsurf(nsrf), pctsrf(:, nsrf) * 100.) + CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf)) + CALL histwrite_phy("sens_"//clnsurf(nsrf), flux_t(:, nsrf)) + CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf)) + CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf)) + CALL histwrite_phy("taux_"//clnsurf(nsrf), flux_u(:, nsrf)) + CALL histwrite_phy("tauy_"//clnsurf(nsrf), flux_v(:, nsrf)) + CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf)) + CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf)) + CALL histwrite_phy("u10m_"//clnsurf(nsrf), u10m_srf(:, nsrf)) + CALL histwrite_phy("v10m_"//clnsurf(nsrf), v10m_srf(:, nsrf)) + END DO - CALL ini_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, & - tnondef, tsumSTD) - CALL ini_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, & - tnondef, usumSTD) - CALL ini_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, & - tnondef, vsumSTD) - CALL ini_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, & - tnondef, wsumSTD) - CALL ini_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, & - tnondef, phisumSTD) - CALL ini_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, & - tnondef, qsumSTD) - CALL ini_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, & - tnondef, rhsumSTD) - CALL ini_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, & - tnondef, uvsumSTD) - CALL ini_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, & - tnondef, vqsumSTD) - CALL ini_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, & - tnondef, vTsumSTD) - CALL ini_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, & - tnondef, wqsumSTD) - CALL ini_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, & - tnondef, vphisumSTD) - CALL ini_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, & - tnondef, wTsumSTD) - CALL ini_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, & - tnondef, u2sumSTD) - CALL ini_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, & - tnondef, v2sumSTD) - CALL ini_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, & - tnondef, T2sumSTD) - - !IM on interpole sur les niveaux STD de pression a chaque pas de - !temps de la physique - - DO k=1, nlevSTD - - CALL plevel(klon, llm, .true., pplay, rlevSTD(k), & - t_seri, tlevSTD(:, k)) - CALL plevel(klon, llm, .true., pplay, rlevSTD(k), & - u_seri, ulevSTD(:, k)) - CALL plevel(klon, llm, .true., pplay, rlevSTD(k), & - v_seri, vlevSTD(:, k)) - - DO l=1, llm - DO i=1, klon - zx_tmp_fi3d(i, l)=paprs(i, l) - ENDDO !i - ENDDO !l - CALL plevel(klon, llm, .true., zx_tmp_fi3d, rlevSTD(k), & - omega, wlevSTD(:, k)) - - CALL plevel(klon, llm, .true., pplay, rlevSTD(k), & - zphi/RG, philevSTD(:, k)) - CALL plevel(klon, llm, .true., pplay, rlevSTD(k), & - qx(:, :, ivap), qlevSTD(:, k)) - CALL plevel(klon, llm, .true., pplay, rlevSTD(k), & - zx_rh*100., rhlevSTD(:, k)) - - DO l=1, llm - DO i=1, klon - zx_tmp_fi3d(i, l)=u_seri(i, l)*v_seri(i, l) - ENDDO !i - ENDDO !l - CALL plevel(klon, llm, .true., pplay, rlevSTD(k), & - zx_tmp_fi3d, uvSTD(:, k)) - - DO l=1, llm - DO i=1, klon - zx_tmp_fi3d(i, l)=v_seri(i, l)*q_seri(i, l) - ENDDO !i - ENDDO !l - CALL plevel(klon, llm, .true., pplay, rlevSTD(k), & - zx_tmp_fi3d, vqSTD(:, k)) - - DO l=1, llm - DO i=1, klon - zx_tmp_fi3d(i, l)=v_seri(i, l)*t_seri(i, l) - ENDDO !i - ENDDO !l - CALL plevel(klon, llm, .true., pplay, rlevSTD(k), & - zx_tmp_fi3d, vTSTD(:, k)) - - DO l=1, llm - DO i=1, klon - zx_tmp_fi3d(i, l)=omega(i, l)*qx(i, l, ivap) - ENDDO !i - ENDDO !l - CALL plevel(klon, llm, .true., pplay, rlevSTD(k), & - zx_tmp_fi3d, wqSTD(:, k)) - - DO l=1, llm - DO i=1, klon - zx_tmp_fi3d(i, l)=v_seri(i, l)*zphi(i, l)/RG - ENDDO !i - ENDDO !l - CALL plevel(klon, llm, .true., pplay, rlevSTD(k), & - zx_tmp_fi3d, vphiSTD(:, k)) - - DO l=1, llm - DO i=1, klon - zx_tmp_fi3d(i, l)=omega(i, l)*t_seri(i, l) - ENDDO !i - ENDDO !l - CALL plevel(klon, llm, .true., pplay, rlevSTD(k), & - zx_tmp_fi3d, wTSTD(:, k)) - - DO l=1, llm - DO i=1, klon - zx_tmp_fi3d(i, l)=u_seri(i, l)*u_seri(i, l) - ENDDO !i - ENDDO !l - CALL plevel(klon, llm, .true., pplay, rlevSTD(k), & - zx_tmp_fi3d, u2STD(:, k)) - - DO l=1, llm - DO i=1, klon - zx_tmp_fi3d(i, l)=v_seri(i, l)*v_seri(i, l) - ENDDO !i - ENDDO !l - CALL plevel(klon, llm, .true., pplay, rlevSTD(k), & - zx_tmp_fi3d, v2STD(:, k)) - - DO l=1, llm - DO i=1, klon - zx_tmp_fi3d(i, l)=t_seri(i, l)*t_seri(i, l) - ENDDO !i - ENDDO !l - CALL plevel(klon, llm, .true., pplay, rlevSTD(k), & - zx_tmp_fi3d, T2STD(:, k)) - - ENDDO !k=1, nlevSTD - - !IM on somme les valeurs definies a chaque pas de temps de la - ! physique ou toutes les 6 heures - - oknondef(1:klon, 1:nlevSTD, 1:nout)=.TRUE. - CALL undefSTD(nlevSTD, itap, tlevSTD, & - ecrit_hf, & - oknondef, tnondef, tsumSTD) - - oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE. - CALL undefSTD(nlevSTD, itap, ulevSTD, & - ecrit_hf, & - oknondef, tnondef, usumSTD) - - oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE. - CALL undefSTD(nlevSTD, itap, vlevSTD, & - ecrit_hf, & - oknondef, tnondef, vsumSTD) - - oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE. - CALL undefSTD(nlevSTD, itap, wlevSTD, & - ecrit_hf, & - oknondef, tnondef, wsumSTD) - - oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE. - CALL undefSTD(nlevSTD, itap, philevSTD, & - ecrit_hf, & - oknondef, tnondef, phisumSTD) - - oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE. - CALL undefSTD(nlevSTD, itap, qlevSTD, & - ecrit_hf, & - oknondef, tnondef, qsumSTD) - - oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE. - CALL undefSTD(nlevSTD, itap, rhlevSTD, & - ecrit_hf, & - oknondef, tnondef, rhsumSTD) - - oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE. - CALL undefSTD(nlevSTD, itap, uvSTD, & - ecrit_hf, & - oknondef, tnondef, uvsumSTD) - - oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE. - CALL undefSTD(nlevSTD, itap, vqSTD, & - ecrit_hf, & - oknondef, tnondef, vqsumSTD) - - oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE. - CALL undefSTD(nlevSTD, itap, vTSTD, & - ecrit_hf, & - oknondef, tnondef, vTsumSTD) - - oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE. - CALL undefSTD(nlevSTD, itap, wqSTD, & - ecrit_hf, & - oknondef, tnondef, wqsumSTD) - - oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE. - CALL undefSTD(nlevSTD, itap, vphiSTD, & - ecrit_hf, & - oknondef, tnondef, vphisumSTD) - - oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE. - CALL undefSTD(nlevSTD, itap, wTSTD, & - ecrit_hf, & - oknondef, tnondef, wTsumSTD) - - oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE. - CALL undefSTD(nlevSTD, itap, u2STD, & - ecrit_hf, & - oknondef, tnondef, u2sumSTD) - - oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE. - CALL undefSTD(nlevSTD, itap, v2STD, & - ecrit_hf, & - oknondef, tnondef, v2sumSTD) - - oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE. - CALL undefSTD(nlevSTD, itap, T2STD, & - ecrit_hf, & - oknondef, tnondef, T2sumSTD) - - !IM on moyenne a la fin du jour ou du mois - - CALL moy_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, ecrit_hf2mth, & - tnondef, tsumSTD) - - CALL moy_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, ecrit_hf2mth, & - tnondef, usumSTD) - - CALL moy_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, ecrit_hf2mth, & - tnondef, vsumSTD) - - CALL moy_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, ecrit_hf2mth, & - tnondef, wsumSTD) - - CALL moy_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, ecrit_hf2mth, & - tnondef, phisumSTD) - - CALL moy_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, ecrit_hf2mth, & - tnondef, qsumSTD) - - CALL moy_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, ecrit_hf2mth, & - tnondef, rhsumSTD) - - CALL moy_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, ecrit_hf2mth, & - tnondef, uvsumSTD) - - CALL moy_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, ecrit_hf2mth, & - tnondef, vqsumSTD) - - CALL moy_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, ecrit_hf2mth, & - tnondef, vTsumSTD) - - CALL moy_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, ecrit_hf2mth, & - tnondef, wqsumSTD) - - CALL moy_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, ecrit_hf2mth, & - tnondef, vphisumSTD) - - CALL moy_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, ecrit_hf2mth, & - tnondef, wTsumSTD) - - CALL moy_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, ecrit_hf2mth, & - tnondef, u2sumSTD) - - CALL moy_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, ecrit_hf2mth, & - tnondef, v2sumSTD) - - CALL moy_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, ecrit_hf2mth, & - tnondef, T2sumSTD) - - !IM interpolation a chaque pas de temps du SWup(clr) et - !SWdn(clr) a 200 hPa - - CALL plevel(klon, klevp1, .true., paprs, 20000., & - swdn0, SWdn200clr) - CALL plevel(klon, klevp1, .false., paprs, 20000., & - swdn, SWdn200) - CALL plevel(klon, klevp1, .false., paprs, 20000., & - swup0, SWup200clr) - CALL plevel(klon, klevp1, .false., paprs, 20000., & - swup, SWup200) - - CALL plevel(klon, klevp1, .false., paprs, 20000., & - lwdn0, LWdn200clr) - CALL plevel(klon, klevp1, .false., paprs, 20000., & - lwdn, LWdn200) - CALL plevel(klon, klevp1, .false., paprs, 20000., & - lwup0, LWup200clr) - CALL plevel(klon, klevp1, .false., paprs, 20000., & - lwup, LWup200) - - end SUBROUTINE calcul_STDlev - - !**************************************************** - - SUBROUTINE calcul_divers - - ! From phylmd/calcul_divers.h, v 1.1 2005/05/25 13:10:09 - - ! initialisations diverses au "debut" du mois - - IF(MOD(itap, ecrit_mth) == 1) THEN - DO i=1, klon - nday_rain(i)=0. - ENDDO - ENDIF - - IF(MOD(itap, ecrit_day) == 0) THEN - !IM calcul total_rain, nday_rain - DO i = 1, klon - total_rain(i)=rain_fall(i)+snow_fall(i) - IF(total_rain(i).GT.0.) nday_rain(i)=nday_rain(i)+1. - ENDDO - ENDIF - - End SUBROUTINE calcul_divers - - !*********************************************** - - subroutine write_histday - - ! From phylmd/write_histday.h, v 1.3 2005/05/25 13:10:09 - - if (ok_journe) THEN - - ndex2d = 0 - ndex3d = 0 - - ! Champs 2D: - - itau_w = itau_phy + itap - - ! FIN ECRITURE DES CHAMPS 3D - - if (ok_sync) then - call histsync(nid_day) - endif - - ENDIF - - End subroutine write_histday - - !**************************** - - subroutine write_histhf - - ! From phylmd/write_histhf.h, v 1.5 2005/05/25 13:10:09 - - ndex2d = 0 - ndex3d = 0 - - itau_w = itau_phy + itap - - call write_histhf3d - - IF (ok_sync) THEN - call histsync(nid_hf) - ENDIF - - end subroutine write_histhf - - !*************************************************************** - - subroutine write_histins - - ! From phylmd/write_histins.h, v 1.2 2005/05/25 13:10:09 - - real zout - - !-------------------------------------------------- - - IF (ok_instan) THEN - - ndex2d = 0 - ndex3d = 0 - - ! Champs 2D: - - zsto = pdtphys * ecrit_ins - zout = pdtphys * ecrit_ins - itau_w = itau_phy + itap - - i = NINT(zout/zsto) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), pphis, zx_tmp_2d) - CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) - - i = NINT(zout/zsto) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), airephy, zx_tmp_2d) - CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) - - DO i = 1, klon - zx_tmp_fi2d(i) = paprs(i, 1) - ENDDO - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "psol", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) - - DO i = 1, klon - zx_tmp_fi2d(i) = rain_fall(i) + snow_fall(i) - ENDDO - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "precip", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) - - DO i = 1, klon - zx_tmp_fi2d(i) = rain_lsc(i) + snow_lsc(i) - ENDDO - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "plul", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) - - DO i = 1, klon - zx_tmp_fi2d(i) = rain_con(i) + snow_con(i) - ENDDO - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "pluc", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) - - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zxtsol, zx_tmp_2d) - CALL histwrite(nid_ins, "tsol", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) - !ccIM - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zt2m, zx_tmp_2d) - CALL histwrite(nid_ins, "t2m", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) - - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zq2m, zx_tmp_2d) - CALL histwrite(nid_ins, "q2m", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) - - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zu10m, zx_tmp_2d) - CALL histwrite(nid_ins, "u10m", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) - - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zv10m, zx_tmp_2d) - CALL histwrite(nid_ins, "v10m", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) - - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), snow_fall, zx_tmp_2d) - CALL histwrite(nid_ins, "snow", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) - - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), cdragm, zx_tmp_2d) - CALL histwrite(nid_ins, "cdrm", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) - - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), cdragh, zx_tmp_2d) - CALL histwrite(nid_ins, "cdrh", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) - - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), toplw, zx_tmp_2d) - CALL histwrite(nid_ins, "topl", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) - - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), evap, zx_tmp_2d) - CALL histwrite(nid_ins, "evap", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) - - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), solsw, zx_tmp_2d) - CALL histwrite(nid_ins, "sols", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) - - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sollw, zx_tmp_2d) - CALL histwrite(nid_ins, "soll", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) - - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sollwdown, zx_tmp_2d) - CALL histwrite(nid_ins, "solldown", itau_w, zx_tmp_2d, iim*(jjm + 1), & - ndex2d) - - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), bils, zx_tmp_2d) - CALL histwrite(nid_ins, "bils", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) - - zx_tmp_fi2d(1:klon)=-1*sens(1:klon) - ! CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sens, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "sens", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) - - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), fder, zx_tmp_2d) - CALL histwrite(nid_ins, "fder", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) - - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_oce), zx_tmp_2d) - CALL histwrite(nid_ins, "dtsvdfo", itau_w, zx_tmp_2d, iim*(jjm + 1), & - ndex2d) - - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_ter), zx_tmp_2d) - CALL histwrite(nid_ins, "dtsvdft", itau_w, zx_tmp_2d, iim*(jjm + 1), & - ndex2d) - - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_lic), zx_tmp_2d) - CALL histwrite(nid_ins, "dtsvdfg", itau_w, zx_tmp_2d, iim*(jjm + 1), & - ndex2d) - - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_sic), zx_tmp_2d) - CALL histwrite(nid_ins, "dtsvdfi", itau_w, zx_tmp_2d, iim*(jjm + 1), & - ndex2d) - - DO nsrf = 1, nbsrf - !XXX - zx_tmp_fi2d(1 : klon) = pctsrf( 1 : klon, nsrf)*100. - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "pourc_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d, iim*(jjm + 1), ndex2d) - - zx_tmp_fi2d(1 : klon) = pctsrf( 1 : klon, nsrf) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "fract_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d, iim*(jjm + 1), ndex2d) - - zx_tmp_fi2d(1 : klon) = fluxt( 1 : klon, 1, nsrf) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "sens_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d, iim*(jjm + 1), ndex2d) - - zx_tmp_fi2d(1 : klon) = fluxlat( 1 : klon, nsrf) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "lat_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d, iim*(jjm + 1), ndex2d) - - zx_tmp_fi2d(1 : klon) = ftsol( 1 : klon, nsrf) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "tsol_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d, iim*(jjm + 1), ndex2d) - - zx_tmp_fi2d(1 : klon) = fluxu( 1 : klon, 1, nsrf) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "taux_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d, iim*(jjm + 1), ndex2d) - - zx_tmp_fi2d(1 : klon) = fluxv( 1 : klon, 1, nsrf) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "tauy_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d, iim*(jjm + 1), ndex2d) - - zx_tmp_fi2d(1 : klon) = frugs( 1 : klon, nsrf) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "rugs_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d, iim*(jjm + 1), ndex2d) - - zx_tmp_fi2d(1 : klon) = falbe( 1 : klon, nsrf) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "albe_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d, iim*(jjm + 1), ndex2d) - - END DO - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), albsol, zx_tmp_2d) - CALL histwrite(nid_ins, "albs", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), albsollw, zx_tmp_2d) - CALL histwrite(nid_ins, "albslw", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) - - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zxrugs, zx_tmp_2d) - CALL histwrite(nid_ins, "rugs", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) - - !IM cf. AM 081204 BEG - - !HBTM2 - - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_pblh, zx_tmp_2d) - CALL histwrite(nid_ins, "s_pblh", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) - - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_pblt, zx_tmp_2d) - CALL histwrite(nid_ins, "s_pblt", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) - - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_lcl, zx_tmp_2d) - CALL histwrite(nid_ins, "s_lcl", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) - - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_capCL, zx_tmp_2d) - CALL histwrite(nid_ins, "s_capCL", itau_w, zx_tmp_2d, iim*(jjm + 1), & - ndex2d) - - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_oliqCL, zx_tmp_2d) - CALL histwrite(nid_ins, "s_oliqCL", itau_w, zx_tmp_2d, iim*(jjm + 1), & - ndex2d) - - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_cteiCL, zx_tmp_2d) - CALL histwrite(nid_ins, "s_cteiCL", itau_w, zx_tmp_2d, iim*(jjm + 1), & - ndex2d) - - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_therm, zx_tmp_2d) - CALL histwrite(nid_ins, "s_therm", itau_w, zx_tmp_2d, iim*(jjm + 1), & - ndex2d) - - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb1, zx_tmp_2d) - CALL histwrite(nid_ins, "s_trmb1", itau_w, zx_tmp_2d, iim*(jjm + 1), & - ndex2d) - - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb2, zx_tmp_2d) - CALL histwrite(nid_ins, "s_trmb2", itau_w, zx_tmp_2d, iim*(jjm + 1), & - ndex2d) - - CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb3, zx_tmp_2d) - CALL histwrite(nid_ins, "s_trmb3", itau_w, zx_tmp_2d, iim*(jjm + 1), & - ndex2d) - - !IM cf. AM 081204 END - - ! Champs 3D: - - CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), t_seri, zx_tmp_3d) - CALL histwrite(nid_ins, "temp", itau_w, zx_tmp_3d, & - iim*(jjm + 1)*llm, ndex3d) - - CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), u_seri, zx_tmp_3d) - CALL histwrite(nid_ins, "vitu", itau_w, zx_tmp_3d, & - iim*(jjm + 1)*llm, ndex3d) - - CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), v_seri, zx_tmp_3d) - CALL histwrite(nid_ins, "vitv", itau_w, zx_tmp_3d, & - iim*(jjm + 1)*llm, ndex3d) - - CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), zphi, zx_tmp_3d) - CALL histwrite(nid_ins, "geop", itau_w, zx_tmp_3d, & - iim*(jjm + 1)*llm, ndex3d) - - CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), pplay, zx_tmp_3d) - CALL histwrite(nid_ins, "pres", itau_w, zx_tmp_3d, & - iim*(jjm + 1)*llm, ndex3d) - - CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), d_t_vdf, zx_tmp_3d) - CALL histwrite(nid_ins, "dtvdf", itau_w, zx_tmp_3d, & - iim*(jjm + 1)*llm, ndex3d) - - CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), d_q_vdf, zx_tmp_3d) - CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d, & - iim*(jjm + 1)*llm, ndex3d) - - if (ok_sync) then - call histsync(nid_ins) - endif - ENDIF - - end subroutine write_histins - - !**************************************************** - - subroutine write_histhf3d - - ! From phylmd/write_histhf3d.h, v 1.2 2005/05/25 13:10:09 - - ndex2d = 0 - ndex3d = 0 - - itau_w = itau_phy + itap - - ! Champs 3D: - - CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), t_seri, zx_tmp_3d) - CALL histwrite(nid_hf3d, "temp", itau_w, zx_tmp_3d, & - iim*(jjm + 1)*llm, ndex3d) - - CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), qx(1, 1, ivap), zx_tmp_3d) - CALL histwrite(nid_hf3d, "ovap", itau_w, zx_tmp_3d, & - iim*(jjm + 1)*llm, ndex3d) - - CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), u_seri, zx_tmp_3d) - CALL histwrite(nid_hf3d, "vitu", itau_w, zx_tmp_3d, & - iim*(jjm + 1)*llm, ndex3d) - - CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), v_seri, zx_tmp_3d) - CALL histwrite(nid_hf3d, "vitv", itau_w, zx_tmp_3d, & - iim*(jjm + 1)*llm, ndex3d) - - if (nbtr >= 3) then - CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), tr_seri(1, 1, 3), & - zx_tmp_3d) - CALL histwrite(nid_hf3d, "O3", itau_w, zx_tmp_3d, iim*(jjm + 1)*llm, & - ndex3d) - end if - - if (ok_sync) then - call histsync(nid_hf3d) - endif + CALL histwrite_phy("albs", albsol) + CALL histwrite_phy("tro3", wo * dobson_u * 1e3 / zmasse / rmo3 * md) + CALL histwrite_phy("rugs", zxrugs) + CALL histwrite_phy("s_pblh", s_pblh) + CALL histwrite_phy("s_pblt", s_pblt) + CALL histwrite_phy("s_lcl", s_lcl) + CALL histwrite_phy("s_capCL", s_capCL) + CALL histwrite_phy("s_oliqCL", s_oliqCL) + CALL histwrite_phy("s_cteiCL", s_cteiCL) + CALL histwrite_phy("s_therm", s_therm) + + if (conv_emanuel) then + CALL histwrite_phy("ptop", ema_pct) + CALL histwrite_phy("dnwd0", - mp) + end if + + CALL histwrite_phy("temp", t_seri) + CALL histwrite_phy("vitu", u_seri) + CALL histwrite_phy("vitv", v_seri) + CALL histwrite_phy("geop", zphi) + CALL histwrite_phy("pres", play) + CALL histwrite_phy("dtvdf", d_t_vdf) + CALL histwrite_phy("dqvdf", d_q_vdf) + CALL histwrite_phy("rhum", zx_rh) + CALL histwrite_phy("d_t_ec", d_t_ec) + CALL histwrite_phy("dtsw0", heat0 / 86400.) + CALL histwrite_phy("dtlw0", - cool0 / 86400.) + CALL histwrite_phy("msnow", sum(fsnow * pctsrf, dim = 2)) + call histwrite_phy("qsurf", sum(fqsurf * pctsrf, dim = 2)) + + if (ok_instan) call histsync(nid_ins) + + IF (lafin) then + call NF95_CLOSE(ncid_startphy) + CALL phyredem(pctsrf, ftsol, ftsoil, fqsurf, qsol, & + fsnow, falbe, fevap, rain_fall, snow_fall, solsw, sollw, dlw, & + radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, & + t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, & + w01) + end IF - end subroutine write_histhf3d + firstcal = .FALSE. END SUBROUTINE physiq - !**************************************************** - - FUNCTION qcheck(klon, klev, paprs, q, ql, aire) - - ! From phylmd/physiq.F, v 1.22 2006/02/20 09:38:28 - - use YOMCST - IMPLICIT none - - ! Calculer et imprimer l'eau totale. A utiliser pour verifier - ! la conservation de l'eau - - INTEGER klon, klev - REAL, intent(in):: paprs(klon, klev+1) - real q(klon, klev), ql(klon, klev) - REAL aire(klon) - REAL qtotal, zx, qcheck - INTEGER i, k - - zx = 0.0 - DO i = 1, klon - zx = zx + aire(i) - ENDDO - qtotal = 0.0 - DO k = 1, klev - DO i = 1, klon - qtotal = qtotal + (q(i, k)+ql(i, k)) * aire(i) & - *(paprs(i, k)-paprs(i, k+1))/RG - ENDDO - ENDDO - - qcheck = qtotal/zx - - END FUNCTION qcheck - end module physiq_m