/[lmdze]/trunk/phylmd/physiq.f
ViewVC logotype

Diff of /trunk/phylmd/physiq.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/physiq.f90 revision 6 by guez, Tue Mar 4 14:00:42 2008 UTC trunk/Sources/phylmd/physiq.f revision 209 by guez, Wed Dec 7 17:37:21 2016 UTC
# Line 1  Line 1 
1  module physiq_m  module physiq_m
2    
   ! This module is clean: no C preprocessor directive, no include line.  
   
3    IMPLICIT none    IMPLICIT none
4    
   private  
   public physiq  
   
5  contains  contains
6    
7    SUBROUTINE physiq (nq, debut, lafin, rjourvrai, gmtime, pdtphys, paprs, &    SUBROUTINE physiq(lafin, dayvrai, time, paprs, play, pphi, pphis, u, v, t, &
8         pplay, pphi, pphis, presnivs, clesphy0, u, v, t, qx, omega, d_u, d_v, &         qx, omega, d_u, d_v, d_t, d_qx)
        d_t, d_qx, d_ps, dudyn, PVteta)  
   
     ! From phylmd/physiq.F, v 1.22 2006/02/20 09:38:28  
   
     ! Author : Z.X. Li (LMD/CNRS), date: 1993/08/18  
   
     ! Objet: Moniteur general de la physique du modele  
     !AA      Modifications quant aux traceurs :  
     !AA                  -  uniformisation des parametrisations ds phytrac  
     !AA                  -  stockage des moyennes des champs necessaires  
     !AA                     en mode traceur off-line  
   
     USE ioipsl, only: ymds2ju, histwrite, histsync  
     use dimens_m, only: jjm, iim, llm  
     use indicesol, only: nbsrf, is_ter, is_lic, is_sic, is_oce, &  
          clnsurf, epsfra  
     use dimphy, only: klon, nbtr  
     use conf_gcm_m, only: raz_date, offline, iphysiq  
     use dimsoil, only: nsoilmx  
     use temps, only: itau_phy, day_ref, annee_ref, itaufin  
     use clesphys, only: ecrit_hf, ecrit_hf2mth, &  
          ecrit_ins, iflag_con, ok_orolf, ok_orodr, ecrit_mth, ecrit_day, &  
          nbapp_rad, cycle_diurne, cdmmax, cdhmax, &  
          co2_ppm, ecrit_reg, ecrit_tra, ksta, ksta_ter, new_oliq, &  
          ok_kzmin, soil_model  
     use iniprint, only: lunout, prt_level  
     use abort_gcm_m, only: abort_gcm  
     use YOMCST, only: rcpd, rtt, rlvtt, rg, ra, rsigma, retv, romega  
     use comgeomphy  
     use ctherm  
     use phytrac_m, only: phytrac  
     use oasis_m  
     use radepsi  
     use radopt  
     use yoethf  
     use ini_hist, only: ini_histhf, ini_histday, ini_histins  
     use orbite_m, only: orbite, zenang  
     use phyetat0_m, only: phyetat0, rlat, rlon  
     use hgardfou_m, only: hgardfou  
     use conf_phys_m, only: conf_phys  
   
     ! Declaration des constantes et des fonctions thermodynamiques :  
     use fcttre, only: thermcep, foeew, qsats, qsatl  
   
     ! Variables argument:  
   
     INTEGER nq ! input nombre de traceurs (y compris vapeur d'eau)  
     REAL rjourvrai ! input numero du jour de l'experience  
     REAL, intent(in):: gmtime ! heure de la journée en fraction de jour  
     REAL pdtphys ! input pas d'integration pour la physique (seconde)  
     LOGICAL, intent(in):: debut ! premier passage  
     logical, intent(in):: lafin ! dernier passage  
9    
10      REAL, intent(in):: paprs(klon, llm+1)      ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28
11      ! (pression pour chaque inter-couche, en Pa)      ! (subversion revision 678)
       
     REAL pplay(klon, llm)  
     ! (input pression pour le mileu de chaque couche (en Pa))  
   
     REAL pphi(klon, llm)    
     ! (input geopotentiel de chaque couche (g z) (reference sol))  
   
     REAL pphis(klon) ! input geopotentiel du sol  
   
     REAL presnivs(llm)  
     ! (input pressions approximat. des milieux couches ( en PA))  
   
     REAL u(klon, llm)  ! input vitesse dans la direction X (de O a E) en m/s  
     REAL v(klon, llm)  ! input vitesse Y (de S a N) en m/s  
     REAL t(klon, llm)  ! input temperature (K)  
   
     REAL qx(klon, llm, nq)  
     ! (input humidite specifique (kg/kg) et d'autres traceurs)  
   
     REAL omega(klon, llm)  ! input vitesse verticale en Pa/s  
     REAL d_u(klon, llm)  ! output tendance physique de "u" (m/s/s)  
     REAL d_v(klon, llm)  ! output tendance physique de "v" (m/s/s)  
     REAL d_t(klon, llm)  ! output tendance physique de "t" (K/s)  
     REAL d_qx(klon, llm, nq)  ! output tendance physique de "qx" (kg/kg/s)  
     REAL d_ps(klon)  ! output tendance physique de la pression au sol  
   
     INTEGER nbteta  
     PARAMETER(nbteta=3)  
   
     REAL PVteta(klon, nbteta)  
     ! (output vorticite potentielle a des thetas constantes)  
   
     LOGICAL ok_cvl  ! pour activer le nouveau driver pour convection KE  
     PARAMETER (ok_cvl=.TRUE.)  
     LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface  
     PARAMETER (ok_gust=.FALSE.)  
   
     LOGICAL check ! Verifier la conservation du modele en eau  
     PARAMETER (check=.FALSE.)  
     LOGICAL ok_stratus ! Ajouter artificiellement les stratus  
     PARAMETER (ok_stratus=.FALSE.)  
   
     ! Parametres lies au coupleur OASIS:  
     INTEGER, SAVE :: npas, nexca  
     logical rnpb  
     parameter(rnpb=.true.)  
     !      ocean = type de modele ocean a utiliser: force, slab, couple  
     character(len=6) ocean  
     SAVE ocean  
   
     logical ok_ocean  
     SAVE ok_ocean  
   
     !IM "slab" ocean  
     REAL tslab(klon)    !Temperature du slab-ocean  
     SAVE tslab  
     REAL seaice(klon)   !glace de mer (kg/m2)  
     SAVE seaice  
     REAL fluxo(klon)    !flux turbulents ocean-glace de mer  
     REAL fluxg(klon)    !flux turbulents ocean-atmosphere  
   
     ! Modele thermique du sol, a activer pour le cycle diurne:  
     logical ok_veget  
     save ok_veget  
     LOGICAL ok_journe ! sortir le fichier journalier  
     save ok_journe  
   
     LOGICAL ok_mensuel ! sortir le fichier mensuel  
12    
13      LOGICAL ok_instan ! sortir le fichier instantane      ! Author: Z. X. Li (LMD/CNRS) 1993
     save ok_instan  
14    
15      LOGICAL ok_region ! sortir le fichier regional      ! This is the main procedure for the "physics" part of the program.
16      PARAMETER (ok_region=.FALSE.)  
17        use aaam_bud_m, only: aaam_bud
18      !     pour phsystoke avec thermiques      USE abort_gcm_m, ONLY: abort_gcm
19      REAL fm_therm(klon, llm+1)      use ajsec_m, only: ajsec
20      REAL entr_therm(klon, llm)      use calltherm_m, only: calltherm
21      real q2(klon, llm+1, nbsrf)      USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ksta, ksta_ter, ok_kzmin, &
22      save q2           ok_instan
23        USE clesphys2, ONLY: conv_emanuel, nbapp_rad, new_oliq, ok_orodr, ok_orolf
24      INTEGER ivap          ! indice de traceurs pour vapeur d'eau      USE clmain_m, ONLY: clmain
25      PARAMETER (ivap=1)      use clouds_gno_m, only: clouds_gno
26      INTEGER iliq          ! indice de traceurs pour eau liquide      use comconst, only: dtphys
27      PARAMETER (iliq=2)      USE comgeomphy, ONLY: airephy
28        USE concvl_m, ONLY: concvl
29      REAL t_ancien(klon, llm), q_ancien(klon, llm)      USE conf_gcm_m, ONLY: offline, lmt_pas
30      SAVE t_ancien, q_ancien      USE conf_phys_m, ONLY: conf_phys
31      LOGICAL ancien_ok      use conflx_m, only: conflx
32      SAVE ancien_ok      USE ctherm, ONLY: iflag_thermals, nsplit_thermals
33        use diagcld2_m, only: diagcld2
34      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K/s)      USE dimens_m, ONLY: llm, nqmx
35      REAL d_q_dyn(klon, llm)  ! tendance dynamique pour "q" (kg/kg/s)      USE dimphy, ONLY: klon
36        USE dimsoil, ONLY: nsoilmx
37      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)      use drag_noro_m, only: drag_noro
38        use dynetat0_m, only: day_ref, annee_ref
39        USE fcttre, ONLY: foeew, qsatl, qsats
40        use fisrtilp_m, only: fisrtilp
41        USE hgardfou_m, ONLY: hgardfou
42        USE histsync_m, ONLY: histsync
43        USE histwrite_phy_m, ONLY: histwrite_phy
44        USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &
45             nbsrf
46        USE ini_histins_m, ONLY: ini_histins, nid_ins
47        use netcdf95, only: NF95_CLOSE
48        use newmicro_m, only: newmicro
49        use nr_util, only: assert
50        use nuage_m, only: nuage
51        USE orbite_m, ONLY: orbite
52        USE ozonecm_m, ONLY: ozonecm
53        USE phyetat0_m, ONLY: phyetat0, rlat, rlon
54        USE phyredem_m, ONLY: phyredem
55        USE phyredem0_m, ONLY: phyredem0
56        USE phystokenc_m, ONLY: phystokenc
57        USE phytrac_m, ONLY: phytrac
58        use radlwsw_m, only: radlwsw
59        use yoegwd, only: sugwd
60        USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt
61        use time_phylmdz, only: itap, increment_itap
62        use transp_m, only: transp
63        use transp_lay_m, only: transp_lay
64        use unit_nml_m, only: unit_nml
65        USE ymds2ju_m, ONLY: ymds2ju
66        USE yoethf_m, ONLY: r2es, rvtmp2
67        use zenang_m, only: zenang
68    
69      !IM Amip2 PV a theta constante      logical, intent(in):: lafin ! dernier passage
70    
71      CHARACTER(LEN=3) ctetaSTD(nbteta)      integer, intent(in):: dayvrai
72      DATA ctetaSTD/'350', '380', '405'/      ! current day number, based at value 1 on January 1st of annee_ref
     REAL rtetaSTD(nbteta)  
     DATA rtetaSTD/350., 380., 405./  
   
     !MI Amip2 PV a theta constante  
   
     INTEGER klevp1  
     PARAMETER(klevp1=llm+1)  
   
     REAL swdn0(klon, klevp1), swdn(klon, klevp1)  
     REAL swup0(klon, klevp1), swup(klon, klevp1)  
     SAVE swdn0, swdn, swup0, swup  
   
     REAL SWdn200clr(klon), SWdn200(klon)  
     REAL SWup200clr(klon), SWup200(klon)  
     SAVE SWdn200clr, SWdn200, SWup200clr, SWup200  
   
     REAL lwdn0(klon, klevp1), lwdn(klon, klevp1)  
     REAL lwup0(klon, klevp1), lwup(klon, klevp1)  
     SAVE lwdn0, lwdn, lwup0, lwup  
   
     REAL LWdn200clr(klon), LWdn200(klon)  
     REAL LWup200clr(klon), LWup200(klon)  
     SAVE LWdn200clr, LWdn200, LWup200clr, LWup200  
   
     !IM Amip2  
     ! variables a une pression donnee  
   
     integer nlevSTD  
     PARAMETER(nlevSTD=17)  
     real rlevSTD(nlevSTD)  
     DATA rlevSTD/100000., 92500., 85000., 70000., &  
          60000., 50000., 40000., 30000., 25000., 20000., &  
          15000., 10000., 7000., 5000., 3000., 2000., 1000./  
     CHARACTER(LEN=4) clevSTD(nlevSTD)  
     DATA clevSTD/'1000', '925 ', '850 ', '700 ', '600 ', &  
          '500 ', '400 ', '300 ', '250 ', '200 ', '150 ', '100 ', &  
          '70  ', '50  ', '30  ', '20  ', '10  '/  
   
     real tlevSTD(klon, nlevSTD), qlevSTD(klon, nlevSTD)  
     real rhlevSTD(klon, nlevSTD), philevSTD(klon, nlevSTD)  
     real ulevSTD(klon, nlevSTD), vlevSTD(klon, nlevSTD)  
     real wlevSTD(klon, nlevSTD)  
   
     ! nout : niveau de output des variables a une pression donnee  
     INTEGER nout  
     PARAMETER(nout=3) !nout=1 : day; =2 : mth; =3 : NMC  
   
     REAL tsumSTD(klon, nlevSTD, nout)  
     REAL usumSTD(klon, nlevSTD, nout), vsumSTD(klon, nlevSTD, nout)  
     REAL wsumSTD(klon, nlevSTD, nout), phisumSTD(klon, nlevSTD, nout)  
     REAL qsumSTD(klon, nlevSTD, nout), rhsumSTD(klon, nlevSTD, nout)  
   
     SAVE tsumSTD, usumSTD, vsumSTD, wsumSTD, phisumSTD,  &  
          qsumSTD, rhsumSTD  
   
     logical oknondef(klon, nlevSTD, nout)  
     real tnondef(klon, nlevSTD, nout)  
     save tnondef  
   
     ! les produits uvSTD, vqSTD, .., T2STD sont calcules  
     ! a partir des valeurs instantannees toutes les 6 h  
     ! qui sont moyennees sur le mois  
   
     real uvSTD(klon, nlevSTD)  
     real vqSTD(klon, nlevSTD)  
     real vTSTD(klon, nlevSTD)  
     real wqSTD(klon, nlevSTD)  
   
     real uvsumSTD(klon, nlevSTD, nout)  
     real vqsumSTD(klon, nlevSTD, nout)  
     real vTsumSTD(klon, nlevSTD, nout)  
     real wqsumSTD(klon, nlevSTD, nout)  
   
     real vphiSTD(klon, nlevSTD)  
     real wTSTD(klon, nlevSTD)  
     real u2STD(klon, nlevSTD)  
     real v2STD(klon, nlevSTD)  
     real T2STD(klon, nlevSTD)  
   
     real vphisumSTD(klon, nlevSTD, nout)  
     real wTsumSTD(klon, nlevSTD, nout)  
     real u2sumSTD(klon, nlevSTD, nout)  
     real v2sumSTD(klon, nlevSTD, nout)  
     real T2sumSTD(klon, nlevSTD, nout)  
   
     SAVE uvsumSTD, vqsumSTD, vTsumSTD, wqsumSTD  
     SAVE vphisumSTD, wTsumSTD, u2sumSTD, v2sumSTD, T2sumSTD  
     !MI Amip2  
73    
74      ! prw: precipitable water      REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour
     real prw(klon)  
75    
76      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg/m2)      REAL, intent(in):: paprs(:, :) ! (klon, llm + 1)
77      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg/kg)      ! pression pour chaque inter-couche, en Pa
     REAL flwp(klon), fiwp(klon)  
     REAL flwc(klon, llm), fiwc(klon, llm)  
78    
79      INTEGER l, kmax, lmax      REAL, intent(in):: play(:, :) ! (klon, llm)
80      PARAMETER(kmax=8, lmax=8)      ! pression pour le mileu de chaque couche (en Pa)
     INTEGER kmaxm1, lmaxm1  
     PARAMETER(kmaxm1=kmax-1, lmaxm1=lmax-1)  
   
     REAL zx_tau(kmaxm1), zx_pc(lmaxm1)  
     DATA zx_tau/0.0, 0.3, 1.3, 3.6, 9.4, 23., 60./  
     DATA zx_pc/50., 180., 310., 440., 560., 680., 800./  
   
     ! cldtopres pression au sommet des nuages  
     REAL cldtopres(lmaxm1)  
     DATA cldtopres/50., 180., 310., 440., 560., 680., 800./  
   
     ! taulev: numero du niveau de tau dans les sorties ISCCP  
     CHARACTER(LEN=4) taulev(kmaxm1)  
   
     DATA taulev/'tau0', 'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'/  
     CHARACTER(LEN=3) pclev(lmaxm1)  
     DATA pclev/'pc1', 'pc2', 'pc3', 'pc4', 'pc5', 'pc6', 'pc7'/  
   
     CHARACTER(LEN=28) cnameisccp(lmaxm1, kmaxm1)  
     DATA cnameisccp/'pc< 50hPa, tau< 0.3', 'pc= 50-180hPa, tau< 0.3', &  
          'pc= 180-310hPa, tau< 0.3', 'pc= 310-440hPa, tau< 0.3', &  
          'pc= 440-560hPa, tau< 0.3', 'pc= 560-680hPa, tau< 0.3', &  
          'pc= 680-800hPa, tau< 0.3', 'pc< 50hPa, tau= 0.3-1.3', &  
          'pc= 50-180hPa, tau= 0.3-1.3', 'pc= 180-310hPa, tau= 0.3-1.3', &  
          'pc= 310-440hPa, tau= 0.3-1.3', 'pc= 440-560hPa, tau= 0.3-1.3', &  
          'pc= 560-680hPa, tau= 0.3-1.3', 'pc= 680-800hPa, tau= 0.3-1.3', &  
          'pc< 50hPa, tau= 1.3-3.6', 'pc= 50-180hPa, tau= 1.3-3.6', &  
          'pc= 180-310hPa, tau= 1.3-3.6', 'pc= 310-440hPa, tau= 1.3-3.6', &  
          'pc= 440-560hPa, tau= 1.3-3.6', 'pc= 560-680hPa, tau= 1.3-3.6', &  
          'pc= 680-800hPa, tau= 1.3-3.6', 'pc< 50hPa, tau= 3.6-9.4', &  
          'pc= 50-180hPa, tau= 3.6-9.4', 'pc= 180-310hPa, tau= 3.6-9.4', &  
          'pc= 310-440hPa, tau= 3.6-9.4', 'pc= 440-560hPa, tau= 3.6-9.4', &  
          'pc= 560-680hPa, tau= 3.6-9.4', 'pc= 680-800hPa, tau= 3.6-9.4', &  
          'pc< 50hPa, tau= 9.4-23', 'pc= 50-180hPa, tau= 9.4-23', &  
          'pc= 180-310hPa, tau= 9.4-23', 'pc= 310-440hPa, tau= 9.4-23', &  
          'pc= 440-560hPa, tau= 9.4-23', 'pc= 560-680hPa, tau= 9.4-23', &  
          'pc= 680-800hPa, tau= 9.4-23', 'pc< 50hPa, tau= 23-60', &  
          'pc= 50-180hPa, tau= 23-60', 'pc= 180-310hPa, tau= 23-60', &  
          'pc= 310-440hPa, tau= 23-60', 'pc= 440-560hPa, tau= 23-60', &  
          'pc= 560-680hPa, tau= 23-60', 'pc= 680-800hPa, tau= 23-60', &  
          'pc< 50hPa, tau> 60.', 'pc= 50-180hPa, tau> 60.', &  
          'pc= 180-310hPa, tau> 60.', 'pc= 310-440hPa, tau> 60.', &  
          'pc= 440-560hPa, tau> 60.', 'pc= 560-680hPa, tau> 60.', &  
          'pc= 680-800hPa, tau> 60.'/  
   
     !IM ISCCP simulator v3.4  
   
     integer nid_hf, nid_hf3d  
     save nid_hf, nid_hf3d  
   
     INTEGER        longcles  
     PARAMETER    ( longcles = 20 )  
     REAL clesphy0( longcles      )  
81    
82      ! Variables quasi-arguments      REAL, intent(in):: pphi(:, :) ! (klon, llm)
83        ! géopotentiel de chaque couche (référence sol)
84    
85      REAL xjour      REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol
     SAVE xjour  
86    
87      ! Variables propres a la physique      REAL, intent(in):: u(:, :) ! (klon, llm)
88        ! vitesse dans la direction X (de O a E) en m / s
89    
90      REAL, SAVE:: dtime ! pas temporel de la physique (s)      REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m / s
91        REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)
92    
93      INTEGER, save:: radpas      REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)
94      ! (Radiative transfer computations are made every "radpas" call to      ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)
     ! "physiq".)  
95    
96      REAL radsol(klon)      REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa / s
97      SAVE radsol               ! bilan radiatif au sol calcule par code radiatif      REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)
98        REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)
99        REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K / s)
100    
101      INTEGER, SAVE:: itap ! compteur pour la physique      REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)
102      REAL co2_ppm_etat0      ! tendance physique de "qx" (s-1)
     REAL solaire_etat0  
103    
104      REAL ftsol(klon, nbsrf)      ! Local:
     SAVE ftsol                  ! temperature du sol  
105    
106      REAL ftsoil(klon, nsoilmx, nbsrf)      LOGICAL:: firstcal = .true.
     SAVE ftsoil                 ! temperature dans le sol  
107    
108      REAL fevap(klon, nbsrf)      LOGICAL, PARAMETER:: ok_stratus = .FALSE.
109      SAVE fevap                 ! evaporation      ! Ajouter artificiellement les stratus
     REAL fluxlat(klon, nbsrf)  
     SAVE fluxlat  
110    
111      REAL fqsurf(klon, nbsrf)      ! pour phystoke avec thermiques
112      SAVE fqsurf                 ! humidite de l'air au contact de la surface      REAL fm_therm(klon, llm + 1)
113        REAL entr_therm(klon, llm)
114        real, save:: q2(klon, llm + 1, nbsrf)
115    
116      REAL qsol(klon)      INTEGER, PARAMETER:: ivap = 1 ! indice de traceur pour vapeur d'eau
117      SAVE qsol                  ! hauteur d'eau dans le sol      INTEGER, PARAMETER:: iliq = 2 ! indice de traceur pour eau liquide
118    
119      REAL fsnow(klon, nbsrf)      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)
120      SAVE fsnow                  ! epaisseur neigeuse      LOGICAL, save:: ancien_ok
121    
122      REAL falbe(klon, nbsrf)      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K / s)
123      SAVE falbe                  ! albedo par type de surface      REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg / kg / s)
     REAL falblw(klon, nbsrf)  
     SAVE falblw                 ! albedo par type de surface  
124    
125      !  Parametres de l'Orographie a l'Echelle Sous-Maille (OESM):      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)
126    
127      REAL zmea(klon)      REAL, save:: swdn0(klon, llm + 1), swdn(klon, llm + 1)
128      SAVE zmea                   ! orographie moyenne      REAL, save:: swup0(klon, llm + 1), swup(klon, llm + 1)
129    
130      REAL zstd(klon)      REAL, save:: lwdn0(klon, llm + 1), lwdn(klon, llm + 1)
131      SAVE zstd                   ! deviation standard de l'OESM      REAL, save:: lwup0(klon, llm + 1), lwup(klon, llm + 1)
132    
133      REAL zsig(klon)      ! prw: precipitable water
134      SAVE zsig                   ! pente de l'OESM      real prw(klon)
135    
136      REAL zgam(klon)      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg / m2)
137      save zgam                   ! anisotropie de l'OESM      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg / kg)
138        REAL flwp(klon), fiwp(klon)
139        REAL flwc(klon, llm), fiwc(klon, llm)
140    
141      REAL zthe(klon)      ! Variables propres a la physique
     SAVE zthe                   ! orientation de l'OESM  
142    
143      REAL zpic(klon)      INTEGER, save:: radpas
144      SAVE zpic                   ! Maximum de l'OESM      ! Radiative transfer computations are made every "radpas" call to
145        ! "physiq".
146    
147      REAL zval(klon)      REAL, save:: radsol(klon) ! bilan radiatif au sol calcule par code radiatif
148      SAVE zval                   ! Minimum de l'OESM      REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction
149    
150      REAL rugoro(klon)      REAL, save:: ftsoil(klon, nsoilmx, nbsrf)
151      SAVE rugoro                 ! longueur de rugosite de l'OESM      ! soil temperature of surface fraction
152    
153        REAL, save:: fevap(klon, nbsrf) ! evaporation
154        REAL, save:: fluxlat(klon, nbsrf)
155    
156        REAL, save:: fqsurf(klon, nbsrf)
157        ! humidite de l'air au contact de la surface
158    
159        REAL, save:: qsol(klon)
160        ! column-density of water in soil, in kg m-2
161    
162        REAL, save:: fsnow(klon, nbsrf) ! epaisseur neigeuse
163        REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface
164    
165        ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :
166        REAL, save:: zmea(klon) ! orographie moyenne
167        REAL, save:: zstd(klon) ! deviation standard de l'OESM
168        REAL, save:: zsig(klon) ! pente de l'OESM
169        REAL, save:: zgam(klon) ! anisotropie de l'OESM
170        REAL, save:: zthe(klon) ! orientation de l'OESM
171        REAL, save:: zpic(klon) ! Maximum de l'OESM
172        REAL, save:: zval(klon) ! Minimum de l'OESM
173        REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM
174      REAL zulow(klon), zvlow(klon)      REAL zulow(klon), zvlow(klon)
175        INTEGER igwd, itest(klon)
176    
177      INTEGER igwd, idx(klon), itest(klon)      REAL, save:: agesno(klon, nbsrf) ! age de la neige
178        REAL, save:: run_off_lic_0(klon)
     REAL agesno(klon, nbsrf)  
     SAVE agesno                 ! age de la neige  
   
     REAL run_off_lic_0(klon)  
     SAVE run_off_lic_0  
     !KE43  
     ! Variables liees a la convection de K. Emanuel (sb):  
179    
180      REAL bas, top             ! cloud base and top levels      ! Variables li\'ees \`a la convection d'Emanuel :
181      SAVE bas      REAL, save:: Ma(klon, llm) ! undilute upward mass flux
182      SAVE top      REAL, save:: qcondc(klon, llm) ! in-cld water content from convect
183        REAL, save:: sig1(klon, llm), w01(klon, llm)
     REAL Ma(klon, llm)        ! undilute upward mass flux  
     SAVE Ma  
     REAL qcondc(klon, llm)    ! in-cld water content from convect  
     SAVE qcondc  
     REAL ema_work1(klon, llm), ema_work2(klon, llm)  
     SAVE ema_work1, ema_work2  
   
     REAL wd(klon) ! sb  
     SAVE wd       ! sb  
   
     ! Variables locales pour la couche limite (al1):  
   
     ! Variables locales:  
184    
185        ! Variables pour la couche limite (Alain Lahellec) :
186      REAL cdragh(klon) ! drag coefficient pour T and Q      REAL cdragh(klon) ! drag coefficient pour T and Q
187      REAL cdragm(klon) ! drag coefficient pour vent      REAL cdragm(klon) ! drag coefficient pour vent
188    
189      !AA  Pour phytrac      ! Pour phytrac :
190      REAL ycoefh(klon, llm)    ! coef d'echange pour phytrac      REAL ycoefh(klon, llm) ! coef d'echange pour phytrac
191      REAL yu1(klon)            ! vents dans la premiere couche U      REAL yu1(klon) ! vents dans la premiere couche U
192      REAL yv1(klon)            ! vents dans la premiere couche V      REAL yv1(klon) ! vents dans la premiere couche V
193      REAL ffonte(klon, nbsrf)    !Flux thermique utilise pour fondre la neige  
194      REAL fqcalving(klon, nbsrf) !Flux d'eau "perdue" par la surface      REAL, save:: ffonte(klon, nbsrf)
195      !                               !et necessaire pour limiter la      ! flux thermique utilise pour fondre la neige
196      !                               !hauteur de neige, en kg/m2/s  
197        REAL, save:: fqcalving(klon, nbsrf)
198        ! flux d'eau "perdue" par la surface et necessaire pour limiter la
199        ! hauteur de neige, en kg / m2 / s
200    
201      REAL zxffonte(klon), zxfqcalving(klon)      REAL zxffonte(klon), zxfqcalving(klon)
202    
203      REAL pfrac_impa(klon, llm)! Produits des coefs lessivage impaction      REAL, save:: pfrac_impa(klon, llm)! Produits des coefs lessivage impaction
204      save pfrac_impa      REAL, save:: pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation
205      REAL pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation  
206      save pfrac_nucl      REAL, save:: pfrac_1nucl(klon, llm)
207      REAL pfrac_1nucl(klon, llm)! Produits des coefs lessi nucl (alpha = 1)      ! Produits des coefs lessi nucl (alpha = 1)
208      save pfrac_1nucl  
209      REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction)      REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction)
210      REAL frac_nucl(klon, llm) ! idem (nucleation)      REAL frac_nucl(klon, llm) ! idem (nucleation)
211    
212      !AA      REAL, save:: rain_fall(klon)
213      REAL rain_fall(klon) ! pluie      ! liquid water mass flux (kg / m2 / s), positive down
     REAL snow_fall(klon) ! neige  
     save snow_fall, rain_fall  
     !IM cf FH pour Tiedtke 080604  
     REAL rain_tiedtke(klon), snow_tiedtke(klon)  
214    
215      REAL total_rain(klon), nday_rain(klon)      REAL, save:: snow_fall(klon)
216      save nday_rain      ! solid water mass flux (kg / m2 / s), positive down
217    
218      REAL evap(klon), devap(klon) ! evaporation et sa derivee      REAL rain_tiedtke(klon), snow_tiedtke(klon)
219      REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee  
220      REAL dlw(klon)    ! derivee infra rouge      REAL evap(klon) ! flux d'\'evaporation au sol
221      SAVE dlw      real devap(klon) ! derivative of the evaporation flux at the surface
222        REAL sens(klon) ! flux de chaleur sensible au sol
223        real dsens(klon) ! derivee du flux de chaleur sensible au sol
224        REAL, save:: dlw(klon) ! derivee infra rouge
225      REAL bils(klon) ! bilan de chaleur au sol      REAL bils(klon) ! bilan de chaleur au sol
226      REAL fder(klon) ! Derive de flux (sensible et latente)      REAL, save:: fder(klon) ! Derive de flux (sensible et latente)
     save fder  
227      REAL ve(klon) ! integr. verticale du transport meri. de l'energie      REAL ve(klon) ! integr. verticale du transport meri. de l'energie
228      REAL vq(klon) ! integr. verticale du transport meri. de l'eau      REAL vq(klon) ! integr. verticale du transport meri. de l'eau
229      REAL ue(klon) ! integr. verticale du transport zonal de l'energie      REAL ue(klon) ! integr. verticale du transport zonal de l'energie
230      REAL uq(klon) ! integr. verticale du transport zonal de l'eau      REAL uq(klon) ! integr. verticale du transport zonal de l'eau
231    
232      REAL frugs(klon, nbsrf) ! longueur de rugosite      REAL, save:: frugs(klon, nbsrf) ! longueur de rugosite
     save frugs  
233      REAL zxrugs(klon) ! longueur de rugosite      REAL zxrugs(klon) ! longueur de rugosite
234    
235      ! Conditions aux limites      ! Conditions aux limites
236    
237      INTEGER julien      INTEGER julien
238        REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface
239        REAL, save:: albsol(klon) ! albedo du sol total visible
240        REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU
241    
242        real, save:: clwcon(klon, llm), rnebcon(klon, llm)
243        real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)
244    
245        REAL rhcl(klon, llm) ! humiditi relative ciel clair
246        REAL dialiq(klon, llm) ! eau liquide nuageuse
247        REAL diafra(klon, llm) ! fraction nuageuse
248        REAL cldliq(klon, llm) ! eau liquide nuageuse
249        REAL cldfra(klon, llm) ! fraction nuageuse
250        REAL cldtau(klon, llm) ! epaisseur optique
251        REAL cldemi(klon, llm) ! emissivite infrarouge
252    
253        REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface
254        REAL flux_t(klon, nbsrf) ! flux turbulent de chaleur à la surface
255        REAL flux_u(klon, nbsrf) ! flux turbulent de vitesse u à la surface
256        REAL flux_v(klon, nbsrf) ! flux turbulent de vitesse v à la surface
257    
258        ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que
259        ! les variables soient r\'emanentes.
260        REAL, save:: heat(klon, llm) ! chauffage solaire
261        REAL, save:: heat0(klon, llm) ! chauffage solaire ciel clair
262        REAL, save:: cool(klon, llm) ! refroidissement infrarouge
263        REAL, save:: cool0(klon, llm) ! refroidissement infrarouge ciel clair
264        REAL, save:: topsw(klon), toplw(klon), solsw(klon)
265        REAL, save:: sollw(klon) ! rayonnement infrarouge montant \`a la surface
266        real, save:: sollwdown(klon) ! downward LW flux at surface
267        REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)
268        REAL, save:: albpla(klon)
269        REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous-surface
270        REAL fsolsw(klon, nbsrf) ! flux solaire absorb\'e pour chaque sous-surface
271    
272        REAL conv_q(klon, llm) ! convergence de l'humidite (kg / kg / s)
273        REAL conv_t(klon, llm) ! convergence of temperature (K / s)
274    
275      INTEGER, SAVE:: lmt_pas ! fréquence de mise à jour      REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut
276      REAL pctsrf(klon, nbsrf)      REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree
     !IM  
     REAL pctsrf_new(klon, nbsrf) !pourcentage surfaces issus d'ORCHIDEE  
   
     SAVE pctsrf                 ! sous-fraction du sol  
     REAL albsol(klon)  
     SAVE albsol                 ! albedo du sol total  
     REAL albsollw(klon)  
     SAVE albsollw                 ! albedo du sol total  
   
     REAL, SAVE:: wo(klon, llm) ! ozone  
   
     ! Declaration des procedures appelees  
   
     EXTERNAL alboc     ! calculer l'albedo sur ocean  
     EXTERNAL ajsec     ! ajustement sec  
     EXTERNAL clmain    ! couche limite  
     !KE43  
     EXTERNAL conema3  ! convect4.3  
     EXTERNAL fisrtilp  ! schema de condensation a grande echelle (pluie)  
     EXTERNAL nuage     ! calculer les proprietes radiatives  
     EXTERNAL ozonecm   ! prescrire l'ozone  
     EXTERNAL phyredem  ! ecrire l'etat de redemarrage de la physique  
     EXTERNAL radlwsw   ! rayonnements solaire et infrarouge  
     EXTERNAL transp    ! transport total de l'eau et de l'energie  
   
     EXTERNAL ini_undefSTD  !initialise a 0 une variable a 1 niveau de pression  
     EXTERNAL undefSTD !somme les valeurs definies d'1 var a 1 niveau de pression  
   
     ! Variables locales  
   
     real clwcon(klon, llm), rnebcon(klon, llm)  
     real clwcon0(klon, llm), rnebcon0(klon, llm)  
   
     save rnebcon, clwcon  
   
     REAL rhcl(klon, llm)    ! humiditi relative ciel clair  
     REAL dialiq(klon, llm)  ! eau liquide nuageuse  
     REAL diafra(klon, llm)  ! fraction nuageuse  
     REAL cldliq(klon, llm)  ! eau liquide nuageuse  
     REAL cldfra(klon, llm)  ! fraction nuageuse  
     REAL cldtau(klon, llm)  ! epaisseur optique  
     REAL cldemi(klon, llm)  ! emissivite infrarouge  
   
     REAL fluxq(klon, llm, nbsrf)   ! flux turbulent d'humidite  
     REAL fluxt(klon, llm, nbsrf)   ! flux turbulent de chaleur  
     REAL fluxu(klon, llm, nbsrf)   ! flux turbulent de vitesse u  
     REAL fluxv(klon, llm, nbsrf)   ! flux turbulent de vitesse v  
   
     REAL zxfluxt(klon, llm)  
     REAL zxfluxq(klon, llm)  
     REAL zxfluxu(klon, llm)  
     REAL zxfluxv(klon, llm)  
   
     REAL heat(klon, llm)    ! chauffage solaire  
     REAL heat0(klon, llm)   ! chauffage solaire ciel clair  
     REAL cool(klon, llm)    ! refroidissement infrarouge  
     REAL cool0(klon, llm)   ! refroidissement infrarouge ciel clair  
     REAL topsw(klon), toplw(klon), solsw(klon), sollw(klon)  
     real sollwdown(klon)    ! downward LW flux at surface  
     REAL topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)  
     REAL albpla(klon)  
     REAL fsollw(klon, nbsrf)   ! bilan flux IR pour chaque sous surface  
     REAL fsolsw(klon, nbsrf)   ! flux solaire absorb. pour chaque sous surface  
     ! Le rayonnement n'est pas calcule tous les pas, il faut donc  
     !                      sauvegarder les sorties du rayonnement  
     SAVE  heat, cool, albpla, topsw, toplw, solsw, sollw, sollwdown  
     SAVE  topsw0, toplw0, solsw0, sollw0, heat0, cool0  
   
     INTEGER itaprad  
     SAVE itaprad  
   
     REAL conv_q(klon, llm) ! convergence de l'humidite (kg/kg/s)  
     REAL conv_t(klon, llm) ! convergence de la temperature(K/s)  
   
     REAL cldl(klon), cldm(klon), cldh(klon) !nuages bas, moyen et haut  
     REAL cldt(klon), cldq(klon) !nuage total, eau liquide integree  
   
     REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon)  
   
     REAL dist, rmu0(klon), fract(klon)  
     REAL zdtime ! pas de temps du rayonnement (s)  
     real zlongi  
277    
278      REAL z_avant(klon), z_apres(klon), z_factor(klon)      REAL zxqsurf(klon), zxsnow(klon), zxfluxlat(klon)
     LOGICAL zx_ajustq  
279    
280      REAL za, zb      REAL dist, mu0(klon), fract(klon)
281      REAL zx_t, zx_qs, zdelta, zcor, zlvdcp, zlsdcp      real longi
282        REAL z_avant(klon), z_apres(klon), z_factor(klon)
283        REAL zb
284        REAL zx_t, zx_qs, zcor
285      real zqsat(klon, llm)      real zqsat(klon, llm)
286      INTEGER i, k, iq, nsrf      INTEGER i, k, iq, nsrf
     REAL t_coup  
     PARAMETER (t_coup=234.0)  
   
287      REAL zphi(klon, llm)      REAL zphi(klon, llm)
288    
289      !IM cf. AM Variables locales pour la CLA (hbtm2)      ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm)
290    
291      REAL pblh(klon, nbsrf)           ! Hauteur de couche limite      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite
292      REAL plcl(klon, nbsrf)           ! Niveau de condensation de la CLA      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA
293      REAL capCL(klon, nbsrf)          ! CAPE de couche limite      REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite
294      REAL oliqCL(klon, nbsrf)          ! eau_liqu integree de couche limite      REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite
295      REAL cteiCL(klon, nbsrf)          ! cloud top instab. crit. couche limite      REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite
296      REAL pblt(klon, nbsrf)          ! T a la Hauteur de couche limite      REAL, SAVE:: pblt(klon, nbsrf) ! T \`a la hauteur de couche limite
297      REAL therm(klon, nbsrf)      REAL, SAVE:: therm(klon, nbsrf)
298      REAL trmb1(klon, nbsrf)          ! deep_cape      REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape
299      REAL trmb2(klon, nbsrf)          ! inhibition      REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition
300      REAL trmb3(klon, nbsrf)          ! Point Omega      REAL, SAVE:: trmb3(klon, nbsrf) ! Point Omega
301      ! Grdeurs de sorties      ! Grandeurs de sorties
302      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)
303      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)
304      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)
305      REAL s_trmb3(klon)      REAL s_trmb3(klon)
306    
307      ! Variables locales pour la convection de K. Emanuel (sb):      ! Variables pour la convection de K. Emanuel :
308    
309      REAL upwd(klon, llm)      ! saturated updraft mass flux      REAL upwd(klon, llm) ! saturated updraft mass flux
310      REAL dnwd(klon, llm)      ! saturated downdraft mass flux      REAL dnwd(klon, llm) ! saturated downdraft mass flux
311      REAL dnwd0(klon, llm)     ! unsaturated downdraft mass flux      REAL, save:: cape(klon)
312      REAL tvp(klon, llm)       ! virtual temp of lifted parcel  
313      REAL cape(klon)           ! CAPE      INTEGER iflagctrl(klon) ! flag fonctionnement de convect
     SAVE cape  
   
     REAL pbase(klon)          ! cloud base pressure  
     SAVE pbase  
     REAL bbase(klon)          ! cloud base buoyancy  
     SAVE bbase  
     REAL rflag(klon)          ! flag fonctionnement de convect  
     INTEGER iflagctrl(klon)          ! flag fonctionnement de convect  
     ! -- convect43:  
     INTEGER ntra              ! nb traceurs pour convect4.3  
     REAL dtvpdt1(klon, llm), dtvpdq1(klon, llm)  
     REAL dplcldt(klon), dplcldr(klon)  
314    
315      ! Variables du changement      ! Variables du changement
316    
317      ! con: convection      ! con: convection
318      ! lsc: condensation a grande echelle (Large-Scale-Condensation)      ! lsc: large scale condensation
319      ! ajs: ajustement sec      ! ajs: ajustement sec
320      ! eva: evaporation de l'eau liquide nuageuse      ! eva: \'evaporation de l'eau liquide nuageuse
321      ! vdf: couche limite (Vertical DiFfusion)      ! vdf: vertical diffusion in boundary layer
322      REAL d_t_con(klon, llm), d_q_con(klon, llm)      REAL d_t_con(klon, llm), d_q_con(klon, llm)
323      REAL d_u_con(klon, llm), d_v_con(klon, llm)      REAL, save:: d_u_con(klon, llm), d_v_con(klon, llm)
324      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)
325      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)
326      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)
327      REAL rneb(klon, llm)      REAL rneb(klon, llm)
328    
329      REAL pmfu(klon, llm), pmfd(klon, llm)      REAL mfu(klon, llm), mfd(klon, llm)
330      REAL pen_u(klon, llm), pen_d(klon, llm)      REAL pen_u(klon, llm), pen_d(klon, llm)
331      REAL pde_u(klon, llm), pde_d(klon, llm)      REAL pde_u(klon, llm), pde_d(klon, llm)
332      INTEGER kcbot(klon), kctop(klon), kdtop(klon)      INTEGER kcbot(klon), kctop(klon), kdtop(klon)
333      REAL pmflxr(klon, llm+1), pmflxs(klon, llm+1)      REAL pmflxr(klon, llm + 1), pmflxs(klon, llm + 1)
334      REAL prfl(klon, llm+1), psfl(klon, llm+1)      REAL prfl(klon, llm + 1), psfl(klon, llm + 1)
   
     INTEGER ibas_con(klon), itop_con(klon)  
335    
336      SAVE ibas_con, itop_con      INTEGER, save:: ibas_con(klon), itop_con(klon)
337        real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa
338    
339      REAL rain_con(klon), rain_lsc(klon)      REAL, save:: rain_con(klon)
340      REAL snow_con(klon), snow_lsc(klon)      real rain_lsc(klon)
341        REAL, save:: snow_con(klon) ! neige (mm / s)
342        real snow_lsc(klon)
343      REAL d_ts(klon, nbsrf)      REAL d_ts(klon, nbsrf)
344    
345      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)
# Line 644  contains Line 350  contains
350      REAL d_u_lif(klon, llm), d_v_lif(klon, llm)      REAL d_u_lif(klon, llm), d_v_lif(klon, llm)
351      REAL d_t_lif(klon, llm)      REAL d_t_lif(klon, llm)
352    
353      REAL ratqs(klon, llm), ratqss(klon, llm), ratqsc(klon, llm)      REAL, save:: ratqs(klon, llm)
354      real ratqsbas, ratqshaut      real ratqss(klon, llm), ratqsc(klon, llm)
355      save ratqsbas, ratqshaut, ratqs      real:: ratqsbas = 0.01, ratqshaut = 0.3
356    
357      ! Parametres lies au nouveau schema de nuages (SB, PDF)      ! Parametres lies au nouveau schema de nuages (SB, PDF)
358      real fact_cldcon      real:: fact_cldcon = 0.375
359      real facttemps      real:: facttemps = 1.e-4
360      logical ok_newmicro      logical:: ok_newmicro = .true.
     save ok_newmicro  
     save fact_cldcon, facttemps  
361      real facteur      real facteur
362    
363      integer iflag_cldcon      integer:: iflag_cldcon = 1
     save iflag_cldcon  
   
364      logical ptconv(klon, llm)      logical ptconv(klon, llm)
365    
366      ! Variables liees a l'ecriture de la bande histoire physique      ! Variables pour effectuer les appels en s\'erie :
   
     integer itau_w   ! pas de temps ecriture = itap + itau_phy  
   
     ! Variables locales pour effectuer les appels en serie  
367    
368      REAL t_seri(klon, llm), q_seri(klon, llm)      REAL t_seri(klon, llm), q_seri(klon, llm)
369      REAL ql_seri(klon, llm), qs_seri(klon, llm)      REAL ql_seri(klon, llm)
370      REAL u_seri(klon, llm), v_seri(klon, llm)      REAL u_seri(klon, llm), v_seri(klon, llm)
371        REAL tr_seri(klon, llm, nqmx - 2)
     REAL tr_seri(klon, llm, nbtr)  
     REAL d_tr(klon, llm, nbtr)  
372    
373      REAL zx_rh(klon, llm)      REAL zx_rh(klon, llm)
374    
     INTEGER        length  
     PARAMETER    ( length = 100 )  
     REAL tabcntr0( length       )  
   
     INTEGER ndex2d(iim*(jjm + 1)), ndex3d(iim*(jjm + 1)*llm)  
   
375      REAL zustrdr(klon), zvstrdr(klon)      REAL zustrdr(klon), zvstrdr(klon)
376      REAL zustrli(klon), zvstrli(klon)      REAL zustrli(klon), zvstrli(klon)
377      REAL zustrph(klon), zvstrph(klon)      REAL zustrph(klon), zvstrph(klon)
378      REAL aam, torsfc      REAL aam, torsfc
379    
     REAL dudyn(iim+1, jjm + 1, llm)  
   
     REAL zx_tmp_fi2d(klon)      ! variable temporaire grille physique  
     REAL zx_tmp_fi3d(klon, llm) ! variable temporaire pour champs 3D  
   
     REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm)  
   
     INTEGER nid_day, nid_ins  
     SAVE nid_day, nid_ins  
   
380      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.
381      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.
382      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.
383      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.
384    
     REAL zsto  
   
     character(len=20) modname  
     character(len=80) abort_message  
     logical ok_sync  
385      real date0      real date0
   
     !     Variables liees au bilan d'energie et d'enthalpi  
386      REAL ztsol(klon)      REAL ztsol(klon)
     REAL      d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec  
     REAL      d_h_vcol_phy  
     REAL      fs_bound, fq_bound  
     SAVE      d_h_vcol_phy  
     REAL      zero_v(klon)  
     CHARACTER(LEN=15) ztit  
     INTEGER   ip_ebil  ! PRINT level for energy conserv. diag.  
     SAVE      ip_ebil  
     DATA      ip_ebil/0/  
     INTEGER   if_ebil ! level for energy conserv. dignostics  
     SAVE      if_ebil  
     !+jld ec_conser  
     REAL d_t_ec(klon, llm)    ! tendance du a la conersion Ec -> E thermique  
     REAL ZRCPD  
     !-jld ec_conser  
     !IM: t2m, q2m, u10m, v10m  
     REAL t2m(klon, nbsrf), q2m(klon, nbsrf)   !temperature, humidite a 2m  
     REAL u10m(klon, nbsrf), v10m(klon, nbsrf) !vents a 10m  
     REAL zt2m(klon), zq2m(klon)             !temp., hum. 2m moyenne s/ 1 maille  
     REAL zu10m(klon), zv10m(klon)           !vents a 10m moyennes s/1 maille  
     !jq   Aerosol effects (Johannes Quaas, 27/11/2003)  
     REAL sulfate(klon, llm) ! SO4 aerosol concentration [ug/m3]  
   
     REAL sulfate_pi(klon, llm)  
     ! (SO4 aerosol concentration [ug/m3] (pre-industrial value))  
     SAVE sulfate_pi  
   
     REAL cldtaupi(klon, llm)  
     ! (Cloud optical thickness for pre-industrial (pi) aerosols)  
387    
388      REAL re(klon, llm)       ! Cloud droplet effective radius      REAL d_t_ec(klon, llm)
389      REAL fl(klon, llm)  ! denominator of re      ! tendance due \`a la conversion Ec en énergie thermique
390    
391      ! Aerosol optical properties      REAL ZRCPD
     REAL tau_ae(klon, llm, 2), piz_ae(klon, llm, 2)  
     REAL cg_ae(klon, llm, 2)  
392    
393      REAL topswad(klon), solswad(klon) ! Aerosol direct effect.      REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf)
394      ! ok_ade=T -ADE=topswad-topsw      ! temperature and humidity at 2 m
395    
396      REAL topswai(klon), solswai(klon) ! Aerosol indirect effect.      REAL, save:: u10m(klon, nbsrf), v10m(klon, nbsrf) ! vents a 10 m
397      ! ok_aie=T ->      REAL zt2m(klon), zq2m(klon) ! température, humidité 2 m moyenne sur 1 maille
398      !        ok_ade=T -AIE=topswai-topswad      REAL zu10m(klon), zv10m(klon) ! vents a 10 m moyennes sur 1 maille
     !        ok_ade=F -AIE=topswai-topsw  
   
     REAL aerindex(klon)       ! POLDER aerosol index  
   
     ! Parameters  
     LOGICAL ok_ade, ok_aie    ! Apply aerosol (in)direct effects or not  
     REAL bl95_b0, bl95_b1   ! Parameter in Boucher and Lohmann (1995)  
   
     SAVE ok_ade, ok_aie, bl95_b0, bl95_b1  
     SAVE u10m  
     SAVE v10m  
     SAVE t2m  
     SAVE q2m  
     SAVE ffonte  
     SAVE fqcalving  
     SAVE piz_ae  
     SAVE tau_ae  
     SAVE cg_ae  
     SAVE rain_con  
     SAVE snow_con  
     SAVE topswai  
     SAVE topswad  
     SAVE solswai  
     SAVE solswad  
     SAVE d_u_con  
     SAVE d_v_con  
     SAVE rnebcon0  
     SAVE clwcon0  
     SAVE pblh  
     SAVE plcl  
     SAVE capCL  
     SAVE oliqCL  
     SAVE cteiCL  
     SAVE pblt  
     SAVE therm  
     SAVE trmb1  
     SAVE trmb2  
     SAVE trmb3  
399    
400      !----------------------------------------------------------------      ! Aerosol effects:
401    
402      modname = 'physiq'      REAL sulfate(klon, llm) ! SO4 aerosol concentration (micro g / m3)
     IF (if_ebil >= 1) THEN  
        DO i=1, klon  
           zero_v(i)=0.  
        END DO  
     END IF  
     ok_sync=.TRUE.  
     IF (nq .LT. 2) THEN  
        abort_message = 'eaux vapeur et liquide sont indispensables'  
        CALL abort_gcm (modname, abort_message, 1)  
     ENDIF  
403    
404      xjour = rjourvrai      REAL, save:: sulfate_pi(klon, llm)
405        ! SO4 aerosol concentration, in \mu g / m3, pre-industrial value
406    
407      test_debut: IF (debut) THEN      REAL cldtaupi(klon, llm)
408         !  initialiser      ! cloud optical thickness for pre-industrial aerosols
        u10m(:, :)=0.  
        v10m(:, :)=0.  
        t2m(:, :)=0.  
        q2m(:, :)=0.  
        ffonte(:, :)=0.  
        fqcalving(:, :)=0.  
        piz_ae(:, :, :)=0.  
        tau_ae(:, :, :)=0.  
        cg_ae(:, :, :)=0.  
        rain_con(:)=0.  
        snow_con(:)=0.  
        bl95_b0=0.  
        bl95_b1=0.  
        topswai(:)=0.  
        topswad(:)=0.  
        solswai(:)=0.  
        solswad(:)=0.  
   
        d_u_con(:, :) = 0.0  
        d_v_con(:, :) = 0.0  
        rnebcon0(:, :) = 0.0  
        clwcon0(:, :) = 0.0  
        rnebcon(:, :) = 0.0  
        clwcon(:, :) = 0.0  
   
        pblh(:, :)   =0.        ! Hauteur de couche limite  
        plcl(:, :)   =0.        ! Niveau de condensation de la CLA  
        capCL(:, :)  =0.        ! CAPE de couche limite  
        oliqCL(:, :) =0.        ! eau_liqu integree de couche limite  
        cteiCL(:, :) =0.        ! cloud top instab. crit. couche limite  
        pblt(:, :)   =0.        ! T a la Hauteur de couche limite  
        therm(:, :)  =0.  
        trmb1(:, :)  =0.        ! deep_cape  
        trmb2(:, :)  =0.        ! inhibition  
        trmb3(:, :)  =0.        ! Point Omega  
   
        IF (if_ebil >= 1) d_h_vcol_phy=0.  
   
        ! appel a la lecture du run.def physique  
   
        call conf_phys(ocean, ok_veget, ok_journe, ok_mensuel, &  
             ok_instan, fact_cldcon, facttemps, ok_newmicro, &  
             iflag_cldcon, ratqsbas, ratqshaut, if_ebil, &  
             ok_ade, ok_aie,  &  
             bl95_b0, bl95_b1, &  
             iflag_thermals, nsplit_thermals)  
409    
410         ! Initialiser les compteurs:      REAL re(klon, llm) ! Cloud droplet effective radius
411        REAL fl(klon, llm) ! denominator of re
412    
413         frugs = 0.      ! Aerosol optical properties
414         itap = 0      REAL, save:: tau_ae(klon, llm, 2), piz_ae(klon, llm, 2)
415         itaprad = 0      REAL, save:: cg_ae(klon, llm, 2)
        CALL phyetat0("startphy.nc", dtime, co2_ppm_etat0, solaire_etat0, &  
             pctsrf, ftsol, ftsoil, &  
             ocean, tslab, seaice, & !IM "slab" ocean  
             fqsurf, qsol, fsnow, &  
             falbe, falblw, fevap, rain_fall, snow_fall, solsw, sollwdown, &  
             dlw, radsol, frugs, agesno, clesphy0, &  
             zmea, zstd, zsig, zgam, zthe, zpic, zval, rugoro, tabcntr0, &  
             t_ancien, q_ancien, ancien_ok, rnebcon, ratqs, clwcon,  &  
             run_off_lic_0)  
   
        !   ATTENTION : il faudra a terme relire q2 dans l'etat initial  
        q2(:, :, :)=1.e-8  
416    
417         radpas = NINT( 86400. / dtime / nbapp_rad)      REAL, save:: topswad(klon), solswad(klon) ! aerosol direct effect
418        REAL, save:: topswai(klon), solswai(klon) ! aerosol indirect effect
419    
420         ! on remet le calendrier a zero      LOGICAL:: ok_ade = .false. ! apply aerosol direct effect
421        LOGICAL:: ok_aie = .false. ! apply aerosol indirect effect
422    
423         IF (raz_date == 1) THEN      REAL:: bl95_b0 = 2., bl95_b1 = 0.2
424            itau_phy = 0      ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus
425         ENDIF      ! B). They link cloud droplet number concentration to aerosol mass
426        ! concentration.
427    
428         PRINT*, 'cycle_diurne =', cycle_diurne      real zmasse(klon, llm)
429        ! (column-density of mass of air in a cell, in kg m-2)
430    
431         IF(ocean.NE.'force ') THEN      integer, save:: ncid_startphy
           ok_ocean=.TRUE.  
        ENDIF  
432    
433         CALL printflag( tabcntr0, radpas, ok_ocean, ok_oasis, ok_journe, &      namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, &
434              ok_instan, ok_region )           ratqsbas, ratqshaut, ok_ade, ok_aie, bl95_b0, bl95_b1, &
435             iflag_thermals, nsplit_thermals
436    
437         IF (ABS(dtime-pdtphys).GT.0.001) THEN      !----------------------------------------------------------------
           WRITE(lunout, *) 'Pas physique n est pas correct', dtime, &  
                pdtphys  
           abort_message='Pas physique n est pas correct '  
           call abort_gcm(modname, abort_message, 1)  
        ENDIF  
438    
439         IF (dtime*REAL(radpas).GT.21600..AND.cycle_diurne) THEN      IF (nqmx < 2) CALL abort_gcm('physiq', &
440            WRITE(lunout, *)'Nbre d appels au rayonnement insuffisant'           'eaux vapeur et liquide sont indispensables')
           WRITE(lunout, *)"Au minimum 4 appels par jour si cycle diurne"  
           abort_message='Nbre d appels au rayonnement insuffisant'  
           call abort_gcm(modname, abort_message, 1)  
        ENDIF  
        WRITE(lunout, *)"Clef pour la convection, iflag_con=", iflag_con  
        WRITE(lunout, *)"Clef pour le driver de la convection, ok_cvl=", &  
             ok_cvl  
441    
442         ! Initialisation pour la convection de K.E. (sb):      test_firstcal: IF (firstcal) THEN
443         IF (iflag_con >= 3) THEN         ! initialiser
444           u10m = 0.
445           v10m = 0.
446           t2m = 0.
447           q2m = 0.
448           ffonte = 0.
449           fqcalving = 0.
450           piz_ae = 0.
451           tau_ae = 0.
452           cg_ae = 0.
453           rain_con = 0.
454           snow_con = 0.
455           topswai = 0.
456           topswad = 0.
457           solswai = 0.
458           solswad = 0.
459    
460           d_u_con = 0.
461           d_v_con = 0.
462           rnebcon0 = 0.
463           clwcon0 = 0.
464           rnebcon = 0.
465           clwcon = 0.
466    
467           pblh =0. ! Hauteur de couche limite
468           plcl =0. ! Niveau de condensation de la CLA
469           capCL =0. ! CAPE de couche limite
470           oliqCL =0. ! eau_liqu integree de couche limite
471           cteiCL =0. ! cloud top instab. crit. couche limite
472           pblt =0.
473           therm =0.
474           trmb1 =0. ! deep_cape
475           trmb2 =0. ! inhibition
476           trmb3 =0. ! Point Omega
477    
478           iflag_thermals = 0
479           nsplit_thermals = 1
480           print *, "Enter namelist 'physiq_nml'."
481           read(unit=*, nml=physiq_nml)
482           write(unit_nml, nml=physiq_nml)
483    
484            WRITE(lunout, *)"*** Convection de Kerry Emanuel 4.3  "         call conf_phys
485    
486            !IM15/11/02 rajout initialisation ibas_con, itop_con cf. SB =>BEG         ! Initialiser les compteurs:
           DO i = 1, klon  
              ibas_con(i) = 1  
              itop_con(i) = 1  
           ENDDO  
           !IM15/11/02 rajout initialisation ibas_con, itop_con cf. SB =>END  
487    
488           frugs = 0.
489           CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
490                fevap, rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, &
491                agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, &
492                q_ancien, ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
493                w01, ncid_startphy)
494    
495           ! ATTENTION : il faudra a terme relire q2 dans l'etat initial
496           q2 = 1e-8
497    
498           radpas = lmt_pas / nbapp_rad
499           print *, "radpas = ", radpas
500    
501           ! Initialisation pour le sch\'ema de convection d'Emanuel :
502           IF (conv_emanuel) THEN
503              ibas_con = 1
504              itop_con = 1
505         ENDIF         ENDIF
506    
507         IF (ok_orodr) THEN         IF (ok_orodr) THEN
508            DO i=1, klon            rugoro = MAX(1e-5, zstd * zsig / 2)
509               rugoro(i) = MAX(1.0e-05, zstd(i)*zsig(i)/2.0)            CALL SUGWD(paprs, play)
510            ENDDO         else
511            CALL SUGWD(klon, llm, paprs, pplay)            rugoro = 0.
512         ENDIF         ENDIF
513    
514         lmt_pas = NINT(86400. / dtime)  ! tous les jours         ecrit_ins = NINT(ecrit_ins / dtphys)
        print *, 'La frequence de lecture surface est de ', lmt_pas  
   
        ecrit_ins = NINT(ecrit_ins/dtime)  
        ecrit_hf = NINT(ecrit_hf/dtime)  
        ecrit_day = NINT(ecrit_day/dtime)  
        ecrit_mth = NINT(ecrit_mth/dtime)  
        ecrit_tra = NINT(86400.*ecrit_tra/dtime)  
        ecrit_reg = NINT(ecrit_reg/dtime)  
   
        ! Initialiser le couplage si necessaire  
   
        npas = 0  
        nexca = 0  
        if (ocean == 'couple') then  
           npas = itaufin/ iphysiq  
           nexca = 86400 / int(dtime)  
           write(lunout, *)' Ocean couple'  
           write(lunout, *)' Valeurs des pas de temps'  
           write(lunout, *)' npas = ', npas  
           write(lunout, *)' nexca = ', nexca  
        endif  
   
        write(lunout, *)'AVANT HIST IFLAG_CON=', iflag_con  
   
        !   Initialisation des sorties  
   
        call ini_histhf(dtime, presnivs, nid_hf, nid_hf3d)  
        call ini_histday(dtime, presnivs, ok_journe, nid_day)  
        call ini_histins(dtime, presnivs, ok_instan, nid_ins)  
        CALL ymds2ju(annee_ref, 1, int(day_ref), 0., date0)  
        !XXXPB Positionner date0 pour initialisation de ORCHIDEE  
        WRITE(*, *) 'physiq date0 : ', date0  
     ENDIF test_debut  
   
     ! Mettre a zero des variables de sortie (pour securite)  
   
     DO i = 1, klon  
        d_ps(i) = 0.0  
     ENDDO  
     DO k = 1, llm  
        DO i = 1, klon  
           d_t(i, k) = 0.0  
           d_u(i, k) = 0.0  
           d_v(i, k) = 0.0  
        ENDDO  
     ENDDO  
     DO iq = 1, nq  
        DO k = 1, llm  
           DO i = 1, klon  
              d_qx(i, k, iq) = 0.0  
           ENDDO  
        ENDDO  
     ENDDO  
     da(:, :)=0.  
     mp(:, :)=0.  
     phi(:, :, :)=0.  
   
     ! Ne pas affecter les valeurs entrees de u, v, h, et q  
   
     DO k = 1, llm  
        DO i = 1, klon  
           t_seri(i, k)  = t(i, k)  
           u_seri(i, k)  = u(i, k)  
           v_seri(i, k)  = v(i, k)  
           q_seri(i, k)  = qx(i, k, ivap)  
           ql_seri(i, k) = qx(i, k, iliq)  
           qs_seri(i, k) = 0.  
        ENDDO  
     ENDDO  
     IF (nq >= 3) THEN  
        tr_seri(:, :, :nq-2) = qx(:, :, 3:nq)  
     ELSE  
        tr_seri(:, :, 1) = 0.  
     ENDIF  
515    
516      DO i = 1, klon         ! Initialisation des sorties
        ztsol(i) = 0.  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           ztsol(i) = ztsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
517    
518      IF (if_ebil >= 1) THEN         call ini_histins(dtphys)
519         ztit='after dynamic'         CALL ymds2ju(annee_ref, 1, day_ref, 0., date0)
520         CALL diagetpq(airephy, ztit, ip_ebil, 1, 1, dtime &         ! Positionner date0 pour initialisation de ORCHIDEE
521              , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay &         print *, 'physiq date0: ', date0
522              , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)         CALL phyredem0
523         !     Comme les tendances de la physique sont ajoute dans la dynamique,      ENDIF test_firstcal
524         !     on devrait avoir que la variation d'entalpie par la dynamique  
525         !     est egale a la variation de la physique au pas de temps precedent.      ! We will modify variables *_seri and we will not touch variables
526         !     Donc la somme de ces 2 variations devrait etre nulle.      ! u, v, t, qx:
527         call diagphy(airephy, ztit, ip_ebil &      t_seri = t
528              , zero_v, zero_v, zero_v, zero_v, zero_v &      u_seri = u
529              , zero_v, zero_v, zero_v, ztsol &      v_seri = v
530              , d_h_vcol+d_h_vcol_phy, d_qt, 0. &      q_seri = qx(:, :, ivap)
531              , fs_bound, fq_bound )      ql_seri = qx(:, :, iliq)
532      END IF      tr_seri = qx(:, :, 3:nqmx)
533    
534      ! Diagnostiquer la tendance dynamique      ztsol = sum(ftsol * pctsrf, dim = 2)
535    
536        ! Diagnostic de la tendance dynamique :
537      IF (ancien_ok) THEN      IF (ancien_ok) THEN
538         DO k = 1, llm         DO k = 1, llm
539            DO i = 1, klon            DO i = 1, klon
540               d_t_dyn(i, k) = (t_seri(i, k)-t_ancien(i, k))/dtime               d_t_dyn(i, k) = (t_seri(i, k) - t_ancien(i, k)) / dtphys
541               d_q_dyn(i, k) = (q_seri(i, k)-q_ancien(i, k))/dtime               d_q_dyn(i, k) = (q_seri(i, k) - q_ancien(i, k)) / dtphys
542            ENDDO            ENDDO
543         ENDDO         ENDDO
544      ELSE      ELSE
545         DO k = 1, llm         DO k = 1, llm
546            DO i = 1, klon            DO i = 1, klon
547               d_t_dyn(i, k) = 0.0               d_t_dyn(i, k) = 0.
548               d_q_dyn(i, k) = 0.0               d_q_dyn(i, k) = 0.
549            ENDDO            ENDDO
550         ENDDO         ENDDO
551         ancien_ok = .TRUE.         ancien_ok = .TRUE.
552      ENDIF      ENDIF
553    
554      ! Ajouter le geopotentiel du sol:      ! Ajouter le geopotentiel du sol:
   
555      DO k = 1, llm      DO k = 1, llm
556         DO i = 1, klon         DO i = 1, klon
557            zphi(i, k) = pphi(i, k) + pphis(i)            zphi(i, k) = pphi(i, k) + pphis(i)
558         ENDDO         ENDDO
559      ENDDO      ENDDO
560    
561      ! Verifier les temperatures      ! Check temperatures:
   
562      CALL hgardfou(t_seri, ftsol)      CALL hgardfou(t_seri, ftsol)
563    
564      ! Incrementer le compteur de la physique      call increment_itap
565        julien = MOD(dayvrai, 360)
     itap   = itap + 1  
     julien = MOD(NINT(xjour), 360)  
566      if (julien == 0) julien = 360      if (julien == 0) julien = 360
567    
568      ! Mettre en action les conditions aux limites (albedo, sst, etc.).      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg
     ! Prescrire l'ozone et calculer l'albedo sur l'ocean.  
   
     IF (MOD(itap - 1, lmt_pas) == 0) THEN  
        CALL ozonecm(REAL(julien), rlat, paprs, wo)  
     ENDIF  
569    
570      ! Re-evaporer l'eau liquide nuageuse      ! Prescrire l'ozone :
571        wo = ozonecm(REAL(julien), paprs)
572    
573      DO k = 1, llm  ! re-evaporation de l'eau liquide nuageuse      ! \'Evaporation de l'eau liquide nuageuse :
574        DO k = 1, llm
575         DO i = 1, klon         DO i = 1, klon
576            zlvdcp=RLVTT/RCPD/(1.0+RVTMP2*q_seri(i, k))            zb = MAX(0., ql_seri(i, k))
577            zlsdcp=RLVTT/RCPD/(1.0+RVTMP2*q_seri(i, k))            t_seri(i, k) = t_seri(i, k) &
578            zdelta = MAX(0., SIGN(1., RTT-t_seri(i, k)))                 - zb * RLVTT / RCPD / (1. + RVTMP2 * q_seri(i, k))
           zb = MAX(0.0, ql_seri(i, k))  
           za = - MAX(0.0, ql_seri(i, k)) &  
                * (zlvdcp*(1.-zdelta)+zlsdcp*zdelta)  
           t_seri(i, k) = t_seri(i, k) + za  
579            q_seri(i, k) = q_seri(i, k) + zb            q_seri(i, k) = q_seri(i, k) + zb
           ql_seri(i, k) = 0.0  
580         ENDDO         ENDDO
581      ENDDO      ENDDO
582        ql_seri = 0.
583    
584      IF (if_ebil >= 2) THEN      frugs = MAX(frugs, 0.000015)
585         ztit='after reevap'      zxrugs = sum(frugs * pctsrf, dim = 2)
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 1, dtime &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil &  
             , zero_v, zero_v, zero_v, zero_v, zero_v &  
             , zero_v, zero_v, zero_v, ztsol &  
             , d_h_vcol, d_qt, d_ec &  
             , fs_bound, fq_bound )  
586    
587      END IF      ! Calculs n\'ecessaires au calcul de l'albedo dans l'interface avec
588        ! la surface.
589    
590      ! Appeler la diffusion verticale (programme de couche limite)      CALL orbite(REAL(julien), longi, dist)
591        CALL zenang(longi, time, dtphys * radpas, mu0, fract)
592    
593      DO i = 1, klon      ! Calcul de l'abedo moyen par maille
594         zxrugs(i) = 0.0      albsol = sum(falbe * pctsrf, dim = 2)
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           frugs(i, nsrf) = MAX(frugs(i, nsrf), 0.000015)  
        ENDDO  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxrugs(i) = zxrugs(i) + frugs(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     ! calculs necessaires au calcul de l'albedo dans l'interface  
   
     CALL orbite(REAL(julien), zlongi, dist)  
     IF (cycle_diurne) THEN  
        zdtime = dtime * REAL(radpas)  
        CALL zenang(zlongi, gmtime, zdtime, rmu0, fract)  
     ELSE  
        rmu0 = -999.999  
     ENDIF  
   
     !     Calcul de l'abedo moyen par maille  
     albsol(:)=0.  
     albsollw(:)=0.  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           albsol(i) = albsol(i) + falbe(i, nsrf) * pctsrf(i, nsrf)  
           albsollw(i) = albsollw(i) + falblw(i, nsrf) * pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
595    
596      !     Repartition sous maille des flux LW et SW      ! R\'epartition sous maille des flux longwave et shortwave
597      ! Repartition du longwave par sous-surface linearisee      ! R\'epartition du longwave par sous-surface lin\'earis\'ee
598    
599      DO nsrf = 1, nbsrf      forall (nsrf = 1: nbsrf)
600         DO i = 1, klon         fsollw(:, nsrf) = sollw + 4. * RSIGMA * ztsol**3 &
601            fsollw(i, nsrf) = sollw(i) &              * (ztsol - ftsol(:, nsrf))
602                 + 4.0*RSIGMA*ztsol(i)**3 * (ztsol(i)-ftsol(i, nsrf))         fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol)
603            fsolsw(i, nsrf) = solsw(i)*(1.-falbe(i, nsrf))/(1.-albsol(i))      END forall
        ENDDO  
     ENDDO  
604    
605      fder = dlw      fder = dlw
606    
607      CALL clmain(dtime, itap, date0, pctsrf, pctsrf_new, &      CALL clmain(dtphys, pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, &
608           t_seri, q_seri, u_seri, v_seri, &           ftsol, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, &
609           julien, rmu0, co2_ppm,  &           paprs, play, fsnow, fqsurf, fevap, falbe, fluxlat, rain_fall, &
610           ok_veget, ocean, npas, nexca, ftsol, &           snow_fall, fsolsw, fsollw, fder, frugs, agesno, rugoro, d_t_vdf, &
611           soil_model, cdmmax, cdhmax, &           d_q_vdf, d_u_vdf, d_v_vdf, d_ts, flux_t, flux_q, flux_u, flux_v, &
612           ksta, ksta_ter, ok_kzmin, ftsoil, qsol,  &           cdragh, cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m, &
613           paprs, pplay, fsnow, fqsurf, fevap, falbe, falblw, &           v10m, pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, &
614           fluxlat, rain_fall, snow_fall, &           plcl, fqcalving, ffonte, run_off_lic_0)
615           fsolsw, fsollw, sollwdown, fder, &  
616           rlon, rlat, cuphy, cvphy, frugs, &      ! Incr\'ementation des flux
617           debut, lafin, agesno, rugoro, &  
618           d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, &      sens = - sum(flux_t * pctsrf, dim = 2)
619           fluxt, fluxq, fluxu, fluxv, cdragh, cdragm, &      evap = - sum(flux_q * pctsrf, dim = 2)
620           q2, dsens, devap, &      fder = dlw + dsens + devap
          ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, &  
          pblh, capCL, oliqCL, cteiCL, pblT, &  
          therm, trmb1, trmb2, trmb3, plcl, &  
          fqcalving, ffonte, run_off_lic_0, &  
          fluxo, fluxg, tslab, seaice)  
   
     !XXX Incrementation des flux  
   
     zxfluxt=0.  
     zxfluxq=0.  
     zxfluxu=0.  
     zxfluxv=0.  
     DO nsrf = 1, nbsrf  
        DO k = 1, llm  
           DO i = 1, klon  
              zxfluxt(i, k) = zxfluxt(i, k) +  &  
                   fluxt(i, k, nsrf) * pctsrf( i, nsrf)  
              zxfluxq(i, k) = zxfluxq(i, k) +  &  
                   fluxq(i, k, nsrf) * pctsrf( i, nsrf)  
              zxfluxu(i, k) = zxfluxu(i, k) +  &  
                   fluxu(i, k, nsrf) * pctsrf( i, nsrf)  
              zxfluxv(i, k) = zxfluxv(i, k) +  &  
                   fluxv(i, k, nsrf) * pctsrf( i, nsrf)  
           END DO  
        END DO  
     END DO  
     DO i = 1, klon  
        sens(i) = - zxfluxt(i, 1) ! flux de chaleur sensible au sol  
        evap(i) = - zxfluxq(i, 1) ! flux d'evaporation au sol  
        fder(i) = dlw(i) + dsens(i) + devap(i)  
     ENDDO  
621    
622      DO k = 1, llm      DO k = 1, llm
623         DO i = 1, klon         DO i = 1, klon
# Line 1209  contains Line 628  contains
628         ENDDO         ENDDO
629      ENDDO      ENDDO
630    
631      IF (if_ebil >= 2) THEN      ! Update surface temperature:
        ztit='after clmain'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtime &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil &  
             , zero_v, zero_v, zero_v, zero_v, sens &  
             , evap, zero_v, zero_v, ztsol &  
             , d_h_vcol, d_qt, d_ec &  
             , fs_bound, fq_bound )  
     END IF  
   
     ! Incrementer la temperature du sol  
   
     DO i = 1, klon  
        zxtsol(i) = 0.0  
        zxfluxlat(i) = 0.0  
   
        zt2m(i) = 0.0  
        zq2m(i) = 0.0  
        zu10m(i) = 0.0  
        zv10m(i) = 0.0  
        zxffonte(i) = 0.0  
        zxfqcalving(i) = 0.0  
   
        s_pblh(i) = 0.0  
        s_lcl(i) = 0.0  
        s_capCL(i) = 0.0  
        s_oliqCL(i) = 0.0  
        s_cteiCL(i) = 0.0  
        s_pblT(i) = 0.0  
        s_therm(i) = 0.0  
        s_trmb1(i) = 0.0  
        s_trmb2(i) = 0.0  
        s_trmb3(i) = 0.0  
   
        IF ( abs( pctsrf(i, is_ter) + pctsrf(i, is_lic) +  &  
             pctsrf(i, is_oce) + pctsrf(i, is_sic)  - 1.) .GT. EPSFRA)  &  
             THEN  
           WRITE(*, *) 'physiq : pb sous surface au point ', i,  &  
                pctsrf(i, 1 : nbsrf)  
        ENDIF  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           ftsol(i, nsrf) = ftsol(i, nsrf) + d_ts(i, nsrf)  
           zxtsol(i) = zxtsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)  
           zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf)*pctsrf(i, nsrf)  
   
           zt2m(i) = zt2m(i) + t2m(i, nsrf)*pctsrf(i, nsrf)  
           zq2m(i) = zq2m(i) + q2m(i, nsrf)*pctsrf(i, nsrf)  
           zu10m(i) = zu10m(i) + u10m(i, nsrf)*pctsrf(i, nsrf)  
           zv10m(i) = zv10m(i) + v10m(i, nsrf)*pctsrf(i, nsrf)  
           zxffonte(i) = zxffonte(i) + ffonte(i, nsrf)*pctsrf(i, nsrf)  
           zxfqcalving(i) = zxfqcalving(i) +  &  
                fqcalving(i, nsrf)*pctsrf(i, nsrf)  
           s_pblh(i) = s_pblh(i) + pblh(i, nsrf)*pctsrf(i, nsrf)  
           s_lcl(i) = s_lcl(i) + plcl(i, nsrf)*pctsrf(i, nsrf)  
           s_capCL(i) = s_capCL(i) + capCL(i, nsrf) *pctsrf(i, nsrf)  
           s_oliqCL(i) = s_oliqCL(i) + oliqCL(i, nsrf) *pctsrf(i, nsrf)  
           s_cteiCL(i) = s_cteiCL(i) + cteiCL(i, nsrf) *pctsrf(i, nsrf)  
           s_pblT(i) = s_pblT(i) + pblT(i, nsrf) *pctsrf(i, nsrf)  
           s_therm(i) = s_therm(i) + therm(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb1(i) = s_trmb1(i) + trmb1(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb2(i) = s_trmb2(i) + trmb2(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb3(i) = s_trmb3(i) + trmb3(i, nsrf) *pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
632    
633      ! Si une sous-fraction n'existe pas, elle prend la temp. moyenne      call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf')
634        ftsol = ftsol + d_ts
635        ztsol = sum(ftsol * pctsrf, dim = 2)
636        zxfluxlat = sum(fluxlat * pctsrf, dim = 2)
637        zt2m = sum(t2m * pctsrf, dim = 2)
638        zq2m = sum(q2m * pctsrf, dim = 2)
639        zu10m = sum(u10m * pctsrf, dim = 2)
640        zv10m = sum(v10m * pctsrf, dim = 2)
641        zxffonte = sum(ffonte * pctsrf, dim = 2)
642        zxfqcalving = sum(fqcalving * pctsrf, dim = 2)
643        s_pblh = sum(pblh * pctsrf, dim = 2)
644        s_lcl = sum(plcl * pctsrf, dim = 2)
645        s_capCL = sum(capCL * pctsrf, dim = 2)
646        s_oliqCL = sum(oliqCL * pctsrf, dim = 2)
647        s_cteiCL = sum(cteiCL * pctsrf, dim = 2)
648        s_pblT = sum(pblT * pctsrf, dim = 2)
649        s_therm = sum(therm * pctsrf, dim = 2)
650        s_trmb1 = sum(trmb1 * pctsrf, dim = 2)
651        s_trmb2 = sum(trmb2 * pctsrf, dim = 2)
652        s_trmb3 = sum(trmb3 * pctsrf, dim = 2)
653    
654        ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne :
655      DO nsrf = 1, nbsrf      DO nsrf = 1, nbsrf
656         DO i = 1, klon         DO i = 1, klon
657            IF (pctsrf(i, nsrf) .LT. epsfra) ftsol(i, nsrf) = zxtsol(i)            IF (pctsrf(i, nsrf) < epsfra) then
658                 ftsol(i, nsrf) = ztsol(i)
659            IF (pctsrf(i, nsrf) .LT. epsfra) t2m(i, nsrf) = zt2m(i)               t2m(i, nsrf) = zt2m(i)
660            IF (pctsrf(i, nsrf) .LT. epsfra) q2m(i, nsrf) = zq2m(i)               q2m(i, nsrf) = zq2m(i)
661            IF (pctsrf(i, nsrf) .LT. epsfra) u10m(i, nsrf) = zu10m(i)               u10m(i, nsrf) = zu10m(i)
662            IF (pctsrf(i, nsrf) .LT. epsfra) v10m(i, nsrf) = zv10m(i)               v10m(i, nsrf) = zv10m(i)
663            IF (pctsrf(i, nsrf) .LT. epsfra) ffonte(i, nsrf) = zxffonte(i)               ffonte(i, nsrf) = zxffonte(i)
664            IF (pctsrf(i, nsrf) .LT. epsfra)  &               fqcalving(i, nsrf) = zxfqcalving(i)
665                 fqcalving(i, nsrf) = zxfqcalving(i)               pblh(i, nsrf) = s_pblh(i)
666            IF (pctsrf(i, nsrf) .LT. epsfra) pblh(i, nsrf)=s_pblh(i)               plcl(i, nsrf) = s_lcl(i)
667            IF (pctsrf(i, nsrf) .LT. epsfra) plcl(i, nsrf)=s_lcl(i)               capCL(i, nsrf) = s_capCL(i)
668            IF (pctsrf(i, nsrf) .LT. epsfra) capCL(i, nsrf)=s_capCL(i)               oliqCL(i, nsrf) = s_oliqCL(i)
669            IF (pctsrf(i, nsrf) .LT. epsfra) oliqCL(i, nsrf)=s_oliqCL(i)               cteiCL(i, nsrf) = s_cteiCL(i)
670            IF (pctsrf(i, nsrf) .LT. epsfra) cteiCL(i, nsrf)=s_cteiCL(i)               pblT(i, nsrf) = s_pblT(i)
671            IF (pctsrf(i, nsrf) .LT. epsfra) pblT(i, nsrf)=s_pblT(i)               therm(i, nsrf) = s_therm(i)
672            IF (pctsrf(i, nsrf) .LT. epsfra) therm(i, nsrf)=s_therm(i)               trmb1(i, nsrf) = s_trmb1(i)
673            IF (pctsrf(i, nsrf) .LT. epsfra) trmb1(i, nsrf)=s_trmb1(i)               trmb2(i, nsrf) = s_trmb2(i)
674            IF (pctsrf(i, nsrf) .LT. epsfra) trmb2(i, nsrf)=s_trmb2(i)               trmb3(i, nsrf) = s_trmb3(i)
675            IF (pctsrf(i, nsrf) .LT. epsfra) trmb3(i, nsrf)=s_trmb3(i)            end IF
676         ENDDO         ENDDO
677      ENDDO      ENDDO
678    
679      ! Calculer la derive du flux infrarouge      ! Calculer la dérive du flux infrarouge
680    
681      DO i = 1, klon      DO i = 1, klon
682         dlw(i) = - 4.0*RSIGMA*zxtsol(i)**3         dlw(i) = - 4. * RSIGMA * ztsol(i)**3
683      ENDDO      ENDDO
684    
685      ! Appeler la convection (au choix)      ! Appeler la convection
686    
687      DO k = 1, llm      if (conv_emanuel) then
688         DO i = 1, klon         CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, &
689            conv_q(i, k) = d_q_dyn(i, k)  &              d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, &
690                 + d_q_vdf(i, k)/dtime              upwd, dnwd, Ma, cape, iflagctrl, qcondc, pmflxr, da, phi, mp)
691            conv_t(i, k) = d_t_dyn(i, k)  &         snow_con = 0.
692                 + d_t_vdf(i, k)/dtime         clwcon0 = qcondc
693         ENDDO         mfu = upwd + dnwd
694      ENDDO  
695      IF (check) THEN         zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play)
696         za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)         zqsat = zqsat / (1. - retv * zqsat)
697         WRITE(lunout, *) "avantcon=", za  
698      ENDIF         ! Properties of convective clouds
699      zx_ajustq = .FALSE.         clwcon0 = fact_cldcon * clwcon0
700      IF (iflag_con == 2) zx_ajustq=.TRUE.         call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &
701      IF (zx_ajustq) THEN              rnebcon0)
702         DO i = 1, klon  
703            z_avant(i) = 0.0         forall (i = 1:klon) ema_pct(i) = paprs(i, itop_con(i) + 1)
704         ENDDO         mfd = 0.
705         DO k = 1, llm         pen_u = 0.
706            DO i = 1, klon         pen_d = 0.
707               z_avant(i) = z_avant(i) + (q_seri(i, k)+ql_seri(i, k)) &         pde_d = 0.
708                    *(paprs(i, k)-paprs(i, k+1))/RG         pde_u = 0.
709            ENDDO      else
710         ENDDO         conv_q = d_q_dyn + d_q_vdf / dtphys
711      ENDIF         conv_t = d_t_dyn + d_t_vdf / dtphys
712      IF (iflag_con == 1) THEN         z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)
713         stop 'reactiver le call conlmd dans physiq.F'         CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:- 1), &
714      ELSE IF (iflag_con == 2) THEN              q_seri(:, llm:1:- 1), conv_t, conv_q, - evap, omega, &
715         CALL conflx(dtime, paprs, pplay, t_seri, q_seri, &              d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:- 1), &
716              conv_t, conv_q, zxfluxq(1, 1), omega, &              mfd(:, llm:1:- 1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, &
717              d_t_con, d_q_con, rain_con, snow_con, &              kdtop, pmflxr, pmflxs)
             pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, &  
             kcbot, kctop, kdtop, pmflxr, pmflxs)  
718         WHERE (rain_con < 0.) rain_con = 0.         WHERE (rain_con < 0.) rain_con = 0.
719         WHERE (snow_con < 0.) snow_con = 0.         WHERE (snow_con < 0.) snow_con = 0.
720         DO i = 1, klon         ibas_con = llm + 1 - kcbot
721            ibas_con(i) = llm+1 - kcbot(i)         itop_con = llm + 1 - kctop
722            itop_con(i) = llm+1 - kctop(i)      END if
        ENDDO  
     ELSE IF (iflag_con >= 3) THEN  
        ! nb of tracers for the KE convection:  
        ! MAF la partie traceurs est faite dans phytrac  
        ! on met ntra=1 pour limiter les appels mais on peut  
        ! supprimer les calculs / ftra.  
        ntra = 1  
        ! Schema de convection modularise et vectorise:  
        ! (driver commun aux versions 3 et 4)  
   
        IF (ok_cvl) THEN ! new driver for convectL  
   
           CALL concvl (iflag_con, &  
                dtime, paprs, pplay, t_seri, q_seri, &  
                u_seri, v_seri, tr_seri, ntra, &  
                ema_work1, ema_work2, &  
                d_t_con, d_q_con, d_u_con, d_v_con, d_tr, &  
                rain_con, snow_con, ibas_con, itop_con, &  
                upwd, dnwd, dnwd0, &  
                Ma, cape, tvp, iflagctrl, &  
                pbase, bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr, qcondc, wd, &  
                pmflxr, pmflxs, &  
                da, phi, mp)  
   
           clwcon0=qcondc  
           pmfu(:, :)=upwd(:, :)+dnwd(:, :)  
   
        ELSE ! ok_cvl  
           ! MAF conema3 ne contient pas les traceurs  
           CALL conema3 (dtime, &  
                paprs, pplay, t_seri, q_seri, &  
                u_seri, v_seri, tr_seri, ntra, &  
                ema_work1, ema_work2, &  
                d_t_con, d_q_con, d_u_con, d_v_con, d_tr, &  
                rain_con, snow_con, ibas_con, itop_con, &  
                upwd, dnwd, dnwd0, bas, top, &  
                Ma, cape, tvp, rflag, &  
                pbase &  
                , bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr &  
                , clwcon0)  
   
        ENDIF ! ok_cvl  
   
        IF (.NOT. ok_gust) THEN  
           do i = 1, klon  
              wd(i)=0.0  
           enddo  
        ENDIF  
   
        ! Calcul des proprietes des nuages convectifs  
   
        DO k = 1, llm  
           DO i = 1, klon  
              zx_t = t_seri(i, k)  
              IF (thermcep) THEN  
                 zdelta = MAX(0., SIGN(1., rtt-zx_t))  
                 zx_qs  = r2es * FOEEW(zx_t, zdelta)/pplay(i, k)  
                 zx_qs  = MIN(0.5, zx_qs)  
                 zcor   = 1./(1.-retv*zx_qs)  
                 zx_qs  = zx_qs*zcor  
              ELSE  
                 IF (zx_t.LT.t_coup) THEN  
                    zx_qs = qsats(zx_t)/pplay(i, k)  
                 ELSE  
                    zx_qs = qsatl(zx_t)/pplay(i, k)  
                 ENDIF  
              ENDIF  
              zqsat(i, k)=zx_qs  
           ENDDO  
        ENDDO  
   
        !   calcul des proprietes des nuages convectifs  
        clwcon0(:, :)=fact_cldcon*clwcon0(:, :)  
        call clouds_gno &  
             (klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, rnebcon0)  
     ELSE  
        WRITE(lunout, *) "iflag_con non-prevu", iflag_con  
        stop 1  
     ENDIF  
723    
724      DO k = 1, llm      DO k = 1, llm
725         DO i = 1, klon         DO i = 1, klon
# Line 1439  contains Line 730  contains
730         ENDDO         ENDDO
731      ENDDO      ENDDO
732    
733      IF (if_ebil >= 2) THEN      IF (.not. conv_emanuel) THEN
734         ztit='after convect'         z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)
735         CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtime &         z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil &  
             , zero_v, zero_v, zero_v, zero_v, zero_v &  
             , zero_v, rain_con, snow_con, ztsol &  
             , d_h_vcol, d_qt, d_ec &  
             , fs_bound, fq_bound )  
     END IF  
   
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        WRITE(lunout, *)"aprescon=", za  
        zx_t = 0.0  
        za = 0.0  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_con(i)+ &  
                snow_con(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtime  
        WRITE(lunout, *)"Precip=", zx_t  
     ENDIF  
     IF (zx_ajustq) THEN  
        DO i = 1, klon  
           z_apres(i) = 0.0  
        ENDDO  
        DO k = 1, llm  
           DO i = 1, klon  
              z_apres(i) = z_apres(i) + (q_seri(i, k)+ql_seri(i, k)) &  
                   *(paprs(i, k)-paprs(i, k+1))/RG  
           ENDDO  
        ENDDO  
        DO i = 1, klon  
           z_factor(i) = (z_avant(i)-(rain_con(i)+snow_con(i))*dtime) &  
                /z_apres(i)  
        ENDDO  
736         DO k = 1, llm         DO k = 1, llm
737            DO i = 1, klon            DO i = 1, klon
738               IF (z_factor(i).GT.(1.0+1.0E-08) .OR. &               IF (z_factor(i) > 1. + 1E-8 .OR. z_factor(i) < 1. - 1E-8) THEN
                   z_factor(i).LT.(1.0-1.0E-08)) THEN  
739                  q_seri(i, k) = q_seri(i, k) * z_factor(i)                  q_seri(i, k) = q_seri(i, k) * z_factor(i)
740               ENDIF               ENDIF
741            ENDDO            ENDDO
742         ENDDO         ENDDO
743      ENDIF      ENDIF
     zx_ajustq=.FALSE.  
744    
745      ! Convection seche (thermiques ou ajustement)      ! Convection s\`eche (thermiques ou ajustement)
746    
747      d_t_ajs(:, :)=0.      d_t_ajs = 0.
748      d_u_ajs(:, :)=0.      d_u_ajs = 0.
749      d_v_ajs(:, :)=0.      d_v_ajs = 0.
750      d_q_ajs(:, :)=0.      d_q_ajs = 0.
751      fm_therm(:, :)=0.      fm_therm = 0.
752      entr_therm(:, :)=0.      entr_therm = 0.
753    
754      IF(prt_level>9)WRITE(lunout, *) &      if (iflag_thermals == 0) then
755           'AVANT LA CONVECTION SECHE, iflag_thermals=' &         ! Ajustement sec
756           , iflag_thermals, '   nsplit_thermals=', nsplit_thermals         CALL ajsec(paprs, play, t_seri, q_seri, d_t_ajs, d_q_ajs)
757      if(iflag_thermals.lt.0) then         t_seri = t_seri + d_t_ajs
758         !  Rien         q_seri = q_seri + d_q_ajs
        IF(prt_level>9)WRITE(lunout, *)'pas de convection'  
     else if(iflag_thermals == 0) then  
        !  Ajustement sec  
        IF(prt_level>9)WRITE(lunout, *)'ajsec'  
        CALL ajsec(paprs, pplay, t_seri, q_seri, d_t_ajs, d_q_ajs)  
        t_seri(:, :) = t_seri(:, :) + d_t_ajs(:, :)  
        q_seri(:, :) = q_seri(:, :) + d_q_ajs(:, :)  
759      else      else
760         !  Thermiques         call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, &
761         IF(prt_level>9)WRITE(lunout, *)'JUSTE AVANT, iflag_thermals=' &              q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)
             , iflag_thermals, '   nsplit_thermals=', nsplit_thermals  
        call calltherm(pdtphys &  
             , pplay, paprs, pphi &  
             , u_seri, v_seri, t_seri, q_seri &  
             , d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs &  
             , fm_therm, entr_therm)  
762      endif      endif
763    
764      IF (if_ebil >= 2) THEN      ! Caclul des ratqs
        ztit='after dry_adjust'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtime &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
     END IF  
   
     !  Caclul des ratqs  
765    
766      !   ratqs convectifs a l'ancienne en fonction de q(z=0)-q / q      ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q
767      !   on ecrase le tableau ratqsc calcule par clouds_gno      ! on \'ecrase le tableau ratqsc calcul\'e par clouds_gno
768      if (iflag_cldcon == 1) then      if (iflag_cldcon == 1) then
769         do k=1, llm         do k = 1, llm
770            do i=1, klon            do i = 1, klon
771               if(ptconv(i, k)) then               if(ptconv(i, k)) then
772                  ratqsc(i, k)=ratqsbas &                  ratqsc(i, k) = ratqsbas + fact_cldcon &
773                       +fact_cldcon*(q_seri(i, 1)-q_seri(i, k))/q_seri(i, k)                       * (q_seri(i, 1) - q_seri(i, k)) / q_seri(i, k)
774               else               else
775                  ratqsc(i, k)=0.                  ratqsc(i, k) = 0.
776               endif               endif
777            enddo            enddo
778         enddo         enddo
779      endif      endif
780    
781      !   ratqs stables      ! ratqs stables
782      do k=1, llm      do k = 1, llm
783         do i=1, klon         do i = 1, klon
784            ratqss(i, k)=ratqsbas+(ratqshaut-ratqsbas)* &            ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &
785                 min((paprs(i, 1)-pplay(i, k))/(paprs(i, 1)-30000.), 1.)                 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)
786         enddo         enddo
787      enddo      enddo
788    
789      !  ratqs final      ! ratqs final
790      if (iflag_cldcon == 1 .or.iflag_cldcon == 2) then      if (iflag_cldcon == 1 .or. iflag_cldcon == 2) then
791         !   les ratqs sont une conbinaison de ratqss et ratqsc         ! les ratqs sont une conbinaison de ratqss et ratqsc
792         !   ratqs final         ! ratqs final
793         !   1e4 (en gros 3 heures), en dur pour le moment, est le temps de         ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de
794         !   relaxation des ratqs         ! relaxation des ratqs
795         facteur=exp(-pdtphys*facttemps)         ratqs = max(ratqs * exp(- dtphys * facttemps), ratqss)
796         ratqs(:, :)=max(ratqs(:, :)*facteur, ratqss(:, :))         ratqs = max(ratqs, ratqsc)
        ratqs(:, :)=max(ratqs(:, :), ratqsc(:, :))  
797      else      else
798         !   on ne prend que le ratqs stable pour fisrtilp         ! on ne prend que le ratqs stable pour fisrtilp
799         ratqs(:, :)=ratqss(:, :)         ratqs = ratqss
800      endif      endif
801    
802      ! Appeler le processus de condensation a grande echelle      CALL fisrtilp(dtphys, paprs, play, t_seri, q_seri, ptconv, ratqs, &
803      ! et le processus de precipitation           d_t_lsc, d_q_lsc, d_ql_lsc, rneb, cldliq, rain_lsc, snow_lsc, &
804      CALL fisrtilp(dtime, paprs, pplay, &           pfrac_impa, pfrac_nucl, pfrac_1nucl, frac_impa, frac_nucl, prfl, &
805           t_seri, q_seri, ptconv, ratqs, &           psfl, rhcl)
          d_t_lsc, d_q_lsc, d_ql_lsc, rneb, cldliq, &  
          rain_lsc, snow_lsc, &  
          pfrac_impa, pfrac_nucl, pfrac_1nucl, &  
          frac_impa, frac_nucl, &  
          prfl, psfl, rhcl)  
806    
807      WHERE (rain_lsc < 0) rain_lsc = 0.      WHERE (rain_lsc < 0) rain_lsc = 0.
808      WHERE (snow_lsc < 0) snow_lsc = 0.      WHERE (snow_lsc < 0) snow_lsc = 0.
# Line 1588  contains Line 815  contains
815            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)
816         ENDDO         ENDDO
817      ENDDO      ENDDO
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        WRITE(lunout, *)"apresilp=", za  
        zx_t = 0.0  
        za = 0.0  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_lsc(i) &  
                + snow_lsc(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtime  
        WRITE(lunout, *)"Precip=", zx_t  
     ENDIF  
   
     IF (if_ebil >= 2) THEN  
        ztit='after fisrt'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtime &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil &  
             , zero_v, zero_v, zero_v, zero_v, zero_v &  
             , zero_v, rain_lsc, snow_lsc, ztsol &  
             , d_h_vcol, d_qt, d_ec &  
             , fs_bound, fq_bound )  
     END IF  
818    
819      !  PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
820    
821      ! 1. NUAGES CONVECTIFS      ! 1. NUAGES CONVECTIFS
822    
823      IF (iflag_cldcon.le.-1) THEN ! seulement pour Tiedtke      IF (iflag_cldcon <= - 1) THEN
824         snow_tiedtke=0.         ! seulement pour Tiedtke
825         if (iflag_cldcon == -1) then         snow_tiedtke = 0.
826            rain_tiedtke=rain_con         if (iflag_cldcon == - 1) then
827              rain_tiedtke = rain_con
828         else         else
829            rain_tiedtke=0.            rain_tiedtke = 0.
830            do k=1, llm            do k = 1, llm
831               do i=1, klon               do i = 1, klon
832                  if (d_q_con(i, k).lt.0.) then                  if (d_q_con(i, k) < 0.) then
833                     rain_tiedtke(i)=rain_tiedtke(i)-d_q_con(i, k)/pdtphys &                     rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k) / dtphys &
834                          *(paprs(i, k)-paprs(i, k+1))/rg                          * zmasse(i, k)
835                  endif                  endif
836               enddo               enddo
837            enddo            enddo
838         endif         endif
839    
840         ! Nuages diagnostiques pour Tiedtke         ! Nuages diagnostiques pour Tiedtke
841         CALL diagcld1(paprs, pplay, &         CALL diagcld1(paprs, play, rain_tiedtke, snow_tiedtke, ibas_con, &
842              rain_tiedtke, snow_tiedtke, ibas_con, itop_con, &              itop_con, diafra, dialiq)
             diafra, dialiq)  
843         DO k = 1, llm         DO k = 1, llm
844            DO i = 1, klon            DO i = 1, klon
845               IF (diafra(i, k).GT.cldfra(i, k)) THEN               IF (diafra(i, k) > cldfra(i, k)) THEN
846                  cldliq(i, k) = dialiq(i, k)                  cldliq(i, k) = dialiq(i, k)
847                  cldfra(i, k) = diafra(i, k)                  cldfra(i, k) = diafra(i, k)
848               ENDIF               ENDIF
849            ENDDO            ENDDO
850         ENDDO         ENDDO
   
851      ELSE IF (iflag_cldcon == 3) THEN      ELSE IF (iflag_cldcon == 3) THEN
852         !  On prend pour les nuages convectifs le max du calcul de la         ! On prend pour les nuages convectifs le maximum du calcul de
853         !  convection et du calcul du pas de temps précédent diminué d'un facteur         ! la convection et du calcul du pas de temps pr\'ec\'edent diminu\'e
854         !  facttemps         ! d'un facteur facttemps.
855         facteur = pdtphys *facttemps         facteur = dtphys * facttemps
856         do k=1, llm         do k = 1, llm
857            do i=1, klon            do i = 1, klon
858               rnebcon(i, k)=rnebcon(i, k)*facteur               rnebcon(i, k) = rnebcon(i, k) * facteur
859               if (rnebcon0(i, k)*clwcon0(i, k).gt.rnebcon(i, k)*clwcon(i, k)) &               if (rnebcon0(i, k) * clwcon0(i, k) &
860                    then                    > rnebcon(i, k) * clwcon(i, k)) then
861                  rnebcon(i, k)=rnebcon0(i, k)                  rnebcon(i, k) = rnebcon0(i, k)
862                  clwcon(i, k)=clwcon0(i, k)                  clwcon(i, k) = clwcon0(i, k)
863               endif               endif
864            enddo            enddo
865         enddo         enddo
866    
867         !   On prend la somme des fractions nuageuses et des contenus en eau         ! On prend la somme des fractions nuageuses et des contenus en eau
868         cldfra(:, :)=min(max(cldfra(:, :), rnebcon(:, :)), 1.)         cldfra = min(max(cldfra, rnebcon), 1.)
869         cldliq(:, :)=cldliq(:, :)+rnebcon(:, :)*clwcon(:, :)         cldliq = cldliq + rnebcon * clwcon
   
870      ENDIF      ENDIF
871    
872      ! 2. NUAGES STARTIFORMES      ! 2. Nuages stratiformes
873    
874      IF (ok_stratus) THEN      IF (ok_stratus) THEN
875         CALL diagcld2(paprs, pplay, t_seri, q_seri, diafra, dialiq)         CALL diagcld2(paprs, play, t_seri, q_seri, diafra, dialiq)
876         DO k = 1, llm         DO k = 1, llm
877            DO i = 1, klon            DO i = 1, klon
878               IF (diafra(i, k).GT.cldfra(i, k)) THEN               IF (diafra(i, k) > cldfra(i, k)) THEN
879                  cldliq(i, k) = dialiq(i, k)                  cldliq(i, k) = dialiq(i, k)
880                  cldfra(i, k) = diafra(i, k)                  cldfra(i, k) = diafra(i, k)
881               ENDIF               ENDIF
# Line 1684  contains Line 884  contains
884      ENDIF      ENDIF
885    
886      ! Precipitation totale      ! Precipitation totale
   
887      DO i = 1, klon      DO i = 1, klon
888         rain_fall(i) = rain_con(i) + rain_lsc(i)         rain_fall(i) = rain_con(i) + rain_lsc(i)
889         snow_fall(i) = snow_con(i) + snow_lsc(i)         snow_fall(i) = snow_con(i) + snow_lsc(i)
890      ENDDO      ENDDO
891    
892      IF (if_ebil >= 2) THEN      ! Humidit\'e relative pour diagnostic :
        ztit="after diagcld"  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtime &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
     END IF  
   
     ! Calculer l'humidite relative pour diagnostique  
   
893      DO k = 1, llm      DO k = 1, llm
894         DO i = 1, klon         DO i = 1, klon
895            zx_t = t_seri(i, k)            zx_t = t_seri(i, k)
896            IF (thermcep) THEN            zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t) / play(i, k)
897               zdelta = MAX(0., SIGN(1., rtt-zx_t))            zx_qs = MIN(0.5, zx_qs)
898               zx_qs  = r2es * FOEEW(zx_t, zdelta)/pplay(i, k)            zcor = 1. / (1. - retv * zx_qs)
899               zx_qs  = MIN(0.5, zx_qs)            zx_qs = zx_qs * zcor
900               zcor   = 1./(1.-retv*zx_qs)            zx_rh(i, k) = q_seri(i, k) / zx_qs
901               zx_qs  = zx_qs*zcor            zqsat(i, k) = zx_qs
           ELSE  
              IF (zx_t.LT.t_coup) THEN  
                 zx_qs = qsats(zx_t)/pplay(i, k)  
              ELSE  
                 zx_qs = qsatl(zx_t)/pplay(i, k)  
              ENDIF  
           ENDIF  
           zx_rh(i, k) = q_seri(i, k)/zx_qs  
           zqsat(i, k)=zx_qs  
902         ENDDO         ENDDO
903      ENDDO      ENDDO
     !jq - introduce the aerosol direct and first indirect radiative forcings  
     !jq - Johannes Quaas, 27/11/2003 (quaas@lmd.jussieu.fr)  
     IF (ok_ade.OR.ok_aie) THEN  
        ! Get sulfate aerosol distribution  
        CALL readsulfate(rjourvrai, debut, sulfate)  
        CALL readsulfate_preind(rjourvrai, debut, sulfate_pi)  
   
        ! Calculate aerosol optical properties (Olivier Boucher)  
        CALL aeropt(pplay, paprs, t_seri, sulfate, rhcl, &  
             tau_ae, piz_ae, cg_ae, aerindex)  
     ELSE  
        tau_ae(:, :, :)=0.0  
        piz_ae(:, :, :)=0.0  
        cg_ae(:, :, :)=0.0  
     ENDIF  
904    
905      ! Calculer les parametres optiques des nuages et quelques      ! Introduce the aerosol direct and first indirect radiative forcings:
906      ! parametres pour diagnostiques:      tau_ae = 0.
907        piz_ae = 0.
908        cg_ae = 0.
909    
910        ! Param\`etres optiques des nuages et quelques param\`etres pour
911        ! diagnostics :
912      if (ok_newmicro) then      if (ok_newmicro) then
913         CALL newmicro (paprs, pplay, ok_newmicro, &         CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &
914              t_seri, cldliq, cldfra, cldtau, cldemi, &              cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc, ok_aie, &
915              cldh, cldl, cldm, cldt, cldq, &              sulfate, sulfate_pi, bl95_b0, bl95_b1, cldtaupi, re, fl)
             flwp, fiwp, flwc, fiwc, &  
             ok_aie, &  
             sulfate, sulfate_pi, &  
             bl95_b0, bl95_b1, &  
             cldtaupi, re, fl)  
916      else      else
917         CALL nuage (paprs, pplay, &         CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &
918              t_seri, cldliq, cldfra, cldtau, cldemi, &              cldl, cldm, cldt, cldq, ok_aie, sulfate, sulfate_pi, bl95_b0, &
919              cldh, cldl, cldm, cldt, cldq, &              bl95_b1, cldtaupi, re, fl)
             ok_aie, &  
             sulfate, sulfate_pi, &  
             bl95_b0, bl95_b1, &  
             cldtaupi, re, fl)  
   
920      endif      endif
921    
922      ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.      IF (MOD(itap - 1, radpas) == 0) THEN
923           ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.
924      IF (MOD(itaprad, radpas) == 0) THEN         ! Calcul de l'abedo moyen par maille
925         DO i = 1, klon         albsol = sum(falbe * pctsrf, dim = 2)
926            albsol(i) = falbe(i, is_oce) * pctsrf(i, is_oce) &  
927                 + falbe(i, is_lic) * pctsrf(i, is_lic) &         ! Rayonnement (compatible Arpege-IFS) :
928                 + falbe(i, is_ter) * pctsrf(i, is_ter) &         CALL radlwsw(dist, mu0, fract, paprs, play, ztsol, albsol, t_seri, &
929                 + falbe(i, is_sic) * pctsrf(i, is_sic)              q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, &
930            albsollw(i) = falblw(i, is_oce) * pctsrf(i, is_oce) &              radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, &
931                 + falblw(i, is_lic) * pctsrf(i, is_lic) &              toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, &
932                 + falblw(i, is_ter) * pctsrf(i, is_ter) &              swup0, swup, ok_ade, ok_aie, tau_ae, piz_ae, cg_ae, topswad, &
933                 + falblw(i, is_sic) * pctsrf(i, is_sic)              solswad, cldtaupi, topswai, solswai)
        ENDDO  
        ! nouveau rayonnement (compatible Arpege-IFS):  
        CALL radlwsw(dist, rmu0, fract,  &  
             paprs, pplay, zxtsol, albsol, albsollw, t_seri, q_seri, &  
             wo, &  
             cldfra, cldemi, cldtau, &  
             heat, heat0, cool, cool0, radsol, albpla, &  
             topsw, toplw, solsw, sollw, &  
             sollwdown, &  
             topsw0, toplw0, solsw0, sollw0, &  
             lwdn0, lwdn, lwup0, lwup,  &  
             swdn0, swdn, swup0, swup, &  
             ok_ade, ok_aie, & ! new for aerosol radiative effects  
             tau_ae, piz_ae, cg_ae, &  
             topswad, solswad, &  
             cldtaupi, &  
             topswai, solswai)  
        itaprad = 0  
934      ENDIF      ENDIF
     itaprad = itaprad + 1  
935    
936      ! Ajouter la tendance des rayonnements (tous les pas)      ! Ajouter la tendance des rayonnements (tous les pas)
   
937      DO k = 1, llm      DO k = 1, llm
938         DO i = 1, klon         DO i = 1, klon
939            t_seri(i, k) = t_seri(i, k) &            t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys &
940                 + (heat(i, k)-cool(i, k)) * dtime/86400.                 / 86400.
941         ENDDO         ENDDO
942      ENDDO      ENDDO
943    
     IF (if_ebil >= 2) THEN  
        ztit='after rad'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtime &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil &  
             , topsw, toplw, solsw, sollw, zero_v &  
             , zero_v, zero_v, zero_v, ztsol &  
             , d_h_vcol, d_qt, d_ec &  
             , fs_bound, fq_bound )  
     END IF  
   
944      ! Calculer l'hydrologie de la surface      ! Calculer l'hydrologie de la surface
945        zxqsurf = sum(fqsurf * pctsrf, dim = 2)
946        zxsnow = sum(fsnow * pctsrf, dim = 2)
947    
948      DO i = 1, klon      ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage)
        zxqsurf(i) = 0.0  
        zxsnow(i) = 0.0  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxqsurf(i) = zxqsurf(i) + fqsurf(i, nsrf)*pctsrf(i, nsrf)  
           zxsnow(i) = zxsnow(i) + fsnow(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     ! Calculer le bilan du sol et la derive de temperature (couplage)  
   
949      DO i = 1, klon      DO i = 1, klon
950         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)
951      ENDDO      ENDDO
952    
953      !moddeblott(jan95)      ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille :
     ! Appeler le programme de parametrisation de l'orographie  
     ! a l'echelle sous-maille:  
954    
955      IF (ok_orodr) THEN      IF (ok_orodr) THEN
956           ! S\'election des points pour lesquels le sch\'ema est actif :
957         !  selection des points pour lesquels le shema est actif:         igwd = 0
958         igwd=0         DO i = 1, klon
959         DO i=1, klon            itest(i) = 0
960            itest(i)=0            IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN
961            IF (((zpic(i)-zmea(i)).GT.100.).AND.(zstd(i).GT.10.0)) THEN               itest(i) = 1
962               itest(i)=1               igwd = igwd + 1
              igwd=igwd+1  
              idx(igwd)=i  
963            ENDIF            ENDIF
964         ENDDO         ENDDO
965    
966         CALL drag_noro(klon, llm, dtime, paprs, pplay, &         CALL drag_noro(klon, llm, dtphys, paprs, play, zmea, zstd, zsig, zgam, &
967              zmea, zstd, zsig, zgam, zthe, zpic, zval, &              zthe, zpic, zval, itest, t_seri, u_seri, v_seri, zulow, zvlow, &
968              igwd, idx, itest, &              zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro)
             t_seri, u_seri, v_seri, &  
             zulow, zvlow, zustrdr, zvstrdr, &  
             d_t_oro, d_u_oro, d_v_oro)  
969    
970         !  ajout des tendances         ! ajout des tendances
971         DO k = 1, llm         DO k = 1, llm
972            DO i = 1, klon            DO i = 1, klon
973               t_seri(i, k) = t_seri(i, k) + d_t_oro(i, k)               t_seri(i, k) = t_seri(i, k) + d_t_oro(i, k)
# Line 1863  contains Line 975  contains
975               v_seri(i, k) = v_seri(i, k) + d_v_oro(i, k)               v_seri(i, k) = v_seri(i, k) + d_v_oro(i, k)
976            ENDDO            ENDDO
977         ENDDO         ENDDO
978        ENDIF
     ENDIF ! fin de test sur ok_orodr  
979    
980      IF (ok_orolf) THEN      IF (ok_orolf) THEN
981           ! S\'election des points pour lesquels le sch\'ema est actif :
982         !  selection des points pour lesquels le shema est actif:         igwd = 0
983         igwd=0         DO i = 1, klon
984         DO i=1, klon            itest(i) = 0
985            itest(i)=0            IF (zpic(i) - zmea(i) > 100.) THEN
986            IF ((zpic(i)-zmea(i)).GT.100.) THEN               itest(i) = 1
987               itest(i)=1               igwd = igwd + 1
              igwd=igwd+1  
              idx(igwd)=i  
988            ENDIF            ENDIF
989         ENDDO         ENDDO
990    
991         CALL lift_noro(klon, llm, dtime, paprs, pplay, &         CALL lift_noro(klon, llm, dtphys, paprs, play, rlat, zmea, zstd, zpic, &
992              rlat, zmea, zstd, zpic, &              itest, t_seri, u_seri, v_seri, zulow, zvlow, zustrli, zvstrli, &
             itest, &  
             t_seri, u_seri, v_seri, &  
             zulow, zvlow, zustrli, zvstrli, &  
993              d_t_lif, d_u_lif, d_v_lif)              d_t_lif, d_u_lif, d_v_lif)
994    
995         !  ajout des tendances         ! Ajout des tendances :
996         DO k = 1, llm         DO k = 1, llm
997            DO i = 1, klon            DO i = 1, klon
998               t_seri(i, k) = t_seri(i, k) + d_t_lif(i, k)               t_seri(i, k) = t_seri(i, k) + d_t_lif(i, k)
# Line 1894  contains Line 1000  contains
1000               v_seri(i, k) = v_seri(i, k) + d_v_lif(i, k)               v_seri(i, k) = v_seri(i, k) + d_v_lif(i, k)
1001            ENDDO            ENDDO
1002         ENDDO         ENDDO
1003        ENDIF
1004    
1005      ENDIF ! fin de test sur ok_orolf      ! Stress n\'ecessaires : toute la physique
   
     ! STRESS NECESSAIRES: TOUTE LA PHYSIQUE  
1006    
1007      DO i = 1, klon      DO i = 1, klon
1008         zustrph(i)=0.         zustrph(i) = 0.
1009         zvstrph(i)=0.         zvstrph(i) = 0.
1010      ENDDO      ENDDO
1011      DO k = 1, llm      DO k = 1, llm
1012         DO i = 1, klon         DO i = 1, klon
1013            zustrph(i)=zustrph(i)+(u_seri(i, k)-u(i, k))/dtime* &            zustrph(i) = zustrph(i) + (u_seri(i, k) - u(i, k)) / dtphys &
1014                 (paprs(i, k)-paprs(i, k+1))/rg                 * zmasse(i, k)
1015            zvstrph(i)=zvstrph(i)+(v_seri(i, k)-v(i, k))/dtime* &            zvstrph(i) = zvstrph(i) + (v_seri(i, k) - v(i, k)) / dtphys &
1016                 (paprs(i, k)-paprs(i, k+1))/rg                 * zmasse(i, k)
1017         ENDDO         ENDDO
1018      ENDDO      ENDDO
1019    
1020      !IM calcul composantes axiales du moment angulaire et couple des montagnes      CALL aaam_bud(rg, romega, rlat, rlon, pphis, zustrdr, zustrli, zustrph, &
1021             zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc)
1022    
1023      CALL aaam_bud (27, klon, llm, rjourvrai, gmtime, &      ! Calcul des tendances traceurs
1024           ra, rg, romega, &      call phytrac(julien, time, firstcal, lafin, dtphys, t, paprs, play, mfu, &
1025           rlat, rlon, pphis, &           mfd, pde_u, pen_d, ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, &
1026           zustrdr, zustrli, zustrph, &           pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, dnwd, tr_seri, &
1027           zvstrdr, zvstrli, zvstrph, &           zmasse, ncid_startphy)
          paprs, u, v, &  
          aam, torsfc)  
   
     IF (if_ebil >= 2) THEN  
        ztit='after orography'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtime &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
     END IF  
   
     !AA Installation de l'interface online-offline pour traceurs  
   
     !   Calcul  des tendances traceurs  
   
     call phytrac(rnpb, itap,  julien,  gmtime, debut, lafin, nq-2, &  
          dtime, u, v, t, paprs, pplay, &  
          pmfu,  pmfd,  pen_u,  pde_u,  pen_d,  pde_d, &  
          ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, &  
          pctsrf, frac_impa,  frac_nucl, &  
          presnivs, pphis, pphi, albsol, qx(1, 1, 1),  &  
          rhcl, cldfra,  rneb,  diafra,  cldliq,  &  
          itop_con, ibas_con, pmflxr, pmflxs, &  
          prfl, psfl, da, phi, mp, upwd, dnwd, &  
          tr_seri)  
   
     IF (offline) THEN  
   
        print*, 'Attention on met a 0 les thermiques pour phystoke'  
        call phystokenc(pdtphys, rlon, rlat, &  
             t, pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, &  
             fm_therm, entr_therm, &  
             ycoefh, yu1, yv1, ftsol, pctsrf, &  
             frac_impa, frac_nucl, &  
             pphis, airephy, dtime, itap)  
1028    
1029      ENDIF      IF (offline) call phystokenc(dtphys, t, mfu, mfd, pen_u, pde_u, pen_d, &
1030             pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, pctsrf, &
1031             frac_impa, frac_nucl, pphis, airephy, dtphys)
1032    
1033      ! Calculer le transport de l'eau et de l'energie (diagnostique)      ! Calculer le transport de l'eau et de l'energie (diagnostique)
1034        CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq)
1035    
1036      CALL transp (paprs, zxtsol, &      ! diag. bilKP
          t_seri, q_seri, u_seri, v_seri, zphi, &  
          ve, vq, ue, uq)  
1037    
1038      !IM diag. bilKP      CALL transp_lay(paprs, t_seri, q_seri, u_seri, v_seri, zphi, &
   
     CALL transp_lay (paprs, zxtsol, &  
          t_seri, q_seri, u_seri, v_seri, zphi, &  
1039           ve_lay, vq_lay, ue_lay, uq_lay)           ve_lay, vq_lay, ue_lay, uq_lay)
1040    
1041      ! Accumuler les variables a stocker dans les fichiers histoire:      ! Accumuler les variables a stocker dans les fichiers histoire:
1042    
1043      !+jld ec_conser      ! conversion Ec en énergie thermique
1044      DO k = 1, llm      DO k = 1, llm
1045         DO i = 1, klon         DO i = 1, klon
1046            ZRCPD = RCPD*(1.0+RVTMP2*q_seri(i, k))            ZRCPD = RCPD * (1. + RVTMP2 * q_seri(i, k))
1047            d_t_ec(i, k)=0.5/ZRCPD &            d_t_ec(i, k) = 0.5 / ZRCPD &
1048                 *(u(i, k)**2+v(i, k)**2-u_seri(i, k)**2-v_seri(i, k)**2)                 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)
1049            t_seri(i, k)=t_seri(i, k)+d_t_ec(i, k)            t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)
1050            d_t_ec(i, k) = d_t_ec(i, k)/dtime            d_t_ec(i, k) = d_t_ec(i, k) / dtphys
1051         END DO         END DO
1052      END DO      END DO
     !-jld ec_conser  
     IF (if_ebil >= 1) THEN  
        ztit='after physic'  
        CALL diagetpq(airephy, ztit, ip_ebil, 1, 1, dtime &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
        !     Comme les tendances de la physique sont ajoute dans la dynamique,  
        !     on devrait avoir que la variation d'entalpie par la dynamique  
        !     est egale a la variation de la physique au pas de temps precedent.  
        !     Donc la somme de ces 2 variations devrait etre nulle.  
        call diagphy(airephy, ztit, ip_ebil &  
             , topsw, toplw, solsw, sollw, sens &  
             , evap, rain_fall, snow_fall, ztsol &  
             , d_h_vcol, d_qt, d_ec &  
             , fs_bound, fq_bound )  
   
        d_h_vcol_phy=d_h_vcol  
   
     END IF  
1053    
1054      !   SORTIES      ! SORTIES
1055    
1056      !IM Interpolation sur les niveaux de pression du NMC      ! prw = eau precipitable
     call calcul_STDlev  
   
     !cc prw = eau precipitable  
1057      DO i = 1, klon      DO i = 1, klon
1058         prw(i) = 0.         prw(i) = 0.
1059         DO k = 1, llm         DO k = 1, llm
1060            prw(i) = prw(i) + &            prw(i) = prw(i) + q_seri(i, k) * zmasse(i, k)
                q_seri(i, k)*(paprs(i, k)-paprs(i, k+1))/RG  
1061         ENDDO         ENDDO
1062      ENDDO      ENDDO
1063    
     !IM initialisation + calculs divers diag AMIP2  
     call calcul_divers  
   
1064      ! Convertir les incrementations en tendances      ! Convertir les incrementations en tendances
1065    
1066      DO k = 1, llm      DO k = 1, llm
1067         DO i = 1, klon         DO i = 1, klon
1068            d_u(i, k) = ( u_seri(i, k) - u(i, k) ) / dtime            d_u(i, k) = (u_seri(i, k) - u(i, k)) / dtphys
1069            d_v(i, k) = ( v_seri(i, k) - v(i, k) ) / dtime            d_v(i, k) = (v_seri(i, k) - v(i, k)) / dtphys
1070            d_t(i, k) = ( t_seri(i, k)-t(i, k) ) / dtime            d_t(i, k) = (t_seri(i, k) - t(i, k)) / dtphys
1071            d_qx(i, k, ivap) = ( q_seri(i, k) - qx(i, k, ivap) ) / dtime            d_qx(i, k, ivap) = (q_seri(i, k) - qx(i, k, ivap)) / dtphys
1072            d_qx(i, k, iliq) = ( ql_seri(i, k) - qx(i, k, iliq) ) / dtime            d_qx(i, k, iliq) = (ql_seri(i, k) - qx(i, k, iliq)) / dtphys
1073         ENDDO         ENDDO
1074      ENDDO      ENDDO
1075    
1076      IF (nq >= 3) THEN      DO iq = 3, nqmx
1077         DO iq = 3, nq         DO k = 1, llm
1078            DO  k = 1, llm            DO i = 1, klon
1079               DO  i = 1, klon               d_qx(i, k, iq) = (tr_seri(i, k, iq - 2) - qx(i, k, iq)) / dtphys
                 d_qx(i, k, iq) = ( tr_seri(i, k, iq-2) - qx(i, k, iq) ) / dtime  
              ENDDO  
1080            ENDDO            ENDDO
1081         ENDDO         ENDDO
1082      ENDIF      ENDDO
1083    
1084      ! Sauvegarder les valeurs de t et q a la fin de la physique:      ! Sauvegarder les valeurs de t et q a la fin de la physique:
   
1085      DO k = 1, llm      DO k = 1, llm
1086         DO i = 1, klon         DO i = 1, klon
1087            t_ancien(i, k) = t_seri(i, k)            t_ancien(i, k) = t_seri(i, k)
# Line 2048  contains Line 1089  contains
1089         ENDDO         ENDDO
1090      ENDDO      ENDDO
1091    
1092      !   Ecriture des sorties      CALL histwrite_phy("phis", pphis)
1093        CALL histwrite_phy("aire", airephy)
1094      call write_histhf      CALL histwrite_phy("psol", paprs(:, 1))
1095      call write_histday      CALL histwrite_phy("precip", rain_fall + snow_fall)
1096      call write_histins      CALL histwrite_phy("plul", rain_lsc + snow_lsc)
1097        CALL histwrite_phy("pluc", rain_con + snow_con)
1098      ! Si c'est la fin, il faut conserver l'etat de redemarrage      CALL histwrite_phy("tsol", ztsol)
1099        CALL histwrite_phy("t2m", zt2m)
1100      IF (lafin) THEN      CALL histwrite_phy("q2m", zq2m)
1101         itau_phy = itau_phy + itap      CALL histwrite_phy("u10m", zu10m)
1102         CALL phyredem ("restartphy.nc", dtime, radpas, &      CALL histwrite_phy("v10m", zv10m)
1103              rlat, rlon, pctsrf, ftsol, ftsoil, &      CALL histwrite_phy("snow", snow_fall)
1104              tslab, seaice,  & !IM "slab" ocean      CALL histwrite_phy("cdrm", cdragm)
1105              fqsurf, qsol, &      CALL histwrite_phy("cdrh", cdragh)
1106              fsnow, falbe, falblw, fevap, rain_fall, snow_fall, &      CALL histwrite_phy("topl", toplw)
1107              solsw, sollwdown, dlw, &      CALL histwrite_phy("evap", evap)
1108              radsol, frugs, agesno, &      CALL histwrite_phy("sols", solsw)
1109              zmea, zstd, zsig, zgam, zthe, zpic, zval, rugoro, &      CALL histwrite_phy("soll", sollw)
1110              t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0)      CALL histwrite_phy("solldown", sollwdown)
1111      ENDIF      CALL histwrite_phy("bils", bils)
1112        CALL histwrite_phy("sens", - sens)
1113    contains      CALL histwrite_phy("fder", fder)
1114        CALL histwrite_phy("dtsvdfo", d_ts(:, is_oce))
1115      subroutine calcul_STDlev      CALL histwrite_phy("dtsvdft", d_ts(:, is_ter))
1116        CALL histwrite_phy("dtsvdfg", d_ts(:, is_lic))
1117        !     From phylmd/calcul_STDlev.h, v 1.1 2005/05/25 13:10:09      CALL histwrite_phy("dtsvdfi", d_ts(:, is_sic))
1118    
1119        !IM on initialise les champs en debut du jour ou du mois      DO nsrf = 1, nbsrf
1120           CALL histwrite_phy("pourc_"//clnsurf(nsrf), pctsrf(:, nsrf) * 100.)
1121           CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf))
1122           CALL histwrite_phy("sens_"//clnsurf(nsrf), flux_t(:, nsrf))
1123           CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf))
1124           CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf))
1125           CALL histwrite_phy("taux_"//clnsurf(nsrf), flux_u(:, nsrf))
1126           CALL histwrite_phy("tauy_"//clnsurf(nsrf), flux_v(:, nsrf))
1127           CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf))
1128           CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf))
1129        END DO
1130    
1131        CALL ini_undefSTD(nlevSTD, itap, &      CALL histwrite_phy("albs", albsol)
1132             ecrit_day, ecrit_mth, &      CALL histwrite_phy("rugs", zxrugs)
1133             tnondef, tsumSTD)      CALL histwrite_phy("s_pblh", s_pblh)
1134        CALL ini_undefSTD(nlevSTD, itap, &      CALL histwrite_phy("s_pblt", s_pblt)
1135             ecrit_day, ecrit_mth, &      CALL histwrite_phy("s_lcl", s_lcl)
1136             tnondef, usumSTD)      CALL histwrite_phy("s_capCL", s_capCL)
1137        CALL ini_undefSTD(nlevSTD, itap, &      CALL histwrite_phy("s_oliqCL", s_oliqCL)
1138             ecrit_day, ecrit_mth, &      CALL histwrite_phy("s_cteiCL", s_cteiCL)
1139             tnondef, vsumSTD)      CALL histwrite_phy("s_therm", s_therm)
1140        CALL ini_undefSTD(nlevSTD, itap, &      CALL histwrite_phy("s_trmb1", s_trmb1)
1141             ecrit_day, ecrit_mth, &      CALL histwrite_phy("s_trmb2", s_trmb2)
1142             tnondef, wsumSTD)      CALL histwrite_phy("s_trmb3", s_trmb3)
1143        CALL ini_undefSTD(nlevSTD, itap, &  
1144             ecrit_day, ecrit_mth, &      if (conv_emanuel) then
1145             tnondef, phisumSTD)         CALL histwrite_phy("ptop", ema_pct)
1146        CALL ini_undefSTD(nlevSTD, itap, &         CALL histwrite_phy("dnwd0", - mp)
1147             ecrit_day, ecrit_mth, &      end if
1148             tnondef, qsumSTD)  
1149        CALL ini_undefSTD(nlevSTD, itap, &      CALL histwrite_phy("temp", t_seri)
1150             ecrit_day, ecrit_mth, &      CALL histwrite_phy("vitu", u_seri)
1151             tnondef, rhsumSTD)      CALL histwrite_phy("vitv", v_seri)
1152        CALL ini_undefSTD(nlevSTD, itap, &      CALL histwrite_phy("geop", zphi)
1153             ecrit_day, ecrit_mth, &      CALL histwrite_phy("pres", play)
1154             tnondef, uvsumSTD)      CALL histwrite_phy("dtvdf", d_t_vdf)
1155        CALL ini_undefSTD(nlevSTD, itap, &      CALL histwrite_phy("dqvdf", d_q_vdf)
1156             ecrit_day, ecrit_mth, &      CALL histwrite_phy("rhum", zx_rh)
1157             tnondef, vqsumSTD)  
1158        CALL ini_undefSTD(nlevSTD, itap, &      if (ok_instan) call histsync(nid_ins)
1159             ecrit_day, ecrit_mth, &  
1160             tnondef, vTsumSTD)      IF (lafin) then
1161        CALL ini_undefSTD(nlevSTD, itap, &         call NF95_CLOSE(ncid_startphy)
1162             ecrit_day, ecrit_mth, &         CALL phyredem(pctsrf, ftsol, ftsoil, fqsurf, qsol, &
1163             tnondef, wqsumSTD)              fsnow, falbe, fevap, rain_fall, snow_fall, solsw, sollw, dlw, &
1164        CALL ini_undefSTD(nlevSTD, itap, &              radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, &
1165             ecrit_day, ecrit_mth, &              t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
1166             tnondef, vphisumSTD)              w01)
1167        CALL ini_undefSTD(nlevSTD, itap, &      end IF
            ecrit_day, ecrit_mth, &  
            tnondef, wTsumSTD)  
       CALL ini_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, &  
            tnondef, u2sumSTD)  
       CALL ini_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, &  
            tnondef, v2sumSTD)  
       CALL ini_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, &  
            tnondef, T2sumSTD)  
   
       !IM on interpole sur les niveaux STD de pression a chaque pas de  
       !temps de la physique  
   
       DO k=1, nlevSTD  
   
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               t_seri, tlevSTD(:, k))  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               u_seri, ulevSTD(:, k))  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               v_seri, vlevSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=paprs(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., zx_tmp_fi3d, rlevSTD(k), &  
               omega, wlevSTD(:, k))  
   
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zphi/RG, philevSTD(:, k))  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               qx(:, :, ivap), qlevSTD(:, k))  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_rh*100., rhlevSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=u_seri(i, l)*v_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, uvSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=v_seri(i, l)*q_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, vqSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=v_seri(i, l)*t_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, vTSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=omega(i, l)*qx(i, l, ivap)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, wqSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=v_seri(i, l)*zphi(i, l)/RG  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, vphiSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=omega(i, l)*t_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, wTSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=u_seri(i, l)*u_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, u2STD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=v_seri(i, l)*v_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, v2STD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=t_seri(i, l)*t_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, T2STD(:, k))  
   
       ENDDO !k=1, nlevSTD  
   
       !IM on somme les valeurs definies a chaque pas de temps de la physique ou  
       !IM toutes les 6 heures  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.TRUE.  
       CALL undefSTD(nlevSTD, itap, tlevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, tsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, ulevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, usumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, vlevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, vsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, wlevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, wsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, philevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, phisumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, qlevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, qsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, rhlevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, rhsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, uvSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, uvsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, vqSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, vqsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, vTSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, vTsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, wqSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, wqsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, vphiSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, vphisumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, wTSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, wTsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, u2STD, &  
            ecrit_hf, &  
            oknondef, tnondef, u2sumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, v2STD, &  
            ecrit_hf, &  
            oknondef, tnondef, v2sumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, T2STD, &  
            ecrit_hf, &  
            oknondef, tnondef, T2sumSTD)  
   
       !IM on moyenne a la fin du jour ou du mois  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, tsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, usumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, vsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, wsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, phisumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, qsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, rhsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, uvsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, vqsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, vTsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, wqsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, vphisumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, wTsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, u2sumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, v2sumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, T2sumSTD)  
   
       !IM interpolation a chaque pas de temps du SWup(clr) et  
       !SWdn(clr) a 200 hPa  
   
       CALL plevel(klon, klevp1, .true., paprs, 20000., &  
            swdn0, SWdn200clr)  
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            swdn, SWdn200)  
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            swup0, SWup200clr)  
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            swup, SWup200)  
   
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            lwdn0, LWdn200clr)  
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            lwdn, LWdn200)  
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            lwup0, LWup200clr)  
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            lwup, LWup200)  
   
     end SUBROUTINE calcul_STDlev  
   
     !****************************************************  
   
     SUBROUTINE calcul_divers  
   
       ! From phylmd/calcul_divers.h, v 1.1 2005/05/25 13:10:09  
   
       ! initialisations diverses au "debut" du mois  
   
       IF(MOD(itap, ecrit_mth) == 1) THEN  
          DO i=1, klon  
             nday_rain(i)=0.  
          ENDDO  
       ENDIF  
   
       IF(MOD(itap, ecrit_day) == 0) THEN  
          !IM calcul total_rain, nday_rain  
          DO i = 1, klon  
             total_rain(i)=rain_fall(i)+snow_fall(i)    
             IF(total_rain(i).GT.0.) nday_rain(i)=nday_rain(i)+1.  
          ENDDO  
       ENDIF  
   
     End SUBROUTINE calcul_divers  
   
     !***********************************************  
   
     subroutine write_histday  
   
       !     From phylmd/write_histday.h, v 1.3 2005/05/25 13:10:09  
   
       if (ok_journe) THEN  
   
          ndex2d = 0  
          ndex3d = 0  
   
          ! Champs 2D:  
   
          itau_w = itau_phy + itap  
   
          !   FIN ECRITURE DES CHAMPS 3D  
   
          if (ok_sync) then  
             call histsync(nid_day)  
          endif  
   
       ENDIF  
   
     End subroutine write_histday  
   
     !****************************  
   
     subroutine write_histhf  
   
       ! From phylmd/write_histhf.h, v 1.5 2005/05/25 13:10:09  
   
       ndex2d = 0  
       ndex3d = 0  
   
       itau_w = itau_phy + itap  
   
       call write_histhf3d  
   
       IF (ok_sync) THEN  
          call histsync(nid_hf)  
       ENDIF  
   
     end subroutine write_histhf  
   
     !***************************************************************  
   
     subroutine write_histins  
   
       ! From phylmd/write_histins.h, v 1.2 2005/05/25 13:10:09  
   
       real zout  
   
       !--------------------------------------------------  
   
       IF (ok_instan) THEN  
   
          ndex2d = 0  
          ndex3d = 0  
   
          ! Champs 2D:  
   
          zsto = dtime * ecrit_ins  
          zout = dtime * ecrit_ins  
          itau_w = itau_phy + itap  
   
          i = NINT(zout/zsto)  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), pphis, zx_tmp_2d)  
          CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          i = NINT(zout/zsto)  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), airephy, zx_tmp_2d)  
          CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = paprs(i, 1)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "psol", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_fall(i) + snow_fall(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "precip", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_lsc(i) + snow_lsc(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "plul", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_con(i) + snow_con(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "pluc", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zxtsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "tsol", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
          !ccIM  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zt2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "t2m", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zq2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "q2m", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zu10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "u10m", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zv10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "v10m", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), snow_fall, zx_tmp_2d)  
          CALL histwrite(nid_ins, "snow", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), cdragm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrm", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), cdragh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrh", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), toplw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "topl", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), evap, zx_tmp_2d)  
          CALL histwrite(nid_ins, "evap", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), solsw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sols", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "soll", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sollwdown, zx_tmp_2d)  
          CALL histwrite(nid_ins, "solldown", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), bils, zx_tmp_2d)  
          CALL histwrite(nid_ins, "bils", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          zx_tmp_fi2d(1:klon)=-1*sens(1:klon)  
          !     CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sens, zx_tmp_2d)  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sens", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), fder, zx_tmp_2d)  
          CALL histwrite(nid_ins, "fder", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_oce), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfo", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_ter), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdft", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_lic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfg", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_sic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfi", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          DO nsrf = 1, nbsrf  
             !XXX  
             zx_tmp_fi2d(1 : klon) = pctsrf( 1 : klon, nsrf)*100.  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "pourc_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = pctsrf( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "fract_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxt( 1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "sens_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxlat( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "lat_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = ftsol( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tsol_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxu( 1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "taux_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxv( 1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tauy_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = frugs( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "rugs_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = falbe( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "albe_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          END DO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), albsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albs", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), albsollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albslw", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zxrugs, zx_tmp_2d)  
          CALL histwrite(nid_ins, "rugs", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          !IM cf. AM 081204 BEG  
   
          !HBTM2  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_pblh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblh", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_pblt, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblt", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_lcl, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_lcl", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_capCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_capCL", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_oliqCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_oliqCL", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_cteiCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_cteiCL", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_therm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_therm", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb1, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb1", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb2, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb2", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb3, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb3", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          !IM cf. AM 081204 END  
   
          ! Champs 3D:  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), t_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "temp", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), u_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitu", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), v_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitv", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), zphi, zx_tmp_3d)  
          CALL histwrite(nid_ins, "geop", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), pplay, zx_tmp_3d)  
          CALL histwrite(nid_ins, "pres", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), d_t_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dtvdf", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), d_q_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          if (ok_sync) then  
             call histsync(nid_ins)  
          endif  
       ENDIF  
   
     end subroutine write_histins  
   
     !****************************************************  
   
     subroutine write_histhf3d  
   
       ! From phylmd/write_histhf3d.h, v 1.2 2005/05/25 13:10:09  
   
       ndex2d = 0  
       ndex3d = 0  
   
       itau_w = itau_phy + itap  
   
       ! Champs 3D:  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), t_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "temp", itau_w, zx_tmp_3d, &  
            iim*(jjm + 1)*llm, ndex3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), qx(1, 1, ivap), zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "ovap", itau_w, zx_tmp_3d, &  
            iim*(jjm + 1)*llm, ndex3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), u_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitu", itau_w, zx_tmp_3d, &  
            iim*(jjm + 1)*llm, ndex3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), v_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitv", itau_w, zx_tmp_3d, &  
            iim*(jjm + 1)*llm, ndex3d)  
   
       if (nbtr >= 3) then  
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), tr_seri(1, 1, 3), &  
               zx_tmp_3d)  
          CALL histwrite(nid_hf3d, "O3", itau_w, zx_tmp_3d, iim*(jjm + 1)*llm, &  
               ndex3d)  
       end if  
   
       if (ok_sync) then  
          call histsync(nid_hf3d)  
       endif  
1168    
1169      end subroutine write_histhf3d      firstcal = .FALSE.
1170    
1171    END SUBROUTINE physiq    END SUBROUTINE physiq
1172    
   !****************************************************  
   
   FUNCTION qcheck(klon, klev, paprs, q, ql, aire)  
   
     ! From phylmd/physiq.F, v 1.22 2006/02/20 09:38:28  
   
     use YOMCST  
     IMPLICIT none  
   
     ! Calculer et imprimer l'eau totale. A utiliser pour verifier  
     ! la conservation de l'eau  
   
     INTEGER klon, klev  
     REAL, intent(in):: paprs(klon, klev+1)  
     real q(klon, klev), ql(klon, klev)  
     REAL aire(klon)  
     REAL qtotal, zx, qcheck  
     INTEGER i, k  
   
     zx = 0.0  
     DO i = 1, klon  
        zx = zx + aire(i)  
     ENDDO  
     qtotal = 0.0  
     DO k = 1, klev  
        DO i = 1, klon  
           qtotal = qtotal + (q(i, k)+ql(i, k)) * aire(i) &  
                *(paprs(i, k)-paprs(i, k+1))/RG  
        ENDDO  
     ENDDO  
   
     qcheck = qtotal/zx  
   
   END FUNCTION qcheck  
   
1173  end module physiq_m  end module physiq_m

Legend:
Removed from v.6  
changed lines
  Added in v.209

  ViewVC Help
Powered by ViewVC 1.1.21