--- trunk/libf/phylmd/physiq.f90 2013/11/15 17:48:30 73 +++ trunk/Sources/phylmd/physiq.f 2015/06/23 15:14:20 151 @@ -4,8 +4,8 @@ contains - SUBROUTINE physiq(lafin, rdayvrai, time, dtphys, paprs, play, pphi, pphis, & - u, v, t, qx, omega, d_u, d_v, d_t, d_qx, d_ps, dudyn, PVteta) + SUBROUTINE physiq(lafin, dayvrai, time, dtphys, paprs, play, pphi, pphis, & + u, v, t, qx, omega, d_u, d_v, d_t, d_qx) ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28 ! (subversion revision 678) @@ -18,15 +18,14 @@ USE abort_gcm_m, ONLY: abort_gcm use aeropt_m, only: aeropt use ajsec_m, only: ajsec - USE calendar, ONLY: ymds2ju use calltherm_m, only: calltherm USE clesphys, ONLY: cdhmax, cdmmax, co2_ppm, ecrit_hf, ecrit_ins, & ecrit_mth, ecrit_reg, ecrit_tra, ksta, ksta_ter, ok_kzmin USE clesphys2, ONLY: cycle_diurne, iflag_con, nbapp_rad, new_oliq, & - ok_orodr, ok_orolf, soil_model + ok_orodr, ok_orolf USE clmain_m, ONLY: clmain use clouds_gno_m, only: clouds_gno - USE comgeomphy, ONLY: airephy, cuphy, cvphy + USE comgeomphy, ONLY: airephy USE concvl_m, ONLY: concvl USE conf_gcm_m, ONLY: offline, raz_date USE conf_phys_m, ONLY: conf_phys @@ -35,23 +34,19 @@ use diagcld2_m, only: diagcld2 use diagetpq_m, only: diagetpq use diagphy_m, only: diagphy - USE dimens_m, ONLY: iim, jjm, llm, nqmx - USE dimphy, ONLY: klon, nbtr + USE dimens_m, ONLY: llm, nqmx + USE dimphy, ONLY: klon USE dimsoil, ONLY: nsoilmx use drag_noro_m, only: drag_noro + use dynetat0_m, only: day_ref, annee_ref USE fcttre, ONLY: foeew, qsatl, qsats, thermcep use fisrtilp_m, only: fisrtilp USE hgardfou_m, ONLY: hgardfou - USE histsync_m, ONLY: histsync - USE histwrite_m, ONLY: histwrite USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, & nbsrf - USE ini_histhf_m, ONLY: ini_histhf - USE ini_histday_m, ONLY: ini_histday USE ini_histins_m, ONLY: ini_histins use newmicro_m, only: newmicro - USE oasis_m, ONLY: ok_oasis - USE orbite_m, ONLY: orbite, zenang + USE orbite_m, ONLY: orbite USE ozonecm_m, ONLY: ozonecm USE phyetat0_m, ONLY: phyetat0, rlat, rlon USE phyredem_m, ONLY: phyredem @@ -60,82 +55,70 @@ USE qcheck_m, ONLY: qcheck use radlwsw_m, only: radlwsw use readsulfate_m, only: readsulfate + use readsulfate_preind_m, only: readsulfate_preind use sugwd_m, only: sugwd USE suphec_m, ONLY: ra, rcpd, retv, rg, rlvtt, romega, rsigma, rtt - USE temps, ONLY: annee_ref, day_ref, itau_phy + USE temps, ONLY: itau_phy use unit_nml_m, only: unit_nml + USE ymds2ju_m, ONLY: ymds2ju USE yoethf_m, ONLY: r2es, rvtmp2 + use zenang_m, only: zenang - ! Arguments: + logical, intent(in):: lafin ! dernier passage - REAL, intent(in):: rdayvrai - ! (elapsed time since January 1st 0h of the starting year, in days) + integer, intent(in):: dayvrai + ! current day number, based at value 1 on January 1st of annee_ref - REAL, intent(in):: time ! heure de la journée en fraction de jour + REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour REAL, intent(in):: dtphys ! pas d'integration pour la physique (seconde) - logical, intent(in):: lafin ! dernier passage - REAL, intent(in):: paprs(klon, llm + 1) - ! (pression pour chaque inter-couche, en Pa) + REAL, intent(in):: paprs(:, :) ! (klon, llm + 1) + ! pression pour chaque inter-couche, en Pa - REAL, intent(in):: play(klon, llm) - ! (input pression pour le mileu de chaque couche (en Pa)) + REAL, intent(in):: play(:, :) ! (klon, llm) + ! pression pour le mileu de chaque couche (en Pa) - REAL, intent(in):: pphi(klon, llm) - ! (input geopotentiel de chaque couche (g z) (reference sol)) + REAL, intent(in):: pphi(:, :) ! (klon, llm) + ! géopotentiel de chaque couche (référence sol) - REAL, intent(in):: pphis(klon) ! input geopotentiel du sol + REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol - REAL, intent(in):: u(klon, llm) + REAL, intent(in):: u(:, :) ! (klon, llm) ! vitesse dans la direction X (de O a E) en m/s - REAL, intent(in):: v(klon, llm) ! vitesse Y (de S a N) en m/s - REAL, intent(in):: t(klon, llm) ! input temperature (K) + REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m/s + REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K) - REAL, intent(in):: qx(klon, llm, nqmx) - ! (humidité spécifique et fractions massiques des autres traceurs) + REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx) + ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs) - REAL omega(klon, llm) ! input vitesse verticale en Pa/s - REAL, intent(out):: d_u(klon, llm) ! tendance physique de "u" (m/s/s) - REAL, intent(out):: d_v(klon, llm) ! tendance physique de "v" (m/s/s) - REAL, intent(out):: d_t(klon, llm) ! tendance physique de "t" (K/s) - REAL d_qx(klon, llm, nqmx) ! output tendance physique de "qx" (kg/kg/s) - REAL d_ps(klon) ! output tendance physique de la pression au sol + REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa/s + REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2) + REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2) + REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K/s) - LOGICAL:: firstcal = .true. + REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx) + ! tendance physique de "qx" (s-1) - INTEGER nbteta - PARAMETER(nbteta = 3) + ! Local: - REAL PVteta(klon, nbteta) - ! (output vorticite potentielle a des thetas constantes) + LOGICAL:: firstcal = .true. LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface PARAMETER (ok_gust = .FALSE.) - LOGICAL check ! Verifier la conservation du modele en eau - PARAMETER (check = .FALSE.) + LOGICAL, PARAMETER:: check = .FALSE. + ! Verifier la conservation du modele en eau LOGICAL, PARAMETER:: ok_stratus = .FALSE. ! Ajouter artificiellement les stratus - ! Parametres lies au coupleur OASIS: - INTEGER, SAVE:: npas, nexca - logical rnpb - parameter(rnpb = .true.) - - character(len = 6):: ocean = 'force ' - ! (type de modèle océan à utiliser: "force" ou "slab" mais pas "couple") - ! "slab" ocean REAL, save:: tslab(klon) ! temperature of ocean slab REAL, save:: seaice(klon) ! glace de mer (kg/m2) REAL fluxo(klon) ! flux turbulents ocean-glace de mer REAL fluxg(klon) ! flux turbulents ocean-atmosphere - ! Modele thermique du sol, a activer pour le cycle diurne: - logical:: ok_veget = .false. ! type de modele de vegetation utilise - logical:: ok_journe = .false., ok_mensuel = .true., ok_instan = .false. ! sorties journalieres, mensuelles et instantanees dans les ! fichiers histday, histmth et histins @@ -148,10 +131,8 @@ REAL entr_therm(klon, llm) real, save:: q2(klon, llm + 1, nbsrf) - INTEGER ivap ! indice de traceurs pour vapeur d'eau - PARAMETER (ivap = 1) - INTEGER iliq ! indice de traceurs pour eau liquide - PARAMETER (iliq = 2) + INTEGER, PARAMETER:: ivap = 1 ! indice de traceur pour vapeur d'eau + INTEGER, PARAMETER:: iliq = 2 ! indice de traceur pour eau liquide REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm) LOGICAL, save:: ancien_ok @@ -161,15 +142,6 @@ real da(klon, llm), phi(klon, llm, llm), mp(klon, llm) - !IM Amip2 PV a theta constante - - CHARACTER(LEN = 3) ctetaSTD(nbteta) - DATA ctetaSTD/'350', '380', '405'/ - REAL rtetaSTD(nbteta) - DATA rtetaSTD/350., 380., 405./ - - !MI Amip2 PV a theta constante - REAL swdn0(klon, llm + 1), swdn(klon, llm + 1) REAL swup0(klon, llm + 1), swup(klon, llm + 1) SAVE swdn0, swdn, swup0, swup @@ -178,7 +150,7 @@ REAL lwup0(klon, llm + 1), lwup(klon, llm + 1) SAVE lwdn0, lwdn, lwup0, lwup - !IM Amip2 + ! Amip2 ! variables a une pression donnee integer nlevSTD @@ -247,16 +219,13 @@ 'pc= 440-560hPa, tau> 60.', 'pc= 560-680hPa, tau> 60.', & 'pc= 680-800hPa, tau> 60.'/ - !IM ISCCP simulator v3.4 - - integer nid_hf, nid_hf3d - save nid_hf, nid_hf3d + ! ISCCP simulator v3.4 ! Variables propres a la physique INTEGER, save:: radpas - ! (Radiative transfer computations are made every "radpas" call to - ! "physiq".) + ! Radiative transfer computations are made every "radpas" call to + ! "physiq". REAL radsol(klon) SAVE radsol ! bilan radiatif au sol calcule par code radiatif @@ -272,20 +241,17 @@ REAL fluxlat(klon, nbsrf) SAVE fluxlat - REAL fqsurf(klon, nbsrf) - SAVE fqsurf ! humidite de l'air au contact de la surface - - REAL, save:: qsol(klon) ! hauteur d'eau dans le sol + REAL, save:: fqsurf(klon, nbsrf) + ! humidite de l'air au contact de la surface - REAL fsnow(klon, nbsrf) - SAVE fsnow ! epaisseur neigeuse + REAL, save:: qsol(klon) + ! column-density of water in soil, in kg m-2 - REAL falbe(klon, nbsrf) - SAVE falbe ! albedo par type de surface - REAL falblw(klon, nbsrf) - SAVE falblw ! albedo par type de surface + REAL, save:: fsnow(klon, nbsrf) ! epaisseur neigeuse + REAL, save:: falbe(klon, nbsrf) ! albedo par type de surface + REAL, save:: falblw(klon, nbsrf) ! albedo par type de surface - ! Paramètres de l'orographie à l'échelle sous-maille (OESM) : + ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) : REAL, save:: zmea(klon) ! orographie moyenne REAL, save:: zstd(klon) ! deviation standard de l'OESM REAL, save:: zsig(klon) ! pente de l'OESM @@ -307,10 +273,6 @@ !KE43 ! Variables liees a la convection de K. Emanuel (sb): - REAL bas, top ! cloud base and top levels - SAVE bas - SAVE top - REAL Ma(klon, llm) ! undilute upward mass flux SAVE Ma REAL qcondc(klon, llm) ! in-cld water content from convect @@ -344,8 +306,11 @@ REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction) REAL frac_nucl(klon, llm) ! idem (nucleation) - REAL, save:: rain_fall(klon) ! pluie - REAL, save:: snow_fall(klon) ! neige + REAL, save:: rain_fall(klon) + ! liquid water mass flux (kg/m2/s), positive down + + REAL, save:: snow_fall(klon) + ! solid water mass flux (kg/m2/s), positive down REAL rain_tiedtke(klon), snow_tiedtke(klon) @@ -361,30 +326,21 @@ REAL ue(klon) ! integr. verticale du transport zonal de l'energie REAL uq(klon) ! integr. verticale du transport zonal de l'eau - REAL frugs(klon, nbsrf) ! longueur de rugosite - save frugs + REAL, save:: frugs(klon, nbsrf) ! longueur de rugosite REAL zxrugs(klon) ! longueur de rugosite ! Conditions aux limites INTEGER julien - INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface REAL pctsrf_new(klon, nbsrf) ! pourcentage surfaces issus d'ORCHIDEE - - REAL albsol(klon) - SAVE albsol ! albedo du sol total - REAL albsollw(klon) - SAVE albsollw ! albedo du sol total - + REAL, save:: albsol(klon) ! albedo du sol total + REAL, save:: albsollw(klon) ! albedo du sol total REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU ! Declaration des procedures appelees - EXTERNAL alboc ! calculer l'albedo sur ocean - !KE43 - EXTERNAL conema3 ! convect4.3 EXTERNAL nuage ! calculer les proprietes radiatives EXTERNAL transp ! transport total de l'eau et de l'energie @@ -411,14 +367,14 @@ REAL zxfluxu(klon, llm) REAL zxfluxv(klon, llm) - ! Le rayonnement n'est pas calculé tous les pas, il faut donc que - ! les variables soient rémanentes. + ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que + ! les variables soient r\'emanentes. REAL, save:: heat(klon, llm) ! chauffage solaire REAL heat0(klon, llm) ! chauffage solaire ciel clair REAL, save:: cool(klon, llm) ! refroidissement infrarouge REAL cool0(klon, llm) ! refroidissement infrarouge ciel clair REAL, save:: topsw(klon), toplw(klon), solsw(klon) - REAL, save:: sollw(klon) ! rayonnement infrarouge montant à la surface + REAL, save:: sollw(klon) ! rayonnement infrarouge montant \`a la surface real, save:: sollwdown(klon) ! downward LW flux at surface REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon) REAL albpla(klon) @@ -438,18 +394,17 @@ REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon) - REAL dist, rmu0(klon), fract(klon) - REAL zdtime ! pas de temps du rayonnement (s) - real zlongi + REAL dist, mu0(klon), fract(klon) + real longi REAL z_avant(klon), z_apres(klon), z_factor(klon) REAL za, zb - REAL zx_t, zx_qs, zdelta, zcor + REAL zx_t, zx_qs, zcor real zqsat(klon, llm) INTEGER i, k, iq, nsrf REAL, PARAMETER:: t_coup = 234. REAL zphi(klon, llm) - !IM cf. AM Variables locales pour la CLA (hbtm2) + ! cf. AM Variables locales pour la CLA (hbtm2) REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA @@ -472,26 +427,17 @@ REAL upwd(klon, llm) ! saturated updraft mass flux REAL dnwd(klon, llm) ! saturated downdraft mass flux REAL dnwd0(klon, llm) ! unsaturated downdraft mass flux - REAL tvp(klon, llm) ! virtual temp of lifted parcel REAL cape(klon) ! CAPE SAVE cape - REAL pbase(klon) ! cloud base pressure - SAVE pbase - REAL bbase(klon) ! cloud base buoyancy - SAVE bbase - REAL rflag(klon) ! flag fonctionnement de convect INTEGER iflagctrl(klon) ! flag fonctionnement de convect - ! -- convect43: - REAL dtvpdt1(klon, llm), dtvpdq1(klon, llm) - REAL dplcldt(klon), dplcldr(klon) ! Variables du changement ! con: convection ! lsc: large scale condensation ! ajs: ajustement sec - ! eva: évaporation de l'eau liquide nuageuse + ! eva: \'evaporation de l'eau liquide nuageuse ! vdf: vertical diffusion in boundary layer REAL d_t_con(klon, llm), d_q_con(klon, llm) REAL d_u_con(klon, llm), d_v_con(klon, llm) @@ -534,14 +480,12 @@ integer:: iflag_cldcon = 1 logical ptconv(klon, llm) - ! Variables locales pour effectuer les appels en série : + ! Variables locales pour effectuer les appels en s\'erie : REAL t_seri(klon, llm), q_seri(klon, llm) - REAL ql_seri(klon, llm), qs_seri(klon, llm) + REAL ql_seri(klon, llm) REAL u_seri(klon, llm), v_seri(klon, llm) - - REAL tr_seri(klon, llm, nbtr) - REAL d_tr(klon, llm, nbtr) + REAL tr_seri(klon, llm, nqmx - 2) REAL zx_rh(klon, llm) @@ -550,34 +494,27 @@ REAL zustrph(klon), zvstrph(klon) REAL aam, torsfc - REAL dudyn(iim + 1, jjm + 1, llm) - REAL zx_tmp_fi2d(klon) ! variable temporaire grille physique - REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm) - INTEGER, SAVE:: nid_day, nid_ins + INTEGER, SAVE:: nid_ins REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert. REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert. REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert. REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert. - REAL zsto - - logical ok_sync real date0 - ! Variables liées au bilan d'énergie et d'enthalpie : + ! Variables li\'ees au bilan d'\'energie et d'enthalpie : REAL ztsol(klon) - REAL d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec + REAL d_h_vcol, d_qt, d_ec REAL, SAVE:: d_h_vcol_phy - REAL fs_bound, fq_bound REAL zero_v(klon) - CHARACTER(LEN = 15) tit + CHARACTER(LEN = 20) tit INTEGER:: ip_ebil = 0 ! print level for energy conservation diagnostics INTEGER:: if_ebil = 0 ! verbosity for diagnostics of energy conservation - REAL d_t_ec(klon, llm) ! tendance due à la conversion Ec -> E thermique + REAL d_t_ec(klon, llm) ! tendance due \`a la conversion Ec -> E thermique REAL ZRCPD REAL t2m(klon, nbsrf), q2m(klon, nbsrf) ! temperature and humidity at 2 m @@ -635,15 +572,13 @@ real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2 - namelist /physiq_nml/ ocean, ok_veget, ok_journe, ok_mensuel, ok_instan, & - fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, ratqsbas, & - ratqshaut, if_ebil, ok_ade, ok_aie, bl95_b0, bl95_b1, iflag_thermals, & - nsplit_thermals + namelist /physiq_nml/ ok_journe, ok_mensuel, ok_instan, fact_cldcon, & + facttemps, ok_newmicro, iflag_cldcon, ratqsbas, ratqshaut, if_ebil, & + ok_ade, ok_aie, bl95_b0, bl95_b1, iflag_thermals, nsplit_thermals !---------------------------------------------------------------- IF (if_ebil >= 1) zero_v = 0. - ok_sync = .TRUE. IF (nqmx < 2) CALL abort_gcm('physiq', & 'eaux vapeur et liquide sont indispensables', 1) @@ -658,12 +593,12 @@ piz_ae = 0. tau_ae = 0. cg_ae = 0. - rain_con(:) = 0. - snow_con(:) = 0. - topswai(:) = 0. - topswad(:) = 0. - solswai(:) = 0. - solswad(:) = 0. + rain_con = 0. + snow_con = 0. + topswai = 0. + topswad = 0. + solswai = 0. + solswad = 0. d_u_con = 0. d_v_con = 0. @@ -698,11 +633,11 @@ frugs = 0. itap = 0 itaprad = 0 - CALL phyetat0("startphy.nc", pctsrf, ftsol, ftsoil, ocean, tslab, & - seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, rain_fall, & - snow_fall, solsw, sollw, dlw, radsol, frugs, agesno, zmea, & - zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, & - ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01) + CALL phyetat0(pctsrf, ftsol, ftsoil, tslab, seaice, fqsurf, qsol, & + fsnow, falbe, falblw, fevap, rain_fall, snow_fall, solsw, sollw, & + dlw, radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, & + zval, t_ancien, q_ancien, ancien_ok, rnebcon, ratqs, clwcon, & + run_off_lic_0, sig1, w01) ! ATTENTION : il faudra a terme relire q2 dans l'etat initial q2 = 1e-8 @@ -712,17 +647,15 @@ ! on remet le calendrier a zero IF (raz_date) itau_phy = 0 - PRINT *, 'cycle_diurne = ', cycle_diurne - CALL printflag(radpas, ocean /= 'force', ok_oasis, ok_journe, & - ok_instan, ok_region) + CALL printflag(radpas, ok_journe, ok_instan, ok_region) - IF (dtphys * REAL(radpas) > 21600. .AND. cycle_diurne) THEN + IF (dtphys * radpas > 21600. .AND. cycle_diurne) THEN print *, "Au minimum 4 appels par jour si cycle diurne" call abort_gcm('physiq', & "Nombre d'appels au rayonnement insuffisant", 1) ENDIF - ! Initialisation pour le schéma de convection d'Emanuel : + ! Initialisation pour le sch\'ema de convection d'Emanuel : IF (iflag_con >= 3) THEN ibas_con = 1 itop_con = 1 @@ -744,77 +677,37 @@ ecrit_tra = NINT(86400.*ecrit_tra/dtphys) ecrit_reg = NINT(ecrit_reg/dtphys) - ! Initialiser le couplage si necessaire - - npas = 0 - nexca = 0 - ! Initialisation des sorties - call ini_histhf(dtphys, nid_hf, nid_hf3d) - call ini_histday(dtphys, ok_journe, nid_day, nqmx) call ini_histins(dtphys, ok_instan, nid_ins) - CALL ymds2ju(annee_ref, 1, int(day_ref), 0., date0) + CALL ymds2ju(annee_ref, 1, day_ref, 0., date0) ! Positionner date0 pour initialisation de ORCHIDEE print *, 'physiq date0: ', date0 ENDIF test_firstcal - ! Mettre a zero des variables de sortie (pour securite) - - DO i = 1, klon - d_ps(i) = 0. - ENDDO - DO iq = 1, nqmx - DO k = 1, llm - DO i = 1, klon - d_qx(i, k, iq) = 0. - ENDDO - ENDDO - ENDDO - da = 0. - mp = 0. - phi = 0. - - ! Ne pas affecter les valeurs entrées de u, v, h, et q : - - DO k = 1, llm - DO i = 1, klon - t_seri(i, k) = t(i, k) - u_seri(i, k) = u(i, k) - v_seri(i, k) = v(i, k) - q_seri(i, k) = qx(i, k, ivap) - ql_seri(i, k) = qx(i, k, iliq) - qs_seri(i, k) = 0. - ENDDO - ENDDO - IF (nqmx >= 3) THEN - tr_seri(:, :, :nqmx-2) = qx(:, :, 3:nqmx) - ELSE - tr_seri(:, :, 1) = 0. - ENDIF + ! We will modify variables *_seri and we will not touch variables + ! u, v, t, qx: + t_seri = t + u_seri = u + v_seri = v + q_seri = qx(:, :, ivap) + ql_seri = qx(:, :, iliq) + tr_seri = qx(:, :, 3: nqmx) - DO i = 1, klon - ztsol(i) = 0. - ENDDO - DO nsrf = 1, nbsrf - DO i = 1, klon - ztsol(i) = ztsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf) - ENDDO - ENDDO + ztsol = sum(ftsol * pctsrf, dim = 2) IF (if_ebil >= 1) THEN tit = 'after dynamics' CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, & - ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, & - d_ql, d_qs, d_ec) - ! Comme les tendances de la physique sont ajoutés dans la + ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) + ! Comme les tendances de la physique sont ajout\'es dans la ! dynamique, la variation d'enthalpie par la dynamique devrait - ! être égale à la variation de la physique au pas de temps - ! précédent. Donc la somme de ces 2 variations devrait être + ! \^etre \'egale \`a la variation de la physique au pas de temps + ! pr\'ec\'edent. Donc la somme de ces 2 variations devrait \^etre ! nulle. call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, & zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol + d_h_vcol_phy, & - d_qt, 0., fs_bound, fq_bound) + d_qt, 0.) END IF ! Diagnostic de la tendance dynamique : @@ -845,19 +738,17 @@ ! Check temperatures: CALL hgardfou(t_seri, ftsol) - ! Incrementer le compteur de la physique + ! Incrémenter le compteur de la physique itap = itap + 1 - julien = MOD(NINT(rdayvrai), 360) + julien = MOD(dayvrai, 360) if (julien == 0) julien = 360 - forall (k = 1: llm) zmasse(:, k) = (paprs(:, k)-paprs(:, k + 1)) / rg + forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg - ! Mettre en action les conditions aux limites (albedo, sst etc.). - - ! Prescrire l'ozone et calculer l'albedo sur l'ocean. + ! Prescrire l'ozone : wo = ozonecm(REAL(julien), paprs) - ! Évaporation de l'eau liquide nuageuse : + ! \'Evaporation de l'eau liquide nuageuse : DO k = 1, llm DO i = 1, klon zb = MAX(0., ql_seri(i, k)) @@ -871,77 +762,52 @@ IF (if_ebil >= 2) THEN tit = 'after reevap' CALL diagetpq(airephy, tit, ip_ebil, 2, 1, dtphys, t_seri, q_seri, & - ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, & - d_ql, d_qs, d_ec) + ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, & - zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, & - fs_bound, fq_bound) - + zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec) END IF - ! Appeler la diffusion verticale (programme de couche limite) + frugs = MAX(frugs, 0.000015) + zxrugs = sum(frugs * pctsrf, dim = 2) - DO i = 1, klon - zxrugs(i) = 0. - ENDDO - DO nsrf = 1, nbsrf - DO i = 1, klon - frugs(i, nsrf) = MAX(frugs(i, nsrf), 0.000015) - ENDDO - ENDDO - DO nsrf = 1, nbsrf - DO i = 1, klon - zxrugs(i) = zxrugs(i) + frugs(i, nsrf)*pctsrf(i, nsrf) - ENDDO - ENDDO + ! Calculs nécessaires au calcul de l'albedo dans l'interface avec + ! la surface. - ! calculs necessaires au calcul de l'albedo dans l'interface - - CALL orbite(REAL(julien), zlongi, dist) + CALL orbite(REAL(julien), longi, dist) IF (cycle_diurne) THEN - zdtime = dtphys * REAL(radpas) - CALL zenang(zlongi, time, zdtime, rmu0, fract) + CALL zenang(longi, time, dtphys * radpas, mu0, fract) ELSE - rmu0 = -999.999 + mu0 = -999.999 ENDIF ! Calcul de l'abedo moyen par maille - albsol(:) = 0. - albsollw(:) = 0. - DO nsrf = 1, nbsrf - DO i = 1, klon - albsol(i) = albsol(i) + falbe(i, nsrf) * pctsrf(i, nsrf) - albsollw(i) = albsollw(i) + falblw(i, nsrf) * pctsrf(i, nsrf) - ENDDO - ENDDO + albsol = sum(falbe * pctsrf, dim = 2) + albsollw = sum(falblw * pctsrf, dim = 2) - ! Répartition sous maille des flux longwave et shortwave - ! Répartition du longwave par sous-surface linéarisée + ! R\'epartition sous maille des flux longwave et shortwave + ! R\'epartition du longwave par sous-surface lin\'earis\'ee - DO nsrf = 1, nbsrf - DO i = 1, klon - fsollw(i, nsrf) = sollw(i) & - + 4. * RSIGMA * ztsol(i)**3 * (ztsol(i) - ftsol(i, nsrf)) - fsolsw(i, nsrf) = solsw(i) * (1. - falbe(i, nsrf)) / (1. - albsol(i)) - ENDDO - ENDDO + forall (nsrf = 1: nbsrf) + fsollw(:, nsrf) = sollw + 4. * RSIGMA * ztsol**3 & + * (ztsol - ftsol(:, nsrf)) + fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol) + END forall fder = dlw ! Couche limite: - CALL clmain(dtphys, itap, pctsrf, pctsrf_new, t_seri, q_seri, & - u_seri, v_seri, julien, rmu0, co2_ppm, ok_veget, ocean, & - ftsol, soil_model, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, & - qsol, paprs, play, fsnow, fqsurf, fevap, falbe, falblw, fluxlat, & - rain_fall, snow_fall, fsolsw, fsollw, fder, rlon, rlat, & - frugs, firstcal, agesno, rugoro, d_t_vdf, & - d_q_vdf, d_u_vdf, d_v_vdf, d_ts, fluxt, fluxq, fluxu, fluxv, cdragh, & - cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, & - pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, plcl, & - fqcalving, ffonte, run_off_lic_0, fluxo, fluxg, tslab, seaice) + CALL clmain(dtphys, itap, pctsrf, pctsrf_new, t_seri, q_seri, u_seri, & + v_seri, julien, mu0, co2_ppm, ftsol, cdmmax, cdhmax, & + ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, play, fsnow, fqsurf, & + fevap, falbe, falblw, fluxlat, rain_fall, snow_fall, fsolsw, fsollw, & + fder, rlat, frugs, firstcal, agesno, rugoro, d_t_vdf, d_q_vdf, & + d_u_vdf, d_v_vdf, d_ts, fluxt, fluxq, fluxu, fluxv, cdragh, cdragm, & + q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, pblh, & + capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, plcl, & + fqcalving, ffonte, run_off_lic_0, fluxo, fluxg, tslab) - ! Incrémentation des flux + ! Incr\'ementation des flux zxfluxt = 0. zxfluxq = 0. @@ -959,7 +825,7 @@ END DO DO i = 1, klon sens(i) = - zxfluxt(i, 1) ! flux de chaleur sensible au sol - evap(i) = - zxfluxq(i, 1) ! flux d'évaporation au sol + evap(i) = - zxfluxq(i, 1) ! flux d'\'evaporation au sol fder(i) = dlw(i) + dsens(i) + devap(i) ENDDO @@ -975,11 +841,9 @@ IF (if_ebil >= 2) THEN tit = 'after clmain' CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & - ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, & - d_ql, d_qs, d_ec) + ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, & - sens, evap, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, & - fs_bound, fq_bound) + sens, evap, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec) END IF ! Update surface temperature: @@ -1008,7 +872,8 @@ IF (abs(pctsrf(i, is_ter) + pctsrf(i, is_lic) + pctsrf(i, is_oce) & + pctsrf(i, is_sic) - 1.) > EPSFRA) print *, & - 'physiq : problème sous surface au point ', i, pctsrf(i, 1 : nbsrf) + 'physiq : probl\`eme sous surface au point ', i, & + pctsrf(i, 1 : nbsrf) ENDDO DO nsrf = 1, nbsrf DO i = 1, klon @@ -1036,8 +901,7 @@ ENDDO ENDDO - ! Si une sous-fraction n'existe pas, elle prend la temp. moyenne - + ! Si une sous-fraction n'existe pas, elle prend la température moyenne : DO nsrf = 1, nbsrf DO i = 1, klon IF (pctsrf(i, nsrf) < epsfra) ftsol(i, nsrf) = zxtsol(i) @@ -1062,27 +926,19 @@ ENDDO ENDDO - ! Calculer la derive du flux infrarouge + ! Calculer la dérive du flux infrarouge DO i = 1, klon dlw(i) = - 4. * RSIGMA * zxtsol(i)**3 ENDDO - ! Appeler la convection (au choix) - - DO k = 1, llm - DO i = 1, klon - conv_q(i, k) = d_q_dyn(i, k) + d_q_vdf(i, k)/dtphys - conv_t(i, k) = d_t_dyn(i, k) + d_t_vdf(i, k)/dtphys - ENDDO - ENDDO + IF (check) print *, "avantcon = ", qcheck(paprs, q_seri, ql_seri) - IF (check) THEN - za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy) - print *, "avantcon = ", za - ENDIF + ! Appeler la convection (au choix) if (iflag_con == 2) then + conv_q = d_q_dyn + d_q_vdf / dtphys + conv_t = d_t_dyn + d_t_vdf / dtphys z_avant = sum((q_seri + ql_seri) * zmasse, dim=2) CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:-1), & q_seri(:, llm:1:-1), conv_t, conv_q, zxfluxq(:, 1), omega, & @@ -1096,44 +952,25 @@ else ! iflag_con >= 3 - CALL concvl(dtphys, paprs, play, t_seri, q_seri, u_seri, & - v_seri, tr_seri, sig1, w01, d_t_con, d_q_con, & - d_u_con, d_v_con, d_tr, rain_con, snow_con, ibas_con, & - itop_con, upwd, dnwd, dnwd0, Ma, cape, tvp, iflagctrl, & - pbase, bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr, qcondc, & - wd, pmflxr, pmflxs, da, phi, mp, ntra=1) - ! (number of tracers for the convection scheme of Kerry Emanuel: - ! la partie traceurs est faite dans phytrac - ! on met ntra = 1 pour limiter les appels mais on peut - ! supprimer les calculs / ftra.) - + da = 0. + mp = 0. + phi = 0. + CALL concvl(dtphys, paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, & + w01, d_t_con, d_q_con, d_u_con, d_v_con, rain_con, snow_con, & + ibas_con, itop_con, upwd, dnwd, dnwd0, Ma, cape, iflagctrl, & + qcondc, wd, pmflxr, pmflxs, da, phi, mp) clwcon0 = qcondc mfu = upwd + dnwd IF (.NOT. ok_gust) wd = 0. - ! Calcul des propriétés des nuages convectifs - - DO k = 1, llm - DO i = 1, klon - zx_t = t_seri(i, k) - IF (thermcep) THEN - zdelta = MAX(0., SIGN(1., rtt-zx_t)) - zx_qs = r2es * FOEEW(zx_t, zdelta) / play(i, k) - zx_qs = MIN(0.5, zx_qs) - zcor = 1./(1.-retv*zx_qs) - zx_qs = zx_qs*zcor - ELSE - IF (zx_t < t_coup) THEN - zx_qs = qsats(zx_t)/play(i, k) - ELSE - zx_qs = qsatl(zx_t)/play(i, k) - ENDIF - ENDIF - zqsat(i, k) = zx_qs - ENDDO - ENDDO + IF (thermcep) THEN + zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play) + zqsat = zqsat / (1. - retv * zqsat) + ELSE + zqsat = merge(qsats(t_seri), qsatl(t_seri), t_seri < t_coup) / play + ENDIF - ! calcul des proprietes des nuages convectifs + ! Properties of convective clouds clwcon0 = fact_cldcon * clwcon0 call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, & rnebcon0) @@ -1157,15 +994,13 @@ IF (if_ebil >= 2) THEN tit = 'after convect' CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & - ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, & - d_ql, d_qs, d_ec) + ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, & - zero_v, zero_v, rain_con, snow_con, ztsol, d_h_vcol, d_qt, d_ec, & - fs_bound, fq_bound) + zero_v, zero_v, rain_con, snow_con, ztsol, d_h_vcol, d_qt, d_ec) END IF IF (check) THEN - za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy) + za = qcheck(paprs, q_seri, ql_seri) print *, "aprescon = ", za zx_t = 0. za = 0. @@ -1190,7 +1025,7 @@ ENDDO ENDIF - ! Convection sèche (thermiques ou ajustement) + ! Convection s\`eche (thermiques ou ajustement) d_t_ajs = 0. d_u_ajs = 0. @@ -1213,14 +1048,13 @@ IF (if_ebil >= 2) THEN tit = 'after dry_adjust' CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & - ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, & - d_ql, d_qs, d_ec) + ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) END IF ! Caclul des ratqs - ! ratqs convectifs à l'ancienne en fonction de (q(z = 0) - q) / q - ! on écrase le tableau ratqsc calculé par clouds_gno + ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q + ! on \'ecrase le tableau ratqsc calcul\'e par clouds_gno if (iflag_cldcon == 1) then do k = 1, llm do i = 1, klon @@ -1272,7 +1106,7 @@ ENDDO ENDDO IF (check) THEN - za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy) + za = qcheck(paprs, q_seri, ql_seri) print *, "apresilp = ", za zx_t = 0. za = 0. @@ -1288,11 +1122,9 @@ IF (if_ebil >= 2) THEN tit = 'after fisrt' CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & - ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, & - d_ql, d_qs, d_ec) + ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, & - zero_v, zero_v, rain_lsc, snow_lsc, ztsol, d_h_vcol, d_qt, d_ec, & - fs_bound, fq_bound) + zero_v, zero_v, rain_lsc, snow_lsc, ztsol, d_h_vcol, d_qt, d_ec) END IF ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT @@ -1329,7 +1161,7 @@ ENDDO ELSE IF (iflag_cldcon == 3) THEN ! On prend pour les nuages convectifs le maximum du calcul de - ! la convection et du calcul du pas de temps précédent diminué + ! la convection et du calcul du pas de temps pr\'ec\'edent diminu\'e ! d'un facteur facttemps. facteur = dtphys * facttemps do k = 1, llm @@ -1369,16 +1201,15 @@ ENDDO IF (if_ebil >= 2) CALL diagetpq(airephy, "after diagcld", ip_ebil, 2, 2, & - dtphys, t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, & - d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) + dtphys, t_seri, q_seri, ql_seri, u_seri, v_seri, paprs, d_h_vcol, & + d_qt, d_ec) - ! Humidité relative pour diagnostic : + ! Humidit\'e relative pour diagnostic : DO k = 1, llm DO i = 1, klon zx_t = t_seri(i, k) IF (thermcep) THEN - zdelta = MAX(0., SIGN(1., rtt-zx_t)) - zx_qs = r2es * FOEEW(zx_t, zdelta)/play(i, k) + zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t)/play(i, k) zx_qs = MIN(0.5, zx_qs) zcor = 1./(1.-retv*zx_qs) zx_qs = zx_qs*zcor @@ -1397,8 +1228,8 @@ ! Introduce the aerosol direct and first indirect radiative forcings: IF (ok_ade .OR. ok_aie) THEN ! Get sulfate aerosol distribution : - CALL readsulfate(rdayvrai, firstcal, sulfate) - CALL readsulfate_preind(rdayvrai, firstcal, sulfate_pi) + CALL readsulfate(dayvrai, time, firstcal, sulfate) + CALL readsulfate_preind(dayvrai, time, firstcal, sulfate_pi) CALL aeropt(play, paprs, t_seri, sulfate, rhcl, tau_ae, piz_ae, cg_ae, & aerindex) @@ -1408,7 +1239,8 @@ cg_ae = 0. ENDIF - ! Paramètres optiques des nuages et quelques paramètres pour diagnostics : + ! Param\`etres optiques des nuages et quelques param\`etres pour + ! diagnostics : if (ok_newmicro) then CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, & cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc, ok_aie, & @@ -1419,8 +1251,8 @@ bl95_b1, cldtaupi, re, fl) endif - ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol. IF (MOD(itaprad, radpas) == 0) THEN + ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol. DO i = 1, klon albsol(i) = falbe(i, is_oce) * pctsrf(i, is_oce) & + falbe(i, is_lic) * pctsrf(i, is_lic) & @@ -1432,7 +1264,7 @@ + falblw(i, is_sic) * pctsrf(i, is_sic) ENDDO ! Rayonnement (compatible Arpege-IFS) : - CALL radlwsw(dist, rmu0, fract, paprs, play, zxtsol, albsol, & + CALL radlwsw(dist, mu0, fract, paprs, play, zxtsol, albsol, & albsollw, t_seri, q_seri, wo, cldfra, cldemi, cldtau, heat, & heat0, cool, cool0, radsol, albpla, topsw, toplw, solsw, sollw, & sollwdown, topsw0, toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, & @@ -1440,6 +1272,7 @@ cg_ae, topswad, solswad, cldtaupi, topswai, solswai) itaprad = 0 ENDIF + itaprad = itaprad + 1 ! Ajouter la tendance des rayonnements (tous les pas) @@ -1453,11 +1286,9 @@ IF (if_ebil >= 2) THEN tit = 'after rad' CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, & - ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, & - d_ql, d_qs, d_ec) + ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, & - zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, & - fs_bound, fq_bound) + zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec) END IF ! Calculer l'hydrologie de la surface @@ -1472,13 +1303,13 @@ ENDDO ENDDO - ! Calculer le bilan du sol et la dérive de température (couplage) + ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage) DO i = 1, klon bils(i) = radsol(i) - sens(i) + zxfluxlat(i) ENDDO - ! Paramétrisation de l'orographie à l'échelle sous-maille : + ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille : IF (ok_orodr) THEN ! selection des points pour lesquels le shema est actif: @@ -1493,8 +1324,8 @@ ENDDO CALL drag_noro(klon, llm, dtphys, paprs, play, zmea, zstd, zsig, zgam, & - zthe, zpic, zval, igwd, idx, itest, t_seri, u_seri, v_seri, & - zulow, zvlow, zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro) + zthe, zpic, zval, itest, t_seri, u_seri, v_seri, zulow, zvlow, & + zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro) ! ajout des tendances DO k = 1, llm @@ -1507,7 +1338,7 @@ ENDIF IF (ok_orolf) THEN - ! Sélection des points pour lesquels le schéma est actif : + ! S\'election des points pour lesquels le sch\'ema est actif : igwd = 0 DO i = 1, klon itest(i) = 0 @@ -1532,7 +1363,7 @@ ENDDO ENDIF - ! Stress nécessaires : toute la physique + ! Stress n\'ecessaires : toute la physique DO i = 1, klon zustrph(i) = 0. @@ -1551,21 +1382,18 @@ zustrph, zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc) IF (if_ebil >= 2) CALL diagetpq(airephy, 'after orography', ip_ebil, 2, & - 2, dtphys, t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, & - d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) + 2, dtphys, t_seri, q_seri, ql_seri, u_seri, v_seri, paprs, d_h_vcol, & + d_qt, d_ec) ! Calcul des tendances traceurs - call phytrac(rnpb, itap, lmt_pas, julien, time, firstcal, lafin, nqmx-2, & - dtphys, u, t, paprs, play, mfu, mfd, pen_u, pde_u, pen_d, pde_d, & - ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, pctsrf, frac_impa, & - frac_nucl, pphis, albsol, rhcl, cldfra, rneb, diafra, cldliq, & - pmflxr, pmflxs, prfl, psfl, da, phi, mp, upwd, dnwd, tr_seri, zmasse) - - IF (offline) THEN - call phystokenc(dtphys, rlon, rlat, t, mfu, mfd, pen_u, pde_u, & - pen_d, pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, & - pctsrf, frac_impa, frac_nucl, pphis, airephy, dtphys, itap) - ENDIF + call phytrac(itap, lmt_pas, julien, time, firstcal, lafin, dtphys, t, & + paprs, play, mfu, mfd, pde_u, pen_d, ycoefh, fm_therm, entr_therm, & + yu1, yv1, ftsol, pctsrf, frac_impa, frac_nucl, pphis, da, phi, mp, & + upwd, dnwd, tr_seri, zmasse) + + IF (offline) call phystokenc(dtphys, rlon, rlat, t, mfu, mfd, pen_u, & + pde_u, pen_d, pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, & + pctsrf, frac_impa, frac_nucl, pphis, airephy, dtphys, itap) ! Calculer le transport de l'eau et de l'energie (diagnostique) CALL transp(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, & @@ -1592,18 +1420,14 @@ IF (if_ebil >= 1) THEN tit = 'after physic' CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, & - ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, & - d_ql, d_qs, d_ec) + ql_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_ec) ! Comme les tendances de la physique sont ajoute dans la dynamique, ! on devrait avoir que la variation d'entalpie par la dynamique ! est egale a la variation de la physique au pas de temps precedent. ! Donc la somme de ces 2 variations devrait etre nulle. call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, sens, & - evap, rain_fall, snow_fall, ztsol, d_h_vcol, d_qt, d_ec, & - fs_bound, fq_bound) - + evap, rain_fall, snow_fall, ztsol, d_h_vcol, d_qt, d_ec) d_h_vcol_phy = d_h_vcol - END IF ! SORTIES @@ -1628,15 +1452,13 @@ ENDDO ENDDO - IF (nqmx >= 3) THEN - DO iq = 3, nqmx - DO k = 1, llm - DO i = 1, klon - d_qx(i, k, iq) = (tr_seri(i, k, iq-2) - qx(i, k, iq)) / dtphys - ENDDO + DO iq = 3, nqmx + DO k = 1, llm + DO i = 1, klon + d_qx(i, k, iq) = (tr_seri(i, k, iq-2) - qx(i, k, iq)) / dtphys ENDDO ENDDO - ENDIF + ENDDO ! Sauvegarder les valeurs de t et q a la fin de la physique: DO k = 1, llm @@ -1647,84 +1469,43 @@ ENDDO ! Ecriture des sorties - call write_histhf - call write_histday call write_histins ! Si c'est la fin, il faut conserver l'etat de redemarrage IF (lafin) THEN itau_phy = itau_phy + itap - CALL phyredem("restartphy.nc", rlat, rlon, pctsrf, ftsol, ftsoil, & - tslab, seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, & - rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, & - agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, & - q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01) + CALL phyredem("restartphy.nc", pctsrf, ftsol, ftsoil, tslab, seaice, & + fqsurf, qsol, fsnow, falbe, falblw, fevap, rain_fall, snow_fall, & + solsw, sollw, dlw, radsol, frugs, agesno, zmea, zstd, zsig, zgam, & + zthe, zpic, zval, t_ancien, q_ancien, rnebcon, ratqs, clwcon, & + run_off_lic_0, sig1, w01) ENDIF firstcal = .FALSE. contains - subroutine write_histday - - use gr_phy_write_3d_m, only: gr_phy_write_3d - integer itau_w ! pas de temps ecriture - - !------------------------------------------------ - - if (ok_journe) THEN - itau_w = itau_phy + itap - if (nqmx <= 4) then - call histwrite(nid_day, "Sigma_O3_Royer", itau_w, & - gr_phy_write_3d(wo) * 1e3) - ! (convert "wo" from kDU to DU) - end if - if (ok_sync) then - call histsync(nid_day) - endif - ENDIF - - End subroutine write_histday - - !**************************** - - subroutine write_histhf - - ! From phylmd/write_histhf.h, version 1.5 2005/05/25 13:10:09 - - !------------------------------------------------ - - call write_histhf3d - - IF (ok_sync) THEN - call histsync(nid_hf) - ENDIF - - end subroutine write_histhf - - !*************************************************************** - subroutine write_histins ! From phylmd/write_histins.h, version 1.2 2005/05/25 13:10:09 - real zout - integer itau_w ! pas de temps ecriture + use dimens_m, only: iim, jjm + USE histsync_m, ONLY: histsync + USE histwrite_m, ONLY: histwrite + + integer i, itau_w ! pas de temps ecriture + REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm) !-------------------------------------------------- IF (ok_instan) THEN ! Champs 2D: - zsto = dtphys * ecrit_ins - zout = dtphys * ecrit_ins itau_w = itau_phy + itap - i = NINT(zout/zsto) CALL gr_fi_ecrit(1, klon, iim, jjm + 1, pphis, zx_tmp_2d) CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d) - i = NINT(zout/zsto) CALL gr_fi_ecrit(1, klon, iim, jjm + 1, airephy, zx_tmp_2d) CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d) @@ -1925,51 +1706,11 @@ CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_q_vdf, zx_tmp_3d) CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d) - if (ok_sync) then - call histsync(nid_ins) - endif + call histsync(nid_ins) ENDIF end subroutine write_histins - !**************************************************** - - subroutine write_histhf3d - - ! From phylmd/write_histhf3d.h, version 1.2 2005/05/25 13:10:09 - - integer itau_w ! pas de temps ecriture - - !------------------------------------------------------- - - itau_w = itau_phy + itap - - ! Champs 3D: - - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, t_seri, zx_tmp_3d) - CALL histwrite(nid_hf3d, "temp", itau_w, zx_tmp_3d) - - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, qx(1, 1, ivap), zx_tmp_3d) - CALL histwrite(nid_hf3d, "ovap", itau_w, zx_tmp_3d) - - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, u_seri, zx_tmp_3d) - CALL histwrite(nid_hf3d, "vitu", itau_w, zx_tmp_3d) - - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, v_seri, zx_tmp_3d) - CALL histwrite(nid_hf3d, "vitv", itau_w, zx_tmp_3d) - - if (nbtr >= 3) then - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, tr_seri(1, 1, 3), & - zx_tmp_3d) - CALL histwrite(nid_hf3d, "O3", itau_w, zx_tmp_3d) - end if - - if (ok_sync) then - call histsync(nid_hf3d) - endif - - end subroutine write_histhf3d - END SUBROUTINE physiq end module physiq_m