/[lmdze]/trunk/phylmd/physiq.f
ViewVC logotype

Diff of /trunk/phylmd/physiq.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/physiq.f90 revision 68 by guez, Wed Nov 14 16:59:30 2012 UTC trunk/phylmd/physiq.f revision 288 by guez, Tue Jul 24 16:27:12 2018 UTC
# Line 4  module physiq_m Line 4  module physiq_m
4    
5  contains  contains
6    
7    SUBROUTINE physiq(lafin, rdayvrai, time, dtphys, paprs, play, pphi, pphis, &    SUBROUTINE physiq(lafin, dayvrai, time, paprs, play, pphi, pphis, u, v, t, &
8         u, v, t, qx, omega, d_u, d_v, d_t, d_qx, d_ps, dudyn, PVteta)         qx, omega, d_u, d_v, d_t, d_qx)
9    
10      ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28 (SVN revision 678)      ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28
11      ! Author: Z.X. Li (LMD/CNRS) 1993      ! (subversion revision 678)
12    
13        ! Author: Z. X. Li (LMD/CNRS) 1993
14    
15      ! This is the main procedure for the "physics" part of the program.      ! This is the main procedure for the "physics" part of the program.
16    
17      use aaam_bud_m, only: aaam_bud      use aaam_bud_m, only: aaam_bud
18      USE abort_gcm_m, ONLY: abort_gcm      USE abort_gcm_m, ONLY: abort_gcm
     use aeropt_m, only: aeropt  
19      use ajsec_m, only: ajsec      use ajsec_m, only: ajsec
     USE calendar, ONLY: ymds2ju  
20      use calltherm_m, only: calltherm      use calltherm_m, only: calltherm
21      USE clesphys, ONLY: cdhmax, cdmmax, co2_ppm, ecrit_hf, ecrit_ins, &      USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ok_instan
22           ecrit_mth, ecrit_reg, ecrit_tra, ksta, ksta_ter, ok_kzmin      USE clesphys2, ONLY: conv_emanuel, nbapp_rad, new_oliq, ok_orodr, ok_orolf
23      USE clesphys2, ONLY: cycle_diurne, iflag_con, nbapp_rad, new_oliq, &      USE pbl_surface_m, ONLY: pbl_surface
24           ok_orodr, ok_orolf, soil_model      use clouds_gno_m, only: clouds_gno
25      USE clmain_m, ONLY: clmain      use comconst, only: dtphys
26      USE comgeomphy, ONLY: airephy, cuphy, cvphy      USE comgeomphy, ONLY: airephy
27      USE concvl_m, ONLY: concvl      USE concvl_m, ONLY: concvl
28      USE conf_gcm_m, ONLY: offline, raz_date      USE conf_gcm_m, ONLY: lmt_pas
29      USE conf_phys_m, ONLY: conf_phys      USE conf_phys_m, ONLY: conf_phys
30      use conflx_m, only: conflx      use conflx_m, only: conflx
31      USE ctherm, ONLY: iflag_thermals, nsplit_thermals      USE ctherm, ONLY: iflag_thermals, nsplit_thermals
32      use diagcld2_m, only: diagcld2      use diagcld2_m, only: diagcld2
33      use diagetpq_m, only: diagetpq      USE dimensions, ONLY: llm, nqmx
34      use diagphy_m, only: diagphy      USE dimphy, ONLY: klon
     USE dimens_m, ONLY: iim, jjm, llm, nqmx  
     USE dimphy, ONLY: klon, nbtr  
35      USE dimsoil, ONLY: nsoilmx      USE dimsoil, ONLY: nsoilmx
36      use drag_noro_m, only: drag_noro      use drag_noro_m, only: drag_noro
37      USE fcttre, ONLY: foeew, qsatl, qsats, thermcep      use dynetat0_m, only: day_ref, annee_ref
38        USE fcttre, ONLY: foeew
39      use fisrtilp_m, only: fisrtilp      use fisrtilp_m, only: fisrtilp
40      USE hgardfou_m, ONLY: hgardfou      USE hgardfou_m, ONLY: hgardfou
41      USE histsync_m, ONLY: histsync      USE histsync_m, ONLY: histsync
42      USE histwrite_m, ONLY: histwrite      USE histwrite_phy_m, ONLY: histwrite_phy
43      USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &      USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &
44           nbsrf           nbsrf
45      USE ini_histhf_m, ONLY: ini_histhf      USE ini_histins_m, ONLY: ini_histins, nid_ins
46      USE ini_histday_m, ONLY: ini_histday      use lift_noro_m, only: lift_noro
47      USE ini_histins_m, ONLY: ini_histins      use netcdf95, only: NF95_CLOSE
48      use newmicro_m, only: newmicro      use newmicro_m, only: newmicro
49      USE oasis_m, ONLY: ok_oasis      use nr_util, only: assert
50      USE orbite_m, ONLY: orbite, zenang      use nuage_m, only: nuage
51        USE orbite_m, ONLY: orbite
52      USE ozonecm_m, ONLY: ozonecm      USE ozonecm_m, ONLY: ozonecm
53      USE phyetat0_m, ONLY: phyetat0, rlat, rlon      USE phyetat0_m, ONLY: phyetat0
54      USE phyredem_m, ONLY: phyredem      USE phyredem_m, ONLY: phyredem
55      USE phystokenc_m, ONLY: phystokenc      USE phyredem0_m, ONLY: phyredem0
56      USE phytrac_m, ONLY: phytrac      USE phytrac_m, ONLY: phytrac
     USE qcheck_m, ONLY: qcheck  
57      use radlwsw_m, only: radlwsw      use radlwsw_m, only: radlwsw
58      use sugwd_m, only: sugwd      use yoegwd, only: sugwd
59      USE suphec_m, ONLY: ra, rcpd, retv, rg, rlvtt, romega, rsigma, rtt      USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt, rmo3, md
60      USE temps, ONLY: annee_ref, day_ref, itau_phy      use time_phylmdz, only: itap, increment_itap
61        use transp_m, only: transp
62        use transp_lay_m, only: transp_lay
63      use unit_nml_m, only: unit_nml      use unit_nml_m, only: unit_nml
64        USE ymds2ju_m, ONLY: ymds2ju
65      USE yoethf_m, ONLY: r2es, rvtmp2      USE yoethf_m, ONLY: r2es, rvtmp2
66        use zenang_m, only: zenang
67    
     ! Arguments:  
   
     REAL, intent(in):: rdayvrai  
     ! (elapsed time since January 1st 0h of the starting year, in days)  
   
     REAL, intent(in):: time ! heure de la journée en fraction de jour  
     REAL, intent(in):: dtphys ! pas d'integration pour la physique (seconde)  
68      logical, intent(in):: lafin ! dernier passage      logical, intent(in):: lafin ! dernier passage
69    
70      REAL, intent(in):: paprs(klon, llm + 1)      integer, intent(in):: dayvrai
71      ! (pression pour chaque inter-couche, en Pa)      ! current day number, based at value 1 on January 1st of annee_ref
72    
73      REAL, intent(in):: play(klon, llm)      REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour
     ! (input pression pour le mileu de chaque couche (en Pa))  
74    
75      REAL, intent(in):: pphi(klon, llm)      REAL, intent(in):: paprs(:, :) ! (klon, llm + 1)
76      ! (input geopotentiel de chaque couche (g z) (reference sol))      ! pression pour chaque inter-couche, en Pa
77    
78      REAL, intent(in):: pphis(klon) ! input geopotentiel du sol      REAL, intent(in):: play(:, :) ! (klon, llm)
79        ! pression pour le mileu de chaque couche (en Pa)
80    
81      REAL, intent(in):: u(klon, llm)      REAL, intent(in):: pphi(:, :) ! (klon, llm)
82      ! vitesse dans la direction X (de O a E) en m/s      ! géopotentiel de chaque couche (référence sol)
83    
84      REAL, intent(in):: v(klon, llm) ! vitesse Y (de S a N) en m/s      REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol
     REAL, intent(in):: t(klon, llm) ! input temperature (K)  
85    
86      REAL, intent(in):: qx(klon, llm, nqmx)      REAL, intent(in):: u(:, :) ! (klon, llm)
87      ! (humidité spécifique et fractions massiques des autres traceurs)      ! vitesse dans la direction X (de O a E) en m / s
88    
89      REAL omega(klon, llm) ! input vitesse verticale en Pa/s      REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m / s
90      REAL, intent(out):: d_u(klon, llm) ! tendance physique de "u" (m/s/s)      REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)
     REAL, intent(out):: d_v(klon, llm) ! tendance physique de "v" (m/s/s)  
     REAL, intent(out):: d_t(klon, llm) ! tendance physique de "t" (K/s)  
     REAL d_qx(klon, llm, nqmx) ! output tendance physique de "qx" (kg/kg/s)  
     REAL d_ps(klon) ! output tendance physique de la pression au sol  
91    
92      LOGICAL:: firstcal = .true.      REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)
93        ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)
94    
95      INTEGER nbteta      REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa / s
96      PARAMETER(nbteta = 3)      REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)
97        REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)
98        REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K / s)
99    
100      REAL PVteta(klon, nbteta)      REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)
101      ! (output vorticite potentielle a des thetas constantes)      ! tendance physique de "qx" (s-1)
102    
103      LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface      ! Local:
     PARAMETER (ok_gust = .FALSE.)  
104    
105      LOGICAL check ! Verifier la conservation du modele en eau      LOGICAL:: firstcal = .true.
     PARAMETER (check = .FALSE.)  
106    
107      LOGICAL, PARAMETER:: ok_stratus = .FALSE.      LOGICAL, PARAMETER:: ok_stratus = .FALSE.
108      ! Ajouter artificiellement les stratus      ! Ajouter artificiellement les stratus
109    
110      ! Parametres lies au coupleur OASIS:      ! pour phystoke avec thermiques
     INTEGER, SAVE:: npas, nexca  
     logical rnpb  
     parameter(rnpb = .true.)  
   
     character(len = 6):: ocean = 'force '  
     ! (type de modèle océan à utiliser: "force" ou "slab" mais pas "couple")  
   
     logical ok_ocean  
     SAVE ok_ocean  
   
     ! "slab" ocean  
     REAL, save:: tslab(klon) ! temperature of ocean slab  
     REAL, save:: seaice(klon) ! glace de mer (kg/m2)  
     REAL fluxo(klon) ! flux turbulents ocean-glace de mer  
     REAL fluxg(klon) ! flux turbulents ocean-atmosphere  
   
     ! Modele thermique du sol, a activer pour le cycle diurne:  
     logical:: ok_veget = .false. ! type de modele de vegetation utilise  
   
     logical:: ok_journe = .false., ok_mensuel = .true., ok_instan = .false.  
     ! sorties journalieres, mensuelles et instantanees dans les  
     ! fichiers histday, histmth et histins  
   
     LOGICAL ok_region ! sortir le fichier regional  
     PARAMETER (ok_region = .FALSE.)  
   
     ! pour phsystoke avec thermiques  
111      REAL fm_therm(klon, llm + 1)      REAL fm_therm(klon, llm + 1)
112      REAL entr_therm(klon, llm)      REAL entr_therm(klon, llm)
113      real, save:: q2(klon, llm + 1, nbsrf)      real, save:: q2(klon, llm + 1, nbsrf)
114    
115      INTEGER ivap ! indice de traceurs pour vapeur d'eau      INTEGER, PARAMETER:: ivap = 1 ! indice de traceur pour vapeur d'eau
116      PARAMETER (ivap = 1)      INTEGER, PARAMETER:: iliq = 2 ! indice de traceur pour eau liquide
     INTEGER iliq ! indice de traceurs pour eau liquide  
     PARAMETER (iliq = 2)  
117    
118      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)
119      LOGICAL, save:: ancien_ok      LOGICAL, save:: ancien_ok
120    
121      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K/s)      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K / s)
122      REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg/kg/s)      REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg / kg / s)
123    
124      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)
125    
126      !IM Amip2 PV a theta constante      REAL, save:: swdn0(klon, llm + 1), swdn(klon, llm + 1)
127        REAL, save:: swup0(klon, llm + 1), swup(klon, llm + 1)
128    
129      CHARACTER(LEN = 3) ctetaSTD(nbteta)      REAL, save:: lwdn0(klon, llm + 1), lwdn(klon, llm + 1)
130      DATA ctetaSTD/'350', '380', '405'/      REAL, save:: lwup0(klon, llm + 1), lwup(klon, llm + 1)
     REAL rtetaSTD(nbteta)  
     DATA rtetaSTD/350., 380., 405./  
   
     !MI Amip2 PV a theta constante  
   
     INTEGER klevp1  
     PARAMETER(klevp1 = llm + 1)  
   
     REAL swdn0(klon, klevp1), swdn(klon, klevp1)  
     REAL swup0(klon, klevp1), swup(klon, klevp1)  
     SAVE swdn0, swdn, swup0, swup  
   
     REAL lwdn0(klon, klevp1), lwdn(klon, klevp1)  
     REAL lwup0(klon, klevp1), lwup(klon, klevp1)  
     SAVE lwdn0, lwdn, lwup0, lwup  
   
     !IM Amip2  
     ! variables a une pression donnee  
   
     integer nlevSTD  
     PARAMETER(nlevSTD = 17)  
     real rlevSTD(nlevSTD)  
     DATA rlevSTD/100000., 92500., 85000., 70000., &  
          60000., 50000., 40000., 30000., 25000., 20000., &  
          15000., 10000., 7000., 5000., 3000., 2000., 1000./  
     CHARACTER(LEN = 4) clevSTD(nlevSTD)  
     DATA clevSTD/'1000', '925 ', '850 ', '700 ', '600 ', &  
          '500 ', '400 ', '300 ', '250 ', '200 ', '150 ', '100 ', &  
          '70 ', '50 ', '30 ', '20 ', '10 '/  
131    
132      ! prw: precipitable water      ! prw: precipitable water
133      real prw(klon)      real prw(klon)
134    
135      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg/m2)      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg / m2)
136      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg/kg)      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg / kg)
137      REAL flwp(klon), fiwp(klon)      REAL flwp(klon), fiwp(klon)
138      REAL flwc(klon, llm), fiwc(klon, llm)      REAL flwc(klon, llm), fiwc(klon, llm)
139    
     INTEGER kmax, lmax  
     PARAMETER(kmax = 8, lmax = 8)  
     INTEGER kmaxm1, lmaxm1  
     PARAMETER(kmaxm1 = kmax-1, lmaxm1 = lmax-1)  
   
     REAL zx_tau(kmaxm1), zx_pc(lmaxm1)  
     DATA zx_tau/0.0, 0.3, 1.3, 3.6, 9.4, 23., 60./  
     DATA zx_pc/50., 180., 310., 440., 560., 680., 800./  
   
     ! cldtopres pression au sommet des nuages  
     REAL cldtopres(lmaxm1)  
     DATA cldtopres/50., 180., 310., 440., 560., 680., 800./  
   
     ! taulev: numero du niveau de tau dans les sorties ISCCP  
     CHARACTER(LEN = 4) taulev(kmaxm1)  
   
     DATA taulev/'tau0', 'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'/  
     CHARACTER(LEN = 3) pclev(lmaxm1)  
     DATA pclev/'pc1', 'pc2', 'pc3', 'pc4', 'pc5', 'pc6', 'pc7'/  
   
     CHARACTER(LEN = 28) cnameisccp(lmaxm1, kmaxm1)  
     DATA cnameisccp/'pc< 50hPa, tau< 0.3', 'pc= 50-180hPa, tau< 0.3', &  
          'pc= 180-310hPa, tau< 0.3', 'pc= 310-440hPa, tau< 0.3', &  
          'pc= 440-560hPa, tau< 0.3', 'pc= 560-680hPa, tau< 0.3', &  
          'pc= 680-800hPa, tau< 0.3', 'pc< 50hPa, tau= 0.3-1.3', &  
          'pc= 50-180hPa, tau= 0.3-1.3', 'pc= 180-310hPa, tau= 0.3-1.3', &  
          'pc= 310-440hPa, tau= 0.3-1.3', 'pc= 440-560hPa, tau= 0.3-1.3', &  
          'pc= 560-680hPa, tau= 0.3-1.3', 'pc= 680-800hPa, tau= 0.3-1.3', &  
          'pc< 50hPa, tau= 1.3-3.6', 'pc= 50-180hPa, tau= 1.3-3.6', &  
          'pc= 180-310hPa, tau= 1.3-3.6', 'pc= 310-440hPa, tau= 1.3-3.6', &  
          'pc= 440-560hPa, tau= 1.3-3.6', 'pc= 560-680hPa, tau= 1.3-3.6', &  
          'pc= 680-800hPa, tau= 1.3-3.6', 'pc< 50hPa, tau= 3.6-9.4', &  
          'pc= 50-180hPa, tau= 3.6-9.4', 'pc= 180-310hPa, tau= 3.6-9.4', &  
          'pc= 310-440hPa, tau= 3.6-9.4', 'pc= 440-560hPa, tau= 3.6-9.4', &  
          'pc= 560-680hPa, tau= 3.6-9.4', 'pc= 680-800hPa, tau= 3.6-9.4', &  
          'pc< 50hPa, tau= 9.4-23', 'pc= 50-180hPa, tau= 9.4-23', &  
          'pc= 180-310hPa, tau= 9.4-23', 'pc= 310-440hPa, tau= 9.4-23', &  
          'pc= 440-560hPa, tau= 9.4-23', 'pc= 560-680hPa, tau= 9.4-23', &  
          'pc= 680-800hPa, tau= 9.4-23', 'pc< 50hPa, tau= 23-60', &  
          'pc= 50-180hPa, tau= 23-60', 'pc= 180-310hPa, tau= 23-60', &  
          'pc= 310-440hPa, tau= 23-60', 'pc= 440-560hPa, tau= 23-60', &  
          'pc= 560-680hPa, tau= 23-60', 'pc= 680-800hPa, tau= 23-60', &  
          'pc< 50hPa, tau> 60.', 'pc= 50-180hPa, tau> 60.', &  
          'pc= 180-310hPa, tau> 60.', 'pc= 310-440hPa, tau> 60.', &  
          'pc= 440-560hPa, tau> 60.', 'pc= 560-680hPa, tau> 60.', &  
          'pc= 680-800hPa, tau> 60.'/  
   
     !IM ISCCP simulator v3.4  
   
     integer nid_hf, nid_hf3d  
     save nid_hf, nid_hf3d  
   
140      ! Variables propres a la physique      ! Variables propres a la physique
141    
142      INTEGER, save:: radpas      INTEGER, save:: radpas
143      ! (Radiative transfer computations are made every "radpas" call to      ! Radiative transfer computations are made every "radpas" call to
144      ! "physiq".)      ! "physiq".
   
     REAL radsol(klon)  
     SAVE radsol ! bilan radiatif au sol calcule par code radiatif  
   
     INTEGER, SAVE:: itap ! number of calls to "physiq"  
145    
146        REAL, save:: radsol(klon) ! bilan radiatif au sol calcule par code radiatif
147      REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction      REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction
148    
149      REAL, save:: ftsoil(klon, nsoilmx, nbsrf)      REAL, save:: ftsoil(klon, nsoilmx, nbsrf)
150      ! soil temperature of surface fraction      ! soil temperature of surface fraction
151    
152      REAL fevap(klon, nbsrf)      REAL, save:: fevap(klon, nbsrf) ! evaporation
     SAVE fevap ! evaporation  
153      REAL fluxlat(klon, nbsrf)      REAL fluxlat(klon, nbsrf)
     SAVE fluxlat  
   
     REAL fqsurf(klon, nbsrf)  
     SAVE fqsurf ! humidite de l'air au contact de la surface  
154    
155      REAL, save:: qsol(klon) ! hauteur d'eau dans le sol      REAL, save:: fqsurf(klon, nbsrf)
156        ! humidite de l'air au contact de la surface
157    
158      REAL fsnow(klon, nbsrf)      REAL, save:: qsol(klon) ! column-density of water in soil, in kg m-2
159      SAVE fsnow ! epaisseur neigeuse      REAL, save:: fsnow(klon, nbsrf) ! \'epaisseur neigeuse
160        REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface
161    
162      REAL falbe(klon, nbsrf)      ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :
     SAVE falbe ! albedo par type de surface  
     REAL falblw(klon, nbsrf)  
     SAVE falblw ! albedo par type de surface  
   
     ! Paramètres de l'orographie à l'échelle sous-maille (OESM) :  
163      REAL, save:: zmea(klon) ! orographie moyenne      REAL, save:: zmea(klon) ! orographie moyenne
164      REAL, save:: zstd(klon) ! deviation standard de l'OESM      REAL, save:: zstd(klon) ! deviation standard de l'OESM
165      REAL, save:: zsig(klon) ! pente de l'OESM      REAL, save:: zsig(klon) ! pente de l'OESM
# Line 297  contains Line 168  contains
168      REAL, save:: zpic(klon) ! Maximum de l'OESM      REAL, save:: zpic(klon) ! Maximum de l'OESM
169      REAL, save:: zval(klon) ! Minimum de l'OESM      REAL, save:: zval(klon) ! Minimum de l'OESM
170      REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM      REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM
   
171      REAL zulow(klon), zvlow(klon)      REAL zulow(klon), zvlow(klon)
172        INTEGER ktest(klon)
173    
174      INTEGER igwd, idx(klon), itest(klon)      REAL, save:: agesno(klon, nbsrf) ! age de la neige
175        REAL, save:: run_off_lic_0(klon)
176    
177      REAL agesno(klon, nbsrf)      ! Variables li\'ees \`a la convection d'Emanuel :
178      SAVE agesno ! age de la neige      REAL, save:: Ma(klon, llm) ! undilute upward mass flux
179        REAL, save:: sig1(klon, llm), w01(klon, llm)
180    
181      REAL run_off_lic_0(klon)      ! Variables pour la couche limite (Alain Lahellec) :
182      SAVE run_off_lic_0      REAL cdragh(klon) ! drag coefficient pour T and Q
183      !KE43      REAL cdragm(klon) ! drag coefficient pour vent
     ! Variables liees a la convection de K. Emanuel (sb):  
184    
185      REAL bas, top ! cloud base and top levels      REAL coefh(klon, 2:llm) ! coef d'echange pour phytrac
     SAVE bas  
     SAVE top  
186    
187      REAL Ma(klon, llm) ! undilute upward mass flux      REAL, save:: ffonte(klon, nbsrf)
188      SAVE Ma      ! flux thermique utilise pour fondre la neige
     REAL qcondc(klon, llm) ! in-cld water content from convect  
     SAVE qcondc  
     REAL ema_work1(klon, llm), ema_work2(klon, llm)  
     SAVE ema_work1, ema_work2  
189    
190      REAL wd(klon) ! sb      REAL fqcalving(klon, nbsrf)
191      SAVE wd ! sb      ! flux d'eau "perdue" par la surface et n\'ecessaire pour limiter
192        ! la hauteur de neige, en kg / m2 / s
193    
194      ! Variables locales pour la couche limite (al1):      REAL zxffonte(klon)
195    
196      ! Variables locales:      REAL, save:: pfrac_impa(klon, llm)! Produits des coefs lessivage impaction
197        REAL, save:: pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation
198    
199      REAL cdragh(klon) ! drag coefficient pour T and Q      REAL, save:: pfrac_1nucl(klon, llm)
200      REAL cdragm(klon) ! drag coefficient pour vent      ! Produits des coefs lessi nucl (alpha = 1)
201    
202      !AA Pour phytrac      REAL frac_impa(klon, llm) ! fraction d'a\'erosols lessiv\'es (impaction)
     REAL ycoefh(klon, llm) ! coef d'echange pour phytrac  
     REAL yu1(klon) ! vents dans la premiere couche U  
     REAL yv1(klon) ! vents dans la premiere couche V  
     REAL ffonte(klon, nbsrf) !Flux thermique utilise pour fondre la neige  
     REAL fqcalving(klon, nbsrf) !Flux d'eau "perdue" par la surface  
     ! !et necessaire pour limiter la  
     ! !hauteur de neige, en kg/m2/s  
     REAL zxffonte(klon), zxfqcalving(klon)  
   
     REAL pfrac_impa(klon, llm)! Produits des coefs lessivage impaction  
     save pfrac_impa  
     REAL pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation  
     save pfrac_nucl  
     REAL pfrac_1nucl(klon, llm)! Produits des coefs lessi nucl (alpha = 1)  
     save pfrac_1nucl  
     REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction)  
203      REAL frac_nucl(klon, llm) ! idem (nucleation)      REAL frac_nucl(klon, llm) ! idem (nucleation)
204    
205      REAL, save:: rain_fall(klon) ! pluie      REAL, save:: rain_fall(klon)
206      REAL, save:: snow_fall(klon) ! neige      ! liquid water mass flux (kg / m2 / s), positive down
207    
208        REAL, save:: snow_fall(klon)
209        ! solid water mass flux (kg / m2 / s), positive down
210    
211      REAL rain_tiedtke(klon), snow_tiedtke(klon)      REAL rain_tiedtke(klon), snow_tiedtke(klon)
212    
213      REAL evap(klon), devap(klon) ! evaporation et sa derivee      REAL evap(klon) ! flux d'\'evaporation au sol
214      REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee      real devap(klon) ! derivative of the evaporation flux at the surface
215      REAL dlw(klon) ! derivee infra rouge      REAL sens(klon) ! flux de chaleur sensible au sol
216      SAVE dlw      real dsens(klon) ! derivee du flux de chaleur sensible au sol
217        REAL, save:: dlw(klon) ! derivative of infra-red flux
218      REAL bils(klon) ! bilan de chaleur au sol      REAL bils(klon) ! bilan de chaleur au sol
219      REAL fder(klon) ! Derive de flux (sensible et latente)      REAL fder(klon) ! Derive de flux (sensible et latente)
     save fder  
220      REAL ve(klon) ! integr. verticale du transport meri. de l'energie      REAL ve(klon) ! integr. verticale du transport meri. de l'energie
221      REAL vq(klon) ! integr. verticale du transport meri. de l'eau      REAL vq(klon) ! integr. verticale du transport meri. de l'eau
222      REAL ue(klon) ! integr. verticale du transport zonal de l'energie      REAL ue(klon) ! integr. verticale du transport zonal de l'energie
223      REAL uq(klon) ! integr. verticale du transport zonal de l'eau      REAL uq(klon) ! integr. verticale du transport zonal de l'eau
224    
225      REAL frugs(klon, nbsrf) ! longueur de rugosite      REAL, save:: frugs(klon, nbsrf) ! longueur de rugosite
     save frugs  
226      REAL zxrugs(klon) ! longueur de rugosite      REAL zxrugs(klon) ! longueur de rugosite
227    
228      ! Conditions aux limites      ! Conditions aux limites
229    
230      INTEGER julien      INTEGER julien
231        REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface
232      INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day      REAL, save:: albsol(klon) ! albedo du sol total, visible, moyen par maille
     REAL pctsrf(klon, nbsrf)  
     !IM  
     REAL pctsrf_new(klon, nbsrf) !pourcentage surfaces issus d'ORCHIDEE  
   
     SAVE pctsrf ! sous-fraction du sol  
     REAL albsol(klon)  
     SAVE albsol ! albedo du sol total  
     REAL albsollw(klon)  
     SAVE albsollw ! albedo du sol total  
   
233      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU
234        real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2
235    
236      ! Declaration des procedures appelees      real, save:: clwcon(klon, llm), rnebcon(klon, llm)
237        real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)
     EXTERNAL alboc ! calculer l'albedo sur ocean  
     !KE43  
     EXTERNAL conema3 ! convect4.3  
     EXTERNAL nuage ! calculer les proprietes radiatives  
     EXTERNAL transp ! transport total de l'eau et de l'energie  
   
     ! Variables locales  
   
     real clwcon(klon, llm), rnebcon(klon, llm)  
     real clwcon0(klon, llm), rnebcon0(klon, llm)  
   
     save rnebcon, clwcon  
238    
239      REAL rhcl(klon, llm) ! humiditi relative ciel clair      REAL rhcl(klon, llm) ! humidit\'e relative ciel clair
240      REAL dialiq(klon, llm) ! eau liquide nuageuse      REAL dialiq(klon, llm) ! eau liquide nuageuse
241      REAL diafra(klon, llm) ! fraction nuageuse      REAL diafra(klon, llm) ! fraction nuageuse
242      REAL cldliq(klon, llm) ! eau liquide nuageuse      REAL cldliq(klon, llm) ! eau liquide nuageuse
# Line 411  contains Line 244  contains
244      REAL cldtau(klon, llm) ! epaisseur optique      REAL cldtau(klon, llm) ! epaisseur optique
245      REAL cldemi(klon, llm) ! emissivite infrarouge      REAL cldemi(klon, llm) ! emissivite infrarouge
246    
247      REAL fluxq(klon, llm, nbsrf) ! flux turbulent d'humidite      REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface
248      REAL fluxt(klon, llm, nbsrf) ! flux turbulent de chaleur      REAL flux_t(klon, nbsrf) ! flux turbulent de chaleur à la surface
249      REAL fluxu(klon, llm, nbsrf) ! flux turbulent de vitesse u  
250      REAL fluxv(klon, llm, nbsrf) ! flux turbulent de vitesse v      REAL flux_u(klon, nbsrf), flux_v(klon, nbsrf)
251        ! tension du vent (flux turbulent de vent) à la surface, en Pa
     REAL zxfluxt(klon, llm)  
     REAL zxfluxq(klon, llm)  
     REAL zxfluxu(klon, llm)  
     REAL zxfluxv(klon, llm)  
252    
253      ! Le rayonnement n'est pas calculé tous les pas, il faut donc que      ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que
254      ! les variables soient rémanentes.      ! les variables soient r\'emanentes.
255      REAL, save:: heat(klon, llm) ! chauffage solaire      REAL, save:: heat(klon, llm) ! chauffage solaire
256      REAL heat0(klon, llm) ! chauffage solaire ciel clair      REAL, save:: heat0(klon, llm) ! chauffage solaire ciel clair
257      REAL, save:: cool(klon, llm) ! refroidissement infrarouge      REAL, save:: cool(klon, llm) ! refroidissement infrarouge
258      REAL cool0(klon, llm) ! refroidissement infrarouge ciel clair      REAL, save:: cool0(klon, llm) ! refroidissement infrarouge ciel clair
259      REAL, save:: topsw(klon), toplw(klon), solsw(klon), sollw(klon)      REAL, save:: topsw(klon), toplw(klon), solsw(klon)
260      real sollwdown(klon) ! downward LW flux at surface      REAL, save:: sollw(klon) ! rayonnement infrarouge montant \`a la surface
261        real, save:: sollwdown(klon) ! downward LW flux at surface
262      REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)      REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)
263      REAL albpla(klon)      REAL, save:: albpla(klon)
264      REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous surface      REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous-surface
265      REAL fsolsw(klon, nbsrf) ! flux solaire absorb. pour chaque sous surface      REAL fsolsw(klon, nbsrf) ! flux solaire absorb\'e pour chaque sous-surface
266      SAVE albpla, sollwdown  
267      SAVE heat0, cool0      REAL conv_q(klon, llm) ! convergence de l'humidite (kg / kg / s)
268        REAL conv_t(klon, llm) ! convergence of temperature (K / s)
269      INTEGER itaprad  
270      SAVE itaprad      REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut
271        REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree
272      REAL conv_q(klon, llm) ! convergence de l'humidite (kg/kg/s)  
273      REAL conv_t(klon, llm) ! convergence of temperature (K/s)      REAL zxfluxlat(klon)
274        REAL dist, mu0(klon), fract(klon)
275      REAL cldl(klon), cldm(klon), cldh(klon) !nuages bas, moyen et haut      real longi
     REAL cldt(klon), cldq(klon) !nuage total, eau liquide integree  
   
     REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon)  
   
     REAL dist, rmu0(klon), fract(klon)  
     REAL zdtime ! pas de temps du rayonnement (s)  
     real zlongi  
   
276      REAL z_avant(klon), z_apres(klon), z_factor(klon)      REAL z_avant(klon), z_apres(klon), z_factor(klon)
277      LOGICAL zx_ajustq      REAL zb
278        REAL zx_t, zx_qs, zcor
     REAL za, zb  
     REAL zx_t, zx_qs, zdelta, zcor  
279      real zqsat(klon, llm)      real zqsat(klon, llm)
280      INTEGER i, k, iq, nsrf      INTEGER i, k, iq, nsrf
     REAL t_coup  
     PARAMETER (t_coup = 234.0)  
   
281      REAL zphi(klon, llm)      REAL zphi(klon, llm)
282    
283      !IM cf. AM Variables locales pour la CLA (hbtm2)      ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm)
284    
285      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite
286      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA
287      REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite      REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite
288      REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite      REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite
289      REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite      REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite
290      REAL, SAVE:: pblt(klon, nbsrf) ! T a la Hauteur de couche limite      REAL, SAVE:: pblt(klon, nbsrf) ! T \`a la hauteur de couche limite
291      REAL, SAVE:: therm(klon, nbsrf)      REAL, SAVE:: therm(klon, nbsrf)
292      REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape      ! Grandeurs de sorties
     REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition  
     REAL, SAVE:: trmb3(klon, nbsrf) ! Point Omega  
     ! Grdeurs de sorties  
293      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)
294      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)
295      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)      REAL s_therm(klon)
     REAL s_trmb3(klon)  
296    
297      ! Variables locales pour la convection de K. Emanuel :      ! Variables pour la convection de K. Emanuel :
298    
299      REAL upwd(klon, llm) ! saturated updraft mass flux      REAL upwd(klon, llm) ! saturated updraft mass flux
300      REAL dnwd(klon, llm) ! saturated downdraft mass flux      REAL dnwd(klon, llm) ! saturated downdraft mass flux
301      REAL dnwd0(klon, llm) ! unsaturated downdraft mass flux      REAL, save:: cape(klon)
302      REAL tvp(klon, llm) ! virtual temp of lifted parcel  
     REAL cape(klon) ! CAPE  
     SAVE cape  
   
     REAL pbase(klon) ! cloud base pressure  
     SAVE pbase  
     REAL bbase(klon) ! cloud base buoyancy  
     SAVE bbase  
     REAL rflag(klon) ! flag fonctionnement de convect  
303      INTEGER iflagctrl(klon) ! flag fonctionnement de convect      INTEGER iflagctrl(klon) ! flag fonctionnement de convect
     ! -- convect43:  
     INTEGER ntra ! nb traceurs pour convect4.3  
     REAL dtvpdt1(klon, llm), dtvpdq1(klon, llm)  
     REAL dplcldt(klon), dplcldr(klon)  
304    
305      ! Variables du changement      ! Variables du changement
306    
307      ! con: convection      ! con: convection
308      ! lsc: large scale condensation      ! lsc: large scale condensation
309      ! ajs: ajustement sec      ! ajs: ajustement sec
310      ! eva: évaporation de l'eau liquide nuageuse      ! eva: \'evaporation de l'eau liquide nuageuse
311      ! vdf: vertical diffusion in boundary layer      ! vdf: vertical diffusion in boundary layer
312      REAL d_t_con(klon, llm), d_q_con(klon, llm)      REAL d_t_con(klon, llm), d_q_con(klon, llm)
313      REAL d_u_con(klon, llm), d_v_con(klon, llm)      REAL, save:: d_u_con(klon, llm), d_v_con(klon, llm)
314      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)
315      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)
316      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)
317      REAL rneb(klon, llm)      REAL rneb(klon, llm)
318    
319      REAL pmfu(klon, llm), pmfd(klon, llm)      REAL mfu(klon, llm), mfd(klon, llm)
320      REAL pen_u(klon, llm), pen_d(klon, llm)      REAL pen_u(klon, llm), pen_d(klon, llm)
321      REAL pde_u(klon, llm), pde_d(klon, llm)      REAL pde_u(klon, llm), pde_d(klon, llm)
322      INTEGER kcbot(klon), kctop(klon), kdtop(klon)      INTEGER kcbot(klon), kctop(klon), kdtop(klon)
# Line 523  contains Line 324  contains
324      REAL prfl(klon, llm + 1), psfl(klon, llm + 1)      REAL prfl(klon, llm + 1), psfl(klon, llm + 1)
325    
326      INTEGER, save:: ibas_con(klon), itop_con(klon)      INTEGER, save:: ibas_con(klon), itop_con(klon)
327        real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa
328    
329      REAL rain_con(klon), rain_lsc(klon)      REAL, save:: rain_con(klon)
330      REAL snow_con(klon), snow_lsc(klon)      real rain_lsc(klon)
331      REAL d_ts(klon, nbsrf)      REAL, save:: snow_con(klon) ! neige (mm / s)
332        real snow_lsc(klon)
333        REAL d_ts(klon, nbsrf) ! variation of ftsol
334    
335      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)
336      REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)      REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)
# Line 549  contains Line 353  contains
353      integer:: iflag_cldcon = 1      integer:: iflag_cldcon = 1
354      logical ptconv(klon, llm)      logical ptconv(klon, llm)
355    
356      ! Variables locales pour effectuer les appels en série :      ! Variables pour effectuer les appels en s\'erie :
357    
358      REAL t_seri(klon, llm), q_seri(klon, llm)      REAL t_seri(klon, llm), q_seri(klon, llm)
359      REAL ql_seri(klon, llm), qs_seri(klon, llm)      REAL ql_seri(klon, llm)
360      REAL u_seri(klon, llm), v_seri(klon, llm)      REAL u_seri(klon, llm), v_seri(klon, llm)
361        REAL tr_seri(klon, llm, nqmx - 2)
     REAL tr_seri(klon, llm, nbtr)  
     REAL d_tr(klon, llm, nbtr)  
362    
363      REAL zx_rh(klon, llm)      REAL zx_rh(klon, llm)
364    
365      REAL zustrdr(klon), zvstrdr(klon)      REAL zustrdr(klon), zvstrdr(klon)
366      REAL zustrli(klon), zvstrli(klon)      REAL zustrli(klon), zvstrli(klon)
     REAL zustrph(klon), zvstrph(klon)  
367      REAL aam, torsfc      REAL aam, torsfc
368    
     REAL dudyn(iim + 1, jjm + 1, llm)  
   
     REAL zx_tmp_fi2d(klon) ! variable temporaire grille physique  
     REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm)  
   
     INTEGER, SAVE:: nid_day, nid_ins  
   
369      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.
370      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.
371      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.
372      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.
373    
374      REAL zsto      REAL tsol(klon)
375    
376        REAL d_t_ec(klon, llm)
377        ! tendance due \`a la conversion d'\'energie cin\'etique en
378        ! énergie thermique
379    
380        REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf)
381        ! temperature and humidity at 2 m
382    
383      character(len = 20) modname      REAL, save:: u10m_srf(klon, nbsrf), v10m_srf(klon, nbsrf)
384      character(len = 80) abort_message      ! composantes du vent \`a 10 m
385      logical ok_sync      
386      real date0      REAL zt2m(klon), zq2m(klon) ! température, humidité 2 m moyenne sur 1 maille
387        REAL u10m(klon), v10m(klon) ! vent \`a 10 m moyenn\' sur les sous-surfaces
     ! Variables liées au bilan d'énergie et d'enthalpie :  
     REAL ztsol(klon)  
     REAL d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec  
     REAL, SAVE:: d_h_vcol_phy  
     REAL fs_bound, fq_bound  
     REAL zero_v(klon)  
     CHARACTER(LEN = 15) tit  
     INTEGER:: ip_ebil = 0 ! print level for energy conservation diagnostics  
     INTEGER:: if_ebil = 0 ! verbosity for diagnostics of energy conservation  
   
     REAL d_t_ec(klon, llm) ! tendance due à la conversion Ec -> E thermique  
     REAL ZRCPD  
   
     REAL t2m(klon, nbsrf), q2m(klon, nbsrf) ! temperature and humidity at 2 m  
     REAL u10m(klon, nbsrf), v10m(klon, nbsrf) !vents a 10m  
     REAL zt2m(klon), zq2m(klon) !temp., hum. 2m moyenne s/ 1 maille  
     REAL zu10m(klon), zv10m(klon) !vents a 10m moyennes s/1 maille  
     !jq Aerosol effects (Johannes Quaas, 27/11/2003)  
     REAL sulfate(klon, llm) ! SO4 aerosol concentration [ug/m3]  
   
     REAL, save:: sulfate_pi(klon, llm)  
     ! (SO4 aerosol concentration, in ug/m3, pre-industrial value)  
   
     REAL cldtaupi(klon, llm)  
     ! (Cloud optical thickness for pre-industrial (pi) aerosols)  
   
     REAL re(klon, llm) ! Cloud droplet effective radius  
     REAL fl(klon, llm) ! denominator of re  
   
     ! Aerosol optical properties  
     REAL, save:: tau_ae(klon, llm, 2), piz_ae(klon, llm, 2)  
     REAL, save:: cg_ae(klon, llm, 2)  
   
     REAL topswad(klon), solswad(klon) ! aerosol direct effect  
     ! ok_ade --> ADE = topswad - topsw  
   
     REAL topswai(klon), solswai(klon) ! aerosol indirect effect  
     ! ok_aie .and. ok_ade --> AIE = topswai - topswad  
     ! ok_aie .and. .not. ok_ade --> AIE = topswai - topsw  
388    
389      REAL aerindex(klon) ! POLDER aerosol index      ! Aerosol effects:
390    
391        REAL, save:: topswad(klon), solswad(klon) ! aerosol direct effect
392      LOGICAL:: ok_ade = .false. ! apply aerosol direct effect      LOGICAL:: ok_ade = .false. ! apply aerosol direct effect
     LOGICAL:: ok_aie = .false. ! apply aerosol indirect effect  
393    
394      REAL:: bl95_b0 = 2., bl95_b1 = 0.2      REAL:: bl95_b0 = 2., bl95_b1 = 0.2
395      ! Parameters in the formula to link CDNC to aerosol mass conc      ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus
396      ! (Boucher and Lohmann, 1995), used in nuage.F      ! B). They link cloud droplet number concentration to aerosol mass
397        ! concentration.
398    
399      SAVE u10m      real zmasse(klon, llm)
     SAVE v10m  
     SAVE t2m  
     SAVE q2m  
     SAVE ffonte  
     SAVE fqcalving  
     SAVE rain_con  
     SAVE snow_con  
     SAVE topswai  
     SAVE topswad  
     SAVE solswai  
     SAVE solswad  
     SAVE d_u_con  
     SAVE d_v_con  
     SAVE rnebcon0  
     SAVE clwcon0  
   
     real zmasse(klon, llm)  
400      ! (column-density of mass of air in a cell, in kg m-2)      ! (column-density of mass of air in a cell, in kg m-2)
401    
402      real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2      integer, save:: ncid_startphy
403    
404      namelist /physiq_nml/ ocean, ok_veget, ok_journe, ok_mensuel, ok_instan, &      namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, &
405           fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, ratqsbas, &           ratqsbas, ratqshaut, ok_ade, bl95_b0, bl95_b1, iflag_thermals, &
          ratqshaut, if_ebil, ok_ade, ok_aie, bl95_b0, bl95_b1, iflag_thermals, &  
406           nsplit_thermals           nsplit_thermals
407    
408      !----------------------------------------------------------------      !----------------------------------------------------------------
409    
410      modname = 'physiq'      IF (nqmx < 2) CALL abort_gcm('physiq', &
411      IF (if_ebil >= 1) THEN           'eaux vapeur et liquide sont indispensables')
        DO i = 1, klon  
           zero_v(i) = 0.  
        END DO  
     END IF  
     ok_sync = .TRUE.  
     IF (nqmx < 2) THEN  
        abort_message = 'eaux vapeur et liquide sont indispensables'  
        CALL abort_gcm(modname, abort_message, 1)  
     ENDIF  
412    
413      test_firstcal: IF (firstcal) THEN      test_firstcal: IF (firstcal) THEN
414         ! initialiser         ! initialiser
415         u10m = 0.         u10m_srf = 0.
416         v10m = 0.         v10m_srf = 0.
417         t2m = 0.         t2m = 0.
418         q2m = 0.         q2m = 0.
419         ffonte = 0.         ffonte = 0.
420         fqcalving = 0.         rain_con = 0.
421         piz_ae = 0.         snow_con = 0.
422         tau_ae = 0.         d_u_con = 0.
423         cg_ae = 0.         d_v_con = 0.
424         rain_con(:) = 0.         rnebcon0 = 0.
425         snow_con(:) = 0.         clwcon0 = 0.
426         bl95_b0 = 0.         rnebcon = 0.
427         bl95_b1 = 0.         clwcon = 0.
        topswai(:) = 0.  
        topswad(:) = 0.  
        solswai(:) = 0.  
        solswad(:) = 0.  
   
        d_u_con = 0.0  
        d_v_con = 0.0  
        rnebcon0 = 0.0  
        clwcon0 = 0.0  
        rnebcon = 0.0  
        clwcon = 0.0  
   
428         pblh =0. ! Hauteur de couche limite         pblh =0. ! Hauteur de couche limite
429         plcl =0. ! Niveau de condensation de la CLA         plcl =0. ! Niveau de condensation de la CLA
430         capCL =0. ! CAPE de couche limite         capCL =0. ! CAPE de couche limite
431         oliqCL =0. ! eau_liqu integree de couche limite         oliqCL =0. ! eau_liqu integree de couche limite
432         cteiCL =0. ! cloud top instab. crit. couche limite         cteiCL =0. ! cloud top instab. crit. couche limite
433         pblt =0. ! T a la Hauteur de couche limite         pblt =0.
434         therm =0.         therm =0.
        trmb1 =0. ! deep_cape  
        trmb2 =0. ! inhibition  
        trmb3 =0. ! Point Omega  
   
        IF (if_ebil >= 1) d_h_vcol_phy = 0.  
435    
436         iflag_thermals = 0         iflag_thermals = 0
437         nsplit_thermals = 1         nsplit_thermals = 1
# Line 720  contains Line 439  contains
439         read(unit=*, nml=physiq_nml)         read(unit=*, nml=physiq_nml)
440         write(unit_nml, nml=physiq_nml)         write(unit_nml, nml=physiq_nml)
441    
        ! Appel à la lecture du run.def physique  
442         call conf_phys         call conf_phys
443    
444         ! Initialiser les compteurs:         ! Initialiser les compteurs:
445    
446         frugs = 0.         frugs = 0.
447         itap = 0         CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
448         itaprad = 0              fevap, rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, &
449         CALL phyetat0("startphy.nc", pctsrf, ftsol, ftsoil, ocean, tslab, &              agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, &
450              seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, rain_fall, &              q_ancien, ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
451              snow_fall, solsw, sollwdown, dlw, radsol, frugs, agesno, zmea, &              w01, ncid_startphy)
             zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, &  
             ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0)  
452    
453         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial
454         q2 = 1.e-8         q2 = 1e-8
   
        radpas = NINT(86400. / dtphys / nbapp_rad)  
   
        ! on remet le calendrier a zero  
        IF (raz_date) itau_phy = 0  
   
        PRINT *, 'cycle_diurne = ', cycle_diurne  
   
        IF(ocean.NE.'force ') THEN  
           ok_ocean = .TRUE.  
        ENDIF  
   
        CALL printflag(radpas, ok_ocean, ok_oasis, ok_journe, ok_instan, &  
             ok_region)  
455    
456         IF (dtphys*REAL(radpas) > 21600..AND.cycle_diurne) THEN         radpas = lmt_pas / nbapp_rad
457            print *, 'Nbre d appels au rayonnement insuffisant'         print *, "radpas = ", radpas
           print *, "Au minimum 4 appels par jour si cycle diurne"  
           abort_message = 'Nbre d appels au rayonnement insuffisant'  
           call abort_gcm(modname, abort_message, 1)  
        ENDIF  
        print *, "Clef pour la convection, iflag_con = ", iflag_con  
458    
459         ! Initialisation pour la convection de K.E. (sb):         ! Initialisation pour le sch\'ema de convection d'Emanuel :
460         IF (iflag_con >= 3) THEN         IF (conv_emanuel) THEN
461            print *, "Convection de Kerry Emanuel 4.3"            ibas_con = 1
462              itop_con = 1
           DO i = 1, klon  
              ibas_con(i) = 1  
              itop_con(i) = 1  
           ENDDO  
463         ENDIF         ENDIF
464    
465         IF (ok_orodr) THEN         IF (ok_orodr) THEN
# Line 776  contains Line 469  contains
469            rugoro = 0.            rugoro = 0.
470         ENDIF         ENDIF
471    
        lmt_pas = NINT(86400. / dtphys) ! tous les jours  
        print *, 'Number of time steps of "physics" per day: ', lmt_pas  
   
        ecrit_ins = NINT(ecrit_ins/dtphys)  
        ecrit_hf = NINT(ecrit_hf/dtphys)  
        ecrit_mth = NINT(ecrit_mth/dtphys)  
        ecrit_tra = NINT(86400.*ecrit_tra/dtphys)  
        ecrit_reg = NINT(ecrit_reg/dtphys)  
   
        ! Initialiser le couplage si necessaire  
   
        npas = 0  
        nexca = 0  
   
472         ! Initialisation des sorties         ! Initialisation des sorties
473           call ini_histins(dtphys, ok_newmicro)
474         call ini_histhf(dtphys, nid_hf, nid_hf3d)         CALL phyredem0
        call ini_histday(dtphys, ok_journe, nid_day, nqmx)  
        call ini_histins(dtphys, ok_instan, nid_ins)  
        CALL ymds2ju(annee_ref, 1, int(day_ref), 0., date0)  
        !XXXPB Positionner date0 pour initialisation de ORCHIDEE  
        WRITE(*, *) 'physiq date0: ', date0  
475      ENDIF test_firstcal      ENDIF test_firstcal
476    
477      ! Mettre a zero des variables de sortie (pour securite)      ! We will modify variables *_seri and we will not touch variables
478        ! u, v, t, qx:
479      DO i = 1, klon      t_seri = t
480         d_ps(i) = 0.0      u_seri = u
481      ENDDO      v_seri = v
482      DO iq = 1, nqmx      q_seri = qx(:, :, ivap)
483         DO k = 1, llm      ql_seri = qx(:, :, iliq)
484            DO i = 1, klon      tr_seri = qx(:, :, 3:nqmx)
              d_qx(i, k, iq) = 0.0  
           ENDDO  
        ENDDO  
     ENDDO  
     da = 0.  
     mp = 0.  
     phi = 0.  
485    
486      ! Ne pas affecter les valeurs entrées de u, v, h, et q :      tsol = sum(ftsol * pctsrf, dim = 2)
   
     DO k = 1, llm  
        DO i = 1, klon  
           t_seri(i, k) = t(i, k)  
           u_seri(i, k) = u(i, k)  
           v_seri(i, k) = v(i, k)  
           q_seri(i, k) = qx(i, k, ivap)  
           ql_seri(i, k) = qx(i, k, iliq)  
           qs_seri(i, k) = 0.  
        ENDDO  
     ENDDO  
     IF (nqmx >= 3) THEN  
        tr_seri(:, :, :nqmx-2) = qx(:, :, 3:nqmx)  
     ELSE  
        tr_seri(:, :, 1) = 0.  
     ENDIF  
   
     DO i = 1, klon  
        ztsol(i) = 0.  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           ztsol(i) = ztsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     IF (if_ebil >= 1) THEN  
        tit = 'after dynamics'  
        CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        ! Comme les tendances de la physique sont ajoutés dans la  
        !  dynamique, la variation d'enthalpie par la dynamique devrait  
        !  être égale à la variation de la physique au pas de temps  
        !  précédent.  Donc la somme de ces 2 variations devrait être  
        !  nulle.  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol + d_h_vcol_phy, &  
             d_qt, 0., fs_bound, fq_bound)  
     END IF  
487    
488      ! Diagnostic de la tendance dynamique :      ! Diagnostic de la tendance dynamique :
489      IF (ancien_ok) THEN      IF (ancien_ok) THEN
# Line 869  contains Line 496  contains
496      ELSE      ELSE
497         DO k = 1, llm         DO k = 1, llm
498            DO i = 1, klon            DO i = 1, klon
499               d_t_dyn(i, k) = 0.0               d_t_dyn(i, k) = 0.
500               d_q_dyn(i, k) = 0.0               d_q_dyn(i, k) = 0.
501            ENDDO            ENDDO
502         ENDDO         ENDDO
503         ancien_ok = .TRUE.         ancien_ok = .TRUE.
# Line 886  contains Line 513  contains
513      ! Check temperatures:      ! Check temperatures:
514      CALL hgardfou(t_seri, ftsol)      CALL hgardfou(t_seri, ftsol)
515    
516      ! Incrementer le compteur de la physique      call increment_itap
517      itap = itap + 1      julien = MOD(dayvrai, 360)
     julien = MOD(NINT(rdayvrai), 360)  
518      if (julien == 0) julien = 360      if (julien == 0) julien = 360
519    
520      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k)-paprs(:, k + 1)) / rg      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg
521    
522      ! Mettre en action les conditions aux limites (albedo, sst, etc.).      ! \'Evaporation de l'eau liquide nuageuse :
   
     ! Prescrire l'ozone et calculer l'albedo sur l'ocean.  
     wo = ozonecm(REAL(julien), paprs)  
   
     ! Évaporation de l'eau liquide nuageuse :  
523      DO k = 1, llm      DO k = 1, llm
524         DO i = 1, klon         DO i = 1, klon
525            zb = MAX(0., ql_seri(i, k))            zb = MAX(0., ql_seri(i, k))
# Line 909  contains Line 530  contains
530      ENDDO      ENDDO
531      ql_seri = 0.      ql_seri = 0.
532    
533      IF (if_ebil >= 2) THEN      frugs = MAX(frugs, 0.000015)
534         tit = 'after reevap'      zxrugs = sum(frugs * pctsrf, dim = 2)
        CALL diagetpq(airephy, tit, ip_ebil, 2, 1, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
   
     END IF  
   
     ! Appeler la diffusion verticale (programme de couche limite)  
   
     DO i = 1, klon  
        zxrugs(i) = 0.0  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           frugs(i, nsrf) = MAX(frugs(i, nsrf), 0.000015)  
        ENDDO  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxrugs(i) = zxrugs(i) + frugs(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
535    
536      ! calculs necessaires au calcul de l'albedo dans l'interface      ! Calculs n\'ecessaires au calcul de l'albedo dans l'interface avec
537        ! la surface.
538    
539      CALL orbite(REAL(julien), zlongi, dist)      CALL orbite(REAL(julien), longi, dist)
540      IF (cycle_diurne) THEN      CALL zenang(longi, time, dtphys * radpas, mu0, fract)
541         zdtime = dtphys * REAL(radpas)      albsol = sum(falbe * pctsrf, dim = 2)
542         CALL zenang(zlongi, time, zdtime, rmu0, fract)  
543      ELSE      ! R\'epartition sous maille des flux longwave et shortwave
544         rmu0 = -999.999      ! R\'epartition du longwave par sous-surface lin\'earis\'ee
545      ENDIF  
546        forall (nsrf = 1: nbsrf)
547      ! Calcul de l'abedo moyen par maille         fsollw(:, nsrf) = sollw + 4. * RSIGMA * tsol**3 &
548      albsol(:) = 0.              * (tsol - ftsol(:, nsrf))
549      albsollw(:) = 0.         fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol)
550      DO nsrf = 1, nbsrf      END forall
551         DO i = 1, klon  
552            albsol(i) = albsol(i) + falbe(i, nsrf) * pctsrf(i, nsrf)      CALL pbl_surface(dtphys, pctsrf, t_seri, q_seri, u_seri, v_seri, julien, &
553            albsollw(i) = albsollw(i) + falblw(i, nsrf) * pctsrf(i, nsrf)           mu0, ftsol, cdmmax, cdhmax, ftsoil, qsol, paprs, play, fsnow, fqsurf, &
554         ENDDO           fevap, falbe, fluxlat, rain_fall, snow_fall, fsolsw, fsollw, frugs, &
555      ENDDO           agesno, rugoro, d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, flux_t, &
556             flux_q, flux_u, flux_v, cdragh, cdragm, q2, dsens, devap, coefh, t2m, &
557      ! Repartition sous maille des flux LW et SW           q2m, u10m_srf, v10m_srf, pblh, capCL, oliqCL, cteiCL, pblT, therm, &
558      ! Repartition du longwave par sous-surface linearisee           plcl, fqcalving, ffonte, run_off_lic_0)
559    
560      DO nsrf = 1, nbsrf      ! Incr\'ementation des flux
561         DO i = 1, klon  
562            fsollw(i, nsrf) = sollw(i) &      sens = - sum(flux_t * pctsrf, dim = 2)
563                 + 4.0*RSIGMA*ztsol(i)**3 * (ztsol(i)-ftsol(i, nsrf))      evap = - sum(flux_q * pctsrf, dim = 2)
564            fsolsw(i, nsrf) = solsw(i)*(1.-falbe(i, nsrf))/(1.-albsol(i))      fder = dlw + dsens + devap
        ENDDO  
     ENDDO  
   
     fder = dlw  
   
     ! Couche limite:  
   
     CALL clmain(dtphys, itap, date0, pctsrf, pctsrf_new, t_seri, q_seri, &  
          u_seri, v_seri, julien, rmu0, co2_ppm, ok_veget, ocean, npas, nexca, &  
          ftsol, soil_model, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, &  
          qsol, paprs, play, fsnow, fqsurf, fevap, falbe, falblw, fluxlat, &  
          rain_fall, snow_fall, fsolsw, fsollw, sollwdown, fder, rlon, rlat, &  
          cuphy, cvphy, frugs, firstcal, lafin, agesno, rugoro, d_t_vdf, &  
          d_q_vdf, d_u_vdf, d_v_vdf, d_ts, fluxt, fluxq, fluxu, fluxv, cdragh, &  
          cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, &  
          pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, plcl, &  
          fqcalving, ffonte, run_off_lic_0, fluxo, fluxg, tslab, seaice)  
   
     ! Incrémentation des flux  
   
     zxfluxt = 0.  
     zxfluxq = 0.  
     zxfluxu = 0.  
     zxfluxv = 0.  
     DO nsrf = 1, nbsrf  
        DO k = 1, llm  
           DO i = 1, klon  
              zxfluxt(i, k) = zxfluxt(i, k) + &  
                   fluxt(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxq(i, k) = zxfluxq(i, k) + &  
                   fluxq(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxu(i, k) = zxfluxu(i, k) + &  
                   fluxu(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxv(i, k) = zxfluxv(i, k) + &  
                   fluxv(i, k, nsrf) * pctsrf(i, nsrf)  
           END DO  
        END DO  
     END DO  
     DO i = 1, klon  
        sens(i) = - zxfluxt(i, 1) ! flux de chaleur sensible au sol  
        evap(i) = - zxfluxq(i, 1) ! flux d'evaporation au sol  
        fder(i) = dlw(i) + dsens(i) + devap(i)  
     ENDDO  
565    
566      DO k = 1, llm      DO k = 1, llm
567         DO i = 1, klon         DO i = 1, klon
# Line 1017  contains Line 572  contains
572         ENDDO         ENDDO
573      ENDDO      ENDDO
574    
     IF (if_ebil >= 2) THEN  
        tit = 'after clmain'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             sens, evap, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
     END IF  
   
575      ! Update surface temperature:      ! Update surface temperature:
576    
577      DO i = 1, klon      call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf')
578         zxtsol(i) = 0.0      ftsol = ftsol + d_ts
579         zxfluxlat(i) = 0.0      tsol = sum(ftsol * pctsrf, dim = 2)
580        zxfluxlat = sum(fluxlat * pctsrf, dim = 2)
581         zt2m(i) = 0.0      zt2m = sum(t2m * pctsrf, dim = 2)
582         zq2m(i) = 0.0      zq2m = sum(q2m * pctsrf, dim = 2)
583         zu10m(i) = 0.0      u10m = sum(u10m_srf * pctsrf, dim = 2)
584         zv10m(i) = 0.0      v10m = sum(v10m_srf * pctsrf, dim = 2)
585         zxffonte(i) = 0.0      zxffonte = sum(ffonte * pctsrf, dim = 2)
586         zxfqcalving(i) = 0.0      s_pblh = sum(pblh * pctsrf, dim = 2)
587        s_lcl = sum(plcl * pctsrf, dim = 2)
588         s_pblh(i) = 0.0      s_capCL = sum(capCL * pctsrf, dim = 2)
589         s_lcl(i) = 0.0      s_oliqCL = sum(oliqCL * pctsrf, dim = 2)
590         s_capCL(i) = 0.0      s_cteiCL = sum(cteiCL * pctsrf, dim = 2)
591         s_oliqCL(i) = 0.0      s_pblT = sum(pblT * pctsrf, dim = 2)
592         s_cteiCL(i) = 0.0      s_therm = sum(therm * pctsrf, dim = 2)
        s_pblT(i) = 0.0  
        s_therm(i) = 0.0  
        s_trmb1(i) = 0.0  
        s_trmb2(i) = 0.0  
        s_trmb3(i) = 0.0  
   
        IF (abs(pctsrf(i, is_ter) + pctsrf(i, is_lic) + &  
             pctsrf(i, is_oce) + pctsrf(i, is_sic) - 1.)  >  EPSFRA) &  
             THEN  
           WRITE(*, *) 'physiq : pb sous surface au point ', i, &  
                pctsrf(i, 1 : nbsrf)  
        ENDIF  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           ftsol(i, nsrf) = ftsol(i, nsrf) + d_ts(i, nsrf)  
           zxtsol(i) = zxtsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)  
           zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf)*pctsrf(i, nsrf)  
   
           zt2m(i) = zt2m(i) + t2m(i, nsrf)*pctsrf(i, nsrf)  
           zq2m(i) = zq2m(i) + q2m(i, nsrf)*pctsrf(i, nsrf)  
           zu10m(i) = zu10m(i) + u10m(i, nsrf)*pctsrf(i, nsrf)  
           zv10m(i) = zv10m(i) + v10m(i, nsrf)*pctsrf(i, nsrf)  
           zxffonte(i) = zxffonte(i) + ffonte(i, nsrf)*pctsrf(i, nsrf)  
           zxfqcalving(i) = zxfqcalving(i) + &  
                fqcalving(i, nsrf)*pctsrf(i, nsrf)  
           s_pblh(i) = s_pblh(i) + pblh(i, nsrf)*pctsrf(i, nsrf)  
           s_lcl(i) = s_lcl(i) + plcl(i, nsrf)*pctsrf(i, nsrf)  
           s_capCL(i) = s_capCL(i) + capCL(i, nsrf) *pctsrf(i, nsrf)  
           s_oliqCL(i) = s_oliqCL(i) + oliqCL(i, nsrf) *pctsrf(i, nsrf)  
           s_cteiCL(i) = s_cteiCL(i) + cteiCL(i, nsrf) *pctsrf(i, nsrf)  
           s_pblT(i) = s_pblT(i) + pblT(i, nsrf) *pctsrf(i, nsrf)  
           s_therm(i) = s_therm(i) + therm(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb1(i) = s_trmb1(i) + trmb1(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb2(i) = s_trmb2(i) + trmb2(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb3(i) = s_trmb3(i) + trmb3(i, nsrf) *pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     ! Si une sous-fraction n'existe pas, elle prend la temp. moyenne  
593    
594        ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne :
595      DO nsrf = 1, nbsrf      DO nsrf = 1, nbsrf
596         DO i = 1, klon         DO i = 1, klon
597            IF (pctsrf(i, nsrf) < epsfra) ftsol(i, nsrf) = zxtsol(i)            IF (pctsrf(i, nsrf) < epsfra) then
598                 ftsol(i, nsrf) = tsol(i)
599            IF (pctsrf(i, nsrf) < epsfra) t2m(i, nsrf) = zt2m(i)               t2m(i, nsrf) = zt2m(i)
600            IF (pctsrf(i, nsrf) < epsfra) q2m(i, nsrf) = zq2m(i)               q2m(i, nsrf) = zq2m(i)
601            IF (pctsrf(i, nsrf) < epsfra) u10m(i, nsrf) = zu10m(i)               u10m_srf(i, nsrf) = u10m(i)
602            IF (pctsrf(i, nsrf) < epsfra) v10m(i, nsrf) = zv10m(i)               v10m_srf(i, nsrf) = v10m(i)
603            IF (pctsrf(i, nsrf) < epsfra) ffonte(i, nsrf) = zxffonte(i)               ffonte(i, nsrf) = zxffonte(i)
604            IF (pctsrf(i, nsrf) < epsfra) &               pblh(i, nsrf) = s_pblh(i)
605                 fqcalving(i, nsrf) = zxfqcalving(i)               plcl(i, nsrf) = s_lcl(i)
606            IF (pctsrf(i, nsrf) < epsfra) pblh(i, nsrf) = s_pblh(i)               capCL(i, nsrf) = s_capCL(i)
607            IF (pctsrf(i, nsrf) < epsfra) plcl(i, nsrf) = s_lcl(i)               oliqCL(i, nsrf) = s_oliqCL(i)
608            IF (pctsrf(i, nsrf) < epsfra) capCL(i, nsrf) = s_capCL(i)               cteiCL(i, nsrf) = s_cteiCL(i)
609            IF (pctsrf(i, nsrf) < epsfra) oliqCL(i, nsrf) = s_oliqCL(i)               pblT(i, nsrf) = s_pblT(i)
610            IF (pctsrf(i, nsrf) < epsfra) cteiCL(i, nsrf) = s_cteiCL(i)               therm(i, nsrf) = s_therm(i)
611            IF (pctsrf(i, nsrf) < epsfra) pblT(i, nsrf) = s_pblT(i)            end IF
           IF (pctsrf(i, nsrf) < epsfra) therm(i, nsrf) = s_therm(i)  
           IF (pctsrf(i, nsrf) < epsfra) trmb1(i, nsrf) = s_trmb1(i)  
           IF (pctsrf(i, nsrf) < epsfra) trmb2(i, nsrf) = s_trmb2(i)  
           IF (pctsrf(i, nsrf) < epsfra) trmb3(i, nsrf) = s_trmb3(i)  
612         ENDDO         ENDDO
613      ENDDO      ENDDO
614    
615      ! Calculer la derive du flux infrarouge      dlw = - 4. * RSIGMA * tsol**3
616    
617        ! Appeler la convection
618    
619        if (conv_emanuel) then
620           CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, &
621                d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, &
622                upwd, dnwd, Ma, cape, iflagctrl, clwcon0, pmflxr, da, phi, mp)
623           snow_con = 0.
624           mfu = upwd + dnwd
625    
626      DO i = 1, klon         zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play)
627         dlw(i) = - 4.0*RSIGMA*zxtsol(i)**3         zqsat = zqsat / (1. - retv * zqsat)
     ENDDO  
   
     ! Appeler la convection (au choix)  
628    
629      DO k = 1, llm         ! Properties of convective clouds
630         DO i = 1, klon         clwcon0 = fact_cldcon * clwcon0
631            conv_q(i, k) = d_q_dyn(i, k) &         call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &
632                 + d_q_vdf(i, k)/dtphys              rnebcon0)
           conv_t(i, k) = d_t_dyn(i, k) &  
                + d_t_vdf(i, k)/dtphys  
        ENDDO  
     ENDDO  
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        print *, "avantcon = ", za  
     ENDIF  
     zx_ajustq = iflag_con == 2  
     IF (zx_ajustq) THEN  
        DO i = 1, klon  
           z_avant(i) = 0.0  
        ENDDO  
        DO k = 1, llm  
           DO i = 1, klon  
              z_avant(i) = z_avant(i) + (q_seri(i, k) + ql_seri(i, k)) &  
                   *zmasse(i, k)  
           ENDDO  
        ENDDO  
     ENDIF  
633    
634      select case (iflag_con)         forall (i = 1:klon) ema_pct(i) = paprs(i, itop_con(i) + 1)
635      case (2)         mfd = 0.
636         CALL conflx(dtphys, paprs, play, t_seri, q_seri, conv_t, conv_q, &         pen_u = 0.
637              zxfluxq(1, 1), omega, d_t_con, d_q_con, rain_con, snow_con, pmfu, &         pen_d = 0.
638              pmfd, pen_u, pde_u, pen_d, pde_d, kcbot, kctop, kdtop, pmflxr, &         pde_d = 0.
639              pmflxs)         pde_u = 0.
640        else
641           conv_q = d_q_dyn + d_q_vdf / dtphys
642           conv_t = d_t_dyn + d_t_vdf / dtphys
643           z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)
644           CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:- 1), &
645                q_seri(:, llm:1:- 1), conv_t, conv_q, - evap, omega, d_t_con, &
646                d_q_con, rain_con, snow_con, mfu(:, llm:1:- 1), mfd(:, llm:1:- 1), &
647                pen_u, pde_u, pen_d, pde_d, kcbot, kctop, kdtop, pmflxr, pmflxs)
648         WHERE (rain_con < 0.) rain_con = 0.         WHERE (rain_con < 0.) rain_con = 0.
649         WHERE (snow_con < 0.) snow_con = 0.         WHERE (snow_con < 0.) snow_con = 0.
650         DO i = 1, klon         ibas_con = llm + 1 - kcbot
651            ibas_con(i) = llm + 1 - kcbot(i)         itop_con = llm + 1 - kctop
652            itop_con(i) = llm + 1 - kctop(i)      END if
        ENDDO  
     case (3:)  
        ! number of tracers for the convection scheme of Kerry Emanuel:  
        ! la partie traceurs est faite dans phytrac  
        ! on met ntra = 1 pour limiter les appels mais on peut  
        ! supprimer les calculs / ftra.  
        ntra = 1  
        ! Schéma de convection modularisé et vectorisé :  
        ! (driver commun aux versions 3 et 4)  
   
        CALL concvl(iflag_con, dtphys, paprs, play, t_seri, q_seri, u_seri, &  
             v_seri, tr_seri, ntra, ema_work1, ema_work2, d_t_con, d_q_con, &  
             d_u_con, d_v_con, d_tr, rain_con, snow_con, ibas_con, itop_con, &  
             upwd, dnwd, dnwd0, Ma, cape, tvp, iflagctrl, pbase, bbase, &  
             dtvpdt1, dtvpdq1, dplcldt, dplcldr, qcondc, wd, pmflxr, pmflxs, &  
             da, phi, mp)  
        clwcon0 = qcondc  
        pmfu = upwd + dnwd  
   
        IF (.NOT. ok_gust) THEN  
           do i = 1, klon  
              wd(i) = 0.0  
           enddo  
        ENDIF  
   
        ! Calcul des propriétés des nuages convectifs  
   
        DO k = 1, llm  
           DO i = 1, klon  
              zx_t = t_seri(i, k)  
              IF (thermcep) THEN  
                 zdelta = MAX(0., SIGN(1., rtt-zx_t))  
                 zx_qs = r2es * FOEEW(zx_t, zdelta)/play(i, k)  
                 zx_qs = MIN(0.5, zx_qs)  
                 zcor = 1./(1.-retv*zx_qs)  
                 zx_qs = zx_qs*zcor  
              ELSE  
                 IF (zx_t < t_coup) THEN  
                    zx_qs = qsats(zx_t)/play(i, k)  
                 ELSE  
                    zx_qs = qsatl(zx_t)/play(i, k)  
                 ENDIF  
              ENDIF  
              zqsat(i, k) = zx_qs  
           ENDDO  
        ENDDO  
   
        ! calcul des proprietes des nuages convectifs  
        clwcon0 = fact_cldcon*clwcon0  
        call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &  
             rnebcon0)  
     case default  
        print *, "iflag_con non-prevu", iflag_con  
        stop 1  
     END select  
653    
654      DO k = 1, llm      DO k = 1, llm
655         DO i = 1, klon         DO i = 1, klon
# Line 1219  contains Line 660  contains
660         ENDDO         ENDDO
661      ENDDO      ENDDO
662    
663      IF (if_ebil >= 2) THEN      IF (.not. conv_emanuel) THEN
664         tit = 'after convect'         z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)
665         CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &         z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, rain_con, snow_con, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
     END IF  
   
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        print *, "aprescon = ", za  
        zx_t = 0.0  
        za = 0.0  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_con(i)+ &  
                snow_con(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtphys  
        print *, "Precip = ", zx_t  
     ENDIF  
     IF (zx_ajustq) THEN  
        DO i = 1, klon  
           z_apres(i) = 0.0  
        ENDDO  
        DO k = 1, llm  
           DO i = 1, klon  
              z_apres(i) = z_apres(i) + (q_seri(i, k) + ql_seri(i, k)) &  
                   *zmasse(i, k)  
           ENDDO  
        ENDDO  
        DO i = 1, klon  
           z_factor(i) = (z_avant(i)-(rain_con(i) + snow_con(i))*dtphys) &  
                /z_apres(i)  
        ENDDO  
666         DO k = 1, llm         DO k = 1, llm
667            DO i = 1, klon            DO i = 1, klon
668               IF (z_factor(i) > 1. + 1E-8 .OR. z_factor(i) < 1. - 1E-8) THEN               IF (z_factor(i) > 1. + 1E-8 .OR. z_factor(i) < 1. - 1E-8) THEN
# Line 1264  contains Line 671  contains
671            ENDDO            ENDDO
672         ENDDO         ENDDO
673      ENDIF      ENDIF
     zx_ajustq = .FALSE.  
674    
675      ! Convection sèche (thermiques ou ajustement)      ! Convection s\`eche (thermiques ou ajustement)
676    
677      d_t_ajs = 0.      d_t_ajs = 0.
678      d_u_ajs = 0.      d_u_ajs = 0.
# Line 1281  contains Line 687  contains
687         t_seri = t_seri + d_t_ajs         t_seri = t_seri + d_t_ajs
688         q_seri = q_seri + d_q_ajs         q_seri = q_seri + d_q_ajs
689      else      else
        ! Thermiques  
690         call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, &         call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, &
691              q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)              q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)
692      endif      endif
693    
     IF (if_ebil >= 2) THEN  
        tit = 'after dry_adjust'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
     END IF  
   
694      ! Caclul des ratqs      ! Caclul des ratqs
695    
     ! ratqs convectifs a l'ancienne en fonction de q(z = 0)-q / q  
     ! on ecrase le tableau ratqsc calcule par clouds_gno  
696      if (iflag_cldcon == 1) then      if (iflag_cldcon == 1) then
697           ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q
698           ! on \'ecrase le tableau ratqsc calcul\'e par clouds_gno
699         do k = 1, llm         do k = 1, llm
700            do i = 1, klon            do i = 1, klon
701               if(ptconv(i, k)) then               if(ptconv(i, k)) then
702                  ratqsc(i, k) = ratqsbas &                  ratqsc(i, k) = ratqsbas + fact_cldcon &
703                       +fact_cldcon*(q_seri(i, 1)-q_seri(i, k))/q_seri(i, k)                       * (q_seri(i, 1) - q_seri(i, k)) / q_seri(i, k)
704               else               else
705                  ratqsc(i, k) = 0.                  ratqsc(i, k) = 0.
706               endif               endif
# Line 1313  contains Line 711  contains
711      ! ratqs stables      ! ratqs stables
712      do k = 1, llm      do k = 1, llm
713         do i = 1, klon         do i = 1, klon
714            ratqss(i, k) = ratqsbas + (ratqshaut-ratqsbas)* &            ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &
715                 min((paprs(i, 1)-play(i, k))/(paprs(i, 1)-30000.), 1.)                 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)
716         enddo         enddo
717      enddo      enddo
718    
719      ! ratqs final      ! ratqs final
720      if (iflag_cldcon == 1 .or.iflag_cldcon == 2) then      if (iflag_cldcon == 1 .or. iflag_cldcon == 2) then
721         ! les ratqs sont une conbinaison de ratqss et ratqsc         ! les ratqs sont une conbinaison de ratqss et ratqsc
722         ! ratqs final         ! ratqs final
723         ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de         ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de
724         ! relaxation des ratqs         ! relaxation des ratqs
725         facteur = exp(-dtphys*facttemps)         ratqs = max(ratqs * exp(- dtphys * facttemps), ratqss)
        ratqs = max(ratqs*facteur, ratqss)  
726         ratqs = max(ratqs, ratqsc)         ratqs = max(ratqs, ratqsc)
727      else      else
728         ! on ne prend que le ratqs stable pour fisrtilp         ! on ne prend que le ratqs stable pour fisrtilp
729         ratqs = ratqss         ratqs = ratqss
730      endif      endif
731    
732      ! Processus de condensation à grande echelle et processus de      CALL fisrtilp(dtphys, paprs, play, t_seri, q_seri, ptconv, ratqs, d_t_lsc, &
733      ! précipitation :           d_q_lsc, d_ql_lsc, rneb, cldliq, rain_lsc, snow_lsc, pfrac_impa, &
734      CALL fisrtilp(dtphys, paprs, play, t_seri, q_seri, ptconv, ratqs, &           pfrac_nucl, pfrac_1nucl, frac_impa, frac_nucl, prfl, psfl, rhcl)
          d_t_lsc, d_q_lsc, d_ql_lsc, rneb, cldliq, rain_lsc, snow_lsc, &  
          pfrac_impa, pfrac_nucl, pfrac_1nucl, frac_impa, frac_nucl, prfl, &  
          psfl, rhcl)  
735    
736      WHERE (rain_lsc < 0) rain_lsc = 0.      WHERE (rain_lsc < 0) rain_lsc = 0.
737      WHERE (snow_lsc < 0) snow_lsc = 0.      WHERE (snow_lsc < 0) snow_lsc = 0.
# Line 1350  contains Line 744  contains
744            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)
745         ENDDO         ENDDO
746      ENDDO      ENDDO
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        print *, "apresilp = ", za  
        zx_t = 0.0  
        za = 0.0  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_lsc(i) &  
                + snow_lsc(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtphys  
        print *, "Precip = ", zx_t  
     ENDIF  
   
     IF (if_ebil >= 2) THEN  
        tit = 'after fisrt'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, tit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, rain_lsc, snow_lsc, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
     END IF  
747    
748      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
749    
750      ! 1. NUAGES CONVECTIFS      ! 1. NUAGES CONVECTIFS
751    
752      IF (iflag_cldcon <= -1) THEN      IF (iflag_cldcon <= - 1) THEN
753         ! seulement pour Tiedtke         ! seulement pour Tiedtke
754         snow_tiedtke = 0.         snow_tiedtke = 0.
755         if (iflag_cldcon == -1) then         if (iflag_cldcon == - 1) then
756            rain_tiedtke = rain_con            rain_tiedtke = rain_con
757         else         else
758            rain_tiedtke = 0.            rain_tiedtke = 0.
759            do k = 1, llm            do k = 1, llm
760               do i = 1, klon               do i = 1, klon
761                  if (d_q_con(i, k) < 0.) then                  if (d_q_con(i, k) < 0.) then
762                     rain_tiedtke(i) = rain_tiedtke(i)-d_q_con(i, k)/dtphys &                     rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k) / dtphys &
763                          *zmasse(i, k)                          * zmasse(i, k)
764                  endif                  endif
765               enddo               enddo
766            enddo            enddo
767         endif         endif
768    
769         ! Nuages diagnostiques pour Tiedtke         ! Nuages diagnostiques pour Tiedtke
770         CALL diagcld1(paprs, play, &         CALL diagcld1(paprs, play, rain_tiedtke, snow_tiedtke, ibas_con, &
771              rain_tiedtke, snow_tiedtke, ibas_con, itop_con, &              itop_con, diafra, dialiq)
             diafra, dialiq)  
772         DO k = 1, llm         DO k = 1, llm
773            DO i = 1, klon            DO i = 1, klon
774               IF (diafra(i, k) > cldfra(i, k)) THEN               IF (diafra(i, k) > cldfra(i, k)) THEN
# Line 1408  contains Line 778  contains
778            ENDDO            ENDDO
779         ENDDO         ENDDO
780      ELSE IF (iflag_cldcon == 3) THEN      ELSE IF (iflag_cldcon == 3) THEN
781         ! On prend pour les nuages convectifs le max du calcul de la         ! On prend pour les nuages convectifs le maximum du calcul de
782         ! convection et du calcul du pas de temps précédent diminué d'un facteur         ! la convection et du calcul du pas de temps pr\'ec\'edent diminu\'e
783         ! facttemps         ! d'un facteur facttemps.
784         facteur = dtphys *facttemps         facteur = dtphys * facttemps
785         do k = 1, llm         do k = 1, llm
786            do i = 1, klon            do i = 1, klon
787               rnebcon(i, k) = rnebcon(i, k)*facteur               rnebcon(i, k) = rnebcon(i, k) * facteur
788               if (rnebcon0(i, k)*clwcon0(i, k) > rnebcon(i, k)*clwcon(i, k)) &               if (rnebcon0(i, k) * clwcon0(i, k) &
789                    then                    > rnebcon(i, k) * clwcon(i, k)) then
790                  rnebcon(i, k) = rnebcon0(i, k)                  rnebcon(i, k) = rnebcon0(i, k)
791                  clwcon(i, k) = clwcon0(i, k)                  clwcon(i, k) = clwcon0(i, k)
792               endif               endif
# Line 1425  contains Line 795  contains
795    
796         ! On prend la somme des fractions nuageuses et des contenus en eau         ! On prend la somme des fractions nuageuses et des contenus en eau
797         cldfra = min(max(cldfra, rnebcon), 1.)         cldfra = min(max(cldfra, rnebcon), 1.)
798         cldliq = cldliq + rnebcon*clwcon         cldliq = cldliq + rnebcon * clwcon
799      ENDIF      ENDIF
800    
801      ! 2. Nuages stratiformes      ! 2. Nuages stratiformes
# Line 1448  contains Line 818  contains
818         snow_fall(i) = snow_con(i) + snow_lsc(i)         snow_fall(i) = snow_con(i) + snow_lsc(i)
819      ENDDO      ENDDO
820    
821      IF (if_ebil >= 2) CALL diagetpq(airephy, "after diagcld", ip_ebil, 2, 2, &      ! Humidit\'e relative pour diagnostic :
          dtphys, t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, &  
          d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
   
     ! Humidité relative pour diagnostic :  
822      DO k = 1, llm      DO k = 1, llm
823         DO i = 1, klon         DO i = 1, klon
824            zx_t = t_seri(i, k)            zx_t = t_seri(i, k)
825            IF (thermcep) THEN            zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t) / play(i, k)
826               zdelta = MAX(0., SIGN(1., rtt-zx_t))            zx_qs = MIN(0.5, zx_qs)
827               zx_qs = r2es * FOEEW(zx_t, zdelta)/play(i, k)            zcor = 1. / (1. - retv * zx_qs)
828               zx_qs = MIN(0.5, zx_qs)            zx_qs = zx_qs * zcor
829               zcor = 1./(1.-retv*zx_qs)            zx_rh(i, k) = q_seri(i, k) / zx_qs
              zx_qs = zx_qs*zcor  
           ELSE  
              IF (zx_t < t_coup) THEN  
                 zx_qs = qsats(zx_t)/play(i, k)  
              ELSE  
                 zx_qs = qsatl(zx_t)/play(i, k)  
              ENDIF  
           ENDIF  
           zx_rh(i, k) = q_seri(i, k)/zx_qs  
830            zqsat(i, k) = zx_qs            zqsat(i, k) = zx_qs
831         ENDDO         ENDDO
832      ENDDO      ENDDO
833    
834      ! Introduce the aerosol direct and first indirect radiative forcings:      ! Param\`etres optiques des nuages et quelques param\`etres pour
835      IF (ok_ade .OR. ok_aie) THEN      ! diagnostics :
        ! Get sulfate aerosol distribution :  
        CALL readsulfate(rdayvrai, firstcal, sulfate)  
        CALL readsulfate_preind(rdayvrai, firstcal, sulfate_pi)  
   
        CALL aeropt(play, paprs, t_seri, sulfate, rhcl, tau_ae, piz_ae, cg_ae, &  
             aerindex)  
     ELSE  
        tau_ae = 0.  
        piz_ae = 0.  
        cg_ae = 0.  
     ENDIF  
   
     ! Paramètres optiques des nuages et quelques paramètres pour diagnostics :  
836      if (ok_newmicro) then      if (ok_newmicro) then
837         CALL newmicro(paprs, play, ok_newmicro, t_seri, cldliq, cldfra, &         CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &
838              cldtau, cldemi, cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, &              cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc)
             fiwc, ok_aie, sulfate, sulfate_pi, bl95_b0, bl95_b1, cldtaupi, &  
             re, fl)  
839      else      else
840         CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &         CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &
841              cldl, cldm, cldt, cldq, ok_aie, sulfate, sulfate_pi, bl95_b0, &              cldl, cldm, cldt, cldq)
             bl95_b1, cldtaupi, re, fl)  
842      endif      endif
843    
844      ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.      IF (MOD(itap - 1, radpas) == 0) THEN
845      IF (MOD(itaprad, radpas) == 0) THEN         wo = ozonecm(REAL(julien), paprs)
846         DO i = 1, klon         albsol = sum(falbe * pctsrf, dim = 2)
847            albsol(i) = falbe(i, is_oce) * pctsrf(i, is_oce) &         CALL radlwsw(dist, mu0, fract, paprs, play, tsol, albsol, t_seri, &
848                 + falbe(i, is_lic) * pctsrf(i, is_lic) &              q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, &
849                 + falbe(i, is_ter) * pctsrf(i, is_ter) &              radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, &
850                 + falbe(i, is_sic) * pctsrf(i, is_sic)              toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, &
851            albsollw(i) = falblw(i, is_oce) * pctsrf(i, is_oce) &              swup0, swup, ok_ade, topswad, solswad)
                + falblw(i, is_lic) * pctsrf(i, is_lic) &  
                + falblw(i, is_ter) * pctsrf(i, is_ter) &  
                + falblw(i, is_sic) * pctsrf(i, is_sic)  
        ENDDO  
        ! Rayonnement (compatible Arpege-IFS) :  
        CALL radlwsw(dist, rmu0, fract, paprs, play, zxtsol, albsol, &  
             albsollw, t_seri, q_seri, wo, cldfra, cldemi, cldtau, heat, &  
             heat0, cool, cool0, radsol, albpla, topsw, toplw, solsw, sollw, &  
             sollwdown, topsw0, toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, &  
             lwup, swdn0, swdn, swup0, swup, ok_ade, ok_aie, tau_ae, piz_ae, &  
             cg_ae, topswad, solswad, cldtaupi, topswai, solswai)  
        itaprad = 0  
852      ENDIF      ENDIF
     itaprad = itaprad + 1  
853    
854      ! Ajouter la tendance des rayonnements (tous les pas)      ! Ajouter la tendance des rayonnements (tous les pas)
   
855      DO k = 1, llm      DO k = 1, llm
856         DO i = 1, klon         DO i = 1, klon
857            t_seri(i, k) = t_seri(i, k) + (heat(i, k)-cool(i, k)) * dtphys/86400.            t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys &
858         ENDDO                 / 86400.
     ENDDO  
   
     IF (if_ebil >= 2) THEN  
        tit = 'after rad'  
        CALL diagetpq(airephy, tit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
     END IF  
   
     ! Calculer l'hydrologie de la surface  
     DO i = 1, klon  
        zxqsurf(i) = 0.0  
        zxsnow(i) = 0.0  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxqsurf(i) = zxqsurf(i) + fqsurf(i, nsrf)*pctsrf(i, nsrf)  
           zxsnow(i) = zxsnow(i) + fsnow(i, nsrf)*pctsrf(i, nsrf)  
859         ENDDO         ENDDO
860      ENDDO      ENDDO
861    
862      ! Calculer le bilan du sol et la dérive de température (couplage)      ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage)
   
863      DO i = 1, klon      DO i = 1, klon
864         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)
865      ENDDO      ENDDO
866    
867      ! Paramétrisation de l'orographie à l'échelle sous-maille :      ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille :
868    
869      IF (ok_orodr) THEN      IF (ok_orodr) THEN
870         ! selection des points pour lesquels le shema est actif:         ! S\'election des points pour lesquels le sch\'ema est actif :
        igwd = 0  
871         DO i = 1, klon         DO i = 1, klon
872            itest(i) = 0            ktest(i) = 0
873            IF (((zpic(i)-zmea(i)) > 100.).AND.(zstd(i) > 10.0)) THEN            IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN
874               itest(i) = 1               ktest(i) = 1
              igwd = igwd + 1  
              idx(igwd) = i  
875            ENDIF            ENDIF
876         ENDDO         ENDDO
877    
878         CALL drag_noro(klon, llm, dtphys, paprs, play, zmea, zstd, zsig, zgam, &         CALL drag_noro(dtphys, paprs, play, zmea, zstd, zsig, zgam, zthe, &
879              zthe, zpic, zval, igwd, idx, itest, t_seri, u_seri, v_seri, &              zpic, zval, ktest, t_seri, u_seri, v_seri, zulow, zvlow, zustrdr, &
880              zulow, zvlow, zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro)              zvstrdr, d_t_oro, d_u_oro, d_v_oro)
881    
882         ! ajout des tendances         ! ajout des tendances
883         DO k = 1, llm         DO k = 1, llm
# Line 1588  contains Line 890  contains
890      ENDIF      ENDIF
891    
892      IF (ok_orolf) THEN      IF (ok_orolf) THEN
893         ! Sélection des points pour lesquels le schéma est actif :         ! S\'election des points pour lesquels le sch\'ema est actif :
        igwd = 0  
894         DO i = 1, klon         DO i = 1, klon
895            itest(i) = 0            ktest(i) = 0
896            IF ((zpic(i) - zmea(i)) > 100.) THEN            IF (zpic(i) - zmea(i) > 100.) THEN
897               itest(i) = 1               ktest(i) = 1
              igwd = igwd + 1  
              idx(igwd) = i  
898            ENDIF            ENDIF
899         ENDDO         ENDDO
900    
901         CALL lift_noro(klon, llm, dtphys, paprs, play, rlat, zmea, zstd, zpic, &         CALL lift_noro(dtphys, paprs, play, zmea, zstd, zpic, ktest, t_seri, &
902              itest, t_seri, u_seri, v_seri, zulow, zvlow, zustrli, zvstrli, &              u_seri, v_seri, zulow, zvlow, zustrli, zvstrli, d_t_lif, &
903              d_t_lif, d_u_lif, d_v_lif)              d_u_lif, d_v_lif)
904    
905         ! Ajout des tendances :         ! Ajout des tendances :
906         DO k = 1, llm         DO k = 1, llm
# Line 1613  contains Line 912  contains
912         ENDDO         ENDDO
913      ENDIF      ENDIF
914    
915      ! Stress nécessaires : toute la physique      CALL aaam_bud(rg, romega, pphis, zustrdr, zustrli, &
916             sum((u_seri - u) / dtphys * zmasse, dim = 2), zvstrdr, &
917      DO i = 1, klon           zvstrli, sum((v_seri - v) / dtphys * zmasse, dim = 2), paprs, u, v, &
918         zustrph(i) = 0.           aam, torsfc)
        zvstrph(i) = 0.  
     ENDDO  
     DO k = 1, llm  
        DO i = 1, klon  
           zustrph(i) = zustrph(i) + (u_seri(i, k) - u(i, k)) / dtphys &  
                * zmasse(i, k)  
           zvstrph(i) = zvstrph(i) + (v_seri(i, k) - v(i, k)) / dtphys &  
                * zmasse(i, k)  
        ENDDO  
     ENDDO  
   
     CALL aaam_bud(ra, rg, romega, rlat, rlon, pphis, zustrdr, zustrli, &  
          zustrph, zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc)  
   
     IF (if_ebil >= 2) CALL diagetpq(airephy, 'after orography', ip_ebil, 2, &  
          2, dtphys, t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, &  
          d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
919    
920      ! Calcul des tendances traceurs      ! Calcul des tendances traceurs
921      call phytrac(rnpb, itap, lmt_pas, julien, time, firstcal, lafin, nqmx-2, &      call phytrac(julien, time, firstcal, lafin, dtphys, t, paprs, play, mfu, &
922           dtphys, u, t, paprs, play, pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, &           mfd, pde_u, pen_d, coefh, cdragh, fm_therm, entr_therm, u(:, 1), &
923           ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, pctsrf, frac_impa, &           v(:, 1), ftsol, pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, &
924           frac_nucl, pphis, albsol, rhcl, cldfra, rneb, diafra, cldliq, &           dnwd, tr_seri, zmasse, ncid_startphy)
          pmflxr, pmflxs, prfl, psfl, da, phi, mp, upwd, dnwd, tr_seri, zmasse)  
   
     IF (offline) THEN  
        call phystokenc(dtphys, rlon, rlat, t, pmfu, pmfd, pen_u, pde_u, &  
             pen_d, pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, &  
             pctsrf, frac_impa, frac_nucl, pphis, airephy, dtphys, itap)  
     ENDIF  
925    
926      ! Calculer le transport de l'eau et de l'energie (diagnostique)      ! Calculer le transport de l'eau et de l'energie (diagnostique)
927      CALL transp(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, &      CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq)
          ue, uq)  
928    
929      ! diag. bilKP      ! diag. bilKP
930    
931      CALL transp_lay(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, &      CALL transp_lay(paprs, t_seri, q_seri, u_seri, v_seri, zphi, &
932           ve_lay, vq_lay, ue_lay, uq_lay)           ve_lay, vq_lay, ue_lay, uq_lay)
933    
934      ! Accumuler les variables a stocker dans les fichiers histoire:      ! Accumuler les variables a stocker dans les fichiers histoire:
935    
936      ! conversion Ec -> E thermique      ! conversion Ec en énergie thermique
937      DO k = 1, llm      DO k = 1, llm
938         DO i = 1, klon         DO i = 1, klon
939            ZRCPD = RCPD * (1. + RVTMP2 * q_seri(i, k))            d_t_ec(i, k) = 0.5 / (RCPD * (1. + RVTMP2 * q_seri(i, k))) &
           d_t_ec(i, k) = 0.5 / ZRCPD &  
940                 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)                 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)
941            t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)            t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)
942            d_t_ec(i, k) = d_t_ec(i, k) / dtphys            d_t_ec(i, k) = d_t_ec(i, k) / dtphys
943         END DO         END DO
944      END DO      END DO
945    
     IF (if_ebil >= 1) THEN  
        tit = 'after physic'  
        CALL diagetpq(airephy, tit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        ! Comme les tendances de la physique sont ajoute dans la dynamique,  
        ! on devrait avoir que la variation d'entalpie par la dynamique  
        ! est egale a la variation de la physique au pas de temps precedent.  
        ! Donc la somme de ces 2 variations devrait etre nulle.  
        call diagphy(airephy, tit, ip_ebil, topsw, toplw, solsw, sollw, sens, &  
             evap, rain_fall, snow_fall, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
   
        d_h_vcol_phy = d_h_vcol  
   
     END IF  
   
946      ! SORTIES      ! SORTIES
947    
948      !cc prw = eau precipitable      ! prw = eau precipitable
949      DO i = 1, klon      DO i = 1, klon
950         prw(i) = 0.         prw(i) = 0.
951         DO k = 1, llm         DO k = 1, llm
952            prw(i) = prw(i) + q_seri(i, k)*zmasse(i, k)            prw(i) = prw(i) + q_seri(i, k) * zmasse(i, k)
953         ENDDO         ENDDO
954      ENDDO      ENDDO
955    
# Line 1709  contains Line 965  contains
965         ENDDO         ENDDO
966      ENDDO      ENDDO
967    
968      IF (nqmx >= 3) THEN      DO iq = 3, nqmx
969         DO iq = 3, nqmx         DO k = 1, llm
970            DO k = 1, llm            DO i = 1, klon
971               DO i = 1, klon               d_qx(i, k, iq) = (tr_seri(i, k, iq - 2) - qx(i, k, iq)) / dtphys
                 d_qx(i, k, iq) = (tr_seri(i, k, iq-2) - qx(i, k, iq)) / dtphys  
              ENDDO  
972            ENDDO            ENDDO
973         ENDDO         ENDDO
974      ENDIF      ENDDO
975    
976      ! Sauvegarder les valeurs de t et q a la fin de la physique:      ! Sauvegarder les valeurs de t et q a la fin de la physique:
977      DO k = 1, llm      DO k = 1, llm
# Line 1727  contains Line 981  contains
981         ENDDO         ENDDO
982      ENDDO      ENDDO
983    
984      ! Ecriture des sorties      CALL histwrite_phy("phis", pphis)
985      call write_histhf      CALL histwrite_phy("aire", airephy)
986      call write_histday      CALL histwrite_phy("psol", paprs(:, 1))
987      call write_histins      CALL histwrite_phy("precip", rain_fall + snow_fall)
988        CALL histwrite_phy("plul", rain_lsc + snow_lsc)
989      ! Si c'est la fin, il faut conserver l'etat de redemarrage      CALL histwrite_phy("pluc", rain_con + snow_con)
990      IF (lafin) THEN      CALL histwrite_phy("tsol", tsol)
991         itau_phy = itau_phy + itap      CALL histwrite_phy("t2m", zt2m)
992         CALL phyredem("restartphy.nc", rlat, rlon, pctsrf, ftsol, ftsoil, &      CALL histwrite_phy("q2m", zq2m)
993              tslab, seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, &      CALL histwrite_phy("u10m", u10m)
994              rain_fall, snow_fall, solsw, sollwdown, dlw, radsol, frugs, &      CALL histwrite_phy("v10m", v10m)
995              agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, &      CALL histwrite_phy("snow", snow_fall)
996              q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0)      CALL histwrite_phy("cdrm", cdragm)
997      ENDIF      CALL histwrite_phy("cdrh", cdragh)
998        CALL histwrite_phy("topl", toplw)
999      firstcal = .FALSE.      CALL histwrite_phy("evap", evap)
1000        CALL histwrite_phy("sols", solsw)
1001    contains      CALL histwrite_phy("soll", sollw)
1002        CALL histwrite_phy("solldown", sollwdown)
1003      subroutine write_histday      CALL histwrite_phy("bils", bils)
1004        CALL histwrite_phy("sens", - sens)
1005        use gr_phy_write_3d_m, only: gr_phy_write_3d      CALL histwrite_phy("fder", fder)
1006        integer itau_w ! pas de temps ecriture      CALL histwrite_phy("dtsvdfo", d_ts(:, is_oce))
1007        CALL histwrite_phy("dtsvdft", d_ts(:, is_ter))
1008        !------------------------------------------------      CALL histwrite_phy("dtsvdfg", d_ts(:, is_lic))
1009        CALL histwrite_phy("dtsvdfi", d_ts(:, is_sic))
1010        if (ok_journe) THEN      CALL histwrite_phy("zxfqcalving", sum(fqcalving * pctsrf, dim = 2))
          itau_w = itau_phy + itap  
          if (nqmx <= 4) then  
             call histwrite(nid_day, "Sigma_O3_Royer", itau_w, &  
                  gr_phy_write_3d(wo) * 1e3)  
             ! (convert "wo" from kDU to DU)  
          end if  
          if (ok_sync) then  
             call histsync(nid_day)  
          endif  
       ENDIF  
   
     End subroutine write_histday  
   
     !****************************  
   
     subroutine write_histhf  
   
       ! From phylmd/write_histhf.h, version 1.5 2005/05/25 13:10:09  
   
       !------------------------------------------------  
   
       call write_histhf3d  
   
       IF (ok_sync) THEN  
          call histsync(nid_hf)  
       ENDIF  
   
     end subroutine write_histhf  
1011    
1012      !***************************************************************      DO nsrf = 1, nbsrf
1013           CALL histwrite_phy("pourc_"//clnsurf(nsrf), pctsrf(:, nsrf) * 100.)
1014      subroutine write_histins         CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf))
1015           CALL histwrite_phy("sens_"//clnsurf(nsrf), flux_t(:, nsrf))
1016        ! From phylmd/write_histins.h, version 1.2 2005/05/25 13:10:09         CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf))
1017           CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf))
1018        real zout         CALL histwrite_phy("taux_"//clnsurf(nsrf), flux_u(:, nsrf))
1019        integer itau_w ! pas de temps ecriture         CALL histwrite_phy("tauy_"//clnsurf(nsrf), flux_v(:, nsrf))
1020           CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf))
1021        !--------------------------------------------------         CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf))
1022           CALL histwrite_phy("u10m_"//clnsurf(nsrf), u10m_srf(:, nsrf))
1023        IF (ok_instan) THEN         CALL histwrite_phy("v10m_"//clnsurf(nsrf), v10m_srf(:, nsrf))
1024           ! Champs 2D:      END DO
   
          zsto = dtphys * ecrit_ins  
          zout = dtphys * ecrit_ins  
          itau_w = itau_phy + itap  
   
          i = NINT(zout/zsto)  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, pphis, zx_tmp_2d)  
          CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d)  
   
          i = NINT(zout/zsto)  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, airephy, zx_tmp_2d)  
          CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = paprs(i, 1)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "psol", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_fall(i) + snow_fall(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "precip", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_lsc(i) + snow_lsc(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "plul", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_con(i) + snow_con(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "pluc", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxtsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "tsol", itau_w, zx_tmp_2d)  
          !ccIM  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zt2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "t2m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zq2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "q2m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zu10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "u10m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zv10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "v10m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, snow_fall, zx_tmp_2d)  
          CALL histwrite(nid_ins, "snow", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrm", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrh", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, toplw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "topl", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, evap, zx_tmp_2d)  
          CALL histwrite(nid_ins, "evap", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, solsw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sols", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "soll", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollwdown, zx_tmp_2d)  
          CALL histwrite(nid_ins, "solldown", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, bils, zx_tmp_2d)  
          CALL histwrite(nid_ins, "bils", itau_w, zx_tmp_2d)  
   
          zx_tmp_fi2d(1:klon) = -1*sens(1:klon)  
          ! CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sens, zx_tmp_2d)  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sens", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, fder, zx_tmp_2d)  
          CALL histwrite(nid_ins, "fder", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_oce), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfo", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_ter), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdft", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_lic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfg", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_sic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfi", itau_w, zx_tmp_2d)  
   
          DO nsrf = 1, nbsrf  
             !XXX  
             zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf)*100.  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "pourc_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "fract_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxt(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "sens_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxlat(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "lat_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = ftsol(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tsol_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxu(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "taux_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxv(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tauy_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = frugs(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "rugs_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = falbe(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "albe_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
          END DO  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albs", itau_w, zx_tmp_2d)  
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albslw", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxrugs, zx_tmp_2d)  
          CALL histwrite(nid_ins, "rugs", itau_w, zx_tmp_2d)  
   
          !HBTM2  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblh", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblt, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblt", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_lcl, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_lcl", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_capCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_capCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_oliqCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_oliqCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_cteiCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_cteiCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_therm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_therm", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb1, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb1", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb2, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb2", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb3, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb3", itau_w, zx_tmp_2d)  
   
          ! Champs 3D:  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, t_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "temp", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, u_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitu", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, v_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitv", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, zphi, zx_tmp_3d)  
          CALL histwrite(nid_ins, "geop", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, play, zx_tmp_3d)  
          CALL histwrite(nid_ins, "pres", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_t_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dtvdf", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_q_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d)  
   
          if (ok_sync) then  
             call histsync(nid_ins)  
          endif  
       ENDIF  
   
     end subroutine write_histins  
   
     !****************************************************  
   
     subroutine write_histhf3d  
   
       ! From phylmd/write_histhf3d.h, version 1.2 2005/05/25 13:10:09  
   
       integer itau_w ! pas de temps ecriture  
   
       !-------------------------------------------------------  
   
       itau_w = itau_phy + itap  
   
       ! Champs 3D:  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, t_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "temp", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, qx(1, 1, ivap), zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "ovap", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, u_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitu", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, v_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitv", itau_w, zx_tmp_3d)  
   
       if (nbtr >= 3) then  
          CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, tr_seri(1, 1, 3), &  
               zx_tmp_3d)  
          CALL histwrite(nid_hf3d, "O3", itau_w, zx_tmp_3d)  
       end if  
1025    
1026        if (ok_sync) then      CALL histwrite_phy("albs", albsol)
1027           call histsync(nid_hf3d)      CALL histwrite_phy("tro3", wo * dobson_u * 1e3 / zmasse / rmo3 * md)
1028        endif      CALL histwrite_phy("rugs", zxrugs)
1029        CALL histwrite_phy("s_pblh", s_pblh)
1030        CALL histwrite_phy("s_pblt", s_pblt)
1031        CALL histwrite_phy("s_lcl", s_lcl)
1032        CALL histwrite_phy("s_capCL", s_capCL)
1033        CALL histwrite_phy("s_oliqCL", s_oliqCL)
1034        CALL histwrite_phy("s_cteiCL", s_cteiCL)
1035        CALL histwrite_phy("s_therm", s_therm)
1036    
1037        if (conv_emanuel) then
1038           CALL histwrite_phy("ptop", ema_pct)
1039           CALL histwrite_phy("dnwd0", - mp)
1040        end if
1041    
1042        CALL histwrite_phy("temp", t_seri)
1043        CALL histwrite_phy("vitu", u_seri)
1044        CALL histwrite_phy("vitv", v_seri)
1045        CALL histwrite_phy("geop", zphi)
1046        CALL histwrite_phy("pres", play)
1047        CALL histwrite_phy("dtvdf", d_t_vdf)
1048        CALL histwrite_phy("dqvdf", d_q_vdf)
1049        CALL histwrite_phy("rhum", zx_rh)
1050        CALL histwrite_phy("d_t_ec", d_t_ec)
1051        CALL histwrite_phy("dtsw0", heat0 / 86400.)
1052        CALL histwrite_phy("dtlw0", - cool0 / 86400.)
1053        CALL histwrite_phy("msnow", sum(fsnow * pctsrf, dim = 2))
1054        call histwrite_phy("qsurf", sum(fqsurf * pctsrf, dim = 2))
1055    
1056        if (ok_instan) call histsync(nid_ins)
1057    
1058        IF (lafin) then
1059           call NF95_CLOSE(ncid_startphy)
1060           CALL phyredem(pctsrf, ftsol, ftsoil, fqsurf, qsol, &
1061                fsnow, falbe, fevap, rain_fall, snow_fall, solsw, sollw, dlw, &
1062                radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, &
1063                t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
1064                w01)
1065        end IF
1066    
1067      end subroutine write_histhf3d      firstcal = .FALSE.
1068    
1069    END SUBROUTINE physiq    END SUBROUTINE physiq
1070    

Legend:
Removed from v.68  
changed lines
  Added in v.288

  ViewVC Help
Powered by ViewVC 1.1.21