/[lmdze]/trunk/phylmd/physiq.f
ViewVC logotype

Diff of /trunk/phylmd/physiq.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/phylmd/physiq.f90 revision 79 by guez, Fri Feb 28 17:52:47 2014 UTC trunk/phylmd/physiq.f revision 267 by guez, Thu May 3 16:14:08 2018 UTC
# Line 4  module physiq_m Line 4  module physiq_m
4    
5  contains  contains
6    
7    SUBROUTINE physiq(lafin, rdayvrai, time, dtphys, paprs, play, pphi, pphis, &    SUBROUTINE physiq(lafin, dayvrai, time, paprs, play, pphi, pphis, u, v, t, &
8         u, v, t, qx, omega, d_u, d_v, d_t, d_qx, d_ps, dudyn)         qx, omega, d_u, d_v, d_t, d_qx)
9    
10      ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28      ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28
11      ! (subversion revision 678)      ! (subversion revision 678)
12    
13      ! Author: Z.X. Li (LMD/CNRS) 1993      ! Author: Z. X. Li (LMD/CNRS) 1993
14    
15      ! This is the main procedure for the "physics" part of the program.      ! This is the main procedure for the "physics" part of the program.
16    
17      use aaam_bud_m, only: aaam_bud      use aaam_bud_m, only: aaam_bud
18      USE abort_gcm_m, ONLY: abort_gcm      USE abort_gcm_m, ONLY: abort_gcm
     use aeropt_m, only: aeropt  
19      use ajsec_m, only: ajsec      use ajsec_m, only: ajsec
     USE calendar, ONLY: ymds2ju  
20      use calltherm_m, only: calltherm      use calltherm_m, only: calltherm
21      USE clesphys, ONLY: cdhmax, cdmmax, co2_ppm, ecrit_hf, ecrit_ins, &      USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ok_instan
22           ecrit_mth, ecrit_reg, ecrit_tra, ksta, ksta_ter, ok_kzmin      USE clesphys2, ONLY: conv_emanuel, nbapp_rad, new_oliq, ok_orodr, ok_orolf
23      USE clesphys2, ONLY: cycle_diurne, iflag_con, nbapp_rad, new_oliq, &      USE pbl_surface_m, ONLY: pbl_surface
          ok_orodr, ok_orolf, soil_model  
     USE clmain_m, ONLY: clmain  
24      use clouds_gno_m, only: clouds_gno      use clouds_gno_m, only: clouds_gno
25      USE comgeomphy, ONLY: airephy, cuphy, cvphy      use comconst, only: dtphys
26        USE comgeomphy, ONLY: airephy
27      USE concvl_m, ONLY: concvl      USE concvl_m, ONLY: concvl
28      USE conf_gcm_m, ONLY: offline, raz_date      USE conf_gcm_m, ONLY: lmt_pas
29      USE conf_phys_m, ONLY: conf_phys      USE conf_phys_m, ONLY: conf_phys
30      use conflx_m, only: conflx      use conflx_m, only: conflx
31      USE ctherm, ONLY: iflag_thermals, nsplit_thermals      USE ctherm, ONLY: iflag_thermals, nsplit_thermals
32      use diagcld2_m, only: diagcld2      use diagcld2_m, only: diagcld2
33      use diagetpq_m, only: diagetpq      USE dimensions, ONLY: llm, nqmx
34      use diagphy_m, only: diagphy      USE dimphy, ONLY: klon
     USE dimens_m, ONLY: iim, jjm, llm, nqmx  
     USE dimphy, ONLY: klon, nbtr  
35      USE dimsoil, ONLY: nsoilmx      USE dimsoil, ONLY: nsoilmx
36      use drag_noro_m, only: drag_noro      use drag_noro_m, only: drag_noro
37      USE fcttre, ONLY: foeew, qsatl, qsats, thermcep      use dynetat0_m, only: day_ref, annee_ref
38        USE fcttre, ONLY: foeew
39      use fisrtilp_m, only: fisrtilp      use fisrtilp_m, only: fisrtilp
40      USE hgardfou_m, ONLY: hgardfou      USE hgardfou_m, ONLY: hgardfou
41      USE histsync_m, ONLY: histsync      USE histsync_m, ONLY: histsync
42      USE histwrite_m, ONLY: histwrite      USE histwrite_phy_m, ONLY: histwrite_phy
43      USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &      USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &
44           nbsrf           nbsrf
45      USE ini_histhf_m, ONLY: ini_histhf      USE ini_histins_m, ONLY: ini_histins, nid_ins
46      USE ini_histday_m, ONLY: ini_histday      use lift_noro_m, only: lift_noro
47      USE ini_histins_m, ONLY: ini_histins      use netcdf95, only: NF95_CLOSE
48      use newmicro_m, only: newmicro      use newmicro_m, only: newmicro
49      USE oasis_m, ONLY: ok_oasis      use nr_util, only: assert
50      USE orbite_m, ONLY: orbite, zenang      use nuage_m, only: nuage
51        USE orbite_m, ONLY: orbite
52      USE ozonecm_m, ONLY: ozonecm      USE ozonecm_m, ONLY: ozonecm
53      USE phyetat0_m, ONLY: phyetat0, rlat, rlon      USE phyetat0_m, ONLY: phyetat0
54      USE phyredem_m, ONLY: phyredem      USE phyredem_m, ONLY: phyredem
55      USE phystokenc_m, ONLY: phystokenc      USE phyredem0_m, ONLY: phyredem0
56      USE phytrac_m, ONLY: phytrac      USE phytrac_m, ONLY: phytrac
     USE qcheck_m, ONLY: qcheck  
57      use radlwsw_m, only: radlwsw      use radlwsw_m, only: radlwsw
58      use readsulfate_m, only: readsulfate      use yoegwd, only: sugwd
59      use sugwd_m, only: sugwd      USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt, rmo3, md
60      USE suphec_m, ONLY: ra, rcpd, retv, rg, rlvtt, romega, rsigma, rtt      use time_phylmdz, only: itap, increment_itap
61      USE temps, ONLY: annee_ref, day_ref, itau_phy      use transp_m, only: transp
62        use transp_lay_m, only: transp_lay
63      use unit_nml_m, only: unit_nml      use unit_nml_m, only: unit_nml
64        USE ymds2ju_m, ONLY: ymds2ju
65      USE yoethf_m, ONLY: r2es, rvtmp2      USE yoethf_m, ONLY: r2es, rvtmp2
66        use zenang_m, only: zenang
67    
     ! Arguments:  
   
     REAL, intent(in):: rdayvrai  
     ! (elapsed time since January 1st 0h of the starting year, in days)  
   
     REAL, intent(in):: time ! heure de la journée en fraction de jour  
     REAL, intent(in):: dtphys ! pas d'integration pour la physique (seconde)  
68      logical, intent(in):: lafin ! dernier passage      logical, intent(in):: lafin ! dernier passage
69    
70      REAL, intent(in):: paprs(klon, llm + 1)      integer, intent(in):: dayvrai
71      ! (pression pour chaque inter-couche, en Pa)      ! current day number, based at value 1 on January 1st of annee_ref
72    
73      REAL, intent(in):: play(klon, llm)      REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour
     ! (input pression pour le mileu de chaque couche (en Pa))  
74    
75      REAL, intent(in):: pphi(klon, llm)      REAL, intent(in):: paprs(:, :) ! (klon, llm + 1)
76      ! (input geopotentiel de chaque couche (g z) (reference sol))      ! pression pour chaque inter-couche, en Pa
77    
78      REAL, intent(in):: pphis(klon) ! input geopotentiel du sol      REAL, intent(in):: play(:, :) ! (klon, llm)
79        ! pression pour le mileu de chaque couche (en Pa)
80    
81      REAL, intent(in):: u(klon, llm)      REAL, intent(in):: pphi(:, :) ! (klon, llm)
82      ! vitesse dans la direction X (de O a E) en m/s      ! géopotentiel de chaque couche (référence sol)
83    
84      REAL, intent(in):: v(klon, llm) ! vitesse Y (de S a N) en m/s      REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol
     REAL, intent(in):: t(klon, llm) ! input temperature (K)  
85    
86      REAL, intent(in):: qx(klon, llm, nqmx)      REAL, intent(in):: u(:, :) ! (klon, llm)
87      ! (humidité spécifique et fractions massiques des autres traceurs)      ! vitesse dans la direction X (de O a E) en m / s
88    
89      REAL omega(klon, llm) ! input vitesse verticale en Pa/s      REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m / s
90      REAL, intent(out):: d_u(klon, llm) ! tendance physique de "u" (m/s/s)      REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)
     REAL, intent(out):: d_v(klon, llm) ! tendance physique de "v" (m/s/s)  
     REAL, intent(out):: d_t(klon, llm) ! tendance physique de "t" (K/s)  
     REAL d_qx(klon, llm, nqmx) ! output tendance physique de "qx" (kg/kg/s)  
     REAL d_ps(klon) ! output tendance physique de la pression au sol  
91    
92      LOGICAL:: firstcal = .true.      REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)
93        ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)
94    
95      INTEGER nbteta      REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa / s
96      PARAMETER(nbteta = 3)      REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)
97        REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)
98        REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K / s)
99    
100      LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface      REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)
101      PARAMETER (ok_gust = .FALSE.)      ! tendance physique de "qx" (s-1)
102    
103      LOGICAL check ! Verifier la conservation du modele en eau      ! Local:
104      PARAMETER (check = .FALSE.)  
105        LOGICAL:: firstcal = .true.
106    
107      LOGICAL, PARAMETER:: ok_stratus = .FALSE.      LOGICAL, PARAMETER:: ok_stratus = .FALSE.
108      ! Ajouter artificiellement les stratus      ! Ajouter artificiellement les stratus
109    
110      ! Parametres lies au coupleur OASIS:      ! pour phystoke avec thermiques
     INTEGER, SAVE:: npas, nexca  
     logical rnpb  
     parameter(rnpb = .true.)  
   
     character(len = 6):: ocean = 'force '  
     ! (type de modèle océan à utiliser: "force" ou "slab" mais pas "couple")  
   
     ! "slab" ocean  
     REAL, save:: tslab(klon) ! temperature of ocean slab  
     REAL, save:: seaice(klon) ! glace de mer (kg/m2)  
     REAL fluxo(klon) ! flux turbulents ocean-glace de mer  
     REAL fluxg(klon) ! flux turbulents ocean-atmosphere  
   
     ! Modele thermique du sol, a activer pour le cycle diurne:  
     logical:: ok_veget = .false. ! type de modele de vegetation utilise  
   
     logical:: ok_journe = .false., ok_mensuel = .true., ok_instan = .false.  
     ! sorties journalieres, mensuelles et instantanees dans les  
     ! fichiers histday, histmth et histins  
   
     LOGICAL ok_region ! sortir le fichier regional  
     PARAMETER (ok_region = .FALSE.)  
   
     ! pour phsystoke avec thermiques  
111      REAL fm_therm(klon, llm + 1)      REAL fm_therm(klon, llm + 1)
112      REAL entr_therm(klon, llm)      REAL entr_therm(klon, llm)
113      real, save:: q2(klon, llm + 1, nbsrf)      real, save:: q2(klon, llm + 1, nbsrf)
114    
115      INTEGER ivap ! indice de traceurs pour vapeur d'eau      INTEGER, PARAMETER:: ivap = 1 ! indice de traceur pour vapeur d'eau
116      PARAMETER (ivap = 1)      INTEGER, PARAMETER:: iliq = 2 ! indice de traceur pour eau liquide
     INTEGER iliq ! indice de traceurs pour eau liquide  
     PARAMETER (iliq = 2)  
117    
118      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)
119      LOGICAL, save:: ancien_ok      LOGICAL, save:: ancien_ok
120    
121      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K/s)      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K / s)
122      REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg/kg/s)      REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg / kg / s)
123    
124      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)
125    
126      !IM Amip2 PV a theta constante      REAL, save:: swdn0(klon, llm + 1), swdn(klon, llm + 1)
127        REAL, save:: swup0(klon, llm + 1), swup(klon, llm + 1)
128    
129      CHARACTER(LEN = 3) ctetaSTD(nbteta)      REAL, save:: lwdn0(klon, llm + 1), lwdn(klon, llm + 1)
130      DATA ctetaSTD/'350', '380', '405'/      REAL, save:: lwup0(klon, llm + 1), lwup(klon, llm + 1)
     REAL rtetaSTD(nbteta)  
     DATA rtetaSTD/350., 380., 405./  
   
     !MI Amip2 PV a theta constante  
   
     REAL swdn0(klon, llm + 1), swdn(klon, llm + 1)  
     REAL swup0(klon, llm + 1), swup(klon, llm + 1)  
     SAVE swdn0, swdn, swup0, swup  
   
     REAL lwdn0(klon, llm + 1), lwdn(klon, llm + 1)  
     REAL lwup0(klon, llm + 1), lwup(klon, llm + 1)  
     SAVE lwdn0, lwdn, lwup0, lwup  
   
     !IM Amip2  
     ! variables a une pression donnee  
   
     integer nlevSTD  
     PARAMETER(nlevSTD = 17)  
     real rlevSTD(nlevSTD)  
     DATA rlevSTD/100000., 92500., 85000., 70000., &  
          60000., 50000., 40000., 30000., 25000., 20000., &  
          15000., 10000., 7000., 5000., 3000., 2000., 1000./  
     CHARACTER(LEN = 4) clevSTD(nlevSTD)  
     DATA clevSTD/'1000', '925 ', '850 ', '700 ', '600 ', &  
          '500 ', '400 ', '300 ', '250 ', '200 ', '150 ', '100 ', &  
          '70 ', '50 ', '30 ', '20 ', '10 '/  
131    
132      ! prw: precipitable water      ! prw: precipitable water
133      real prw(klon)      real prw(klon)
134    
135      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg/m2)      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg / m2)
136      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg/kg)      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg / kg)
137      REAL flwp(klon), fiwp(klon)      REAL flwp(klon), fiwp(klon)
138      REAL flwc(klon, llm), fiwc(klon, llm)      REAL flwc(klon, llm), fiwc(klon, llm)
139    
     INTEGER kmax, lmax  
     PARAMETER(kmax = 8, lmax = 8)  
     INTEGER kmaxm1, lmaxm1  
     PARAMETER(kmaxm1 = kmax-1, lmaxm1 = lmax-1)  
   
     REAL zx_tau(kmaxm1), zx_pc(lmaxm1)  
     DATA zx_tau/0., 0.3, 1.3, 3.6, 9.4, 23., 60./  
     DATA zx_pc/50., 180., 310., 440., 560., 680., 800./  
   
     ! cldtopres pression au sommet des nuages  
     REAL cldtopres(lmaxm1)  
     DATA cldtopres/50., 180., 310., 440., 560., 680., 800./  
   
     ! taulev: numero du niveau de tau dans les sorties ISCCP  
     CHARACTER(LEN = 4) taulev(kmaxm1)  
   
     DATA taulev/'tau0', 'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'/  
     CHARACTER(LEN = 3) pclev(lmaxm1)  
     DATA pclev/'pc1', 'pc2', 'pc3', 'pc4', 'pc5', 'pc6', 'pc7'/  
   
     CHARACTER(LEN = 28) cnameisccp(lmaxm1, kmaxm1)  
     DATA cnameisccp/'pc< 50hPa, tau< 0.3', 'pc= 50-180hPa, tau< 0.3', &  
          'pc= 180-310hPa, tau< 0.3', 'pc= 310-440hPa, tau< 0.3', &  
          'pc= 440-560hPa, tau< 0.3', 'pc= 560-680hPa, tau< 0.3', &  
          'pc= 680-800hPa, tau< 0.3', 'pc< 50hPa, tau= 0.3-1.3', &  
          'pc= 50-180hPa, tau= 0.3-1.3', 'pc= 180-310hPa, tau= 0.3-1.3', &  
          'pc= 310-440hPa, tau= 0.3-1.3', 'pc= 440-560hPa, tau= 0.3-1.3', &  
          'pc= 560-680hPa, tau= 0.3-1.3', 'pc= 680-800hPa, tau= 0.3-1.3', &  
          'pc< 50hPa, tau= 1.3-3.6', 'pc= 50-180hPa, tau= 1.3-3.6', &  
          'pc= 180-310hPa, tau= 1.3-3.6', 'pc= 310-440hPa, tau= 1.3-3.6', &  
          'pc= 440-560hPa, tau= 1.3-3.6', 'pc= 560-680hPa, tau= 1.3-3.6', &  
          'pc= 680-800hPa, tau= 1.3-3.6', 'pc< 50hPa, tau= 3.6-9.4', &  
          'pc= 50-180hPa, tau= 3.6-9.4', 'pc= 180-310hPa, tau= 3.6-9.4', &  
          'pc= 310-440hPa, tau= 3.6-9.4', 'pc= 440-560hPa, tau= 3.6-9.4', &  
          'pc= 560-680hPa, tau= 3.6-9.4', 'pc= 680-800hPa, tau= 3.6-9.4', &  
          'pc< 50hPa, tau= 9.4-23', 'pc= 50-180hPa, tau= 9.4-23', &  
          'pc= 180-310hPa, tau= 9.4-23', 'pc= 310-440hPa, tau= 9.4-23', &  
          'pc= 440-560hPa, tau= 9.4-23', 'pc= 560-680hPa, tau= 9.4-23', &  
          'pc= 680-800hPa, tau= 9.4-23', 'pc< 50hPa, tau= 23-60', &  
          'pc= 50-180hPa, tau= 23-60', 'pc= 180-310hPa, tau= 23-60', &  
          'pc= 310-440hPa, tau= 23-60', 'pc= 440-560hPa, tau= 23-60', &  
          'pc= 560-680hPa, tau= 23-60', 'pc= 680-800hPa, tau= 23-60', &  
          'pc< 50hPa, tau> 60.', 'pc= 50-180hPa, tau> 60.', &  
          'pc= 180-310hPa, tau> 60.', 'pc= 310-440hPa, tau> 60.', &  
          'pc= 440-560hPa, tau> 60.', 'pc= 560-680hPa, tau> 60.', &  
          'pc= 680-800hPa, tau> 60.'/  
   
     !IM ISCCP simulator v3.4  
   
     integer nid_hf, nid_hf3d  
     save nid_hf, nid_hf3d  
   
140      ! Variables propres a la physique      ! Variables propres a la physique
141    
142      INTEGER, save:: radpas      INTEGER, save:: radpas
143      ! (Radiative transfer computations are made every "radpas" call to      ! Radiative transfer computations are made every "radpas" call to
144      ! "physiq".)      ! "physiq".
   
     REAL radsol(klon)  
     SAVE radsol ! bilan radiatif au sol calcule par code radiatif  
   
     INTEGER, SAVE:: itap ! number of calls to "physiq"  
145    
146        REAL, save:: radsol(klon) ! bilan radiatif au sol calcule par code radiatif
147      REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction      REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction
148    
149      REAL, save:: ftsoil(klon, nsoilmx, nbsrf)      REAL, save:: ftsoil(klon, nsoilmx, nbsrf)
# Line 267  contains Line 151  contains
151    
152      REAL, save:: fevap(klon, nbsrf) ! evaporation      REAL, save:: fevap(klon, nbsrf) ! evaporation
153      REAL fluxlat(klon, nbsrf)      REAL fluxlat(klon, nbsrf)
     SAVE fluxlat  
   
     REAL fqsurf(klon, nbsrf)  
     SAVE fqsurf ! humidite de l'air au contact de la surface  
154    
155      REAL, save:: qsol(klon) ! hauteur d'eau dans le sol      REAL, save:: fqsurf(klon, nbsrf)
156        ! humidite de l'air au contact de la surface
157    
158      REAL fsnow(klon, nbsrf)      REAL, save:: qsol(klon) ! column-density of water in soil, in kg m-2
159      SAVE fsnow ! epaisseur neigeuse      REAL, save:: fsnow(klon, nbsrf) ! \'epaisseur neigeuse
160        REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface
161    
162      REAL falbe(klon, nbsrf)      ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :
     SAVE falbe ! albedo par type de surface  
     REAL falblw(klon, nbsrf)  
     SAVE falblw ! albedo par type de surface  
   
     ! Paramètres de l'orographie à l'échelle sous-maille (OESM) :  
163      REAL, save:: zmea(klon) ! orographie moyenne      REAL, save:: zmea(klon) ! orographie moyenne
164      REAL, save:: zstd(klon) ! deviation standard de l'OESM      REAL, save:: zstd(klon) ! deviation standard de l'OESM
165      REAL, save:: zsig(klon) ! pente de l'OESM      REAL, save:: zsig(klon) ! pente de l'OESM
# Line 291  contains Line 168  contains
168      REAL, save:: zpic(klon) ! Maximum de l'OESM      REAL, save:: zpic(klon) ! Maximum de l'OESM
169      REAL, save:: zval(klon) ! Minimum de l'OESM      REAL, save:: zval(klon) ! Minimum de l'OESM
170      REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM      REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM
   
171      REAL zulow(klon), zvlow(klon)      REAL zulow(klon), zvlow(klon)
172        INTEGER ktest(klon)
173    
174      INTEGER igwd, idx(klon), itest(klon)      REAL, save:: agesno(klon, nbsrf) ! age de la neige
175        REAL, save:: run_off_lic_0(klon)
176    
177      REAL agesno(klon, nbsrf)      ! Variables li\'ees \`a la convection d'Emanuel :
178      SAVE agesno ! age de la neige      REAL, save:: Ma(klon, llm) ! undilute upward mass flux
   
     REAL run_off_lic_0(klon)  
     SAVE run_off_lic_0  
     !KE43  
     ! Variables liees a la convection de K. Emanuel (sb):  
   
     REAL bas, top ! cloud base and top levels  
     SAVE bas  
     SAVE top  
   
     REAL Ma(klon, llm) ! undilute upward mass flux  
     SAVE Ma  
     REAL qcondc(klon, llm) ! in-cld water content from convect  
     SAVE qcondc  
179      REAL, save:: sig1(klon, llm), w01(klon, llm)      REAL, save:: sig1(klon, llm), w01(klon, llm)
     REAL, save:: wd(klon)  
   
     ! Variables locales pour la couche limite (al1):  
   
     ! Variables locales:  
180    
181        ! Variables pour la couche limite (Alain Lahellec) :
182      REAL cdragh(klon) ! drag coefficient pour T and Q      REAL cdragh(klon) ! drag coefficient pour T and Q
183      REAL cdragm(klon) ! drag coefficient pour vent      REAL cdragm(klon) ! drag coefficient pour vent
184    
185      ! Pour phytrac :      REAL coefh(klon, 2:llm) ! coef d'echange pour phytrac
186      REAL ycoefh(klon, llm) ! coef d'echange pour phytrac  
187      REAL yu1(klon) ! vents dans la premiere couche U      REAL, save:: ffonte(klon, nbsrf)
188      REAL yv1(klon) ! vents dans la premiere couche V      ! flux thermique utilise pour fondre la neige
189      REAL ffonte(klon, nbsrf) !Flux thermique utilise pour fondre la neige  
190      REAL fqcalving(klon, nbsrf) !Flux d'eau "perdue" par la surface      REAL, save:: fqcalving(klon, nbsrf)
191      ! !et necessaire pour limiter la      ! flux d'eau "perdue" par la surface et necessaire pour limiter la
192      ! !hauteur de neige, en kg/m2/s      ! hauteur de neige, en kg / m2 / s
193    
194      REAL zxffonte(klon), zxfqcalving(klon)      REAL zxffonte(klon), zxfqcalving(klon)
195    
196      REAL pfrac_impa(klon, llm)! Produits des coefs lessivage impaction      REAL, save:: pfrac_impa(klon, llm)! Produits des coefs lessivage impaction
197      save pfrac_impa      REAL, save:: pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation
198      REAL pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation  
199      save pfrac_nucl      REAL, save:: pfrac_1nucl(klon, llm)
200      REAL pfrac_1nucl(klon, llm)! Produits des coefs lessi nucl (alpha = 1)      ! Produits des coefs lessi nucl (alpha = 1)
201      save pfrac_1nucl  
202      REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction)      REAL frac_impa(klon, llm) ! fraction d'a\'erosols lessiv\'es (impaction)
203      REAL frac_nucl(klon, llm) ! idem (nucleation)      REAL frac_nucl(klon, llm) ! idem (nucleation)
204    
205      REAL, save:: rain_fall(klon) ! pluie      REAL, save:: rain_fall(klon)
206      REAL, save:: snow_fall(klon) ! neige      ! liquid water mass flux (kg / m2 / s), positive down
207    
208        REAL, save:: snow_fall(klon)
209        ! solid water mass flux (kg / m2 / s), positive down
210    
211      REAL rain_tiedtke(klon), snow_tiedtke(klon)      REAL rain_tiedtke(klon), snow_tiedtke(klon)
212    
213      REAL evap(klon), devap(klon) ! evaporation and its derivative      REAL evap(klon) ! flux d'\'evaporation au sol
214      REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee      real devap(klon) ! derivative of the evaporation flux at the surface
215      REAL dlw(klon) ! derivee infra rouge      REAL sens(klon) ! flux de chaleur sensible au sol
216      SAVE dlw      real dsens(klon) ! derivee du flux de chaleur sensible au sol
217        REAL, save:: dlw(klon) ! derivative of infra-red flux
218      REAL bils(klon) ! bilan de chaleur au sol      REAL bils(klon) ! bilan de chaleur au sol
219      REAL fder(klon) ! Derive de flux (sensible et latente)      REAL fder(klon) ! Derive de flux (sensible et latente)
     save fder  
220      REAL ve(klon) ! integr. verticale du transport meri. de l'energie      REAL ve(klon) ! integr. verticale du transport meri. de l'energie
221      REAL vq(klon) ! integr. verticale du transport meri. de l'eau      REAL vq(klon) ! integr. verticale du transport meri. de l'eau
222      REAL ue(klon) ! integr. verticale du transport zonal de l'energie      REAL ue(klon) ! integr. verticale du transport zonal de l'energie
223      REAL uq(klon) ! integr. verticale du transport zonal de l'eau      REAL uq(klon) ! integr. verticale du transport zonal de l'eau
224    
225      REAL frugs(klon, nbsrf) ! longueur de rugosite      REAL, save:: frugs(klon, nbsrf) ! longueur de rugosite
     save frugs  
226      REAL zxrugs(klon) ! longueur de rugosite      REAL zxrugs(klon) ! longueur de rugosite
227    
228      ! Conditions aux limites      ! Conditions aux limites
229    
230      INTEGER julien      INTEGER julien
   
     INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day  
231      REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface      REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface
232      REAL pctsrf_new(klon, nbsrf) ! pourcentage surfaces issus d'ORCHIDEE      REAL, save:: albsol(klon) ! albedo du sol total, visible, moyen par maille
   
     REAL albsol(klon)  
     SAVE albsol ! albedo du sol total  
     REAL albsollw(klon)  
     SAVE albsollw ! albedo du sol total  
   
233      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU
234        real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2
     ! Declaration des procedures appelees  
   
     EXTERNAL alboc ! calculer l'albedo sur ocean  
     !KE43  
     EXTERNAL conema3 ! convect4.3  
     EXTERNAL nuage ! calculer les proprietes radiatives  
     EXTERNAL transp ! transport total de l'eau et de l'energie  
   
     ! Variables locales  
235    
236      real, save:: clwcon(klon, llm), rnebcon(klon, llm)      real, save:: clwcon(klon, llm), rnebcon(klon, llm)
237      real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)      real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)
238    
239      REAL rhcl(klon, llm) ! humiditi relative ciel clair      REAL rhcl(klon, llm) ! humidit\'e relative ciel clair
240      REAL dialiq(klon, llm) ! eau liquide nuageuse      REAL dialiq(klon, llm) ! eau liquide nuageuse
241      REAL diafra(klon, llm) ! fraction nuageuse      REAL diafra(klon, llm) ! fraction nuageuse
242      REAL cldliq(klon, llm) ! eau liquide nuageuse      REAL cldliq(klon, llm) ! eau liquide nuageuse
# Line 398  contains Line 244  contains
244      REAL cldtau(klon, llm) ! epaisseur optique      REAL cldtau(klon, llm) ! epaisseur optique
245      REAL cldemi(klon, llm) ! emissivite infrarouge      REAL cldemi(klon, llm) ! emissivite infrarouge
246    
247      REAL fluxq(klon, llm, nbsrf) ! flux turbulent d'humidite      REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface
248      REAL fluxt(klon, llm, nbsrf) ! flux turbulent de chaleur      REAL flux_t(klon, nbsrf) ! flux turbulent de chaleur à la surface
249      REAL fluxu(klon, llm, nbsrf) ! flux turbulent de vitesse u  
250      REAL fluxv(klon, llm, nbsrf) ! flux turbulent de vitesse v      REAL flux_u(klon, nbsrf), flux_v(klon, nbsrf)
251        ! tension du vent (flux turbulent de vent) à la surface, en Pa
     REAL zxfluxt(klon, llm)  
     REAL zxfluxq(klon, llm)  
     REAL zxfluxu(klon, llm)  
     REAL zxfluxv(klon, llm)  
252    
253      ! Le rayonnement n'est pas calculé tous les pas, il faut donc que      ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que
254      ! les variables soient rémanentes.      ! les variables soient r\'emanentes.
255      REAL, save:: heat(klon, llm) ! chauffage solaire      REAL, save:: heat(klon, llm) ! chauffage solaire
256      REAL heat0(klon, llm) ! chauffage solaire ciel clair      REAL, save:: heat0(klon, llm) ! chauffage solaire ciel clair
257      REAL, save:: cool(klon, llm) ! refroidissement infrarouge      REAL, save:: cool(klon, llm) ! refroidissement infrarouge
258      REAL cool0(klon, llm) ! refroidissement infrarouge ciel clair      REAL, save:: cool0(klon, llm) ! refroidissement infrarouge ciel clair
259      REAL, save:: topsw(klon), toplw(klon), solsw(klon)      REAL, save:: topsw(klon), toplw(klon), solsw(klon)
260      REAL, save:: sollw(klon) ! rayonnement infrarouge montant à la surface      REAL, save:: sollw(klon) ! rayonnement infrarouge montant \`a la surface
261      real, save:: sollwdown(klon) ! downward LW flux at surface      real, save:: sollwdown(klon) ! downward LW flux at surface
262      REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)      REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)
263      REAL albpla(klon)      REAL, save:: albpla(klon)
264      REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous surface      REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous-surface
265      REAL fsolsw(klon, nbsrf) ! flux solaire absorb. pour chaque sous surface      REAL fsolsw(klon, nbsrf) ! flux solaire absorb\'e pour chaque sous-surface
266      SAVE albpla  
267      SAVE heat0, cool0      REAL conv_q(klon, llm) ! convergence de l'humidite (kg / kg / s)
268        REAL conv_t(klon, llm) ! convergence of temperature (K / s)
269      INTEGER itaprad  
270      SAVE itaprad      REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut
271        REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree
272      REAL conv_q(klon, llm) ! convergence de l'humidite (kg/kg/s)  
273      REAL conv_t(klon, llm) ! convergence of temperature (K/s)      REAL zxfluxlat(klon)
274        REAL dist, mu0(klon), fract(klon)
275      REAL cldl(klon), cldm(klon), cldh(klon) !nuages bas, moyen et haut      real longi
     REAL cldt(klon), cldq(klon) !nuage total, eau liquide integree  
   
     REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon)  
   
     REAL dist, rmu0(klon), fract(klon)  
     REAL zdtime ! pas de temps du rayonnement (s)  
     real zlongi  
276      REAL z_avant(klon), z_apres(klon), z_factor(klon)      REAL z_avant(klon), z_apres(klon), z_factor(klon)
277      REAL za, zb      REAL zb
278      REAL zx_t, zx_qs, zdelta, zcor      REAL zx_t, zx_qs, zcor
279      real zqsat(klon, llm)      real zqsat(klon, llm)
280      INTEGER i, k, iq, nsrf      INTEGER i, k, iq, nsrf
     REAL, PARAMETER:: t_coup = 234.  
281      REAL zphi(klon, llm)      REAL zphi(klon, llm)
282    
283      !IM cf. AM Variables locales pour la CLA (hbtm2)      ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm)
284    
285      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite
286      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA
287      REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite      REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite
288      REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite      REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite
289      REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite      REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite
290      REAL, SAVE:: pblt(klon, nbsrf) ! T a la Hauteur de couche limite      REAL, SAVE:: pblt(klon, nbsrf) ! T \`a la hauteur de couche limite
291      REAL, SAVE:: therm(klon, nbsrf)      REAL, SAVE:: therm(klon, nbsrf)
292      REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape      ! Grandeurs de sorties
     REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition  
     REAL, SAVE:: trmb3(klon, nbsrf) ! Point Omega  
     ! Grdeurs de sorties  
293      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)
294      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)
295      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)      REAL s_therm(klon)
     REAL s_trmb3(klon)  
296    
297      ! Variables locales pour la convection de K. Emanuel :      ! Variables pour la convection de K. Emanuel :
298    
299      REAL upwd(klon, llm) ! saturated updraft mass flux      REAL upwd(klon, llm) ! saturated updraft mass flux
300      REAL dnwd(klon, llm) ! saturated downdraft mass flux      REAL dnwd(klon, llm) ! saturated downdraft mass flux
301      REAL dnwd0(klon, llm) ! unsaturated downdraft mass flux      REAL, save:: cape(klon)
302      REAL tvp(klon, llm) ! virtual temp of lifted parcel  
     REAL cape(klon) ! CAPE  
     SAVE cape  
   
     REAL pbase(klon) ! cloud base pressure  
     SAVE pbase  
     REAL bbase(klon) ! cloud base buoyancy  
     SAVE bbase  
     REAL rflag(klon) ! flag fonctionnement de convect  
303      INTEGER iflagctrl(klon) ! flag fonctionnement de convect      INTEGER iflagctrl(klon) ! flag fonctionnement de convect
     ! -- convect43:  
     REAL dtvpdt1(klon, llm), dtvpdq1(klon, llm)  
     REAL dplcldt(klon), dplcldr(klon)  
304    
305      ! Variables du changement      ! Variables du changement
306    
307      ! con: convection      ! con: convection
308      ! lsc: large scale condensation      ! lsc: large scale condensation
309      ! ajs: ajustement sec      ! ajs: ajustement sec
310      ! eva: évaporation de l'eau liquide nuageuse      ! eva: \'evaporation de l'eau liquide nuageuse
311      ! vdf: vertical diffusion in boundary layer      ! vdf: vertical diffusion in boundary layer
312      REAL d_t_con(klon, llm), d_q_con(klon, llm)      REAL d_t_con(klon, llm), d_q_con(klon, llm)
313      REAL d_u_con(klon, llm), d_v_con(klon, llm)      REAL, save:: d_u_con(klon, llm), d_v_con(klon, llm)
314      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)
315      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)
316      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)
# Line 505  contains Line 324  contains
324      REAL prfl(klon, llm + 1), psfl(klon, llm + 1)      REAL prfl(klon, llm + 1), psfl(klon, llm + 1)
325    
326      INTEGER, save:: ibas_con(klon), itop_con(klon)      INTEGER, save:: ibas_con(klon), itop_con(klon)
327        real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa
328    
329      REAL rain_con(klon), rain_lsc(klon)      REAL, save:: rain_con(klon)
330      REAL snow_con(klon), snow_lsc(klon)      real rain_lsc(klon)
331      REAL d_ts(klon, nbsrf)      REAL, save:: snow_con(klon) ! neige (mm / s)
332        real snow_lsc(klon)
333        REAL d_ts(klon, nbsrf) ! variation of ftsol
334    
335      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)
336      REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)      REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)
# Line 531  contains Line 353  contains
353      integer:: iflag_cldcon = 1      integer:: iflag_cldcon = 1
354      logical ptconv(klon, llm)      logical ptconv(klon, llm)
355    
356      ! Variables locales pour effectuer les appels en série :      ! Variables pour effectuer les appels en s\'erie :
357    
358      REAL t_seri(klon, llm), q_seri(klon, llm)      REAL t_seri(klon, llm), q_seri(klon, llm)
359      REAL ql_seri(klon, llm), qs_seri(klon, llm)      REAL ql_seri(klon, llm)
360      REAL u_seri(klon, llm), v_seri(klon, llm)      REAL u_seri(klon, llm), v_seri(klon, llm)
361        REAL tr_seri(klon, llm, nqmx - 2)
     REAL tr_seri(klon, llm, nbtr)  
     REAL d_tr(klon, llm, nbtr)  
362    
363      REAL zx_rh(klon, llm)      REAL zx_rh(klon, llm)
364    
365      REAL zustrdr(klon), zvstrdr(klon)      REAL zustrdr(klon), zvstrdr(klon)
366      REAL zustrli(klon), zvstrli(klon)      REAL zustrli(klon), zvstrli(klon)
     REAL zustrph(klon), zvstrph(klon)  
367      REAL aam, torsfc      REAL aam, torsfc
368    
     REAL dudyn(iim + 1, jjm + 1, llm)  
   
     REAL zx_tmp_fi2d(klon) ! variable temporaire grille physique  
     REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm)  
   
     INTEGER, SAVE:: nid_day, nid_ins  
   
369      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.
370      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.
371      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.
372      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.
373    
374      REAL zsto      REAL tsol(klon)
   
     logical ok_sync  
     real date0  
375    
376      ! Variables liées au bilan d'énergie et d'enthalpie :      REAL d_t_ec(klon, llm)
377      REAL ztsol(klon)      ! tendance due \`a la conversion d'\'energie cin\'etique en
378      REAL d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec      ! énergie thermique
379      REAL, SAVE:: d_h_vcol_phy  
380      REAL fs_bound, fq_bound      REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf)
381      REAL zero_v(klon)      ! temperature and humidity at 2 m
382      CHARACTER(LEN = 15) tit  
383      INTEGER:: ip_ebil = 0 ! print level for energy conservation diagnostics      REAL, save:: u10m_srf(klon, nbsrf), v10m_srf(klon, nbsrf)
384      INTEGER:: if_ebil = 0 ! verbosity for diagnostics of energy conservation      ! composantes du vent \`a 10 m
385        
386      REAL d_t_ec(klon, llm) ! tendance due à la conversion Ec -> E thermique      REAL zt2m(klon), zq2m(klon) ! température, humidité 2 m moyenne sur 1 maille
387      REAL ZRCPD      REAL u10m(klon), v10m(klon) ! vent \`a 10 m moyenn\' sur les sous-surfaces
   
     REAL t2m(klon, nbsrf), q2m(klon, nbsrf) ! temperature and humidity at 2 m  
     REAL u10m(klon, nbsrf), v10m(klon, nbsrf) ! vents a 10 m  
     REAL zt2m(klon), zq2m(klon) ! temp., hum. 2 m moyenne s/ 1 maille  
     REAL zu10m(klon), zv10m(klon) ! vents a 10 m moyennes s/1 maille  
388    
389      ! Aerosol effects:      ! Aerosol effects:
390    
391      REAL sulfate(klon, llm) ! SO4 aerosol concentration (micro g/m3)      REAL, save:: topswad(klon), solswad(klon) ! aerosol direct effect
   
     REAL, save:: sulfate_pi(klon, llm)  
     ! SO4 aerosol concentration, in micro g/m3, pre-industrial value  
   
     REAL cldtaupi(klon, llm)  
     ! cloud optical thickness for pre-industrial (pi) aerosols  
   
     REAL re(klon, llm) ! Cloud droplet effective radius  
     REAL fl(klon, llm) ! denominator of re  
   
     ! Aerosol optical properties  
     REAL, save:: tau_ae(klon, llm, 2), piz_ae(klon, llm, 2)  
     REAL, save:: cg_ae(klon, llm, 2)  
   
     REAL topswad(klon), solswad(klon) ! aerosol direct effect  
     REAL topswai(klon), solswai(klon) ! aerosol indirect effect  
   
     REAL aerindex(klon) ! POLDER aerosol index  
   
392      LOGICAL:: ok_ade = .false. ! apply aerosol direct effect      LOGICAL:: ok_ade = .false. ! apply aerosol direct effect
     LOGICAL:: ok_aie = .false. ! apply aerosol indirect effect  
393    
394      REAL:: bl95_b0 = 2., bl95_b1 = 0.2      REAL:: bl95_b0 = 2., bl95_b1 = 0.2
395      ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus      ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus
396      ! B). They link cloud droplet number concentration to aerosol mass      ! B). They link cloud droplet number concentration to aerosol mass
397      ! concentration.      ! concentration.
398    
399      SAVE u10m      real zmasse(klon, llm)
     SAVE v10m  
     SAVE t2m  
     SAVE q2m  
     SAVE ffonte  
     SAVE fqcalving  
     SAVE rain_con  
     SAVE snow_con  
     SAVE topswai  
     SAVE topswad  
     SAVE solswai  
     SAVE solswad  
     SAVE d_u_con  
     SAVE d_v_con  
   
     real zmasse(klon, llm)  
400      ! (column-density of mass of air in a cell, in kg m-2)      ! (column-density of mass of air in a cell, in kg m-2)
401    
402      real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2      integer, save:: ncid_startphy
403    
404      namelist /physiq_nml/ ocean, ok_veget, ok_journe, ok_mensuel, ok_instan, &      namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, &
405           fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, ratqsbas, &           ratqsbas, ratqshaut, ok_ade, bl95_b0, bl95_b1, iflag_thermals, &
          ratqshaut, if_ebil, ok_ade, ok_aie, bl95_b0, bl95_b1, iflag_thermals, &  
406           nsplit_thermals           nsplit_thermals
407    
408      !----------------------------------------------------------------      !----------------------------------------------------------------
409    
     IF (if_ebil >= 1) zero_v = 0.  
     ok_sync = .TRUE.  
410      IF (nqmx < 2) CALL abort_gcm('physiq', &      IF (nqmx < 2) CALL abort_gcm('physiq', &
411           'eaux vapeur et liquide sont indispensables', 1)           'eaux vapeur et liquide sont indispensables')
412    
413      test_firstcal: IF (firstcal) THEN      test_firstcal: IF (firstcal) THEN
414         ! initialiser         ! initialiser
415         u10m = 0.         u10m_srf = 0.
416         v10m = 0.         v10m_srf = 0.
417         t2m = 0.         t2m = 0.
418         q2m = 0.         q2m = 0.
419         ffonte = 0.         ffonte = 0.
420         fqcalving = 0.         fqcalving = 0.
421         piz_ae = 0.         rain_con = 0.
422         tau_ae = 0.         snow_con = 0.
        cg_ae = 0.  
        rain_con(:) = 0.  
        snow_con(:) = 0.  
        topswai(:) = 0.  
        topswad(:) = 0.  
        solswai(:) = 0.  
        solswad(:) = 0.  
   
423         d_u_con = 0.         d_u_con = 0.
424         d_v_con = 0.         d_v_con = 0.
425         rnebcon0 = 0.         rnebcon0 = 0.
426         clwcon0 = 0.         clwcon0 = 0.
427         rnebcon = 0.         rnebcon = 0.
428         clwcon = 0.         clwcon = 0.
   
429         pblh =0. ! Hauteur de couche limite         pblh =0. ! Hauteur de couche limite
430         plcl =0. ! Niveau de condensation de la CLA         plcl =0. ! Niveau de condensation de la CLA
431         capCL =0. ! CAPE de couche limite         capCL =0. ! CAPE de couche limite
432         oliqCL =0. ! eau_liqu integree de couche limite         oliqCL =0. ! eau_liqu integree de couche limite
433         cteiCL =0. ! cloud top instab. crit. couche limite         cteiCL =0. ! cloud top instab. crit. couche limite
434         pblt =0. ! T a la Hauteur de couche limite         pblt =0.
435         therm =0.         therm =0.
        trmb1 =0. ! deep_cape  
        trmb2 =0. ! inhibition  
        trmb3 =0. ! Point Omega  
   
        IF (if_ebil >= 1) d_h_vcol_phy = 0.  
436    
437         iflag_thermals = 0         iflag_thermals = 0
438         nsplit_thermals = 1         nsplit_thermals = 1
# Line 693  contains Line 445  contains
445         ! Initialiser les compteurs:         ! Initialiser les compteurs:
446    
447         frugs = 0.         frugs = 0.
448         itap = 0         CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
449         itaprad = 0              fevap, rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, &
450         CALL phyetat0("startphy.nc", pctsrf, ftsol, ftsoil, ocean, tslab, &              agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, &
451              seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, rain_fall, &              q_ancien, ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
452              snow_fall, solsw, sollw, dlw, radsol, frugs, agesno, zmea, &              w01, ncid_startphy)
             zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, &  
             ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01)  
453    
454         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial
455         q2 = 1e-8         q2 = 1e-8
456    
457         radpas = NINT(86400. / dtphys / nbapp_rad)         radpas = lmt_pas / nbapp_rad
458           print *, "radpas = ", radpas
459    
460         ! on remet le calendrier a zero         ! Initialisation pour le sch\'ema de convection d'Emanuel :
461         IF (raz_date) itau_phy = 0         IF (conv_emanuel) THEN
   
        PRINT *, 'cycle_diurne = ', cycle_diurne  
        CALL printflag(radpas, ocean /= 'force', ok_oasis, ok_journe, &  
             ok_instan, ok_region)  
   
        IF (dtphys * REAL(radpas) > 21600. .AND. cycle_diurne) THEN  
           print *, "Au minimum 4 appels par jour si cycle diurne"  
           call abort_gcm('physiq', &  
                "Nombre d'appels au rayonnement insuffisant", 1)  
        ENDIF  
   
        ! Initialisation pour le schéma de convection d'Emanuel :  
        IF (iflag_con >= 3) THEN  
462            ibas_con = 1            ibas_con = 1
463            itop_con = 1            itop_con = 1
464         ENDIF         ENDIF
# Line 732  contains Line 470  contains
470            rugoro = 0.            rugoro = 0.
471         ENDIF         ENDIF
472    
473         lmt_pas = NINT(86400. / dtphys) ! tous les jours         ecrit_ins = NINT(ecrit_ins / dtphys)
        print *, 'Number of time steps of "physics" per day: ', lmt_pas  
   
        ecrit_ins = NINT(ecrit_ins/dtphys)  
        ecrit_hf = NINT(ecrit_hf/dtphys)  
        ecrit_mth = NINT(ecrit_mth/dtphys)  
        ecrit_tra = NINT(86400.*ecrit_tra/dtphys)  
        ecrit_reg = NINT(ecrit_reg/dtphys)  
   
        ! Initialiser le couplage si necessaire  
   
        npas = 0  
        nexca = 0  
474    
475         ! Initialisation des sorties         ! Initialisation des sorties
476    
477         call ini_histhf(dtphys, nid_hf, nid_hf3d)         call ini_histins(dtphys, ok_newmicro)
478         call ini_histday(dtphys, ok_journe, nid_day, nqmx)         CALL phyredem0
        call ini_histins(dtphys, ok_instan, nid_ins)  
        CALL ymds2ju(annee_ref, 1, int(day_ref), 0., date0)  
        ! Positionner date0 pour initialisation de ORCHIDEE  
        print *, 'physiq date0: ', date0  
479      ENDIF test_firstcal      ENDIF test_firstcal
480    
481      ! Mettre a zero des variables de sortie (pour securite)      ! We will modify variables *_seri and we will not touch variables
482        ! u, v, t, qx:
483        t_seri = t
484        u_seri = u
485        v_seri = v
486        q_seri = qx(:, :, ivap)
487        ql_seri = qx(:, :, iliq)
488        tr_seri = qx(:, :, 3:nqmx)
489    
490      DO i = 1, klon      tsol = sum(ftsol * pctsrf, dim = 2)
        d_ps(i) = 0.  
     ENDDO  
     DO iq = 1, nqmx  
        DO k = 1, llm  
           DO i = 1, klon  
              d_qx(i, k, iq) = 0.  
           ENDDO  
        ENDDO  
     ENDDO  
     da = 0.  
     mp = 0.  
     phi = 0.  
   
     ! Ne pas affecter les valeurs entrées de u, v, h, et q :  
   
     DO k = 1, llm  
        DO i = 1, klon  
           t_seri(i, k) = t(i, k)  
           u_seri(i, k) = u(i, k)  
           v_seri(i, k) = v(i, k)  
           q_seri(i, k) = qx(i, k, ivap)  
           ql_seri(i, k) = qx(i, k, iliq)  
           qs_seri(i, k) = 0.  
        ENDDO  
     ENDDO  
     IF (nqmx >= 3) THEN  
        tr_seri(:, :, :nqmx-2) = qx(:, :, 3:nqmx)  
     ELSE  
        tr_seri(:, :, 1) = 0.  
     ENDIF  
   
     DO i = 1, klon  
        ztsol(i) = 0.  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           ztsol(i) = ztsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     IF (if_ebil >= 1) THEN  
        tit = 'after dynamics'  
        CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        ! Comme les tendances de la physique sont ajoutés dans la  
        !  dynamique, la variation d'enthalpie par la dynamique devrait  
        !  être égale à la variation de la physique au pas de temps  
        !  précédent.  Donc la somme de ces 2 variations devrait être  
        !  nulle.  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol + d_h_vcol_phy, &  
             d_qt, 0., fs_bound, fq_bound)  
     END IF  
491    
492      ! Diagnostic de la tendance dynamique :      ! Diagnostic de la tendance dynamique :
493      IF (ancien_ok) THEN      IF (ancien_ok) THEN
# Line 842  contains Line 517  contains
517      ! Check temperatures:      ! Check temperatures:
518      CALL hgardfou(t_seri, ftsol)      CALL hgardfou(t_seri, ftsol)
519    
520      ! Incrementer le compteur de la physique      call increment_itap
521      itap = itap + 1      julien = MOD(dayvrai, 360)
     julien = MOD(NINT(rdayvrai), 360)  
522      if (julien == 0) julien = 360      if (julien == 0) julien = 360
523    
524      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k)-paprs(:, k + 1)) / rg      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg
525    
526      ! Mettre en action les conditions aux limites (albedo, sst etc.).      ! \'Evaporation de l'eau liquide nuageuse :
   
     ! Prescrire l'ozone et calculer l'albedo sur l'ocean.  
     wo = ozonecm(REAL(julien), paprs)  
   
     ! Évaporation de l'eau liquide nuageuse :  
527      DO k = 1, llm      DO k = 1, llm
528         DO i = 1, klon         DO i = 1, klon
529            zb = MAX(0., ql_seri(i, k))            zb = MAX(0., ql_seri(i, k))
# Line 865  contains Line 534  contains
534      ENDDO      ENDDO
535      ql_seri = 0.      ql_seri = 0.
536    
537      IF (if_ebil >= 2) THEN      frugs = MAX(frugs, 0.000015)
538         tit = 'after reevap'      zxrugs = sum(frugs * pctsrf, dim = 2)
        CALL diagetpq(airephy, tit, ip_ebil, 2, 1, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
   
     END IF  
539    
540      ! Appeler la diffusion verticale (programme de couche limite)      ! Calculs n\'ecessaires au calcul de l'albedo dans l'interface avec
541        ! la surface.
     DO i = 1, klon  
        zxrugs(i) = 0.  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           frugs(i, nsrf) = MAX(frugs(i, nsrf), 0.000015)  
        ENDDO  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxrugs(i) = zxrugs(i) + frugs(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
542    
543      ! calculs necessaires au calcul de l'albedo dans l'interface      CALL orbite(REAL(julien), longi, dist)
544        CALL zenang(longi, time, dtphys * radpas, mu0, fract)
545      CALL orbite(REAL(julien), zlongi, dist)      albsol = sum(falbe * pctsrf, dim = 2)
546      IF (cycle_diurne) THEN  
547         zdtime = dtphys * REAL(radpas)      ! R\'epartition sous maille des flux longwave et shortwave
548         CALL zenang(zlongi, time, zdtime, rmu0, fract)      ! R\'epartition du longwave par sous-surface lin\'earis\'ee
549      ELSE  
550         rmu0 = -999.999      forall (nsrf = 1: nbsrf)
551      ENDIF         fsollw(:, nsrf) = sollw + 4. * RSIGMA * tsol**3 &
552                * (tsol - ftsol(:, nsrf))
553      ! Calcul de l'abedo moyen par maille         fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol)
554      albsol(:) = 0.      END forall
555      albsollw(:) = 0.  
556      DO nsrf = 1, nbsrf      CALL pbl_surface(dtphys, pctsrf, t_seri, q_seri, u_seri, v_seri, julien, &
557         DO i = 1, klon           mu0, ftsol, cdmmax, cdhmax, ftsoil, qsol, paprs, play, fsnow, fqsurf, &
558            albsol(i) = albsol(i) + falbe(i, nsrf) * pctsrf(i, nsrf)           fevap, falbe, fluxlat, rain_fall, snow_fall, fsolsw, fsollw, frugs, &
559            albsollw(i) = albsollw(i) + falblw(i, nsrf) * pctsrf(i, nsrf)           agesno, rugoro, d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, flux_t, &
560         ENDDO           flux_q, flux_u, flux_v, cdragh, cdragm, q2, dsens, devap, coefh, t2m, &
561      ENDDO           q2m, u10m_srf, v10m_srf, pblh, capCL, oliqCL, cteiCL, pblT, therm, &
562             plcl, fqcalving, ffonte, run_off_lic_0)
563      ! Répartition sous maille des flux longwave et shortwave  
564      ! Répartition du longwave par sous-surface linéarisée      ! Incr\'ementation des flux
565    
566      DO nsrf = 1, nbsrf      sens = - sum(flux_t * pctsrf, dim = 2)
567         DO i = 1, klon      evap = - sum(flux_q * pctsrf, dim = 2)
568            fsollw(i, nsrf) = sollw(i) &      fder = dlw + dsens + devap
                + 4. * RSIGMA * ztsol(i)**3 * (ztsol(i) - ftsol(i, nsrf))  
           fsolsw(i, nsrf) = solsw(i) * (1. - falbe(i, nsrf)) / (1. - albsol(i))  
        ENDDO  
     ENDDO  
   
     fder = dlw  
   
     ! Couche limite:  
   
     CALL clmain(dtphys, itap, pctsrf, pctsrf_new, t_seri, q_seri, &  
          u_seri, v_seri, julien, rmu0, co2_ppm, ok_veget, ocean, &  
          ftsol, soil_model, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, &  
          qsol, paprs, play, fsnow, fqsurf, fevap, falbe, falblw, fluxlat, &  
          rain_fall, snow_fall, fsolsw, fsollw, fder, rlon, rlat, &  
          frugs, firstcal, agesno, rugoro, d_t_vdf, &  
          d_q_vdf, d_u_vdf, d_v_vdf, d_ts, fluxt, fluxq, fluxu, fluxv, cdragh, &  
          cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, &  
          pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, plcl, &  
          fqcalving, ffonte, run_off_lic_0, fluxo, fluxg, tslab, seaice)  
   
     ! Incrémentation des flux  
   
     zxfluxt = 0.  
     zxfluxq = 0.  
     zxfluxu = 0.  
     zxfluxv = 0.  
     DO nsrf = 1, nbsrf  
        DO k = 1, llm  
           DO i = 1, klon  
              zxfluxt(i, k) = zxfluxt(i, k) + fluxt(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxq(i, k) = zxfluxq(i, k) + fluxq(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxu(i, k) = zxfluxu(i, k) + fluxu(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxv(i, k) = zxfluxv(i, k) + fluxv(i, k, nsrf) * pctsrf(i, nsrf)  
           END DO  
        END DO  
     END DO  
     DO i = 1, klon  
        sens(i) = - zxfluxt(i, 1) ! flux de chaleur sensible au sol  
        evap(i) = - zxfluxq(i, 1) ! flux d'évaporation au sol  
        fder(i) = dlw(i) + dsens(i) + devap(i)  
     ENDDO  
569    
570      DO k = 1, llm      DO k = 1, llm
571         DO i = 1, klon         DO i = 1, klon
# Line 969  contains Line 576  contains
576         ENDDO         ENDDO
577      ENDDO      ENDDO
578    
     IF (if_ebil >= 2) THEN  
        tit = 'after clmain'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             sens, evap, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
     END IF  
   
579      ! Update surface temperature:      ! Update surface temperature:
580    
581      DO i = 1, klon      call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf')
582         zxtsol(i) = 0.      ftsol = ftsol + d_ts
583         zxfluxlat(i) = 0.      tsol = sum(ftsol * pctsrf, dim = 2)
584        zxfluxlat = sum(fluxlat * pctsrf, dim = 2)
585        zt2m = sum(t2m * pctsrf, dim = 2)
586        zq2m = sum(q2m * pctsrf, dim = 2)
587        u10m = sum(u10m_srf * pctsrf, dim = 2)
588        v10m = sum(v10m_srf * pctsrf, dim = 2)
589        zxffonte = sum(ffonte * pctsrf, dim = 2)
590        zxfqcalving = sum(fqcalving * pctsrf, dim = 2)
591        s_pblh = sum(pblh * pctsrf, dim = 2)
592        s_lcl = sum(plcl * pctsrf, dim = 2)
593        s_capCL = sum(capCL * pctsrf, dim = 2)
594        s_oliqCL = sum(oliqCL * pctsrf, dim = 2)
595        s_cteiCL = sum(cteiCL * pctsrf, dim = 2)
596        s_pblT = sum(pblT * pctsrf, dim = 2)
597        s_therm = sum(therm * pctsrf, dim = 2)
598    
599         zt2m(i) = 0.      ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne :
        zq2m(i) = 0.  
        zu10m(i) = 0.  
        zv10m(i) = 0.  
        zxffonte(i) = 0.  
        zxfqcalving(i) = 0.  
   
        s_pblh(i) = 0.  
        s_lcl(i) = 0.  
        s_capCL(i) = 0.  
        s_oliqCL(i) = 0.  
        s_cteiCL(i) = 0.  
        s_pblT(i) = 0.  
        s_therm(i) = 0.  
        s_trmb1(i) = 0.  
        s_trmb2(i) = 0.  
        s_trmb3(i) = 0.  
   
        IF (abs(pctsrf(i, is_ter) + pctsrf(i, is_lic) + pctsrf(i, is_oce) &  
             + pctsrf(i, is_sic) - 1.)  >  EPSFRA) print *, &  
             'physiq : problème sous surface au point ', i, pctsrf(i, 1 : nbsrf)  
     ENDDO  
600      DO nsrf = 1, nbsrf      DO nsrf = 1, nbsrf
601         DO i = 1, klon         DO i = 1, klon
602            ftsol(i, nsrf) = ftsol(i, nsrf) + d_ts(i, nsrf)            IF (pctsrf(i, nsrf) < epsfra) then
603            zxtsol(i) = zxtsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)               ftsol(i, nsrf) = tsol(i)
604            zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf)*pctsrf(i, nsrf)               t2m(i, nsrf) = zt2m(i)
605                 q2m(i, nsrf) = zq2m(i)
606            zt2m(i) = zt2m(i) + t2m(i, nsrf)*pctsrf(i, nsrf)               u10m_srf(i, nsrf) = u10m(i)
607            zq2m(i) = zq2m(i) + q2m(i, nsrf)*pctsrf(i, nsrf)               v10m_srf(i, nsrf) = v10m(i)
608            zu10m(i) = zu10m(i) + u10m(i, nsrf)*pctsrf(i, nsrf)               ffonte(i, nsrf) = zxffonte(i)
609            zv10m(i) = zv10m(i) + v10m(i, nsrf)*pctsrf(i, nsrf)               fqcalving(i, nsrf) = zxfqcalving(i)
610            zxffonte(i) = zxffonte(i) + ffonte(i, nsrf)*pctsrf(i, nsrf)               pblh(i, nsrf) = s_pblh(i)
611            zxfqcalving(i) = zxfqcalving(i) + &               plcl(i, nsrf) = s_lcl(i)
612                 fqcalving(i, nsrf)*pctsrf(i, nsrf)               capCL(i, nsrf) = s_capCL(i)
613            s_pblh(i) = s_pblh(i) + pblh(i, nsrf)*pctsrf(i, nsrf)               oliqCL(i, nsrf) = s_oliqCL(i)
614            s_lcl(i) = s_lcl(i) + plcl(i, nsrf)*pctsrf(i, nsrf)               cteiCL(i, nsrf) = s_cteiCL(i)
615            s_capCL(i) = s_capCL(i) + capCL(i, nsrf) *pctsrf(i, nsrf)               pblT(i, nsrf) = s_pblT(i)
616            s_oliqCL(i) = s_oliqCL(i) + oliqCL(i, nsrf) *pctsrf(i, nsrf)               therm(i, nsrf) = s_therm(i)
617            s_cteiCL(i) = s_cteiCL(i) + cteiCL(i, nsrf) *pctsrf(i, nsrf)            end IF
           s_pblT(i) = s_pblT(i) + pblT(i, nsrf) *pctsrf(i, nsrf)  
           s_therm(i) = s_therm(i) + therm(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb1(i) = s_trmb1(i) + trmb1(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb2(i) = s_trmb2(i) + trmb2(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb3(i) = s_trmb3(i) + trmb3(i, nsrf) *pctsrf(i, nsrf)  
618         ENDDO         ENDDO
619      ENDDO      ENDDO
620    
621      ! Si une sous-fraction n'existe pas, elle prend la temp. moyenne      dlw = - 4. * RSIGMA * tsol**3
622    
623      DO nsrf = 1, nbsrf      ! Appeler la convection
624         DO i = 1, klon  
625            IF (pctsrf(i, nsrf) < epsfra) ftsol(i, nsrf) = zxtsol(i)      if (conv_emanuel) then
626           CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, &
627            IF (pctsrf(i, nsrf) < epsfra) t2m(i, nsrf) = zt2m(i)              d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, &
628            IF (pctsrf(i, nsrf) < epsfra) q2m(i, nsrf) = zq2m(i)              upwd, dnwd, Ma, cape, iflagctrl, clwcon0, pmflxr, da, phi, mp)
629            IF (pctsrf(i, nsrf) < epsfra) u10m(i, nsrf) = zu10m(i)         snow_con = 0.
           IF (pctsrf(i, nsrf) < epsfra) v10m(i, nsrf) = zv10m(i)  
           IF (pctsrf(i, nsrf) < epsfra) ffonte(i, nsrf) = zxffonte(i)  
           IF (pctsrf(i, nsrf) < epsfra) &  
                fqcalving(i, nsrf) = zxfqcalving(i)  
           IF (pctsrf(i, nsrf) < epsfra) pblh(i, nsrf) = s_pblh(i)  
           IF (pctsrf(i, nsrf) < epsfra) plcl(i, nsrf) = s_lcl(i)  
           IF (pctsrf(i, nsrf) < epsfra) capCL(i, nsrf) = s_capCL(i)  
           IF (pctsrf(i, nsrf) < epsfra) oliqCL(i, nsrf) = s_oliqCL(i)  
           IF (pctsrf(i, nsrf) < epsfra) cteiCL(i, nsrf) = s_cteiCL(i)  
           IF (pctsrf(i, nsrf) < epsfra) pblT(i, nsrf) = s_pblT(i)  
           IF (pctsrf(i, nsrf) < epsfra) therm(i, nsrf) = s_therm(i)  
           IF (pctsrf(i, nsrf) < epsfra) trmb1(i, nsrf) = s_trmb1(i)  
           IF (pctsrf(i, nsrf) < epsfra) trmb2(i, nsrf) = s_trmb2(i)  
           IF (pctsrf(i, nsrf) < epsfra) trmb3(i, nsrf) = s_trmb3(i)  
        ENDDO  
     ENDDO  
   
     ! Calculer la derive du flux infrarouge  
   
     DO i = 1, klon  
        dlw(i) = - 4. * RSIGMA * zxtsol(i)**3  
     ENDDO  
   
     ! Appeler la convection (au choix)  
   
     DO k = 1, llm  
        DO i = 1, klon  
           conv_q(i, k) = d_q_dyn(i, k) + d_q_vdf(i, k)/dtphys  
           conv_t(i, k) = d_t_dyn(i, k) + d_t_vdf(i, k)/dtphys  
        ENDDO  
     ENDDO  
   
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        print *, "avantcon = ", za  
     ENDIF  
   
     if (iflag_con == 2) then  
        z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)  
        CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:-1), &  
             q_seri(:, llm:1:-1), conv_t, conv_q, zxfluxq(:, 1), omega, &  
             d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:-1), &  
             mfd(:, llm:1:-1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, &  
             kdtop, pmflxr, pmflxs)  
        WHERE (rain_con < 0.) rain_con = 0.  
        WHERE (snow_con < 0.) snow_con = 0.  
        ibas_con = llm + 1 - kcbot  
        itop_con = llm + 1 - kctop  
     else  
        ! iflag_con >= 3  
   
        CALL concvl(dtphys, paprs, play, t_seri, q_seri, u_seri, &  
             v_seri, tr_seri, sig1, w01, d_t_con, d_q_con, &  
             d_u_con, d_v_con, d_tr, rain_con, snow_con, ibas_con, &  
             itop_con, upwd, dnwd, dnwd0, Ma, cape, tvp, iflagctrl, &  
             pbase, bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr, qcondc, &  
             wd, pmflxr, pmflxs, da, phi, mp, ntra=1)  
        ! (number of tracers for the convection scheme of Kerry Emanuel:  
        ! la partie traceurs est faite dans phytrac  
        ! on met ntra = 1 pour limiter les appels mais on peut  
        ! supprimer les calculs / ftra.)  
   
        clwcon0 = qcondc  
630         mfu = upwd + dnwd         mfu = upwd + dnwd
        IF (.NOT. ok_gust) wd = 0.  
   
        ! Calcul des propriétés des nuages convectifs  
631    
632         DO k = 1, llm         zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play)
633            DO i = 1, klon         zqsat = zqsat / (1. - retv * zqsat)
              zx_t = t_seri(i, k)  
              IF (thermcep) THEN  
                 zdelta = MAX(0., SIGN(1., rtt-zx_t))  
                 zx_qs = r2es * FOEEW(zx_t, zdelta) / play(i, k)  
                 zx_qs = MIN(0.5, zx_qs)  
                 zcor = 1./(1.-retv*zx_qs)  
                 zx_qs = zx_qs*zcor  
              ELSE  
                 IF (zx_t < t_coup) THEN  
                    zx_qs = qsats(zx_t)/play(i, k)  
                 ELSE  
                    zx_qs = qsatl(zx_t)/play(i, k)  
                 ENDIF  
              ENDIF  
              zqsat(i, k) = zx_qs  
           ENDDO  
        ENDDO  
634    
635         ! calcul des proprietes des nuages convectifs         ! Properties of convective clouds
636         clwcon0 = fact_cldcon * clwcon0         clwcon0 = fact_cldcon * clwcon0
637         call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &         call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &
638              rnebcon0)              rnebcon0)
639    
640           forall (i = 1:klon) ema_pct(i) = paprs(i, itop_con(i) + 1)
641         mfd = 0.         mfd = 0.
642         pen_u = 0.         pen_u = 0.
643         pen_d = 0.         pen_d = 0.
644         pde_d = 0.         pde_d = 0.
645         pde_u = 0.         pde_u = 0.
646        else
647           conv_q = d_q_dyn + d_q_vdf / dtphys
648           conv_t = d_t_dyn + d_t_vdf / dtphys
649           z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)
650           CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:- 1), &
651                q_seri(:, llm:1:- 1), conv_t, conv_q, - evap, omega, d_t_con, &
652                d_q_con, rain_con, snow_con, mfu(:, llm:1:- 1), mfd(:, llm:1:- 1), &
653                pen_u, pde_u, pen_d, pde_d, kcbot, kctop, kdtop, pmflxr, pmflxs)
654           WHERE (rain_con < 0.) rain_con = 0.
655           WHERE (snow_con < 0.) snow_con = 0.
656           ibas_con = llm + 1 - kcbot
657           itop_con = llm + 1 - kctop
658      END if      END if
659    
660      DO k = 1, llm      DO k = 1, llm
# Line 1151  contains Line 666  contains
666         ENDDO         ENDDO
667      ENDDO      ENDDO
668    
669      IF (if_ebil >= 2) THEN      IF (.not. conv_emanuel) THEN
        tit = 'after convect'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, rain_con, snow_con, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
     END IF  
   
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        print *, "aprescon = ", za  
        zx_t = 0.  
        za = 0.  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_con(i)+ &  
                snow_con(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtphys  
        print *, "Precip = ", zx_t  
     ENDIF  
   
     IF (iflag_con == 2) THEN  
670         z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)         z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)
671         z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres         z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres
672         DO k = 1, llm         DO k = 1, llm
# Line 1187  contains Line 678  contains
678         ENDDO         ENDDO
679      ENDIF      ENDIF
680    
681      ! Convection sèche (thermiques ou ajustement)      ! Convection s\`eche (thermiques ou ajustement)
682    
683      d_t_ajs = 0.      d_t_ajs = 0.
684      d_u_ajs = 0.      d_u_ajs = 0.
# Line 1202  contains Line 693  contains
693         t_seri = t_seri + d_t_ajs         t_seri = t_seri + d_t_ajs
694         q_seri = q_seri + d_q_ajs         q_seri = q_seri + d_q_ajs
695      else      else
        ! Thermiques  
696         call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, &         call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, &
697              q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)              q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)
698      endif      endif
699    
     IF (if_ebil >= 2) THEN  
        tit = 'after dry_adjust'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
     END IF  
   
700      ! Caclul des ratqs      ! Caclul des ratqs
701    
     ! ratqs convectifs à l'ancienne en fonction de (q(z = 0) - q) / q  
     ! on écrase le tableau ratqsc calculé par clouds_gno  
702      if (iflag_cldcon == 1) then      if (iflag_cldcon == 1) then
703           ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q
704           ! on \'ecrase le tableau ratqsc calcul\'e par clouds_gno
705         do k = 1, llm         do k = 1, llm
706            do i = 1, klon            do i = 1, klon
707               if(ptconv(i, k)) then               if(ptconv(i, k)) then
# Line 1235  contains Line 718  contains
718      do k = 1, llm      do k = 1, llm
719         do i = 1, klon         do i = 1, klon
720            ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &            ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &
721                 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)                 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)
722         enddo         enddo
723      enddo      enddo
724    
# Line 1252  contains Line 735  contains
735         ratqs = ratqss         ratqs = ratqss
736      endif      endif
737    
738      CALL fisrtilp(dtphys, paprs, play, t_seri, q_seri, ptconv, ratqs, &      CALL fisrtilp(dtphys, paprs, play, t_seri, q_seri, ptconv, ratqs, d_t_lsc, &
739           d_t_lsc, d_q_lsc, d_ql_lsc, rneb, cldliq, rain_lsc, snow_lsc, &           d_q_lsc, d_ql_lsc, rneb, cldliq, rain_lsc, snow_lsc, pfrac_impa, &
740           pfrac_impa, pfrac_nucl, pfrac_1nucl, frac_impa, frac_nucl, prfl, &           pfrac_nucl, pfrac_1nucl, frac_impa, frac_nucl, prfl, psfl, rhcl)
          psfl, rhcl)  
741    
742      WHERE (rain_lsc < 0) rain_lsc = 0.      WHERE (rain_lsc < 0) rain_lsc = 0.
743      WHERE (snow_lsc < 0) snow_lsc = 0.      WHERE (snow_lsc < 0) snow_lsc = 0.
# Line 1268  contains Line 750  contains
750            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)
751         ENDDO         ENDDO
752      ENDDO      ENDDO
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        print *, "apresilp = ", za  
        zx_t = 0.  
        za = 0.  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_lsc(i) &  
                + snow_lsc(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtphys  
        print *, "Precip = ", zx_t  
     ENDIF  
   
     IF (if_ebil >= 2) THEN  
        tit = 'after fisrt'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, rain_lsc, snow_lsc, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
     END IF  
753    
754      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
755    
756      ! 1. NUAGES CONVECTIFS      ! 1. NUAGES CONVECTIFS
757    
758      IF (iflag_cldcon <= -1) THEN      IF (iflag_cldcon <= - 1) THEN
759         ! seulement pour Tiedtke         ! seulement pour Tiedtke
760         snow_tiedtke = 0.         snow_tiedtke = 0.
761         if (iflag_cldcon == -1) then         if (iflag_cldcon == - 1) then
762            rain_tiedtke = rain_con            rain_tiedtke = rain_con
763         else         else
764            rain_tiedtke = 0.            rain_tiedtke = 0.
765            do k = 1, llm            do k = 1, llm
766               do i = 1, klon               do i = 1, klon
767                  if (d_q_con(i, k) < 0.) then                  if (d_q_con(i, k) < 0.) then
768                     rain_tiedtke(i) = rain_tiedtke(i)-d_q_con(i, k)/dtphys &                     rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k) / dtphys &
769                          *zmasse(i, k)                          * zmasse(i, k)
770                  endif                  endif
771               enddo               enddo
772            enddo            enddo
# Line 1326  contains Line 785  contains
785         ENDDO         ENDDO
786      ELSE IF (iflag_cldcon == 3) THEN      ELSE IF (iflag_cldcon == 3) THEN
787         ! On prend pour les nuages convectifs le maximum du calcul de         ! On prend pour les nuages convectifs le maximum du calcul de
788         ! la convection et du calcul du pas de temps précédent diminué         ! la convection et du calcul du pas de temps pr\'ec\'edent diminu\'e
789         ! d'un facteur facttemps.         ! d'un facteur facttemps.
790         facteur = dtphys * facttemps         facteur = dtphys * facttemps
791         do k = 1, llm         do k = 1, llm
# Line 1342  contains Line 801  contains
801    
802         ! On prend la somme des fractions nuageuses et des contenus en eau         ! On prend la somme des fractions nuageuses et des contenus en eau
803         cldfra = min(max(cldfra, rnebcon), 1.)         cldfra = min(max(cldfra, rnebcon), 1.)
804         cldliq = cldliq + rnebcon*clwcon         cldliq = cldliq + rnebcon * clwcon
805      ENDIF      ENDIF
806    
807      ! 2. Nuages stratiformes      ! 2. Nuages stratiformes
# Line 1365  contains Line 824  contains
824         snow_fall(i) = snow_con(i) + snow_lsc(i)         snow_fall(i) = snow_con(i) + snow_lsc(i)
825      ENDDO      ENDDO
826    
827      IF (if_ebil >= 2) CALL diagetpq(airephy, "after diagcld", ip_ebil, 2, 2, &      ! Humidit\'e relative pour diagnostic :
          dtphys, t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, &  
          d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
   
     ! Humidité relative pour diagnostic :  
828      DO k = 1, llm      DO k = 1, llm
829         DO i = 1, klon         DO i = 1, klon
830            zx_t = t_seri(i, k)            zx_t = t_seri(i, k)
831            IF (thermcep) THEN            zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t) / play(i, k)
832               zdelta = MAX(0., SIGN(1., rtt-zx_t))            zx_qs = MIN(0.5, zx_qs)
833               zx_qs = r2es * FOEEW(zx_t, zdelta)/play(i, k)            zcor = 1. / (1. - retv * zx_qs)
834               zx_qs = MIN(0.5, zx_qs)            zx_qs = zx_qs * zcor
835               zcor = 1./(1.-retv*zx_qs)            zx_rh(i, k) = q_seri(i, k) / zx_qs
              zx_qs = zx_qs*zcor  
           ELSE  
              IF (zx_t < t_coup) THEN  
                 zx_qs = qsats(zx_t)/play(i, k)  
              ELSE  
                 zx_qs = qsatl(zx_t)/play(i, k)  
              ENDIF  
           ENDIF  
           zx_rh(i, k) = q_seri(i, k)/zx_qs  
836            zqsat(i, k) = zx_qs            zqsat(i, k) = zx_qs
837         ENDDO         ENDDO
838      ENDDO      ENDDO
839    
840      ! Introduce the aerosol direct and first indirect radiative forcings:      ! Param\`etres optiques des nuages et quelques param\`etres pour
841      IF (ok_ade .OR. ok_aie) THEN      ! diagnostics :
        ! Get sulfate aerosol distribution :  
        CALL readsulfate(rdayvrai, firstcal, sulfate)  
        CALL readsulfate_preind(rdayvrai, firstcal, sulfate_pi)  
   
        CALL aeropt(play, paprs, t_seri, sulfate, rhcl, tau_ae, piz_ae, cg_ae, &  
             aerindex)  
     ELSE  
        tau_ae = 0.  
        piz_ae = 0.  
        cg_ae = 0.  
     ENDIF  
   
     ! Paramètres optiques des nuages et quelques paramètres pour diagnostics :  
842      if (ok_newmicro) then      if (ok_newmicro) then
843         CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &         CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &
844              cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc, ok_aie, &              cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc)
             sulfate, sulfate_pi, bl95_b0, bl95_b1, cldtaupi, re, fl)  
845      else      else
846         CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &         CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &
847              cldl, cldm, cldt, cldq, ok_aie, sulfate, sulfate_pi, bl95_b0, &              cldl, cldm, cldt, cldq)
             bl95_b1, cldtaupi, re, fl)  
848      endif      endif
849    
850      ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.      IF (MOD(itap - 1, radpas) == 0) THEN
851      IF (MOD(itaprad, radpas) == 0) THEN         wo = ozonecm(REAL(julien), paprs)
852         DO i = 1, klon         albsol = sum(falbe * pctsrf, dim = 2)
853            albsol(i) = falbe(i, is_oce) * pctsrf(i, is_oce) &         CALL radlwsw(dist, mu0, fract, paprs, play, tsol, albsol, t_seri, &
854                 + falbe(i, is_lic) * pctsrf(i, is_lic) &              q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, &
855                 + falbe(i, is_ter) * pctsrf(i, is_ter) &              radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, &
856                 + falbe(i, is_sic) * pctsrf(i, is_sic)              toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, &
857            albsollw(i) = falblw(i, is_oce) * pctsrf(i, is_oce) &              swup0, swup, ok_ade, topswad, solswad)
                + falblw(i, is_lic) * pctsrf(i, is_lic) &  
                + falblw(i, is_ter) * pctsrf(i, is_ter) &  
                + falblw(i, is_sic) * pctsrf(i, is_sic)  
        ENDDO  
        ! Rayonnement (compatible Arpege-IFS) :  
        CALL radlwsw(dist, rmu0, fract, paprs, play, zxtsol, albsol, &  
             albsollw, t_seri, q_seri, wo, cldfra, cldemi, cldtau, heat, &  
             heat0, cool, cool0, radsol, albpla, topsw, toplw, solsw, sollw, &  
             sollwdown, topsw0, toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, &  
             lwup, swdn0, swdn, swup0, swup, ok_ade, ok_aie, tau_ae, piz_ae, &  
             cg_ae, topswad, solswad, cldtaupi, topswai, solswai)  
        itaprad = 0  
858      ENDIF      ENDIF
     itaprad = itaprad + 1  
859    
860      ! Ajouter la tendance des rayonnements (tous les pas)      ! Ajouter la tendance des rayonnements (tous les pas)
   
861      DO k = 1, llm      DO k = 1, llm
862         DO i = 1, klon         DO i = 1, klon
863            t_seri(i, k) = t_seri(i, k) + (heat(i, k)-cool(i, k)) * dtphys/86400.            t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys &
864                   / 86400.
865         ENDDO         ENDDO
866      ENDDO      ENDDO
867    
868      IF (if_ebil >= 2) THEN      ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage)
        tit = 'after rad'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
     END IF  
   
     ! Calculer l'hydrologie de la surface  
     DO i = 1, klon  
        zxqsurf(i) = 0.  
        zxsnow(i) = 0.  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxqsurf(i) = zxqsurf(i) + fqsurf(i, nsrf)*pctsrf(i, nsrf)  
           zxsnow(i) = zxsnow(i) + fsnow(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     ! Calculer le bilan du sol et la dérive de température (couplage)  
   
869      DO i = 1, klon      DO i = 1, klon
870         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)
871      ENDDO      ENDDO
872    
873      ! Paramétrisation de l'orographie à l'échelle sous-maille :      ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille :
874    
875      IF (ok_orodr) THEN      IF (ok_orodr) THEN
876         ! selection des points pour lesquels le shema est actif:         ! S\'election des points pour lesquels le sch\'ema est actif :
        igwd = 0  
877         DO i = 1, klon         DO i = 1, klon
878            itest(i) = 0            ktest(i) = 0
879            IF (((zpic(i)-zmea(i)) > 100.).AND.(zstd(i) > 10.)) THEN            IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN
880               itest(i) = 1               ktest(i) = 1
              igwd = igwd + 1  
              idx(igwd) = i  
881            ENDIF            ENDIF
882         ENDDO         ENDDO
883    
884         CALL drag_noro(klon, llm, dtphys, paprs, play, zmea, zstd, zsig, zgam, &         CALL drag_noro(dtphys, paprs, play, zmea, zstd, zsig, zgam, zthe, &
885              zthe, zpic, zval, igwd, idx, itest, t_seri, u_seri, v_seri, &              zpic, zval, ktest, t_seri, u_seri, v_seri, zulow, zvlow, zustrdr, &
886              zulow, zvlow, zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro)              zvstrdr, d_t_oro, d_u_oro, d_v_oro)
887    
888         ! ajout des tendances         ! ajout des tendances
889         DO k = 1, llm         DO k = 1, llm
# Line 1504  contains Line 896  contains
896      ENDIF      ENDIF
897    
898      IF (ok_orolf) THEN      IF (ok_orolf) THEN
899         ! Sélection des points pour lesquels le schéma est actif :         ! S\'election des points pour lesquels le sch\'ema est actif :
        igwd = 0  
900         DO i = 1, klon         DO i = 1, klon
901            itest(i) = 0            ktest(i) = 0
902            IF ((zpic(i) - zmea(i)) > 100.) THEN            IF (zpic(i) - zmea(i) > 100.) THEN
903               itest(i) = 1               ktest(i) = 1
              igwd = igwd + 1  
              idx(igwd) = i  
904            ENDIF            ENDIF
905         ENDDO         ENDDO
906    
907         CALL lift_noro(klon, llm, dtphys, paprs, play, rlat, zmea, zstd, zpic, &         CALL lift_noro(dtphys, paprs, play, zmea, zstd, zpic, ktest, t_seri, &
908              itest, t_seri, u_seri, v_seri, zulow, zvlow, zustrli, zvstrli, &              u_seri, v_seri, zulow, zvlow, zustrli, zvstrli, d_t_lif, &
909              d_t_lif, d_u_lif, d_v_lif)              d_u_lif, d_v_lif)
910    
911         ! Ajout des tendances :         ! Ajout des tendances :
912         DO k = 1, llm         DO k = 1, llm
# Line 1529  contains Line 918  contains
918         ENDDO         ENDDO
919      ENDIF      ENDIF
920    
921      ! Stress nécessaires : toute la physique      CALL aaam_bud(rg, romega, pphis, zustrdr, zustrli, &
922             sum((u_seri - u) / dtphys * zmasse, dim = 2), zvstrdr, &
923      DO i = 1, klon           zvstrli, sum((v_seri - v) / dtphys * zmasse, dim = 2), paprs, u, v, &
924         zustrph(i) = 0.           aam, torsfc)
        zvstrph(i) = 0.  
     ENDDO  
     DO k = 1, llm  
        DO i = 1, klon  
           zustrph(i) = zustrph(i) + (u_seri(i, k) - u(i, k)) / dtphys &  
                * zmasse(i, k)  
           zvstrph(i) = zvstrph(i) + (v_seri(i, k) - v(i, k)) / dtphys &  
                * zmasse(i, k)  
        ENDDO  
     ENDDO  
   
     CALL aaam_bud(ra, rg, romega, rlat, rlon, pphis, zustrdr, zustrli, &  
          zustrph, zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc)  
   
     IF (if_ebil >= 2) CALL diagetpq(airephy, 'after orography', ip_ebil, 2, &  
          2, dtphys, t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, &  
          d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
925    
926      ! Calcul des tendances traceurs      ! Calcul des tendances traceurs
927      call phytrac(rnpb, itap, lmt_pas, julien, time, firstcal, lafin, nqmx-2, &      call phytrac(julien, time, firstcal, lafin, dtphys, t, paprs, play, mfu, &
928           dtphys, u, t, paprs, play, mfu, mfd, pde_u, pen_d, ycoefh, fm_therm, &           mfd, pde_u, pen_d, coefh, cdragh, fm_therm, entr_therm, u(:, 1), &
929           entr_therm, yu1, yv1, ftsol, pctsrf, frac_impa, frac_nucl, pphis, &           v(:, 1), ftsol, pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, &
930           albsol, rhcl, cldfra, rneb, diafra, cldliq, pmflxr, pmflxs, prfl, &           dnwd, tr_seri, zmasse, ncid_startphy)
          psfl, da, phi, mp, upwd, dnwd, tr_seri, zmasse)  
   
     IF (offline) call phystokenc(dtphys, rlon, rlat, t, mfu, mfd, pen_u, &  
          pde_u, pen_d, pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, &  
          pctsrf, frac_impa, frac_nucl, pphis, airephy, dtphys, itap)  
931    
932      ! Calculer le transport de l'eau et de l'energie (diagnostique)      ! Calculer le transport de l'eau et de l'energie (diagnostique)
933      CALL transp(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, &      CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq)
          ue, uq)  
934    
935      ! diag. bilKP      ! diag. bilKP
936    
937      CALL transp_lay(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, &      CALL transp_lay(paprs, t_seri, q_seri, u_seri, v_seri, zphi, &
938           ve_lay, vq_lay, ue_lay, uq_lay)           ve_lay, vq_lay, ue_lay, uq_lay)
939    
940      ! Accumuler les variables a stocker dans les fichiers histoire:      ! Accumuler les variables a stocker dans les fichiers histoire:
941    
942      ! conversion Ec -> E thermique      ! conversion Ec en énergie thermique
943      DO k = 1, llm      DO k = 1, llm
944         DO i = 1, klon         DO i = 1, klon
945            ZRCPD = RCPD * (1. + RVTMP2 * q_seri(i, k))            d_t_ec(i, k) = 0.5 / (RCPD * (1. + RVTMP2 * q_seri(i, k))) &
           d_t_ec(i, k) = 0.5 / ZRCPD &  
946                 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)                 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)
947            t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)            t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)
948            d_t_ec(i, k) = d_t_ec(i, k) / dtphys            d_t_ec(i, k) = d_t_ec(i, k) / dtphys
949         END DO         END DO
950      END DO      END DO
951    
     IF (if_ebil >= 1) THEN  
        tit = 'after physic'  
        CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        ! Comme les tendances de la physique sont ajoute dans la dynamique,  
        ! on devrait avoir que la variation d'entalpie par la dynamique  
        ! est egale a la variation de la physique au pas de temps precedent.  
        ! Donc la somme de ces 2 variations devrait etre nulle.  
        call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, sens, &  
             evap, rain_fall, snow_fall, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
   
        d_h_vcol_phy = d_h_vcol  
   
     END IF  
   
952      ! SORTIES      ! SORTIES
953    
954      ! prw = eau precipitable      ! prw = eau precipitable
955      DO i = 1, klon      DO i = 1, klon
956         prw(i) = 0.         prw(i) = 0.
957         DO k = 1, llm         DO k = 1, llm
958            prw(i) = prw(i) + q_seri(i, k)*zmasse(i, k)            prw(i) = prw(i) + q_seri(i, k) * zmasse(i, k)
959         ENDDO         ENDDO
960      ENDDO      ENDDO
961    
# Line 1623  contains Line 971  contains
971         ENDDO         ENDDO
972      ENDDO      ENDDO
973    
974      IF (nqmx >= 3) THEN      DO iq = 3, nqmx
975         DO iq = 3, nqmx         DO k = 1, llm
976            DO k = 1, llm            DO i = 1, klon
977               DO i = 1, klon               d_qx(i, k, iq) = (tr_seri(i, k, iq - 2) - qx(i, k, iq)) / dtphys
                 d_qx(i, k, iq) = (tr_seri(i, k, iq-2) - qx(i, k, iq)) / dtphys  
              ENDDO  
978            ENDDO            ENDDO
979         ENDDO         ENDDO
980      ENDIF      ENDDO
981    
982      ! Sauvegarder les valeurs de t et q a la fin de la physique:      ! Sauvegarder les valeurs de t et q a la fin de la physique:
983      DO k = 1, llm      DO k = 1, llm
# Line 1641  contains Line 987  contains
987         ENDDO         ENDDO
988      ENDDO      ENDDO
989    
990      ! Ecriture des sorties      CALL histwrite_phy("phis", pphis)
991      call write_histhf      CALL histwrite_phy("aire", airephy)
992      call write_histday      CALL histwrite_phy("psol", paprs(:, 1))
993      call write_histins      CALL histwrite_phy("precip", rain_fall + snow_fall)
994        CALL histwrite_phy("plul", rain_lsc + snow_lsc)
995      ! Si c'est la fin, il faut conserver l'etat de redemarrage      CALL histwrite_phy("pluc", rain_con + snow_con)
996      IF (lafin) THEN      CALL histwrite_phy("tsol", tsol)
997         itau_phy = itau_phy + itap      CALL histwrite_phy("t2m", zt2m)
998         CALL phyredem("restartphy.nc", rlat, rlon, pctsrf, ftsol, ftsoil, &      CALL histwrite_phy("q2m", zq2m)
999              tslab, seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, &      CALL histwrite_phy("u10m", u10m)
1000              rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, &      CALL histwrite_phy("v10m", v10m)
1001              agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, &      CALL histwrite_phy("snow", snow_fall)
1002              q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01)      CALL histwrite_phy("cdrm", cdragm)
1003      ENDIF      CALL histwrite_phy("cdrh", cdragh)
1004        CALL histwrite_phy("topl", toplw)
1005      firstcal = .FALSE.      CALL histwrite_phy("evap", evap)
1006        CALL histwrite_phy("sols", solsw)
1007    contains      CALL histwrite_phy("soll", sollw)
1008        CALL histwrite_phy("solldown", sollwdown)
1009      subroutine write_histday      CALL histwrite_phy("bils", bils)
1010        CALL histwrite_phy("sens", - sens)
1011        use gr_phy_write_3d_m, only: gr_phy_write_3d      CALL histwrite_phy("fder", fder)
1012        integer itau_w ! pas de temps ecriture      CALL histwrite_phy("dtsvdfo", d_ts(:, is_oce))
1013        CALL histwrite_phy("dtsvdft", d_ts(:, is_ter))
1014        !------------------------------------------------      CALL histwrite_phy("dtsvdfg", d_ts(:, is_lic))
1015        CALL histwrite_phy("dtsvdfi", d_ts(:, is_sic))
       if (ok_journe) THEN  
          itau_w = itau_phy + itap  
          if (nqmx <= 4) then  
             call histwrite(nid_day, "Sigma_O3_Royer", itau_w, &  
                  gr_phy_write_3d(wo) * 1e3)  
             ! (convert "wo" from kDU to DU)  
          end if  
          if (ok_sync) then  
             call histsync(nid_day)  
          endif  
       ENDIF  
   
     End subroutine write_histday  
   
     !****************************  
   
     subroutine write_histhf  
   
       ! From phylmd/write_histhf.h, version 1.5 2005/05/25 13:10:09  
   
       !------------------------------------------------  
   
       call write_histhf3d  
   
       IF (ok_sync) THEN  
          call histsync(nid_hf)  
       ENDIF  
   
     end subroutine write_histhf  
   
     !***************************************************************  
   
     subroutine write_histins  
   
       ! From phylmd/write_histins.h, version 1.2 2005/05/25 13:10:09  
   
       real zout  
       integer itau_w ! pas de temps ecriture  
1016    
1017        !--------------------------------------------------      DO nsrf = 1, nbsrf
1018           CALL histwrite_phy("pourc_"//clnsurf(nsrf), pctsrf(:, nsrf) * 100.)
1019        IF (ok_instan) THEN         CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf))
1020           ! Champs 2D:         CALL histwrite_phy("sens_"//clnsurf(nsrf), flux_t(:, nsrf))
1021           CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf))
1022           zsto = dtphys * ecrit_ins         CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf))
1023           zout = dtphys * ecrit_ins         CALL histwrite_phy("taux_"//clnsurf(nsrf), flux_u(:, nsrf))
1024           itau_w = itau_phy + itap         CALL histwrite_phy("tauy_"//clnsurf(nsrf), flux_v(:, nsrf))
1025           CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf))
1026           i = NINT(zout/zsto)         CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf))
1027           CALL gr_fi_ecrit(1, klon, iim, jjm + 1, pphis, zx_tmp_2d)         CALL histwrite_phy("u10m_"//clnsurf(nsrf), u10m_srf(:, nsrf))
1028           CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d)         CALL histwrite_phy("v10m_"//clnsurf(nsrf), v10m_srf(:, nsrf))
1029        END DO
          i = NINT(zout/zsto)  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, airephy, zx_tmp_2d)  
          CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = paprs(i, 1)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "psol", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_fall(i) + snow_fall(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "precip", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_lsc(i) + snow_lsc(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "plul", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_con(i) + snow_con(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "pluc", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxtsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "tsol", itau_w, zx_tmp_2d)  
          !ccIM  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zt2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "t2m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zq2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "q2m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zu10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "u10m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zv10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "v10m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, snow_fall, zx_tmp_2d)  
          CALL histwrite(nid_ins, "snow", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrm", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrh", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, toplw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "topl", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, evap, zx_tmp_2d)  
          CALL histwrite(nid_ins, "evap", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, solsw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sols", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "soll", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollwdown, zx_tmp_2d)  
          CALL histwrite(nid_ins, "solldown", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, bils, zx_tmp_2d)  
          CALL histwrite(nid_ins, "bils", itau_w, zx_tmp_2d)  
   
          zx_tmp_fi2d(1:klon) = -1*sens(1:klon)  
          ! CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sens, zx_tmp_2d)  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sens", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, fder, zx_tmp_2d)  
          CALL histwrite(nid_ins, "fder", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_oce), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfo", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_ter), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdft", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_lic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfg", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_sic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfi", itau_w, zx_tmp_2d)  
   
          DO nsrf = 1, nbsrf  
             !XXX  
             zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf)*100.  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "pourc_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "fract_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxt(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "sens_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxlat(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "lat_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = ftsol(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tsol_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxu(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "taux_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxv(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tauy_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = frugs(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "rugs_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = falbe(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "albe_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
          END DO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albs", itau_w, zx_tmp_2d)  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albslw", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxrugs, zx_tmp_2d)  
          CALL histwrite(nid_ins, "rugs", itau_w, zx_tmp_2d)  
   
          !HBTM2  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblh", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblt, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblt", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_lcl, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_lcl", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_capCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_capCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_oliqCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_oliqCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_cteiCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_cteiCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_therm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_therm", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb1, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb1", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb2, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb2", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb3, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb3", itau_w, zx_tmp_2d)  
   
          ! Champs 3D:  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, t_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "temp", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, u_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitu", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, v_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitv", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, zphi, zx_tmp_3d)  
          CALL histwrite(nid_ins, "geop", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, play, zx_tmp_3d)  
          CALL histwrite(nid_ins, "pres", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_t_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dtvdf", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_q_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d)  
   
          if (ok_sync) then  
             call histsync(nid_ins)  
          endif  
       ENDIF  
   
     end subroutine write_histins  
   
     !****************************************************  
   
     subroutine write_histhf3d  
   
       ! From phylmd/write_histhf3d.h, version 1.2 2005/05/25 13:10:09  
   
       integer itau_w ! pas de temps ecriture  
   
       !-------------------------------------------------------  
   
       itau_w = itau_phy + itap  
   
       ! Champs 3D:  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, t_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "temp", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, qx(1, 1, ivap), zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "ovap", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, u_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitu", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, v_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitv", itau_w, zx_tmp_3d)  
   
       if (nbtr >= 3) then  
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, tr_seri(1, 1, 3), &  
               zx_tmp_3d)  
          CALL histwrite(nid_hf3d, "O3", itau_w, zx_tmp_3d)  
       end if  
1030    
1031        if (ok_sync) then      CALL histwrite_phy("albs", albsol)
1032           call histsync(nid_hf3d)      CALL histwrite_phy("tro3", wo * dobson_u * 1e3 / zmasse / rmo3 * md)
1033        endif      CALL histwrite_phy("rugs", zxrugs)
1034        CALL histwrite_phy("s_pblh", s_pblh)
1035        CALL histwrite_phy("s_pblt", s_pblt)
1036        CALL histwrite_phy("s_lcl", s_lcl)
1037        CALL histwrite_phy("s_capCL", s_capCL)
1038        CALL histwrite_phy("s_oliqCL", s_oliqCL)
1039        CALL histwrite_phy("s_cteiCL", s_cteiCL)
1040        CALL histwrite_phy("s_therm", s_therm)
1041    
1042        if (conv_emanuel) then
1043           CALL histwrite_phy("ptop", ema_pct)
1044           CALL histwrite_phy("dnwd0", - mp)
1045        end if
1046    
1047        CALL histwrite_phy("temp", t_seri)
1048        CALL histwrite_phy("vitu", u_seri)
1049        CALL histwrite_phy("vitv", v_seri)
1050        CALL histwrite_phy("geop", zphi)
1051        CALL histwrite_phy("pres", play)
1052        CALL histwrite_phy("dtvdf", d_t_vdf)
1053        CALL histwrite_phy("dqvdf", d_q_vdf)
1054        CALL histwrite_phy("rhum", zx_rh)
1055        CALL histwrite_phy("d_t_ec", d_t_ec)
1056        CALL histwrite_phy("dtsw0", heat0 / 86400.)
1057        CALL histwrite_phy("dtlw0", - cool0 / 86400.)
1058        CALL histwrite_phy("msnow", sum(fsnow * pctsrf, dim = 2))
1059        call histwrite_phy("qsurf", sum(fqsurf * pctsrf, dim = 2))
1060    
1061        if (ok_instan) call histsync(nid_ins)
1062    
1063        IF (lafin) then
1064           call NF95_CLOSE(ncid_startphy)
1065           CALL phyredem(pctsrf, ftsol, ftsoil, fqsurf, qsol, &
1066                fsnow, falbe, fevap, rain_fall, snow_fall, solsw, sollw, dlw, &
1067                radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, &
1068                t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
1069                w01)
1070        end IF
1071    
1072      end subroutine write_histhf3d      firstcal = .FALSE.
1073    
1074    END SUBROUTINE physiq    END SUBROUTINE physiq
1075    

Legend:
Removed from v.79  
changed lines
  Added in v.267

  ViewVC Help
Powered by ViewVC 1.1.21