--- trunk/libf/phylmd/physiq.f90 2013/02/18 16:33:12 69 +++ trunk/libf/phylmd/physiq.f90 2013/11/15 17:48:30 73 @@ -7,7 +7,9 @@ SUBROUTINE physiq(lafin, rdayvrai, time, dtphys, paprs, play, pphi, pphis, & u, v, t, qx, omega, d_u, d_v, d_t, d_qx, d_ps, dudyn, PVteta) - ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28 (SVN revision 678) + ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28 + ! (subversion revision 678) + ! Author: Z.X. Li (LMD/CNRS) 1993 ! This is the main procedure for the "physics" part of the program. @@ -23,6 +25,7 @@ USE clesphys2, ONLY: cycle_diurne, iflag_con, nbapp_rad, new_oliq, & ok_orodr, ok_orolf, soil_model USE clmain_m, ONLY: clmain + use clouds_gno_m, only: clouds_gno USE comgeomphy, ONLY: airephy, cuphy, cvphy USE concvl_m, ONLY: concvl USE conf_gcm_m, ONLY: offline, raz_date @@ -167,15 +170,12 @@ !MI Amip2 PV a theta constante - INTEGER klevp1 - PARAMETER(klevp1 = llm + 1) - - REAL swdn0(klon, klevp1), swdn(klon, klevp1) - REAL swup0(klon, klevp1), swup(klon, klevp1) + REAL swdn0(klon, llm + 1), swdn(klon, llm + 1) + REAL swup0(klon, llm + 1), swup(klon, llm + 1) SAVE swdn0, swdn, swup0, swup - REAL lwdn0(klon, klevp1), lwdn(klon, klevp1) - REAL lwup0(klon, klevp1), lwup(klon, klevp1) + REAL lwdn0(klon, llm + 1), lwdn(klon, llm + 1) + REAL lwup0(klon, llm + 1), lwup(klon, llm + 1) SAVE lwdn0, lwdn, lwup0, lwup !IM Amip2 @@ -206,7 +206,7 @@ PARAMETER(kmaxm1 = kmax-1, lmaxm1 = lmax-1) REAL zx_tau(kmaxm1), zx_pc(lmaxm1) - DATA zx_tau/0.0, 0.3, 1.3, 3.6, 9.4, 23., 60./ + DATA zx_tau/0., 0.3, 1.3, 3.6, 9.4, 23., 60./ DATA zx_pc/50., 180., 310., 440., 560., 680., 800./ ! cldtopres pression au sommet des nuages @@ -268,8 +268,7 @@ REAL, save:: ftsoil(klon, nsoilmx, nbsrf) ! soil temperature of surface fraction - REAL fevap(klon, nbsrf) - SAVE fevap ! evaporation + REAL, save:: fevap(klon, nbsrf) ! evaporation REAL fluxlat(klon, nbsrf) SAVE fluxlat @@ -316,8 +315,7 @@ SAVE Ma REAL qcondc(klon, llm) ! in-cld water content from convect SAVE qcondc - REAL ema_work1(klon, llm), ema_work2(klon, llm) - SAVE ema_work1, ema_work2 + REAL, save:: sig1(klon, llm), w01(klon, llm) REAL, save:: wd(klon) ! Variables locales pour la couche limite (al1): @@ -351,7 +349,7 @@ REAL rain_tiedtke(klon), snow_tiedtke(klon) - REAL evap(klon), devap(klon) ! evaporation et sa derivee + REAL evap(klon), devap(klon) ! evaporation and its derivative REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee REAL dlw(klon) ! derivee infra rouge SAVE dlw @@ -372,11 +370,9 @@ INTEGER julien INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day - REAL pctsrf(klon, nbsrf) - !IM - REAL pctsrf_new(klon, nbsrf) !pourcentage surfaces issus d'ORCHIDEE + REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface + REAL pctsrf_new(klon, nbsrf) ! pourcentage surfaces issus d'ORCHIDEE - SAVE pctsrf ! sous-fraction du sol REAL albsol(klon) SAVE albsol ! albedo du sol total REAL albsollw(klon) @@ -394,10 +390,8 @@ ! Variables locales - real clwcon(klon, llm), rnebcon(klon, llm) - real clwcon0(klon, llm), rnebcon0(klon, llm) - - save rnebcon, clwcon + real, save:: clwcon(klon, llm), rnebcon(klon, llm) + real, save:: clwcon0(klon, llm), rnebcon0(klon, llm) REAL rhcl(klon, llm) ! humiditi relative ciel clair REAL dialiq(klon, llm) ! eau liquide nuageuse @@ -423,13 +417,14 @@ REAL heat0(klon, llm) ! chauffage solaire ciel clair REAL, save:: cool(klon, llm) ! refroidissement infrarouge REAL cool0(klon, llm) ! refroidissement infrarouge ciel clair - REAL, save:: topsw(klon), toplw(klon), solsw(klon), sollw(klon) - real sollwdown(klon) ! downward LW flux at surface + REAL, save:: topsw(klon), toplw(klon), solsw(klon) + REAL, save:: sollw(klon) ! rayonnement infrarouge montant à la surface + real, save:: sollwdown(klon) ! downward LW flux at surface REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon) REAL albpla(klon) REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous surface REAL fsolsw(klon, nbsrf) ! flux solaire absorb. pour chaque sous surface - SAVE albpla, sollwdown + SAVE albpla SAVE heat0, cool0 INTEGER itaprad @@ -505,7 +500,7 @@ REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm) REAL rneb(klon, llm) - REAL pmfu(klon, llm), pmfd(klon, llm) + REAL mfu(klon, llm), mfd(klon, llm) REAL pen_u(klon, llm), pen_d(klon, llm) REAL pde_u(klon, llm), pde_d(klon, llm) INTEGER kcbot(klon), kctop(klon), kdtop(klon) @@ -634,8 +629,6 @@ SAVE solswad SAVE d_u_con SAVE d_v_con - SAVE rnebcon0 - SAVE clwcon0 real zmasse(klon, llm) ! (column-density of mass of air in a cell, in kg m-2) @@ -672,12 +665,12 @@ solswai(:) = 0. solswad(:) = 0. - d_u_con = 0.0 - d_v_con = 0.0 - rnebcon0 = 0.0 - clwcon0 = 0.0 - rnebcon = 0.0 - clwcon = 0.0 + d_u_con = 0. + d_v_con = 0. + rnebcon0 = 0. + clwcon0 = 0. + rnebcon = 0. + clwcon = 0. pblh =0. ! Hauteur de couche limite plcl =0. ! Niveau de condensation de la CLA @@ -707,9 +700,9 @@ itaprad = 0 CALL phyetat0("startphy.nc", pctsrf, ftsol, ftsoil, ocean, tslab, & seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, rain_fall, & - snow_fall, solsw, sollwdown, dlw, radsol, frugs, agesno, zmea, & + snow_fall, solsw, sollw, dlw, radsol, frugs, agesno, zmea, & zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, & - ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0) + ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01) ! ATTENTION : il faudra a terme relire q2 dans l'etat initial q2 = 1e-8 @@ -835,8 +828,8 @@ ELSE DO k = 1, llm DO i = 1, klon - d_t_dyn(i, k) = 0.0 - d_q_dyn(i, k) = 0.0 + d_t_dyn(i, k) = 0. + d_q_dyn(i, k) = 0. ENDDO ENDDO ancien_ok = .TRUE. @@ -889,7 +882,7 @@ ! Appeler la diffusion verticale (programme de couche limite) DO i = 1, klon - zxrugs(i) = 0.0 + zxrugs(i) = 0. ENDDO DO nsrf = 1, nbsrf DO i = 1, klon @@ -922,8 +915,8 @@ ENDDO ENDDO - ! Repartition sous maille des flux LW et SW - ! Repartition du longwave par sous-surface linearisee + ! Répartition sous maille des flux longwave et shortwave + ! Répartition du longwave par sous-surface linéarisée DO nsrf = 1, nbsrf DO i = 1, klon @@ -937,12 +930,12 @@ ! Couche limite: - CALL clmain(dtphys, itap, date0, pctsrf, pctsrf_new, t_seri, q_seri, & - u_seri, v_seri, julien, rmu0, co2_ppm, ok_veget, ocean, npas, nexca, & + CALL clmain(dtphys, itap, pctsrf, pctsrf_new, t_seri, q_seri, & + u_seri, v_seri, julien, rmu0, co2_ppm, ok_veget, ocean, & ftsol, soil_model, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, & qsol, paprs, play, fsnow, fqsurf, fevap, falbe, falblw, fluxlat, & - rain_fall, snow_fall, fsolsw, fsollw, sollwdown, fder, rlon, rlat, & - cuphy, cvphy, frugs, firstcal, lafin, agesno, rugoro, d_t_vdf, & + rain_fall, snow_fall, fsolsw, fsollw, fder, rlon, rlat, & + frugs, firstcal, agesno, rugoro, d_t_vdf, & d_q_vdf, d_u_vdf, d_v_vdf, d_ts, fluxt, fluxq, fluxu, fluxv, cdragh, & cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, & pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, plcl, & @@ -957,14 +950,10 @@ DO nsrf = 1, nbsrf DO k = 1, llm DO i = 1, klon - zxfluxt(i, k) = zxfluxt(i, k) + & - fluxt(i, k, nsrf) * pctsrf(i, nsrf) - zxfluxq(i, k) = zxfluxq(i, k) + & - fluxq(i, k, nsrf) * pctsrf(i, nsrf) - zxfluxu(i, k) = zxfluxu(i, k) + & - fluxu(i, k, nsrf) * pctsrf(i, nsrf) - zxfluxv(i, k) = zxfluxv(i, k) + & - fluxv(i, k, nsrf) * pctsrf(i, nsrf) + zxfluxt(i, k) = zxfluxt(i, k) + fluxt(i, k, nsrf) * pctsrf(i, nsrf) + zxfluxq(i, k) = zxfluxq(i, k) + fluxq(i, k, nsrf) * pctsrf(i, nsrf) + zxfluxu(i, k) = zxfluxu(i, k) + fluxu(i, k, nsrf) * pctsrf(i, nsrf) + zxfluxv(i, k) = zxfluxv(i, k) + fluxv(i, k, nsrf) * pctsrf(i, nsrf) END DO END DO END DO @@ -996,26 +985,26 @@ ! Update surface temperature: DO i = 1, klon - zxtsol(i) = 0.0 - zxfluxlat(i) = 0.0 + zxtsol(i) = 0. + zxfluxlat(i) = 0. - zt2m(i) = 0.0 - zq2m(i) = 0.0 - zu10m(i) = 0.0 - zv10m(i) = 0.0 - zxffonte(i) = 0.0 - zxfqcalving(i) = 0.0 - - s_pblh(i) = 0.0 - s_lcl(i) = 0.0 - s_capCL(i) = 0.0 - s_oliqCL(i) = 0.0 - s_cteiCL(i) = 0.0 - s_pblT(i) = 0.0 - s_therm(i) = 0.0 - s_trmb1(i) = 0.0 - s_trmb2(i) = 0.0 - s_trmb3(i) = 0.0 + zt2m(i) = 0. + zq2m(i) = 0. + zu10m(i) = 0. + zv10m(i) = 0. + zxffonte(i) = 0. + zxfqcalving(i) = 0. + + s_pblh(i) = 0. + s_lcl(i) = 0. + s_capCL(i) = 0. + s_oliqCL(i) = 0. + s_cteiCL(i) = 0. + s_pblT(i) = 0. + s_therm(i) = 0. + s_trmb1(i) = 0. + s_trmb2(i) = 0. + s_trmb3(i) = 0. IF (abs(pctsrf(i, is_ter) + pctsrf(i, is_lic) + pctsrf(i, is_oce) & + pctsrf(i, is_sic) - 1.) > EPSFRA) print *, & @@ -1095,20 +1084,20 @@ if (iflag_con == 2) then z_avant = sum((q_seri + ql_seri) * zmasse, dim=2) - CALL conflx(dtphys, paprs, play, t_seri, q_seri, conv_t, conv_q, & - zxfluxq(1, 1), omega, d_t_con, d_q_con, rain_con, snow_con, pmfu, & - pmfd, pen_u, pde_u, pen_d, pde_d, kcbot, kctop, kdtop, pmflxr, & - pmflxs) + CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:-1), & + q_seri(:, llm:1:-1), conv_t, conv_q, zxfluxq(:, 1), omega, & + d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:-1), & + mfd(:, llm:1:-1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, & + kdtop, pmflxr, pmflxs) WHERE (rain_con < 0.) rain_con = 0. WHERE (snow_con < 0.) snow_con = 0. - DO i = 1, klon - ibas_con(i) = llm + 1 - kcbot(i) - itop_con(i) = llm + 1 - kctop(i) - ENDDO + ibas_con = llm + 1 - kcbot + itop_con = llm + 1 - kctop else ! iflag_con >= 3 + CALL concvl(dtphys, paprs, play, t_seri, q_seri, u_seri, & - v_seri, tr_seri, ema_work1, ema_work2, d_t_con, d_q_con, & + v_seri, tr_seri, sig1, w01, d_t_con, d_q_con, & d_u_con, d_v_con, d_tr, rain_con, snow_con, ibas_con, & itop_con, upwd, dnwd, dnwd0, Ma, cape, tvp, iflagctrl, & pbase, bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr, qcondc, & @@ -1119,7 +1108,7 @@ ! supprimer les calculs / ftra.) clwcon0 = qcondc - pmfu = upwd + dnwd + mfu = upwd + dnwd IF (.NOT. ok_gust) wd = 0. ! Calcul des propriétés des nuages convectifs @@ -1129,7 +1118,7 @@ zx_t = t_seri(i, k) IF (thermcep) THEN zdelta = MAX(0., SIGN(1., rtt-zx_t)) - zx_qs = r2es * FOEEW(zx_t, zdelta)/play(i, k) + zx_qs = r2es * FOEEW(zx_t, zdelta) / play(i, k) zx_qs = MIN(0.5, zx_qs) zcor = 1./(1.-retv*zx_qs) zx_qs = zx_qs*zcor @@ -1145,9 +1134,15 @@ ENDDO ! calcul des proprietes des nuages convectifs - clwcon0 = fact_cldcon*clwcon0 + clwcon0 = fact_cldcon * clwcon0 call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, & rnebcon0) + + mfd = 0. + pen_u = 0. + pen_d = 0. + pde_d = 0. + pde_u = 0. END if DO k = 1, llm @@ -1172,8 +1167,8 @@ IF (check) THEN za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy) print *, "aprescon = ", za - zx_t = 0.0 - za = 0.0 + zx_t = 0. + za = 0. DO i = 1, klon za = za + airephy(i)/REAL(klon) zx_t = zx_t + (rain_con(i)+ & @@ -1224,14 +1219,14 @@ ! Caclul des ratqs - ! ratqs convectifs a l'ancienne en fonction de q(z = 0)-q / q - ! on ecrase le tableau ratqsc calcule par clouds_gno + ! ratqs convectifs à l'ancienne en fonction de (q(z = 0) - q) / q + ! on écrase le tableau ratqsc calculé par clouds_gno if (iflag_cldcon == 1) then do k = 1, llm do i = 1, klon if(ptconv(i, k)) then - ratqsc(i, k) = ratqsbas & - +fact_cldcon*(q_seri(i, 1)-q_seri(i, k))/q_seri(i, k) + ratqsc(i, k) = ratqsbas + fact_cldcon & + * (q_seri(i, 1) - q_seri(i, k)) / q_seri(i, k) else ratqsc(i, k) = 0. endif @@ -1242,8 +1237,8 @@ ! ratqs stables do k = 1, llm do i = 1, klon - ratqss(i, k) = ratqsbas + (ratqshaut-ratqsbas)* & - min((paprs(i, 1)-play(i, k))/(paprs(i, 1)-30000.), 1.) + ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) & + * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.) enddo enddo @@ -1253,16 +1248,13 @@ ! ratqs final ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de ! relaxation des ratqs - facteur = exp(-dtphys*facttemps) - ratqs = max(ratqs*facteur, ratqss) + ratqs = max(ratqs * exp(- dtphys * facttemps), ratqss) ratqs = max(ratqs, ratqsc) else ! on ne prend que le ratqs stable pour fisrtilp ratqs = ratqss endif - ! Processus de condensation à grande echelle et processus de - ! précipitation : CALL fisrtilp(dtphys, paprs, play, t_seri, q_seri, ptconv, ratqs, & d_t_lsc, d_q_lsc, d_ql_lsc, rneb, cldliq, rain_lsc, snow_lsc, & pfrac_impa, pfrac_nucl, pfrac_1nucl, frac_impa, frac_nucl, prfl, & @@ -1282,8 +1274,8 @@ IF (check) THEN za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy) print *, "apresilp = ", za - zx_t = 0.0 - za = 0.0 + zx_t = 0. + za = 0. DO i = 1, klon za = za + airephy(i)/REAL(klon) zx_t = zx_t + (rain_lsc(i) & @@ -1336,15 +1328,15 @@ ENDDO ENDDO ELSE IF (iflag_cldcon == 3) THEN - ! On prend pour les nuages convectifs le max du calcul de la - ! convection et du calcul du pas de temps précédent diminué d'un facteur - ! facttemps - facteur = dtphys *facttemps + ! On prend pour les nuages convectifs le maximum du calcul de + ! la convection et du calcul du pas de temps précédent diminué + ! d'un facteur facttemps. + facteur = dtphys * facttemps do k = 1, llm do i = 1, klon - rnebcon(i, k) = rnebcon(i, k)*facteur - if (rnebcon0(i, k)*clwcon0(i, k) > rnebcon(i, k)*clwcon(i, k)) & - then + rnebcon(i, k) = rnebcon(i, k) * facteur + if (rnebcon0(i, k) * clwcon0(i, k) & + > rnebcon(i, k) * clwcon(i, k)) then rnebcon(i, k) = rnebcon0(i, k) clwcon(i, k) = clwcon0(i, k) endif @@ -1470,8 +1462,8 @@ ! Calculer l'hydrologie de la surface DO i = 1, klon - zxqsurf(i) = 0.0 - zxsnow(i) = 0.0 + zxqsurf(i) = 0. + zxsnow(i) = 0. ENDDO DO nsrf = 1, nbsrf DO i = 1, klon @@ -1493,7 +1485,7 @@ igwd = 0 DO i = 1, klon itest(i) = 0 - IF (((zpic(i)-zmea(i)) > 100.).AND.(zstd(i) > 10.0)) THEN + IF (((zpic(i)-zmea(i)) > 100.).AND.(zstd(i) > 10.)) THEN itest(i) = 1 igwd = igwd + 1 idx(igwd) = i @@ -1564,13 +1556,13 @@ ! Calcul des tendances traceurs call phytrac(rnpb, itap, lmt_pas, julien, time, firstcal, lafin, nqmx-2, & - dtphys, u, t, paprs, play, pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, & + dtphys, u, t, paprs, play, mfu, mfd, pen_u, pde_u, pen_d, pde_d, & ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, pctsrf, frac_impa, & frac_nucl, pphis, albsol, rhcl, cldfra, rneb, diafra, cldliq, & pmflxr, pmflxs, prfl, psfl, da, phi, mp, upwd, dnwd, tr_seri, zmasse) IF (offline) THEN - call phystokenc(dtphys, rlon, rlat, t, pmfu, pmfd, pen_u, pde_u, & + call phystokenc(dtphys, rlon, rlat, t, mfu, mfd, pen_u, pde_u, & pen_d, pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, & pctsrf, frac_impa, frac_nucl, pphis, airephy, dtphys, itap) ENDIF @@ -1664,9 +1656,9 @@ itau_phy = itau_phy + itap CALL phyredem("restartphy.nc", rlat, rlon, pctsrf, ftsol, ftsoil, & tslab, seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, & - rain_fall, snow_fall, solsw, sollwdown, dlw, radsol, frugs, & + rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, & agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, & - q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0) + q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01) ENDIF firstcal = .FALSE.