/[lmdze]/trunk/phylmd/physiq.f
ViewVC logotype

Diff of /trunk/phylmd/physiq.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/physiq.f90 revision 47 by guez, Fri Jul 1 15:00:48 2011 UTC trunk/Sources/phylmd/physiq.f revision 225 by guez, Mon Oct 16 12:35:41 2017 UTC
# Line 4  module physiq_m Line 4  module physiq_m
4    
5  contains  contains
6    
7    SUBROUTINE physiq(lafin, rdayvrai, time, dtphys, paprs, play, pphi, pphis, &    SUBROUTINE physiq(lafin, dayvrai, time, paprs, play, pphi, pphis, u, v, t, &
8         u, v, t, qx, omega, d_u, d_v, d_t, d_qx, d_ps, dudyn, PVteta)         qx, omega, d_u, d_v, d_t, d_qx)
9    
10      ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28 (SVN revision 678)      ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28
11      ! Author: Z.X. Li (LMD/CNRS) 1993      ! (subversion revision 678)
12    
13      ! Objet : moniteur général de la physique du modèle      ! Author: Z. X. Li (LMD/CNRS) 1993
14    
15      use abort_gcm_m, only: abort_gcm      ! This is the main procedure for the "physics" part of the program.
16      USE calendar, only: ymds2ju  
17      use clesphys, only: ecrit_hf, ecrit_ins, ecrit_mth, cdmmax, cdhmax, &      use aaam_bud_m, only: aaam_bud
18           co2_ppm, ecrit_reg, ecrit_tra, ksta, ksta_ter, ok_kzmin      USE abort_gcm_m, ONLY: abort_gcm
19      use clesphys2, only: iflag_con, ok_orolf, ok_orodr, nbapp_rad, &      use ajsec_m, only: ajsec
20           cycle_diurne, new_oliq, soil_model      use calltherm_m, only: calltherm
21      use clmain_m, only: clmain      USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ksta, ksta_ter, ok_kzmin, &
22      use comgeomphy           ok_instan
23      use concvl_m, only: concvl      USE clesphys2, ONLY: conv_emanuel, nbapp_rad, new_oliq, ok_orodr, ok_orolf
24      use conf_gcm_m, only: raz_date, offline      USE clmain_m, ONLY: clmain
25      use conf_phys_m, only: conf_phys      use clouds_gno_m, only: clouds_gno
26      use ctherm      use comconst, only: dtphys
27      use dimens_m, only: jjm, iim, llm, nqmx      USE comgeomphy, ONLY: airephy
28      use dimphy, only: klon, nbtr      USE concvl_m, ONLY: concvl
29      use dimsoil, only: nsoilmx      USE conf_gcm_m, ONLY: lmt_pas
30      use hgardfou_m, only: hgardfou      USE conf_phys_m, ONLY: conf_phys
31      USE histcom, only: histsync      use conflx_m, only: conflx
32      USE histwrite_m, only: histwrite      USE ctherm, ONLY: iflag_thermals, nsplit_thermals
33      use indicesol, only: nbsrf, is_ter, is_lic, is_sic, is_oce, clnsurf, epsfra      use diagcld2_m, only: diagcld2
34      use ini_histhf_m, only: ini_histhf      USE dimens_m, ONLY: llm, nqmx
35      use ini_histday_m, only: ini_histday      USE dimphy, ONLY: klon
36      use ini_histins_m, only: ini_histins      USE dimsoil, ONLY: nsoilmx
37      use iniprint, only: prt_level      use drag_noro_m, only: drag_noro
38      use oasis_m      use dynetat0_m, only: day_ref, annee_ref
39      use orbite_m, only: orbite, zenang      USE fcttre, ONLY: foeew
40      use ozonecm_m, only: ozonecm      use fisrtilp_m, only: fisrtilp
41      use phyetat0_m, only: phyetat0, rlat, rlon      USE hgardfou_m, ONLY: hgardfou
42      use phyredem_m, only: phyredem      USE histsync_m, ONLY: histsync
43      use phystokenc_m, only: phystokenc      USE histwrite_phy_m, ONLY: histwrite_phy
44      use phytrac_m, only: phytrac      USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &
45      use qcheck_m, only: qcheck           nbsrf
46      use radepsi      USE ini_histins_m, ONLY: ini_histins, nid_ins
47      use radopt      use netcdf95, only: NF95_CLOSE
48      use temps, only: itau_phy, day_ref, annee_ref      use newmicro_m, only: newmicro
49      use yoethf_m      use nr_util, only: assert
50      use SUPHEC_M, only: rcpd, rtt, rlvtt, rg, ra, rsigma, retv, romega      use nuage_m, only: nuage
51        USE orbite_m, ONLY: orbite
52      ! Declaration des constantes et des fonctions thermodynamiques :      USE ozonecm_m, ONLY: ozonecm
53      use fcttre, only: thermcep, foeew, qsats, qsatl      USE phyetat0_m, ONLY: phyetat0, rlat, rlon
54        USE phyredem_m, ONLY: phyredem
55        USE phyredem0_m, ONLY: phyredem0
56        USE phytrac_m, ONLY: phytrac
57        use radlwsw_m, only: radlwsw
58        use yoegwd, only: sugwd
59        USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt, rmo3, md
60        use time_phylmdz, only: itap, increment_itap
61        use transp_m, only: transp
62        use transp_lay_m, only: transp_lay
63        use unit_nml_m, only: unit_nml
64        USE ymds2ju_m, ONLY: ymds2ju
65        USE yoethf_m, ONLY: r2es, rvtmp2
66        use zenang_m, only: zenang
67    
     ! Variables argument:  
   
     REAL, intent(in):: rdayvrai  
     ! (elapsed time since January 1st 0h of the starting year, in days)  
   
     REAL, intent(in):: time ! heure de la journée en fraction de jour  
     REAL, intent(in):: dtphys ! pas d'integration pour la physique (seconde)  
68      logical, intent(in):: lafin ! dernier passage      logical, intent(in):: lafin ! dernier passage
69    
70      REAL, intent(in):: paprs(klon, llm+1)      integer, intent(in):: dayvrai
71      ! (pression pour chaque inter-couche, en Pa)      ! current day number, based at value 1 on January 1st of annee_ref
72    
73      REAL, intent(in):: play(klon, llm)      REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour
     ! (input pression pour le mileu de chaque couche (en Pa))  
74    
75      REAL, intent(in):: pphi(klon, llm)      REAL, intent(in):: paprs(:, :) ! (klon, llm + 1)
76      ! (input geopotentiel de chaque couche (g z) (reference sol))      ! pression pour chaque inter-couche, en Pa
77    
78      REAL pphis(klon) ! input geopotentiel du sol      REAL, intent(in):: play(:, :) ! (klon, llm)
79        ! pression pour le mileu de chaque couche (en Pa)
80    
81      REAL, intent(in):: u(klon, llm)      REAL, intent(in):: pphi(:, :) ! (klon, llm)
82      ! vitesse dans la direction X (de O a E) en m/s      ! géopotentiel de chaque couche (référence sol)
       
     REAL, intent(in):: v(klon, llm) ! vitesse Y (de S a N) en m/s  
     REAL t(klon, llm) ! input temperature (K)  
83    
84      REAL, intent(in):: qx(klon, llm, nqmx)      REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol
     ! (humidité spécifique et fractions massiques des autres traceurs)  
85    
86      REAL omega(klon, llm) ! input vitesse verticale en Pa/s      REAL, intent(in):: u(:, :) ! (klon, llm)
87      REAL, intent(out):: d_u(klon, llm) ! tendance physique de "u" (m/s/s)      ! vitesse dans la direction X (de O a E) en m / s
     REAL, intent(out):: d_v(klon, llm) ! tendance physique de "v" (m/s/s)  
     REAL d_t(klon, llm) ! output tendance physique de "t" (K/s)  
     REAL d_qx(klon, llm, nqmx) ! output tendance physique de "qx" (kg/kg/s)  
     REAL d_ps(klon) ! output tendance physique de la pression au sol  
88    
89      LOGICAL:: firstcal = .true.      REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m / s
90        REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)
91    
92        REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)
93        ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)
94    
95      INTEGER nbteta      REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa / s
96      PARAMETER(nbteta=3)      REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)
97        REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)
98        REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K / s)
99    
100      REAL PVteta(klon, nbteta)      REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)
101      ! (output vorticite potentielle a des thetas constantes)      ! tendance physique de "qx" (s-1)
102    
103      LOGICAL ok_cvl ! pour activer le nouveau driver pour convection KE      ! Local:
     PARAMETER (ok_cvl=.TRUE.)  
     LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface  
     PARAMETER (ok_gust=.FALSE.)  
   
     LOGICAL check ! Verifier la conservation du modele en eau  
     PARAMETER (check=.FALSE.)  
     LOGICAL ok_stratus ! Ajouter artificiellement les stratus  
     PARAMETER (ok_stratus=.FALSE.)  
   
     ! Parametres lies au coupleur OASIS:  
     INTEGER, SAVE :: npas, nexca  
     logical rnpb  
     parameter(rnpb=.true.)  
   
     character(len=6), save:: ocean  
     ! (type de modèle océan à utiliser: "force" ou "slab" mais pas "couple")  
   
     logical ok_ocean  
     SAVE ok_ocean  
   
     !IM "slab" ocean  
     REAL tslab(klon) !Temperature du slab-ocean  
     SAVE tslab  
     REAL seaice(klon) !glace de mer (kg/m2)  
     SAVE seaice  
     REAL fluxo(klon) !flux turbulents ocean-glace de mer  
     REAL fluxg(klon) !flux turbulents ocean-atmosphere  
   
     ! Modele thermique du sol, a activer pour le cycle diurne:  
     logical, save:: ok_veget  
     LOGICAL, save:: ok_journe ! sortir le fichier journalier  
   
     LOGICAL ok_mensuel ! sortir le fichier mensuel  
104    
105      LOGICAL ok_instan ! sortir le fichier instantane      LOGICAL:: firstcal = .true.
     save ok_instan  
106    
107      LOGICAL ok_region ! sortir le fichier regional      LOGICAL, PARAMETER:: ok_stratus = .FALSE.
108      PARAMETER (ok_region=.FALSE.)      ! Ajouter artificiellement les stratus
109    
110      ! pour phsystoke avec thermiques      ! pour phystoke avec thermiques
111      REAL fm_therm(klon, llm+1)      REAL fm_therm(klon, llm + 1)
112      REAL entr_therm(klon, llm)      REAL entr_therm(klon, llm)
113      real, save:: q2(klon, llm+1, nbsrf)      real, save:: q2(klon, llm + 1, nbsrf)
114    
115      INTEGER ivap ! indice de traceurs pour vapeur d'eau      INTEGER, PARAMETER:: ivap = 1 ! indice de traceur pour vapeur d'eau
116      PARAMETER (ivap=1)      INTEGER, PARAMETER:: iliq = 2 ! indice de traceur pour eau liquide
     INTEGER iliq ! indice de traceurs pour eau liquide  
     PARAMETER (iliq=2)  
   
     REAL t_ancien(klon, llm), q_ancien(klon, llm)  
     SAVE t_ancien, q_ancien  
     LOGICAL ancien_ok  
     SAVE ancien_ok  
117    
118      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K/s)      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)
119      REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg/kg/s)      LOGICAL, save:: ancien_ok
120    
121        REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K / s)
122        REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg / kg / s)
123    
124      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)
125    
126      !IM Amip2 PV a theta constante      REAL, save:: swdn0(klon, llm + 1), swdn(klon, llm + 1)
127        REAL, save:: swup0(klon, llm + 1), swup(klon, llm + 1)
128    
129      CHARACTER(LEN=3) ctetaSTD(nbteta)      REAL, save:: lwdn0(klon, llm + 1), lwdn(klon, llm + 1)
130      DATA ctetaSTD/'350', '380', '405'/      REAL, save:: lwup0(klon, llm + 1), lwup(klon, llm + 1)
     REAL rtetaSTD(nbteta)  
     DATA rtetaSTD/350., 380., 405./  
   
     !MI Amip2 PV a theta constante  
   
     INTEGER klevp1  
     PARAMETER(klevp1=llm+1)  
   
     REAL swdn0(klon, klevp1), swdn(klon, klevp1)  
     REAL swup0(klon, klevp1), swup(klon, klevp1)  
     SAVE swdn0, swdn, swup0, swup  
   
     REAL lwdn0(klon, klevp1), lwdn(klon, klevp1)  
     REAL lwup0(klon, klevp1), lwup(klon, klevp1)  
     SAVE lwdn0, lwdn, lwup0, lwup  
   
     !IM Amip2  
     ! variables a une pression donnee  
   
     integer nlevSTD  
     PARAMETER(nlevSTD=17)  
     real rlevSTD(nlevSTD)  
     DATA rlevSTD/100000., 92500., 85000., 70000., &  
          60000., 50000., 40000., 30000., 25000., 20000., &  
          15000., 10000., 7000., 5000., 3000., 2000., 1000./  
     CHARACTER(LEN=4) clevSTD(nlevSTD)  
     DATA clevSTD/'1000', '925 ', '850 ', '700 ', '600 ', &  
          '500 ', '400 ', '300 ', '250 ', '200 ', '150 ', '100 ', &  
          '70 ', '50 ', '30 ', '20 ', '10 '/  
131    
132      ! prw: precipitable water      ! prw: precipitable water
133      real prw(klon)      real prw(klon)
134    
135      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg/m2)      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg / m2)
136      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg/kg)      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg / kg)
137      REAL flwp(klon), fiwp(klon)      REAL flwp(klon), fiwp(klon)
138      REAL flwc(klon, llm), fiwc(klon, llm)      REAL flwc(klon, llm), fiwc(klon, llm)
139    
     INTEGER kmax, lmax  
     PARAMETER(kmax=8, lmax=8)  
     INTEGER kmaxm1, lmaxm1  
     PARAMETER(kmaxm1=kmax-1, lmaxm1=lmax-1)  
   
     REAL zx_tau(kmaxm1), zx_pc(lmaxm1)  
     DATA zx_tau/0.0, 0.3, 1.3, 3.6, 9.4, 23., 60./  
     DATA zx_pc/50., 180., 310., 440., 560., 680., 800./  
   
     ! cldtopres pression au sommet des nuages  
     REAL cldtopres(lmaxm1)  
     DATA cldtopres/50., 180., 310., 440., 560., 680., 800./  
   
     ! taulev: numero du niveau de tau dans les sorties ISCCP  
     CHARACTER(LEN=4) taulev(kmaxm1)  
   
     DATA taulev/'tau0', 'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'/  
     CHARACTER(LEN=3) pclev(lmaxm1)  
     DATA pclev/'pc1', 'pc2', 'pc3', 'pc4', 'pc5', 'pc6', 'pc7'/  
   
     CHARACTER(LEN=28) cnameisccp(lmaxm1, kmaxm1)  
     DATA cnameisccp/'pc< 50hPa, tau< 0.3', 'pc= 50-180hPa, tau< 0.3', &  
          'pc= 180-310hPa, tau< 0.3', 'pc= 310-440hPa, tau< 0.3', &  
          'pc= 440-560hPa, tau< 0.3', 'pc= 560-680hPa, tau< 0.3', &  
          'pc= 680-800hPa, tau< 0.3', 'pc< 50hPa, tau= 0.3-1.3', &  
          'pc= 50-180hPa, tau= 0.3-1.3', 'pc= 180-310hPa, tau= 0.3-1.3', &  
          'pc= 310-440hPa, tau= 0.3-1.3', 'pc= 440-560hPa, tau= 0.3-1.3', &  
          'pc= 560-680hPa, tau= 0.3-1.3', 'pc= 680-800hPa, tau= 0.3-1.3', &  
          'pc< 50hPa, tau= 1.3-3.6', 'pc= 50-180hPa, tau= 1.3-3.6', &  
          'pc= 180-310hPa, tau= 1.3-3.6', 'pc= 310-440hPa, tau= 1.3-3.6', &  
          'pc= 440-560hPa, tau= 1.3-3.6', 'pc= 560-680hPa, tau= 1.3-3.6', &  
          'pc= 680-800hPa, tau= 1.3-3.6', 'pc< 50hPa, tau= 3.6-9.4', &  
          'pc= 50-180hPa, tau= 3.6-9.4', 'pc= 180-310hPa, tau= 3.6-9.4', &  
          'pc= 310-440hPa, tau= 3.6-9.4', 'pc= 440-560hPa, tau= 3.6-9.4', &  
          'pc= 560-680hPa, tau= 3.6-9.4', 'pc= 680-800hPa, tau= 3.6-9.4', &  
          'pc< 50hPa, tau= 9.4-23', 'pc= 50-180hPa, tau= 9.4-23', &  
          'pc= 180-310hPa, tau= 9.4-23', 'pc= 310-440hPa, tau= 9.4-23', &  
          'pc= 440-560hPa, tau= 9.4-23', 'pc= 560-680hPa, tau= 9.4-23', &  
          'pc= 680-800hPa, tau= 9.4-23', 'pc< 50hPa, tau= 23-60', &  
          'pc= 50-180hPa, tau= 23-60', 'pc= 180-310hPa, tau= 23-60', &  
          'pc= 310-440hPa, tau= 23-60', 'pc= 440-560hPa, tau= 23-60', &  
          'pc= 560-680hPa, tau= 23-60', 'pc= 680-800hPa, tau= 23-60', &  
          'pc< 50hPa, tau> 60.', 'pc= 50-180hPa, tau> 60.', &  
          'pc= 180-310hPa, tau> 60.', 'pc= 310-440hPa, tau> 60.', &  
          'pc= 440-560hPa, tau> 60.', 'pc= 560-680hPa, tau> 60.', &  
          'pc= 680-800hPa, tau> 60.'/  
   
     !IM ISCCP simulator v3.4  
   
     integer nid_hf, nid_hf3d  
     save nid_hf, nid_hf3d  
   
140      ! Variables propres a la physique      ! Variables propres a la physique
141    
142      INTEGER, save:: radpas      INTEGER, save:: radpas
143      ! (Radiative transfer computations are made every "radpas" call to      ! Radiative transfer computations are made every "radpas" call to
144      ! "physiq".)      ! "physiq".
   
     REAL radsol(klon)  
     SAVE radsol ! bilan radiatif au sol calcule par code radiatif  
145    
146      INTEGER, SAVE:: itap ! number of calls to "physiq"      REAL, save:: radsol(klon) ! bilan radiatif au sol calcule par code radiatif
147        REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction
148    
149      REAL ftsol(klon, nbsrf)      REAL, save:: ftsoil(klon, nsoilmx, nbsrf)
150      SAVE ftsol ! temperature du sol      ! soil temperature of surface fraction
151    
152      REAL ftsoil(klon, nsoilmx, nbsrf)      REAL, save:: fevap(klon, nbsrf) ! evaporation
     SAVE ftsoil ! temperature dans le sol  
   
     REAL fevap(klon, nbsrf)  
     SAVE fevap ! evaporation  
153      REAL fluxlat(klon, nbsrf)      REAL fluxlat(klon, nbsrf)
     SAVE fluxlat  
   
     REAL fqsurf(klon, nbsrf)  
     SAVE fqsurf ! humidite de l'air au contact de la surface  
   
     REAL qsol(klon)  
     SAVE qsol ! hauteur d'eau dans le sol  
154    
155      REAL fsnow(klon, nbsrf)      REAL, save:: fqsurf(klon, nbsrf)
156      SAVE fsnow ! epaisseur neigeuse      ! humidite de l'air au contact de la surface
157    
158      REAL falbe(klon, nbsrf)      REAL, save:: qsol(klon) ! column-density of water in soil, in kg m-2
159      SAVE falbe ! albedo par type de surface      REAL, save:: fsnow(klon, nbsrf) ! \'epaisseur neigeuse
160      REAL falblw(klon, nbsrf)      REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface
     SAVE falblw ! albedo par type de surface  
161    
162      ! Paramètres de l'orographie à l'échelle sous-maille (OESM) :      ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :
163      REAL, save:: zmea(klon) ! orographie moyenne      REAL, save:: zmea(klon) ! orographie moyenne
164      REAL, save:: zstd(klon) ! deviation standard de l'OESM      REAL, save:: zstd(klon) ! deviation standard de l'OESM
165      REAL, save:: zsig(klon) ! pente de l'OESM      REAL, save:: zsig(klon) ! pente de l'OESM
# Line 296  contains Line 168  contains
168      REAL, save:: zpic(klon) ! Maximum de l'OESM      REAL, save:: zpic(klon) ! Maximum de l'OESM
169      REAL, save:: zval(klon) ! Minimum de l'OESM      REAL, save:: zval(klon) ! Minimum de l'OESM
170      REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM      REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM
   
171      REAL zulow(klon), zvlow(klon)      REAL zulow(klon), zvlow(klon)
172        INTEGER igwd, itest(klon)
173    
174      INTEGER igwd, idx(klon), itest(klon)      REAL, save:: agesno(klon, nbsrf) ! age de la neige
175        REAL, save:: run_off_lic_0(klon)
     REAL agesno(klon, nbsrf)  
     SAVE agesno ! age de la neige  
176    
177      REAL run_off_lic_0(klon)      ! Variables li\'ees \`a la convection d'Emanuel :
178      SAVE run_off_lic_0      REAL, save:: Ma(klon, llm) ! undilute upward mass flux
179      !KE43      REAL, save:: qcondc(klon, llm) ! in-cld water content from convect
180      ! Variables liees a la convection de K. Emanuel (sb):      REAL, save:: sig1(klon, llm), w01(klon, llm)
181    
182      REAL bas, top ! cloud base and top levels      ! Variables pour la couche limite (Alain Lahellec) :
183      SAVE bas      REAL cdragh(klon) ! drag coefficient pour T and Q
184      SAVE top      REAL cdragm(klon) ! drag coefficient pour vent
185    
186      REAL Ma(klon, llm) ! undilute upward mass flux      ! Pour phytrac :
187      SAVE Ma      REAL ycoefh(klon, llm) ! coef d'echange pour phytrac
188      REAL qcondc(klon, llm) ! in-cld water content from convect      REAL yu1(klon), yv1(klon) ! vent dans la premi\`ere couche
     SAVE qcondc  
     REAL ema_work1(klon, llm), ema_work2(klon, llm)  
     SAVE ema_work1, ema_work2  
189    
190      REAL wd(klon) ! sb      REAL, save:: ffonte(klon, nbsrf)
191      SAVE wd ! sb      ! flux thermique utilise pour fondre la neige
192    
193      ! Variables locales pour la couche limite (al1):      REAL, save:: fqcalving(klon, nbsrf)
194        ! flux d'eau "perdue" par la surface et necessaire pour limiter la
195        ! hauteur de neige, en kg / m2 / s
196    
197      ! Variables locales:      REAL zxffonte(klon), zxfqcalving(klon)
198    
199      REAL cdragh(klon) ! drag coefficient pour T and Q      REAL, save:: pfrac_impa(klon, llm)! Produits des coefs lessivage impaction
200      REAL cdragm(klon) ! drag coefficient pour vent      REAL, save:: pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation
201    
202      !AA Pour phytrac      REAL, save:: pfrac_1nucl(klon, llm)
203      REAL ycoefh(klon, llm) ! coef d'echange pour phytrac      ! Produits des coefs lessi nucl (alpha = 1)
     REAL yu1(klon) ! vents dans la premiere couche U  
     REAL yv1(klon) ! vents dans la premiere couche V  
     REAL ffonte(klon, nbsrf) !Flux thermique utilise pour fondre la neige  
     REAL fqcalving(klon, nbsrf) !Flux d'eau "perdue" par la surface  
     ! !et necessaire pour limiter la  
     ! !hauteur de neige, en kg/m2/s  
     REAL zxffonte(klon), zxfqcalving(klon)  
204    
205      REAL pfrac_impa(klon, llm)! Produits des coefs lessivage impaction      REAL frac_impa(klon, llm) ! fraction d'a\'erosols lessiv\'es (impaction)
     save pfrac_impa  
     REAL pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation  
     save pfrac_nucl  
     REAL pfrac_1nucl(klon, llm)! Produits des coefs lessi nucl (alpha = 1)  
     save pfrac_1nucl  
     REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction)  
206      REAL frac_nucl(klon, llm) ! idem (nucleation)      REAL frac_nucl(klon, llm) ! idem (nucleation)
207    
208      !AA      REAL, save:: rain_fall(klon)
209      REAL rain_fall(klon) ! pluie      ! liquid water mass flux (kg / m2 / s), positive down
210      REAL snow_fall(klon) ! neige  
211      save snow_fall, rain_fall      REAL, save:: snow_fall(klon)
212      !IM cf FH pour Tiedtke 080604      ! solid water mass flux (kg / m2 / s), positive down
213    
214      REAL rain_tiedtke(klon), snow_tiedtke(klon)      REAL rain_tiedtke(klon), snow_tiedtke(klon)
215    
216      REAL evap(klon), devap(klon) ! evaporation et sa derivee      REAL evap(klon) ! flux d'\'evaporation au sol
217      REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee      real devap(klon) ! derivative of the evaporation flux at the surface
218      REAL dlw(klon) ! derivee infra rouge      REAL sens(klon) ! flux de chaleur sensible au sol
219      SAVE dlw      real dsens(klon) ! derivee du flux de chaleur sensible au sol
220        REAL, save:: dlw(klon) ! derivative of infra-red flux
221      REAL bils(klon) ! bilan de chaleur au sol      REAL bils(klon) ! bilan de chaleur au sol
222      REAL fder(klon) ! Derive de flux (sensible et latente)      REAL fder(klon) ! Derive de flux (sensible et latente)
     save fder  
223      REAL ve(klon) ! integr. verticale du transport meri. de l'energie      REAL ve(klon) ! integr. verticale du transport meri. de l'energie
224      REAL vq(klon) ! integr. verticale du transport meri. de l'eau      REAL vq(klon) ! integr. verticale du transport meri. de l'eau
225      REAL ue(klon) ! integr. verticale du transport zonal de l'energie      REAL ue(klon) ! integr. verticale du transport zonal de l'energie
226      REAL uq(klon) ! integr. verticale du transport zonal de l'eau      REAL uq(klon) ! integr. verticale du transport zonal de l'eau
227    
228      REAL frugs(klon, nbsrf) ! longueur de rugosite      REAL, save:: frugs(klon, nbsrf) ! longueur de rugosite
     save frugs  
229      REAL zxrugs(klon) ! longueur de rugosite      REAL zxrugs(klon) ! longueur de rugosite
230    
231      ! Conditions aux limites      ! Conditions aux limites
232    
233      INTEGER julien      INTEGER julien
234        REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface
235      INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day      REAL, save:: albsol(klon) ! albedo du sol total, visible, moyen par maille
     REAL pctsrf(klon, nbsrf)  
     !IM  
     REAL pctsrf_new(klon, nbsrf) !pourcentage surfaces issus d'ORCHIDEE  
   
     SAVE pctsrf ! sous-fraction du sol  
     REAL albsol(klon)  
     SAVE albsol ! albedo du sol total  
     REAL albsollw(klon)  
     SAVE albsollw ! albedo du sol total  
   
236      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU
237        real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2
238    
239      ! Declaration des procedures appelees      real, save:: clwcon(klon, llm), rnebcon(klon, llm)
240        real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)
     EXTERNAL alboc ! calculer l'albedo sur ocean  
     EXTERNAL ajsec ! ajustement sec  
     !KE43  
     EXTERNAL conema3 ! convect4.3  
     EXTERNAL fisrtilp ! schema de condensation a grande echelle (pluie)  
     EXTERNAL nuage ! calculer les proprietes radiatives  
     EXTERNAL radlwsw ! rayonnements solaire et infrarouge  
     EXTERNAL transp ! transport total de l'eau et de l'energie  
   
     ! Variables locales  
   
     real clwcon(klon, llm), rnebcon(klon, llm)  
     real clwcon0(klon, llm), rnebcon0(klon, llm)  
   
     save rnebcon, clwcon  
241    
242      REAL rhcl(klon, llm) ! humiditi relative ciel clair      REAL rhcl(klon, llm) ! humiditi relative ciel clair
243      REAL dialiq(klon, llm) ! eau liquide nuageuse      REAL dialiq(klon, llm) ! eau liquide nuageuse
# Line 415  contains Line 247  contains
247      REAL cldtau(klon, llm) ! epaisseur optique      REAL cldtau(klon, llm) ! epaisseur optique
248      REAL cldemi(klon, llm) ! emissivite infrarouge      REAL cldemi(klon, llm) ! emissivite infrarouge
249    
250      REAL fluxq(klon, llm, nbsrf) ! flux turbulent d'humidite      REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface
251      REAL fluxt(klon, llm, nbsrf) ! flux turbulent de chaleur      REAL flux_t(klon, nbsrf) ! flux turbulent de chaleur à la surface
252      REAL fluxu(klon, llm, nbsrf) ! flux turbulent de vitesse u      REAL flux_u(klon, nbsrf) ! flux turbulent de vitesse u à la surface
253      REAL fluxv(klon, llm, nbsrf) ! flux turbulent de vitesse v      REAL flux_v(klon, nbsrf) ! flux turbulent de vitesse v à la surface
254    
255      REAL zxfluxt(klon, llm)      ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que
256      REAL zxfluxq(klon, llm)      ! les variables soient r\'emanentes.
257      REAL zxfluxu(klon, llm)      REAL, save:: heat(klon, llm) ! chauffage solaire
258      REAL zxfluxv(klon, llm)      REAL, save:: heat0(klon, llm) ! chauffage solaire ciel clair
259        REAL, save:: cool(klon, llm) ! refroidissement infrarouge
260      REAL heat(klon, llm) ! chauffage solaire      REAL, save:: cool0(klon, llm) ! refroidissement infrarouge ciel clair
261      REAL heat0(klon, llm) ! chauffage solaire ciel clair      REAL, save:: topsw(klon), toplw(klon), solsw(klon)
262      REAL cool(klon, llm) ! refroidissement infrarouge      REAL, save:: sollw(klon) ! rayonnement infrarouge montant \`a la surface
263      REAL cool0(klon, llm) ! refroidissement infrarouge ciel clair      real, save:: sollwdown(klon) ! downward LW flux at surface
264      REAL topsw(klon), toplw(klon), solsw(klon), sollw(klon)      REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)
265      real sollwdown(klon) ! downward LW flux at surface      REAL, save:: albpla(klon)
266      REAL topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)      REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous-surface
267      REAL albpla(klon)      REAL fsolsw(klon, nbsrf) ! flux solaire absorb\'e pour chaque sous-surface
268      REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous surface  
269      REAL fsolsw(klon, nbsrf) ! flux solaire absorb. pour chaque sous surface      REAL conv_q(klon, llm) ! convergence de l'humidite (kg / kg / s)
270      ! Le rayonnement n'est pas calcule tous les pas, il faut donc      REAL conv_t(klon, llm) ! convergence of temperature (K / s)
271      ! sauvegarder les sorties du rayonnement  
272      SAVE heat, cool, albpla, topsw, toplw, solsw, sollw, sollwdown      REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut
273      SAVE topsw0, toplw0, solsw0, sollw0, heat0, cool0      REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree
274    
275      INTEGER itaprad      REAL zxfluxlat(klon)
276      SAVE itaprad      REAL dist, mu0(klon), fract(klon)
277        real longi
     REAL conv_q(klon, llm) ! convergence de l'humidite (kg/kg/s)  
     REAL conv_t(klon, llm) ! convergence de la temperature(K/s)  
   
     REAL cldl(klon), cldm(klon), cldh(klon) !nuages bas, moyen et haut  
     REAL cldt(klon), cldq(klon) !nuage total, eau liquide integree  
   
     REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon)  
   
     REAL dist, rmu0(klon), fract(klon)  
     REAL zdtime ! pas de temps du rayonnement (s)  
     real zlongi  
   
278      REAL z_avant(klon), z_apres(klon), z_factor(klon)      REAL z_avant(klon), z_apres(klon), z_factor(klon)
279      LOGICAL zx_ajustq      REAL zb
280        REAL zx_t, zx_qs, zcor
     REAL za, zb  
     REAL zx_t, zx_qs, zdelta, zcor, zlvdcp, zlsdcp  
281      real zqsat(klon, llm)      real zqsat(klon, llm)
282      INTEGER i, k, iq, nsrf      INTEGER i, k, iq, nsrf
     REAL t_coup  
     PARAMETER (t_coup=234.0)  
   
283      REAL zphi(klon, llm)      REAL zphi(klon, llm)
284    
285      !IM cf. AM Variables locales pour la CLA (hbtm2)      ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm)
286    
287      REAL pblh(klon, nbsrf) ! Hauteur de couche limite      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite
288      REAL plcl(klon, nbsrf) ! Niveau de condensation de la CLA      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA
289      REAL capCL(klon, nbsrf) ! CAPE de couche limite      REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite
290      REAL oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite      REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite
291      REAL cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite      REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite
292      REAL pblt(klon, nbsrf) ! T a la Hauteur de couche limite      REAL, SAVE:: pblt(klon, nbsrf) ! T \`a la hauteur de couche limite
293      REAL therm(klon, nbsrf)      REAL, SAVE:: therm(klon, nbsrf)
294      REAL trmb1(klon, nbsrf) ! deep_cape      REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape
295      REAL trmb2(klon, nbsrf) ! inhibition      REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition
296      REAL trmb3(klon, nbsrf) ! Point Omega      REAL, SAVE:: trmb3(klon, nbsrf) ! Point Omega
297      ! Grdeurs de sorties      ! Grandeurs de sorties
298      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)
299      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)
300      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)
301      REAL s_trmb3(klon)      REAL s_trmb3(klon)
302    
303      ! Variables locales pour la convection de K. Emanuel (sb):      ! Variables pour la convection de K. Emanuel :
304    
305      REAL upwd(klon, llm) ! saturated updraft mass flux      REAL upwd(klon, llm) ! saturated updraft mass flux
306      REAL dnwd(klon, llm) ! saturated downdraft mass flux      REAL dnwd(klon, llm) ! saturated downdraft mass flux
307      REAL dnwd0(klon, llm) ! unsaturated downdraft mass flux      REAL, save:: cape(klon)
308      REAL tvp(klon, llm) ! virtual temp of lifted parcel  
     REAL cape(klon) ! CAPE  
     SAVE cape  
   
     REAL pbase(klon) ! cloud base pressure  
     SAVE pbase  
     REAL bbase(klon) ! cloud base buoyancy  
     SAVE bbase  
     REAL rflag(klon) ! flag fonctionnement de convect  
309      INTEGER iflagctrl(klon) ! flag fonctionnement de convect      INTEGER iflagctrl(klon) ! flag fonctionnement de convect
     ! -- convect43:  
     INTEGER ntra ! nb traceurs pour convect4.3  
     REAL dtvpdt1(klon, llm), dtvpdq1(klon, llm)  
     REAL dplcldt(klon), dplcldr(klon)  
310    
311      ! Variables du changement      ! Variables du changement
312    
313      ! con: convection      ! con: convection
314      ! lsc: condensation a grande echelle (Large-Scale-Condensation)      ! lsc: large scale condensation
315      ! ajs: ajustement sec      ! ajs: ajustement sec
316      ! eva: evaporation de l'eau liquide nuageuse      ! eva: \'evaporation de l'eau liquide nuageuse
317      ! vdf: couche limite (Vertical DiFfusion)      ! vdf: vertical diffusion in boundary layer
318      REAL d_t_con(klon, llm), d_q_con(klon, llm)      REAL d_t_con(klon, llm), d_q_con(klon, llm)
319      REAL d_u_con(klon, llm), d_v_con(klon, llm)      REAL, save:: d_u_con(klon, llm), d_v_con(klon, llm)
320      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)
321      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)
322      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)
323      REAL rneb(klon, llm)      REAL rneb(klon, llm)
324    
325      REAL pmfu(klon, llm), pmfd(klon, llm)      REAL mfu(klon, llm), mfd(klon, llm)
326      REAL pen_u(klon, llm), pen_d(klon, llm)      REAL pen_u(klon, llm), pen_d(klon, llm)
327      REAL pde_u(klon, llm), pde_d(klon, llm)      REAL pde_u(klon, llm), pde_d(klon, llm)
328      INTEGER kcbot(klon), kctop(klon), kdtop(klon)      INTEGER kcbot(klon), kctop(klon), kdtop(klon)
329      REAL pmflxr(klon, llm+1), pmflxs(klon, llm+1)      REAL pmflxr(klon, llm + 1), pmflxs(klon, llm + 1)
330      REAL prfl(klon, llm+1), psfl(klon, llm+1)      REAL prfl(klon, llm + 1), psfl(klon, llm + 1)
   
     INTEGER ibas_con(klon), itop_con(klon)  
331    
332      SAVE ibas_con, itop_con      INTEGER, save:: ibas_con(klon), itop_con(klon)
333        real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa
334    
335      REAL rain_con(klon), rain_lsc(klon)      REAL, save:: rain_con(klon)
336      REAL snow_con(klon), snow_lsc(klon)      real rain_lsc(klon)
337      REAL d_ts(klon, nbsrf)      REAL, save:: snow_con(klon) ! neige (mm / s)
338        real snow_lsc(klon)
339        REAL d_ts(klon, nbsrf) ! variation of ftsol
340    
341      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)
342      REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)      REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)
# Line 542  contains Line 346  contains
346      REAL d_u_lif(klon, llm), d_v_lif(klon, llm)      REAL d_u_lif(klon, llm), d_v_lif(klon, llm)
347      REAL d_t_lif(klon, llm)      REAL d_t_lif(klon, llm)
348    
349      REAL ratqs(klon, llm), ratqss(klon, llm), ratqsc(klon, llm)      REAL, save:: ratqs(klon, llm)
350      real ratqsbas, ratqshaut      real ratqss(klon, llm), ratqsc(klon, llm)
351      save ratqsbas, ratqshaut, ratqs      real:: ratqsbas = 0.01, ratqshaut = 0.3
352    
353      ! Parametres lies au nouveau schema de nuages (SB, PDF)      ! Parametres lies au nouveau schema de nuages (SB, PDF)
354      real, save:: fact_cldcon      real:: fact_cldcon = 0.375
355      real, save:: facttemps      real:: facttemps = 1.e-4
356      logical ok_newmicro      logical:: ok_newmicro = .true.
     save ok_newmicro  
357      real facteur      real facteur
358    
359      integer iflag_cldcon      integer:: iflag_cldcon = 1
     save iflag_cldcon  
   
360      logical ptconv(klon, llm)      logical ptconv(klon, llm)
361    
362      ! Variables locales pour effectuer les appels en serie      ! Variables pour effectuer les appels en s\'erie :
363    
364      REAL t_seri(klon, llm), q_seri(klon, llm)      REAL t_seri(klon, llm), q_seri(klon, llm)
365      REAL ql_seri(klon, llm), qs_seri(klon, llm)      REAL ql_seri(klon, llm)
366      REAL u_seri(klon, llm), v_seri(klon, llm)      REAL u_seri(klon, llm), v_seri(klon, llm)
367        REAL tr_seri(klon, llm, nqmx - 2)
     REAL tr_seri(klon, llm, nbtr)  
     REAL d_tr(klon, llm, nbtr)  
368    
369      REAL zx_rh(klon, llm)      REAL zx_rh(klon, llm)
370    
# Line 574  contains Line 373  contains
373      REAL zustrph(klon), zvstrph(klon)      REAL zustrph(klon), zvstrph(klon)
374      REAL aam, torsfc      REAL aam, torsfc
375    
     REAL dudyn(iim+1, jjm + 1, llm)  
   
     REAL zx_tmp_fi2d(klon) ! variable temporaire grille physique  
     REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm)  
   
     INTEGER, SAVE:: nid_day, nid_ins  
   
376      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.
377      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.
378      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.
379      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.
380    
     REAL zsto  
   
     character(len=20) modname  
     character(len=80) abort_message  
     logical ok_sync  
381      real date0      real date0
382        REAL tsol(klon)
383    
384      ! Variables liees au bilan d'energie et d'enthalpi      REAL d_t_ec(klon, llm)
385      REAL ztsol(klon)      ! tendance due \`a la conversion d'\'energie cin\'etique en
386      REAL d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec      ! énergie thermique
     REAL d_h_vcol_phy  
     REAL fs_bound, fq_bound  
     SAVE d_h_vcol_phy  
     REAL zero_v(klon)  
     CHARACTER(LEN=15) ztit  
     INTEGER ip_ebil ! PRINT level for energy conserv. diag.  
     SAVE ip_ebil  
     DATA ip_ebil/0/  
     INTEGER, SAVE:: if_ebil ! level for energy conservation diagnostics  
     !+jld ec_conser  
     REAL d_t_ec(klon, llm) ! tendance du a la conersion Ec -> E thermique  
     REAL ZRCPD  
     !-jld ec_conser  
     !IM: t2m, q2m, u10m, v10m  
     REAL t2m(klon, nbsrf), q2m(klon, nbsrf) !temperature, humidite a 2m  
     REAL u10m(klon, nbsrf), v10m(klon, nbsrf) !vents a 10m  
     REAL zt2m(klon), zq2m(klon) !temp., hum. 2m moyenne s/ 1 maille  
     REAL zu10m(klon), zv10m(klon) !vents a 10m moyennes s/1 maille  
     !jq Aerosol effects (Johannes Quaas, 27/11/2003)  
     REAL sulfate(klon, llm) ! SO4 aerosol concentration [ug/m3]  
   
     REAL sulfate_pi(klon, llm)  
     ! (SO4 aerosol concentration [ug/m3] (pre-industrial value))  
     SAVE sulfate_pi  
   
     REAL cldtaupi(klon, llm)  
     ! (Cloud optical thickness for pre-industrial (pi) aerosols)  
   
     REAL re(klon, llm) ! Cloud droplet effective radius  
     REAL fl(klon, llm) ! denominator of re  
   
     ! Aerosol optical properties  
     REAL tau_ae(klon, llm, 2), piz_ae(klon, llm, 2)  
     REAL cg_ae(klon, llm, 2)  
   
     REAL topswad(klon), solswad(klon) ! Aerosol direct effect.  
     ! ok_ade=T -ADE=topswad-topsw  
   
     REAL topswai(klon), solswai(klon) ! Aerosol indirect effect.  
     ! ok_aie=T ->  
     ! ok_ade=T -AIE=topswai-topswad  
     ! ok_ade=F -AIE=topswai-topsw  
   
     REAL aerindex(klon) ! POLDER aerosol index  
   
     ! Parameters  
     LOGICAL ok_ade, ok_aie ! Apply aerosol (in)direct effects or not  
     REAL bl95_b0, bl95_b1 ! Parameter in Boucher and Lohmann (1995)  
   
     SAVE ok_ade, ok_aie, bl95_b0, bl95_b1  
     SAVE u10m  
     SAVE v10m  
     SAVE t2m  
     SAVE q2m  
     SAVE ffonte  
     SAVE fqcalving  
     SAVE piz_ae  
     SAVE tau_ae  
     SAVE cg_ae  
     SAVE rain_con  
     SAVE snow_con  
     SAVE topswai  
     SAVE topswad  
     SAVE solswai  
     SAVE solswad  
     SAVE d_u_con  
     SAVE d_v_con  
     SAVE rnebcon0  
     SAVE clwcon0  
     SAVE pblh  
     SAVE plcl  
     SAVE capCL  
     SAVE oliqCL  
     SAVE cteiCL  
     SAVE pblt  
     SAVE therm  
     SAVE trmb1  
     SAVE trmb2  
     SAVE trmb3  
387    
388      real zmasse(klon, llm)      REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf)
389        ! temperature and humidity at 2 m
390    
391        REAL, save:: u10m_srf(klon, nbsrf), v10m_srf(klon, nbsrf)
392        ! composantes du vent \`a 10 m
393        
394        REAL zt2m(klon), zq2m(klon) ! température, humidité 2 m moyenne sur 1 maille
395        REAL u10m(klon), v10m(klon) ! vent \`a 10 m moyenn\' sur les sous-surfaces
396    
397        ! Aerosol effects:
398    
399        REAL, save:: topswad(klon), solswad(klon) ! aerosol direct effect
400        LOGICAL:: ok_ade = .false. ! apply aerosol direct effect
401    
402        REAL:: bl95_b0 = 2., bl95_b1 = 0.2
403        ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus
404        ! B). They link cloud droplet number concentration to aerosol mass
405        ! concentration.
406    
407        real zmasse(klon, llm)
408      ! (column-density of mass of air in a cell, in kg m-2)      ! (column-density of mass of air in a cell, in kg m-2)
409    
410      real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2      integer, save:: ncid_startphy
411    
412        namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, &
413             ratqsbas, ratqshaut, ok_ade, bl95_b0, bl95_b1, iflag_thermals, &
414             nsplit_thermals
415    
416      !----------------------------------------------------------------      !----------------------------------------------------------------
417    
418      modname = 'physiq'      IF (nqmx < 2) CALL abort_gcm('physiq', &
419      IF (if_ebil >= 1) THEN           'eaux vapeur et liquide sont indispensables')
        DO i=1, klon  
           zero_v(i)=0.  
        END DO  
     END IF  
     ok_sync=.TRUE.  
     IF (nqmx < 2) THEN  
        abort_message = 'eaux vapeur et liquide sont indispensables'  
        CALL abort_gcm(modname, abort_message, 1)  
     ENDIF  
420    
421      test_firstcal: IF (firstcal) THEN      test_firstcal: IF (firstcal) THEN
422         ! initialiser         ! initialiser
423         u10m=0.         u10m_srf = 0.
424         v10m=0.         v10m_srf = 0.
425         t2m=0.         t2m = 0.
426         q2m=0.         q2m = 0.
427         ffonte=0.         ffonte = 0.
428         fqcalving=0.         fqcalving = 0.
429         piz_ae=0.         rain_con = 0.
430         tau_ae=0.         snow_con = 0.
431         cg_ae=0.         d_u_con = 0.
432         rain_con(:)=0.         d_v_con = 0.
433         snow_con(:)=0.         rnebcon0 = 0.
434         bl95_b0=0.         clwcon0 = 0.
435         bl95_b1=0.         rnebcon = 0.
436         topswai(:)=0.         clwcon = 0.
        topswad(:)=0.  
        solswai(:)=0.  
        solswad(:)=0.  
   
        d_u_con = 0.0  
        d_v_con = 0.0  
        rnebcon0 = 0.0  
        clwcon0 = 0.0  
        rnebcon = 0.0  
        clwcon = 0.0  
   
437         pblh =0. ! Hauteur de couche limite         pblh =0. ! Hauteur de couche limite
438         plcl =0. ! Niveau de condensation de la CLA         plcl =0. ! Niveau de condensation de la CLA
439         capCL =0. ! CAPE de couche limite         capCL =0. ! CAPE de couche limite
440         oliqCL =0. ! eau_liqu integree de couche limite         oliqCL =0. ! eau_liqu integree de couche limite
441         cteiCL =0. ! cloud top instab. crit. couche limite         cteiCL =0. ! cloud top instab. crit. couche limite
442         pblt =0. ! T a la Hauteur de couche limite         pblt =0.
443         therm =0.         therm =0.
444         trmb1 =0. ! deep_cape         trmb1 =0. ! deep_cape
445         trmb2 =0. ! inhibition         trmb2 =0. ! inhibition
446         trmb3 =0. ! Point Omega         trmb3 =0. ! Point Omega
447    
448         IF (if_ebil >= 1) d_h_vcol_phy=0.         iflag_thermals = 0
449           nsplit_thermals = 1
450           print *, "Enter namelist 'physiq_nml'."
451           read(unit=*, nml=physiq_nml)
452           write(unit_nml, nml=physiq_nml)
453    
454         ! appel a la lecture du run.def physique         call conf_phys
   
        call conf_phys(ocean, ok_veget, ok_journe, ok_mensuel, &  
             ok_instan, fact_cldcon, facttemps, ok_newmicro, &  
             iflag_cldcon, ratqsbas, ratqshaut, if_ebil, &  
             ok_ade, ok_aie, &  
             bl95_b0, bl95_b1, &  
             iflag_thermals, nsplit_thermals)  
455    
456         ! Initialiser les compteurs:         ! Initialiser les compteurs:
457    
458         frugs = 0.         frugs = 0.
459         itap = 0         CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
460         itaprad = 0              fevap, rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, &
461         CALL phyetat0("startphy.nc", pctsrf, ftsol, ftsoil, ocean, tslab, &              agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, &
462              seaice, fqsurf, qsol, fsnow, &              q_ancien, ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
463              falbe, falblw, fevap, rain_fall, snow_fall, solsw, sollwdown, &              w01, ncid_startphy)
             dlw, radsol, frugs, agesno, &  
             zmea, zstd, zsig, zgam, zthe, zpic, zval, &  
             t_ancien, q_ancien, ancien_ok, rnebcon, ratqs, clwcon, &  
             run_off_lic_0)  
464    
465         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial
466         q2=1.e-8         q2 = 1e-8
   
        radpas = NINT( 86400. / dtphys / nbapp_rad)  
   
        ! on remet le calendrier a zero  
        IF (raz_date) itau_phy = 0  
   
        PRINT *, 'cycle_diurne = ', cycle_diurne  
   
        IF(ocean.NE.'force ') THEN  
           ok_ocean=.TRUE.  
        ENDIF  
467    
468         CALL printflag(radpas, ok_ocean, ok_oasis, ok_journe, ok_instan, &         radpas = lmt_pas / nbapp_rad
469              ok_region)         print *, "radpas = ", radpas
   
        IF (dtphys*REAL(radpas).GT.21600..AND.cycle_diurne) THEN  
           print *,'Nbre d appels au rayonnement insuffisant'  
           print *,"Au minimum 4 appels par jour si cycle diurne"  
           abort_message='Nbre d appels au rayonnement insuffisant'  
           call abort_gcm(modname, abort_message, 1)  
        ENDIF  
        print *,"Clef pour la convection, iflag_con=", iflag_con  
        print *,"Clef pour le driver de la convection, ok_cvl=", &  
             ok_cvl  
   
        ! Initialisation pour la convection de K.E. (sb):  
        IF (iflag_con >= 3) THEN  
   
           print *,"*** Convection de Kerry Emanuel 4.3 "  
   
           !IM15/11/02 rajout initialisation ibas_con, itop_con cf. SB =>BEG  
           DO i = 1, klon  
              ibas_con(i) = 1  
              itop_con(i) = 1  
           ENDDO  
           !IM15/11/02 rajout initialisation ibas_con, itop_con cf. SB =>END  
470    
471           ! Initialisation pour le sch\'ema de convection d'Emanuel :
472           IF (conv_emanuel) THEN
473              ibas_con = 1
474              itop_con = 1
475         ENDIF         ENDIF
476    
477         IF (ok_orodr) THEN         IF (ok_orodr) THEN
478            rugoro = MAX(1e-5, zstd * zsig / 2)            rugoro = MAX(1e-5, zstd * zsig / 2)
479            CALL SUGWD(klon, llm, paprs, play)            CALL SUGWD(paprs, play)
480         else         else
481            rugoro = 0.            rugoro = 0.
482         ENDIF         ENDIF
483    
484         lmt_pas = NINT(86400. / dtphys) ! tous les jours         ecrit_ins = NINT(ecrit_ins / dtphys)
        print *, 'Number of time steps of "physics" per day: ', lmt_pas  
   
        ecrit_ins = NINT(ecrit_ins/dtphys)  
        ecrit_hf = NINT(ecrit_hf/dtphys)  
        ecrit_mth = NINT(ecrit_mth/dtphys)  
        ecrit_tra = NINT(86400.*ecrit_tra/dtphys)  
        ecrit_reg = NINT(ecrit_reg/dtphys)  
   
        ! Initialiser le couplage si necessaire  
   
        npas = 0  
        nexca = 0  
   
        print *,'AVANT HIST IFLAG_CON=', iflag_con  
485    
486         ! Initialisation des sorties         ! Initialisation des sorties
487    
488         call ini_histhf(dtphys, nid_hf, nid_hf3d)         call ini_histins(dtphys, ok_newmicro)
489         call ini_histday(dtphys, ok_journe, nid_day, nqmx)         CALL ymds2ju(annee_ref, 1, day_ref, 0., date0)
490         call ini_histins(dtphys, ok_instan, nid_ins)         ! Positionner date0 pour initialisation de ORCHIDEE
491         CALL ymds2ju(annee_ref, 1, int(day_ref), 0., date0)         print *, 'physiq date0: ', date0
492         !XXXPB Positionner date0 pour initialisation de ORCHIDEE         CALL phyredem0
        WRITE(*, *) 'physiq date0 : ', date0  
493      ENDIF test_firstcal      ENDIF test_firstcal
494    
495      ! Mettre a zero des variables de sortie (pour securite)      ! We will modify variables *_seri and we will not touch variables
496        ! u, v, t, qx:
497        t_seri = t
498        u_seri = u
499        v_seri = v
500        q_seri = qx(:, :, ivap)
501        ql_seri = qx(:, :, iliq)
502        tr_seri = qx(:, :, 3:nqmx)
503    
504      DO i = 1, klon      tsol = sum(ftsol * pctsrf, dim = 2)
        d_ps(i) = 0.0  
     ENDDO  
     DO k = 1, llm  
        DO i = 1, klon  
           d_t(i, k) = 0.0  
           d_u(i, k) = 0.0  
           d_v(i, k) = 0.0  
        ENDDO  
     ENDDO  
     DO iq = 1, nqmx  
        DO k = 1, llm  
           DO i = 1, klon  
              d_qx(i, k, iq) = 0.0  
           ENDDO  
        ENDDO  
     ENDDO  
     da=0.  
     mp=0.  
     phi=0.  
   
     ! Ne pas affecter les valeurs entrees de u, v, h, et q  
   
     DO k = 1, llm  
        DO i = 1, klon  
           t_seri(i, k) = t(i, k)  
           u_seri(i, k) = u(i, k)  
           v_seri(i, k) = v(i, k)  
           q_seri(i, k) = qx(i, k, ivap)  
           ql_seri(i, k) = qx(i, k, iliq)  
           qs_seri(i, k) = 0.  
        ENDDO  
     ENDDO  
     IF (nqmx >= 3) THEN  
        tr_seri(:, :, :nqmx-2) = qx(:, :, 3:nqmx)  
     ELSE  
        tr_seri(:, :, 1) = 0.  
     ENDIF  
   
     DO i = 1, klon  
        ztsol(i) = 0.  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           ztsol(i) = ztsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     IF (if_ebil >= 1) THEN  
        ztit='after dynamic'  
        CALL diagetpq(airephy, ztit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        ! Comme les tendances de la physique sont ajoute dans la dynamique,  
        ! on devrait avoir que la variation d'entalpie par la dynamique  
        ! est egale a la variation de la physique au pas de temps precedent.  
        ! Donc la somme de ces 2 variations devrait etre nulle.  
        call diagphy(airephy, ztit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol+d_h_vcol_phy, &  
             d_qt, 0., fs_bound, fq_bound )  
     END IF  
   
     ! Diagnostiquer la tendance dynamique  
505    
506        ! Diagnostic de la tendance dynamique :
507      IF (ancien_ok) THEN      IF (ancien_ok) THEN
508         DO k = 1, llm         DO k = 1, llm
509            DO i = 1, klon            DO i = 1, klon
510               d_t_dyn(i, k) = (t_seri(i, k)-t_ancien(i, k))/dtphys               d_t_dyn(i, k) = (t_seri(i, k) - t_ancien(i, k)) / dtphys
511               d_q_dyn(i, k) = (q_seri(i, k)-q_ancien(i, k))/dtphys               d_q_dyn(i, k) = (q_seri(i, k) - q_ancien(i, k)) / dtphys
512            ENDDO            ENDDO
513         ENDDO         ENDDO
514      ELSE      ELSE
515         DO k = 1, llm         DO k = 1, llm
516            DO i = 1, klon            DO i = 1, klon
517               d_t_dyn(i, k) = 0.0               d_t_dyn(i, k) = 0.
518               d_q_dyn(i, k) = 0.0               d_q_dyn(i, k) = 0.
519            ENDDO            ENDDO
520         ENDDO         ENDDO
521         ancien_ok = .TRUE.         ancien_ok = .TRUE.
522      ENDIF      ENDIF
523    
524      ! Ajouter le geopotentiel du sol:      ! Ajouter le geopotentiel du sol:
   
525      DO k = 1, llm      DO k = 1, llm
526         DO i = 1, klon         DO i = 1, klon
527            zphi(i, k) = pphi(i, k) + pphis(i)            zphi(i, k) = pphi(i, k) + pphis(i)
528         ENDDO         ENDDO
529      ENDDO      ENDDO
530    
531      ! Verifier les temperatures      ! Check temperatures:
   
532      CALL hgardfou(t_seri, ftsol)      CALL hgardfou(t_seri, ftsol)
533    
534      ! Incrementer le compteur de la physique      call increment_itap
535        julien = MOD(dayvrai, 360)
     itap = itap + 1  
     julien = MOD(NINT(rdayvrai), 360)  
536      if (julien == 0) julien = 360      if (julien == 0) julien = 360
537    
538      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k)-paprs(:, k+1)) / rg      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg
   
     ! Mettre en action les conditions aux limites (albedo, sst, etc.).  
     ! Prescrire l'ozone et calculer l'albedo sur l'ocean.  
539    
540      if (nqmx >= 5) then      ! \'Evaporation de l'eau liquide nuageuse :
541         wo = qx(:, :, 5) * zmasse / dobson_u / 1e3      DO k = 1, llm
     else IF (MOD(itap - 1, lmt_pas) == 0) THEN  
        wo = ozonecm(REAL(julien), paprs)  
     ENDIF  
   
     ! Re-evaporer l'eau liquide nuageuse  
   
     DO k = 1, llm ! re-evaporation de l'eau liquide nuageuse  
542         DO i = 1, klon         DO i = 1, klon
543            zlvdcp=RLVTT/RCPD/(1.0+RVTMP2*q_seri(i, k))            zb = MAX(0., ql_seri(i, k))
544            zlsdcp=RLVTT/RCPD/(1.0+RVTMP2*q_seri(i, k))            t_seri(i, k) = t_seri(i, k) &
545            zdelta = MAX(0., SIGN(1., RTT-t_seri(i, k)))                 - zb * RLVTT / RCPD / (1. + RVTMP2 * q_seri(i, k))
           zb = MAX(0.0, ql_seri(i, k))  
           za = - MAX(0.0, ql_seri(i, k)) &  
                * (zlvdcp*(1.-zdelta)+zlsdcp*zdelta)  
           t_seri(i, k) = t_seri(i, k) + za  
546            q_seri(i, k) = q_seri(i, k) + zb            q_seri(i, k) = q_seri(i, k) + zb
           ql_seri(i, k) = 0.0  
        ENDDO  
     ENDDO  
   
     IF (if_ebil >= 2) THEN  
        ztit='after reevap'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 1, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound )  
   
     END IF  
   
     ! Appeler la diffusion verticale (programme de couche limite)  
   
     DO i = 1, klon  
        zxrugs(i) = 0.0  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           frugs(i, nsrf) = MAX(frugs(i, nsrf), 0.000015)  
        ENDDO  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxrugs(i) = zxrugs(i) + frugs(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     ! calculs necessaires au calcul de l'albedo dans l'interface  
   
     CALL orbite(REAL(julien), zlongi, dist)  
     IF (cycle_diurne) THEN  
        zdtime = dtphys * REAL(radpas)  
        CALL zenang(zlongi, time, zdtime, rmu0, fract)  
     ELSE  
        rmu0 = -999.999  
     ENDIF  
   
     ! Calcul de l'abedo moyen par maille  
     albsol(:)=0.  
     albsollw(:)=0.  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           albsol(i) = albsol(i) + falbe(i, nsrf) * pctsrf(i, nsrf)  
           albsollw(i) = albsollw(i) + falblw(i, nsrf) * pctsrf(i, nsrf)  
547         ENDDO         ENDDO
548      ENDDO      ENDDO
549        ql_seri = 0.
550    
551      ! Repartition sous maille des flux LW et SW      frugs = MAX(frugs, 0.000015)
552      ! Repartition du longwave par sous-surface linearisee      zxrugs = sum(frugs * pctsrf, dim = 2)
553    
554      DO nsrf = 1, nbsrf      ! Calculs n\'ecessaires au calcul de l'albedo dans l'interface avec
555         DO i = 1, klon      ! la surface.
           fsollw(i, nsrf) = sollw(i) &  
                + 4.0*RSIGMA*ztsol(i)**3 * (ztsol(i)-ftsol(i, nsrf))  
           fsolsw(i, nsrf) = solsw(i)*(1.-falbe(i, nsrf))/(1.-albsol(i))  
        ENDDO  
     ENDDO  
   
     fder = dlw  
   
     ! Couche limite:  
556    
557      CALL clmain(dtphys, itap, date0, pctsrf, pctsrf_new, t_seri, q_seri, &      CALL orbite(REAL(julien), longi, dist)
558           u_seri, v_seri, julien, rmu0, co2_ppm, ok_veget, ocean, npas, nexca, &      CALL zenang(longi, time, dtphys * radpas, mu0, fract)
559           ftsol, soil_model, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, &      albsol = sum(falbe * pctsrf, dim = 2)
560           qsol, paprs, play, fsnow, fqsurf, fevap, falbe, falblw, fluxlat, &  
561           rain_fall, snow_fall, fsolsw, fsollw, sollwdown, fder, rlon, rlat, &      ! R\'epartition sous maille des flux longwave et shortwave
562           cuphy, cvphy, frugs, firstcal, lafin, agesno, rugoro, d_t_vdf, &      ! R\'epartition du longwave par sous-surface lin\'earis\'ee
563           d_q_vdf, d_u_vdf, d_v_vdf, d_ts, fluxt, fluxq, fluxu, fluxv, cdragh, &  
564           cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, &      forall (nsrf = 1: nbsrf)
565           pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, plcl, &         fsollw(:, nsrf) = sollw + 4. * RSIGMA * tsol**3 &
566           fqcalving, ffonte, run_off_lic_0, fluxo, fluxg, tslab, seaice)              * (tsol - ftsol(:, nsrf))
567           fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol)
568      ! Incrémentation des flux      END forall
569    
570      zxfluxt=0.      CALL clmain(dtphys, pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, &
571      zxfluxq=0.           ftsol, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, &
572      zxfluxu=0.           paprs, play, fsnow, fqsurf, fevap, falbe, fluxlat, rain_fall, &
573      zxfluxv=0.           snow_fall, fsolsw, fsollw, frugs, agesno, rugoro, d_t_vdf, d_q_vdf, &
574      DO nsrf = 1, nbsrf           d_u_vdf, d_v_vdf, d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, &
575         DO k = 1, llm           cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m_srf, &
576            DO i = 1, klon           v10m_srf, pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, &
577               zxfluxt(i, k) = zxfluxt(i, k) + &           trmb3, plcl, fqcalving, ffonte, run_off_lic_0)
578                    fluxt(i, k, nsrf) * pctsrf( i, nsrf)  
579               zxfluxq(i, k) = zxfluxq(i, k) + &      ! Incr\'ementation des flux
580                    fluxq(i, k, nsrf) * pctsrf( i, nsrf)  
581               zxfluxu(i, k) = zxfluxu(i, k) + &      sens = - sum(flux_t * pctsrf, dim = 2)
582                    fluxu(i, k, nsrf) * pctsrf( i, nsrf)      evap = - sum(flux_q * pctsrf, dim = 2)
583               zxfluxv(i, k) = zxfluxv(i, k) + &      fder = dlw + dsens + devap
                   fluxv(i, k, nsrf) * pctsrf( i, nsrf)  
           END DO  
        END DO  
     END DO  
     DO i = 1, klon  
        sens(i) = - zxfluxt(i, 1) ! flux de chaleur sensible au sol  
        evap(i) = - zxfluxq(i, 1) ! flux d'evaporation au sol  
        fder(i) = dlw(i) + dsens(i) + devap(i)  
     ENDDO  
584    
585      DO k = 1, llm      DO k = 1, llm
586         DO i = 1, klon         DO i = 1, klon
# Line 1067  contains Line 591  contains
591         ENDDO         ENDDO
592      ENDDO      ENDDO
593    
594      IF (if_ebil >= 2) THEN      ! Update surface temperature:
        ztit='after clmain'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             sens, evap, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound )  
     END IF  
595    
596      ! Incrementer la temperature du sol      call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf')
597        ftsol = ftsol + d_ts
598        tsol = sum(ftsol * pctsrf, dim = 2)
599        zxfluxlat = sum(fluxlat * pctsrf, dim = 2)
600        zt2m = sum(t2m * pctsrf, dim = 2)
601        zq2m = sum(q2m * pctsrf, dim = 2)
602        u10m = sum(u10m_srf * pctsrf, dim = 2)
603        v10m = sum(v10m_srf * pctsrf, dim = 2)
604        zxffonte = sum(ffonte * pctsrf, dim = 2)
605        zxfqcalving = sum(fqcalving * pctsrf, dim = 2)
606        s_pblh = sum(pblh * pctsrf, dim = 2)
607        s_lcl = sum(plcl * pctsrf, dim = 2)
608        s_capCL = sum(capCL * pctsrf, dim = 2)
609        s_oliqCL = sum(oliqCL * pctsrf, dim = 2)
610        s_cteiCL = sum(cteiCL * pctsrf, dim = 2)
611        s_pblT = sum(pblT * pctsrf, dim = 2)
612        s_therm = sum(therm * pctsrf, dim = 2)
613        s_trmb1 = sum(trmb1 * pctsrf, dim = 2)
614        s_trmb2 = sum(trmb2 * pctsrf, dim = 2)
615        s_trmb3 = sum(trmb3 * pctsrf, dim = 2)
616    
617      DO i = 1, klon      ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne :
        zxtsol(i) = 0.0  
        zxfluxlat(i) = 0.0  
   
        zt2m(i) = 0.0  
        zq2m(i) = 0.0  
        zu10m(i) = 0.0  
        zv10m(i) = 0.0  
        zxffonte(i) = 0.0  
        zxfqcalving(i) = 0.0  
   
        s_pblh(i) = 0.0  
        s_lcl(i) = 0.0  
        s_capCL(i) = 0.0  
        s_oliqCL(i) = 0.0  
        s_cteiCL(i) = 0.0  
        s_pblT(i) = 0.0  
        s_therm(i) = 0.0  
        s_trmb1(i) = 0.0  
        s_trmb2(i) = 0.0  
        s_trmb3(i) = 0.0  
   
        IF ( abs( pctsrf(i, is_ter) + pctsrf(i, is_lic) + &  
             pctsrf(i, is_oce) + pctsrf(i, is_sic) - 1.) .GT. EPSFRA) &  
             THEN  
           WRITE(*, *) 'physiq : pb sous surface au point ', i, &  
                pctsrf(i, 1 : nbsrf)  
        ENDIF  
     ENDDO  
618      DO nsrf = 1, nbsrf      DO nsrf = 1, nbsrf
619         DO i = 1, klon         DO i = 1, klon
620            ftsol(i, nsrf) = ftsol(i, nsrf) + d_ts(i, nsrf)            IF (pctsrf(i, nsrf) < epsfra) then
621            zxtsol(i) = zxtsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)               ftsol(i, nsrf) = tsol(i)
622            zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf)*pctsrf(i, nsrf)               t2m(i, nsrf) = zt2m(i)
623                 q2m(i, nsrf) = zq2m(i)
624            zt2m(i) = zt2m(i) + t2m(i, nsrf)*pctsrf(i, nsrf)               u10m_srf(i, nsrf) = u10m(i)
625            zq2m(i) = zq2m(i) + q2m(i, nsrf)*pctsrf(i, nsrf)               v10m_srf(i, nsrf) = v10m(i)
626            zu10m(i) = zu10m(i) + u10m(i, nsrf)*pctsrf(i, nsrf)               ffonte(i, nsrf) = zxffonte(i)
627            zv10m(i) = zv10m(i) + v10m(i, nsrf)*pctsrf(i, nsrf)               fqcalving(i, nsrf) = zxfqcalving(i)
628            zxffonte(i) = zxffonte(i) + ffonte(i, nsrf)*pctsrf(i, nsrf)               pblh(i, nsrf) = s_pblh(i)
629            zxfqcalving(i) = zxfqcalving(i) + &               plcl(i, nsrf) = s_lcl(i)
630                 fqcalving(i, nsrf)*pctsrf(i, nsrf)               capCL(i, nsrf) = s_capCL(i)
631            s_pblh(i) = s_pblh(i) + pblh(i, nsrf)*pctsrf(i, nsrf)               oliqCL(i, nsrf) = s_oliqCL(i)
632            s_lcl(i) = s_lcl(i) + plcl(i, nsrf)*pctsrf(i, nsrf)               cteiCL(i, nsrf) = s_cteiCL(i)
633            s_capCL(i) = s_capCL(i) + capCL(i, nsrf) *pctsrf(i, nsrf)               pblT(i, nsrf) = s_pblT(i)
634            s_oliqCL(i) = s_oliqCL(i) + oliqCL(i, nsrf) *pctsrf(i, nsrf)               therm(i, nsrf) = s_therm(i)
635            s_cteiCL(i) = s_cteiCL(i) + cteiCL(i, nsrf) *pctsrf(i, nsrf)               trmb1(i, nsrf) = s_trmb1(i)
636            s_pblT(i) = s_pblT(i) + pblT(i, nsrf) *pctsrf(i, nsrf)               trmb2(i, nsrf) = s_trmb2(i)
637            s_therm(i) = s_therm(i) + therm(i, nsrf) *pctsrf(i, nsrf)               trmb3(i, nsrf) = s_trmb3(i)
638            s_trmb1(i) = s_trmb1(i) + trmb1(i, nsrf) *pctsrf(i, nsrf)            end IF
           s_trmb2(i) = s_trmb2(i) + trmb2(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb3(i) = s_trmb3(i) + trmb3(i, nsrf) *pctsrf(i, nsrf)  
639         ENDDO         ENDDO
640      ENDDO      ENDDO
641    
642      ! Si une sous-fraction n'existe pas, elle prend la temp. moyenne      dlw = - 4. * RSIGMA * tsol**3
643    
644      DO nsrf = 1, nbsrf      ! Appeler la convection
645         DO i = 1, klon  
646            IF (pctsrf(i, nsrf) < epsfra) ftsol(i, nsrf) = zxtsol(i)      if (conv_emanuel) then
647           CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, &
648            IF (pctsrf(i, nsrf) < epsfra) t2m(i, nsrf) = zt2m(i)              d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, &
649            IF (pctsrf(i, nsrf) < epsfra) q2m(i, nsrf) = zq2m(i)              upwd, dnwd, Ma, cape, iflagctrl, qcondc, pmflxr, da, phi, mp)
650            IF (pctsrf(i, nsrf) < epsfra) u10m(i, nsrf) = zu10m(i)         snow_con = 0.
651            IF (pctsrf(i, nsrf) < epsfra) v10m(i, nsrf) = zv10m(i)         clwcon0 = qcondc
652            IF (pctsrf(i, nsrf) < epsfra) ffonte(i, nsrf) = zxffonte(i)         mfu = upwd + dnwd
653            IF (pctsrf(i, nsrf) < epsfra) &  
654                 fqcalving(i, nsrf) = zxfqcalving(i)         zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play)
655            IF (pctsrf(i, nsrf) < epsfra) pblh(i, nsrf)=s_pblh(i)         zqsat = zqsat / (1. - retv * zqsat)
656            IF (pctsrf(i, nsrf) < epsfra) plcl(i, nsrf)=s_lcl(i)  
657            IF (pctsrf(i, nsrf) < epsfra) capCL(i, nsrf)=s_capCL(i)         ! Properties of convective clouds
658            IF (pctsrf(i, nsrf) < epsfra) oliqCL(i, nsrf)=s_oliqCL(i)         clwcon0 = fact_cldcon * clwcon0
659            IF (pctsrf(i, nsrf) < epsfra) cteiCL(i, nsrf)=s_cteiCL(i)         call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &
660            IF (pctsrf(i, nsrf) < epsfra) pblT(i, nsrf)=s_pblT(i)              rnebcon0)
661            IF (pctsrf(i, nsrf) < epsfra) therm(i, nsrf)=s_therm(i)  
662            IF (pctsrf(i, nsrf) < epsfra) trmb1(i, nsrf)=s_trmb1(i)         forall (i = 1:klon) ema_pct(i) = paprs(i, itop_con(i) + 1)
663            IF (pctsrf(i, nsrf) < epsfra) trmb2(i, nsrf)=s_trmb2(i)         mfd = 0.
664            IF (pctsrf(i, nsrf) < epsfra) trmb3(i, nsrf)=s_trmb3(i)         pen_u = 0.
665         ENDDO         pen_d = 0.
666      ENDDO         pde_d = 0.
667           pde_u = 0.
668      ! Calculer la derive du flux infrarouge      else
669           conv_q = d_q_dyn + d_q_vdf / dtphys
670      DO i = 1, klon         conv_t = d_t_dyn + d_t_vdf / dtphys
671         dlw(i) = - 4.0*RSIGMA*zxtsol(i)**3         z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)
672      ENDDO         CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:- 1), &
673                q_seri(:, llm:1:- 1), conv_t, conv_q, - evap, omega, &
674      ! Appeler la convection (au choix)              d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:- 1), &
675                mfd(:, llm:1:- 1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, &
676      DO k = 1, llm              kdtop, pmflxr, pmflxs)
        DO i = 1, klon  
           conv_q(i, k) = d_q_dyn(i, k) &  
                + d_q_vdf(i, k)/dtphys  
           conv_t(i, k) = d_t_dyn(i, k) &  
                + d_t_vdf(i, k)/dtphys  
        ENDDO  
     ENDDO  
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        print *, "avantcon=", za  
     ENDIF  
     zx_ajustq = .FALSE.  
     IF (iflag_con == 2) zx_ajustq=.TRUE.  
     IF (zx_ajustq) THEN  
        DO i = 1, klon  
           z_avant(i) = 0.0  
        ENDDO  
        DO k = 1, llm  
           DO i = 1, klon  
              z_avant(i) = z_avant(i) + (q_seri(i, k)+ql_seri(i, k)) &  
                   *zmasse(i, k)  
           ENDDO  
        ENDDO  
     ENDIF  
     IF (iflag_con == 1) THEN  
        stop 'reactiver le call conlmd dans physiq.F'  
     ELSE IF (iflag_con == 2) THEN  
        CALL conflx(dtphys, paprs, play, t_seri, q_seri, &  
             conv_t, conv_q, zxfluxq(1, 1), omega, &  
             d_t_con, d_q_con, rain_con, snow_con, &  
             pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, &  
             kcbot, kctop, kdtop, pmflxr, pmflxs)  
677         WHERE (rain_con < 0.) rain_con = 0.         WHERE (rain_con < 0.) rain_con = 0.
678         WHERE (snow_con < 0.) snow_con = 0.         WHERE (snow_con < 0.) snow_con = 0.
679         DO i = 1, klon         ibas_con = llm + 1 - kcbot
680            ibas_con(i) = llm+1 - kcbot(i)         itop_con = llm + 1 - kctop
681            itop_con(i) = llm+1 - kctop(i)      END if
        ENDDO  
     ELSE IF (iflag_con >= 3) THEN  
        ! nb of tracers for the KE convection:  
        ! MAF la partie traceurs est faite dans phytrac  
        ! on met ntra=1 pour limiter les appels mais on peut  
        ! supprimer les calculs / ftra.  
        ntra = 1  
        ! Schema de convection modularise et vectorise:  
        ! (driver commun aux versions 3 et 4)  
   
        IF (ok_cvl) THEN ! new driver for convectL  
           CALL concvl(iflag_con, dtphys, paprs, play, t_seri, q_seri, &  
                u_seri, v_seri, tr_seri, ntra, ema_work1, ema_work2, d_t_con, &  
                d_q_con, d_u_con, d_v_con, d_tr, rain_con, snow_con, ibas_con, &  
                itop_con, upwd, dnwd, dnwd0, Ma, cape, tvp, iflagctrl, pbase, &  
                bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr, qcondc, wd, pmflxr, &  
                pmflxs, da, phi, mp)  
   
           clwcon0=qcondc  
           pmfu=upwd+dnwd  
        ELSE  
           ! MAF conema3 ne contient pas les traceurs  
           CALL conema3 (dtphys, paprs, play, t_seri, q_seri, &  
                u_seri, v_seri, tr_seri, ntra, &  
                ema_work1, ema_work2, &  
                d_t_con, d_q_con, d_u_con, d_v_con, d_tr, &  
                rain_con, snow_con, ibas_con, itop_con, &  
                upwd, dnwd, dnwd0, bas, top, &  
                Ma, cape, tvp, rflag, &  
                pbase &  
                , bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr &  
                , clwcon0)  
        ENDIF ! ok_cvl  
   
        IF (.NOT. ok_gust) THEN  
           do i = 1, klon  
              wd(i)=0.0  
           enddo  
        ENDIF  
   
        ! Calcul des proprietes des nuages convectifs  
   
        DO k = 1, llm  
           DO i = 1, klon  
              zx_t = t_seri(i, k)  
              IF (thermcep) THEN  
                 zdelta = MAX(0., SIGN(1., rtt-zx_t))  
                 zx_qs = r2es * FOEEW(zx_t, zdelta)/play(i, k)  
                 zx_qs = MIN(0.5, zx_qs)  
                 zcor = 1./(1.-retv*zx_qs)  
                 zx_qs = zx_qs*zcor  
              ELSE  
                 IF (zx_t < t_coup) THEN  
                    zx_qs = qsats(zx_t)/play(i, k)  
                 ELSE  
                    zx_qs = qsatl(zx_t)/play(i, k)  
                 ENDIF  
              ENDIF  
              zqsat(i, k)=zx_qs  
           ENDDO  
        ENDDO  
   
        ! calcul des proprietes des nuages convectifs  
        clwcon0=fact_cldcon*clwcon0  
        call clouds_gno &  
             (klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, rnebcon0)  
     ELSE  
        print *, "iflag_con non-prevu", iflag_con  
        stop 1  
     ENDIF  
682    
683      DO k = 1, llm      DO k = 1, llm
684         DO i = 1, klon         DO i = 1, klon
# Line 1286  contains Line 689  contains
689         ENDDO         ENDDO
690      ENDDO      ENDDO
691    
692      IF (if_ebil >= 2) THEN      IF (.not. conv_emanuel) THEN
693         ztit='after convect'         z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)
694         CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &         z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, rain_con, snow_con, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound )  
     END IF  
   
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        print *,"aprescon=", za  
        zx_t = 0.0  
        za = 0.0  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_con(i)+ &  
                snow_con(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtphys  
        print *,"Precip=", zx_t  
     ENDIF  
     IF (zx_ajustq) THEN  
        DO i = 1, klon  
           z_apres(i) = 0.0  
        ENDDO  
695         DO k = 1, llm         DO k = 1, llm
696            DO i = 1, klon            DO i = 1, klon
697               z_apres(i) = z_apres(i) + (q_seri(i, k)+ql_seri(i, k)) &               IF (z_factor(i) > 1. + 1E-8 .OR. z_factor(i) < 1. - 1E-8) THEN
                   *zmasse(i, k)  
           ENDDO  
        ENDDO  
        DO i = 1, klon  
           z_factor(i) = (z_avant(i)-(rain_con(i)+snow_con(i))*dtphys) &  
                /z_apres(i)  
        ENDDO  
        DO k = 1, llm  
           DO i = 1, klon  
              IF (z_factor(i).GT.(1.0+1.0E-08) .OR. &  
                   z_factor(i) < (1.0-1.0E-08)) THEN  
698                  q_seri(i, k) = q_seri(i, k) * z_factor(i)                  q_seri(i, k) = q_seri(i, k) * z_factor(i)
699               ENDIF               ENDIF
700            ENDDO            ENDDO
701         ENDDO         ENDDO
702      ENDIF      ENDIF
     zx_ajustq=.FALSE.  
703    
704      ! Convection seche (thermiques ou ajustement)      ! Convection s\`eche (thermiques ou ajustement)
705    
706      d_t_ajs=0.      d_t_ajs = 0.
707      d_u_ajs=0.      d_u_ajs = 0.
708      d_v_ajs=0.      d_v_ajs = 0.
709      d_q_ajs=0.      d_q_ajs = 0.
710      fm_therm=0.      fm_therm = 0.
711      entr_therm=0.      entr_therm = 0.
712    
713      if (iflag_thermals == 0) then      if (iflag_thermals == 0) then
714         ! Ajustement sec         ! Ajustement sec
# Line 1349  contains Line 716  contains
716         t_seri = t_seri + d_t_ajs         t_seri = t_seri + d_t_ajs
717         q_seri = q_seri + d_q_ajs         q_seri = q_seri + d_q_ajs
718      else      else
        ! Thermiques  
719         call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, &         call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, &
720              q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)              q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)
721      endif      endif
722    
     IF (if_ebil >= 2) THEN  
        ztit='after dry_adjust'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
     END IF  
   
723      ! Caclul des ratqs      ! Caclul des ratqs
724    
725      ! ratqs convectifs a l'ancienne en fonction de q(z=0)-q / q      ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q
726      ! on ecrase le tableau ratqsc calcule par clouds_gno      ! on \'ecrase le tableau ratqsc calcul\'e par clouds_gno
727      if (iflag_cldcon == 1) then      if (iflag_cldcon == 1) then
728         do k=1, llm         do k = 1, llm
729            do i=1, klon            do i = 1, klon
730               if(ptconv(i, k)) then               if(ptconv(i, k)) then
731                  ratqsc(i, k)=ratqsbas &                  ratqsc(i, k) = ratqsbas + fact_cldcon &
732                       +fact_cldcon*(q_seri(i, 1)-q_seri(i, k))/q_seri(i, k)                       * (q_seri(i, 1) - q_seri(i, k)) / q_seri(i, k)
733               else               else
734                  ratqsc(i, k)=0.                  ratqsc(i, k) = 0.
735               endif               endif
736            enddo            enddo
737         enddo         enddo
738      endif      endif
739    
740      ! ratqs stables      ! ratqs stables
741      do k=1, llm      do k = 1, llm
742         do i=1, klon         do i = 1, klon
743            ratqss(i, k)=ratqsbas+(ratqshaut-ratqsbas)* &            ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &
744                 min((paprs(i, 1)-play(i, k))/(paprs(i, 1)-30000.), 1.)                 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)
745         enddo         enddo
746      enddo      enddo
747    
748      ! ratqs final      ! ratqs final
749      if (iflag_cldcon == 1 .or.iflag_cldcon == 2) then      if (iflag_cldcon == 1 .or. iflag_cldcon == 2) then
750         ! les ratqs sont une conbinaison de ratqss et ratqsc         ! les ratqs sont une conbinaison de ratqss et ratqsc
751         ! ratqs final         ! ratqs final
752         ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de         ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de
753         ! relaxation des ratqs         ! relaxation des ratqs
754         facteur=exp(-dtphys*facttemps)         ratqs = max(ratqs * exp(- dtphys * facttemps), ratqss)
755         ratqs=max(ratqs*facteur, ratqss)         ratqs = max(ratqs, ratqsc)
        ratqs=max(ratqs, ratqsc)  
756      else      else
757         ! on ne prend que le ratqs stable pour fisrtilp         ! on ne prend que le ratqs stable pour fisrtilp
758         ratqs=ratqss         ratqs = ratqss
759      endif      endif
760    
761      ! Appeler le processus de condensation a grande echelle      CALL fisrtilp(dtphys, paprs, play, t_seri, q_seri, ptconv, ratqs, &
762      ! et le processus de precipitation           d_t_lsc, d_q_lsc, d_ql_lsc, rneb, cldliq, rain_lsc, snow_lsc, &
763      CALL fisrtilp(dtphys, paprs, play, &           pfrac_impa, pfrac_nucl, pfrac_1nucl, frac_impa, frac_nucl, prfl, &
764           t_seri, q_seri, ptconv, ratqs, &           psfl, rhcl)
          d_t_lsc, d_q_lsc, d_ql_lsc, rneb, cldliq, &  
          rain_lsc, snow_lsc, &  
          pfrac_impa, pfrac_nucl, pfrac_1nucl, &  
          frac_impa, frac_nucl, &  
          prfl, psfl, rhcl)  
765    
766      WHERE (rain_lsc < 0) rain_lsc = 0.      WHERE (rain_lsc < 0) rain_lsc = 0.
767      WHERE (snow_lsc < 0) snow_lsc = 0.      WHERE (snow_lsc < 0) snow_lsc = 0.
# Line 1421  contains Line 774  contains
774            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)
775         ENDDO         ENDDO
776      ENDDO      ENDDO
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        print *,"apresilp=", za  
        zx_t = 0.0  
        za = 0.0  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_lsc(i) &  
                + snow_lsc(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtphys  
        print *,"Precip=", zx_t  
     ENDIF  
   
     IF (if_ebil >= 2) THEN  
        ztit='after fisrt'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, rain_lsc, snow_lsc, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound )  
     END IF  
777    
778      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
779    
780      ! 1. NUAGES CONVECTIFS      ! 1. NUAGES CONVECTIFS
781    
782      IF (iflag_cldcon.le.-1) THEN ! seulement pour Tiedtke      IF (iflag_cldcon <= - 1) THEN
783         snow_tiedtke=0.         ! seulement pour Tiedtke
784         if (iflag_cldcon == -1) then         snow_tiedtke = 0.
785            rain_tiedtke=rain_con         if (iflag_cldcon == - 1) then
786              rain_tiedtke = rain_con
787         else         else
788            rain_tiedtke=0.            rain_tiedtke = 0.
789            do k=1, llm            do k = 1, llm
790               do i=1, klon               do i = 1, klon
791                  if (d_q_con(i, k) < 0.) then                  if (d_q_con(i, k) < 0.) then
792                     rain_tiedtke(i)=rain_tiedtke(i)-d_q_con(i, k)/dtphys &                     rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k) / dtphys &
793                          *zmasse(i, k)                          * zmasse(i, k)
794                  endif                  endif
795               enddo               enddo
796            enddo            enddo
797         endif         endif
798    
799         ! Nuages diagnostiques pour Tiedtke         ! Nuages diagnostiques pour Tiedtke
800         CALL diagcld1(paprs, play, &         CALL diagcld1(paprs, play, rain_tiedtke, snow_tiedtke, ibas_con, &
801              rain_tiedtke, snow_tiedtke, ibas_con, itop_con, &              itop_con, diafra, dialiq)
             diafra, dialiq)  
802         DO k = 1, llm         DO k = 1, llm
803            DO i = 1, klon            DO i = 1, klon
804               IF (diafra(i, k).GT.cldfra(i, k)) THEN               IF (diafra(i, k) > cldfra(i, k)) THEN
805                  cldliq(i, k) = dialiq(i, k)                  cldliq(i, k) = dialiq(i, k)
806                  cldfra(i, k) = diafra(i, k)                  cldfra(i, k) = diafra(i, k)
807               ENDIF               ENDIF
808            ENDDO            ENDDO
809         ENDDO         ENDDO
   
810      ELSE IF (iflag_cldcon == 3) THEN      ELSE IF (iflag_cldcon == 3) THEN
811         ! On prend pour les nuages convectifs le max du calcul de la         ! On prend pour les nuages convectifs le maximum du calcul de
812         ! convection et du calcul du pas de temps précédent diminué d'un facteur         ! la convection et du calcul du pas de temps pr\'ec\'edent diminu\'e
813         ! facttemps         ! d'un facteur facttemps.
814         facteur = dtphys *facttemps         facteur = dtphys * facttemps
815         do k=1, llm         do k = 1, llm
816            do i=1, klon            do i = 1, klon
817               rnebcon(i, k)=rnebcon(i, k)*facteur               rnebcon(i, k) = rnebcon(i, k) * facteur
818               if (rnebcon0(i, k)*clwcon0(i, k).gt.rnebcon(i, k)*clwcon(i, k)) &               if (rnebcon0(i, k) * clwcon0(i, k) &
819                    then                    > rnebcon(i, k) * clwcon(i, k)) then
820                  rnebcon(i, k)=rnebcon0(i, k)                  rnebcon(i, k) = rnebcon0(i, k)
821                  clwcon(i, k)=clwcon0(i, k)                  clwcon(i, k) = clwcon0(i, k)
822               endif               endif
823            enddo            enddo
824         enddo         enddo
825    
826         ! On prend la somme des fractions nuageuses et des contenus en eau         ! On prend la somme des fractions nuageuses et des contenus en eau
827         cldfra=min(max(cldfra, rnebcon), 1.)         cldfra = min(max(cldfra, rnebcon), 1.)
828         cldliq=cldliq+rnebcon*clwcon         cldliq = cldliq + rnebcon * clwcon
   
829      ENDIF      ENDIF
830    
831      ! 2. NUAGES STARTIFORMES      ! 2. Nuages stratiformes
832    
833      IF (ok_stratus) THEN      IF (ok_stratus) THEN
834         CALL diagcld2(paprs, play, t_seri, q_seri, diafra, dialiq)         CALL diagcld2(paprs, play, t_seri, q_seri, diafra, dialiq)
835         DO k = 1, llm         DO k = 1, llm
836            DO i = 1, klon            DO i = 1, klon
837               IF (diafra(i, k).GT.cldfra(i, k)) THEN               IF (diafra(i, k) > cldfra(i, k)) THEN
838                  cldliq(i, k) = dialiq(i, k)                  cldliq(i, k) = dialiq(i, k)
839                  cldfra(i, k) = diafra(i, k)                  cldfra(i, k) = diafra(i, k)
840               ENDIF               ENDIF
# Line 1515  contains Line 843  contains
843      ENDIF      ENDIF
844    
845      ! Precipitation totale      ! Precipitation totale
   
846      DO i = 1, klon      DO i = 1, klon
847         rain_fall(i) = rain_con(i) + rain_lsc(i)         rain_fall(i) = rain_con(i) + rain_lsc(i)
848         snow_fall(i) = snow_con(i) + snow_lsc(i)         snow_fall(i) = snow_con(i) + snow_lsc(i)
849      ENDDO      ENDDO
850    
851      IF (if_ebil >= 2) THEN      ! Humidit\'e relative pour diagnostic :
        ztit="after diagcld"  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
     END IF  
   
     ! Calculer l'humidite relative pour diagnostique  
   
852      DO k = 1, llm      DO k = 1, llm
853         DO i = 1, klon         DO i = 1, klon
854            zx_t = t_seri(i, k)            zx_t = t_seri(i, k)
855            IF (thermcep) THEN            zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t) / play(i, k)
856               zdelta = MAX(0., SIGN(1., rtt-zx_t))            zx_qs = MIN(0.5, zx_qs)
857               zx_qs = r2es * FOEEW(zx_t, zdelta)/play(i, k)            zcor = 1. / (1. - retv * zx_qs)
858               zx_qs = MIN(0.5, zx_qs)            zx_qs = zx_qs * zcor
859               zcor = 1./(1.-retv*zx_qs)            zx_rh(i, k) = q_seri(i, k) / zx_qs
860               zx_qs = zx_qs*zcor            zqsat(i, k) = zx_qs
           ELSE  
              IF (zx_t < t_coup) THEN  
                 zx_qs = qsats(zx_t)/play(i, k)  
              ELSE  
                 zx_qs = qsatl(zx_t)/play(i, k)  
              ENDIF  
           ENDIF  
           zx_rh(i, k) = q_seri(i, k)/zx_qs  
           zqsat(i, k)=zx_qs  
861         ENDDO         ENDDO
862      ENDDO      ENDDO
     !jq - introduce the aerosol direct and first indirect radiative forcings  
     !jq - Johannes Quaas, 27/11/2003 (quaas@lmd.jussieu.fr)  
     IF (ok_ade.OR.ok_aie) THEN  
        ! Get sulfate aerosol distribution  
        CALL readsulfate(rdayvrai, firstcal, sulfate)  
        CALL readsulfate_preind(rdayvrai, firstcal, sulfate_pi)  
   
        ! Calculate aerosol optical properties (Olivier Boucher)  
        CALL aeropt(play, paprs, t_seri, sulfate, rhcl, &  
             tau_ae, piz_ae, cg_ae, aerindex)  
     ELSE  
        tau_ae=0.0  
        piz_ae=0.0  
        cg_ae=0.0  
     ENDIF  
   
     ! Calculer les parametres optiques des nuages et quelques  
     ! parametres pour diagnostiques:  
863    
864        ! Param\`etres optiques des nuages et quelques param\`etres pour
865        ! diagnostics :
866      if (ok_newmicro) then      if (ok_newmicro) then
867         CALL newmicro (paprs, play, ok_newmicro, &         CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &
868              t_seri, cldliq, cldfra, cldtau, cldemi, &              cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc)
             cldh, cldl, cldm, cldt, cldq, &  
             flwp, fiwp, flwc, fiwc, &  
             ok_aie, &  
             sulfate, sulfate_pi, &  
             bl95_b0, bl95_b1, &  
             cldtaupi, re, fl)  
869      else      else
870         CALL nuage (paprs, play, &         CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &
871              t_seri, cldliq, cldfra, cldtau, cldemi, &              cldl, cldm, cldt, cldq)
             cldh, cldl, cldm, cldt, cldq, &  
             ok_aie, &  
             sulfate, sulfate_pi, &  
             bl95_b0, bl95_b1, &  
             cldtaupi, re, fl)  
   
872      endif      endif
873    
874      ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.      IF (MOD(itap - 1, radpas) == 0) THEN
875           wo = ozonecm(REAL(julien), paprs)
876      IF (MOD(itaprad, radpas) == 0) THEN         albsol = sum(falbe * pctsrf, dim = 2)
877         DO i = 1, klon         CALL radlwsw(dist, mu0, fract, paprs, play, tsol, albsol, t_seri, &
878            albsol(i) = falbe(i, is_oce) * pctsrf(i, is_oce) &              q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, &
879                 + falbe(i, is_lic) * pctsrf(i, is_lic) &              radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, &
880                 + falbe(i, is_ter) * pctsrf(i, is_ter) &              toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, &
881                 + falbe(i, is_sic) * pctsrf(i, is_sic)              swup0, swup, ok_ade, topswad, solswad)
           albsollw(i) = falblw(i, is_oce) * pctsrf(i, is_oce) &  
                + falblw(i, is_lic) * pctsrf(i, is_lic) &  
                + falblw(i, is_ter) * pctsrf(i, is_ter) &  
                + falblw(i, is_sic) * pctsrf(i, is_sic)  
        ENDDO  
        ! nouveau rayonnement (compatible Arpege-IFS):  
        CALL radlwsw(dist, rmu0, fract, paprs, play, zxtsol, albsol, &  
             albsollw, t_seri, q_seri, wo, cldfra, cldemi, cldtau, heat, &  
             heat0, cool, cool0, radsol, albpla, topsw, toplw, solsw, sollw, &  
             sollwdown, topsw0, toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, &  
             lwup, swdn0, swdn, swup0, swup, ok_ade, ok_aie, tau_ae, piz_ae, &  
             cg_ae, topswad, solswad, cldtaupi, topswai, solswai)  
        itaprad = 0  
882      ENDIF      ENDIF
     itaprad = itaprad + 1  
883    
884      ! Ajouter la tendance des rayonnements (tous les pas)      ! Ajouter la tendance des rayonnements (tous les pas)
   
885      DO k = 1, llm      DO k = 1, llm
886         DO i = 1, klon         DO i = 1, klon
887            t_seri(i, k) = t_seri(i, k) &            t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys &
888                 + (heat(i, k)-cool(i, k)) * dtphys/86400.                 / 86400.
        ENDDO  
     ENDDO  
   
     IF (if_ebil >= 2) THEN  
        ztit='after rad'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil, topsw, toplw, solsw, sollw, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound )  
     END IF  
   
     ! Calculer l'hydrologie de la surface  
   
     DO i = 1, klon  
        zxqsurf(i) = 0.0  
        zxsnow(i) = 0.0  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxqsurf(i) = zxqsurf(i) + fqsurf(i, nsrf)*pctsrf(i, nsrf)  
           zxsnow(i) = zxsnow(i) + fsnow(i, nsrf)*pctsrf(i, nsrf)  
889         ENDDO         ENDDO
890      ENDDO      ENDDO
891    
892      ! Calculer le bilan du sol et la derive de temperature (couplage)      ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage)
   
893      DO i = 1, klon      DO i = 1, klon
894         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)
895      ENDDO      ENDDO
896    
897      !mod deb lott(jan95)      ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille :
     ! Appeler le programme de parametrisation de l'orographie  
     ! a l'echelle sous-maille:  
898    
899      IF (ok_orodr) THEN      IF (ok_orodr) THEN
900         ! selection des points pour lesquels le shema est actif:         ! S\'election des points pour lesquels le sch\'ema est actif :
901         igwd=0         igwd = 0
902         DO i=1, klon         DO i = 1, klon
903            itest(i)=0            itest(i) = 0
904            IF (((zpic(i)-zmea(i)).GT.100.).AND.(zstd(i).GT.10.0)) THEN            IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN
905               itest(i)=1               itest(i) = 1
906               igwd=igwd+1               igwd = igwd + 1
              idx(igwd)=i  
907            ENDIF            ENDIF
908         ENDDO         ENDDO
909    
910         CALL drag_noro(klon, llm, dtphys, paprs, play, &         CALL drag_noro(klon, llm, dtphys, paprs, play, zmea, zstd, zsig, zgam, &
911              zmea, zstd, zsig, zgam, zthe, zpic, zval, &              zthe, zpic, zval, itest, t_seri, u_seri, v_seri, zulow, zvlow, &
912              igwd, idx, itest, &              zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro)
             t_seri, u_seri, v_seri, &  
             zulow, zvlow, zustrdr, zvstrdr, &  
             d_t_oro, d_u_oro, d_v_oro)  
913    
914         ! ajout des tendances         ! ajout des tendances
915         DO k = 1, llm         DO k = 1, llm
# Line 1685  contains Line 922  contains
922      ENDIF      ENDIF
923    
924      IF (ok_orolf) THEN      IF (ok_orolf) THEN
925           ! S\'election des points pour lesquels le sch\'ema est actif :
926         ! selection des points pour lesquels le shema est actif:         igwd = 0
927         igwd=0         DO i = 1, klon
928         DO i=1, klon            itest(i) = 0
929            itest(i)=0            IF (zpic(i) - zmea(i) > 100.) THEN
930            IF ((zpic(i)-zmea(i)).GT.100.) THEN               itest(i) = 1
931               itest(i)=1               igwd = igwd + 1
              igwd=igwd+1  
              idx(igwd)=i  
932            ENDIF            ENDIF
933         ENDDO         ENDDO
934    
# Line 1701  contains Line 936  contains
936              itest, t_seri, u_seri, v_seri, zulow, zvlow, zustrli, zvstrli, &              itest, t_seri, u_seri, v_seri, zulow, zvlow, zustrli, zvstrli, &
937              d_t_lif, d_u_lif, d_v_lif)              d_t_lif, d_u_lif, d_v_lif)
938    
939         ! ajout des tendances         ! Ajout des tendances :
940         DO k = 1, llm         DO k = 1, llm
941            DO i = 1, klon            DO i = 1, klon
942               t_seri(i, k) = t_seri(i, k) + d_t_lif(i, k)               t_seri(i, k) = t_seri(i, k) + d_t_lif(i, k)
# Line 1709  contains Line 944  contains
944               v_seri(i, k) = v_seri(i, k) + d_v_lif(i, k)               v_seri(i, k) = v_seri(i, k) + d_v_lif(i, k)
945            ENDDO            ENDDO
946         ENDDO         ENDDO
947        ENDIF
948    
949      ENDIF ! fin de test sur ok_orolf      ! Stress n\'ecessaires : toute la physique
   
     ! STRESS NECESSAIRES: TOUTE LA PHYSIQUE  
950    
951      DO i = 1, klon      DO i = 1, klon
952         zustrph(i)=0.         zustrph(i) = 0.
953         zvstrph(i)=0.         zvstrph(i) = 0.
954      ENDDO      ENDDO
955      DO k = 1, llm      DO k = 1, llm
956         DO i = 1, klon         DO i = 1, klon
957            zustrph(i)=zustrph(i)+(u_seri(i, k)-u(i, k))/dtphys* zmasse(i, k)            zustrph(i) = zustrph(i) + (u_seri(i, k) - u(i, k)) / dtphys &
958            zvstrph(i)=zvstrph(i)+(v_seri(i, k)-v(i, k))/dtphys* zmasse(i, k)                 * zmasse(i, k)
959              zvstrph(i) = zvstrph(i) + (v_seri(i, k) - v(i, k)) / dtphys &
960                   * zmasse(i, k)
961         ENDDO         ENDDO
962      ENDDO      ENDDO
963    
964      !IM calcul composantes axiales du moment angulaire et couple des montagnes      CALL aaam_bud(rg, romega, rlat, rlon, pphis, zustrdr, zustrli, zustrph, &
965             zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc)
     CALL aaam_bud(27, klon, llm, time, ra, rg, romega, rlat, rlon, pphis, &  
          zustrdr, zustrli, zustrph, zvstrdr, zvstrli, zvstrph, paprs, u, v, &  
          aam, torsfc)  
   
     IF (if_ebil >= 2) THEN  
        ztit='after orography'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
     END IF  
966    
967      ! Calcul des tendances traceurs      ! Calcul des tendances traceurs
968      call phytrac(rnpb, itap, lmt_pas, julien, time, firstcal, lafin, &      call phytrac(julien, time, firstcal, lafin, dtphys, t, paprs, play, mfu, &
969           nqmx-2, dtphys, u, t, paprs, play, pmfu, pmfd, pen_u, pde_u, &           mfd, pde_u, pen_d, ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, &
970           pen_d, pde_d, ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, pctsrf, &           pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, dnwd, tr_seri, &
971           frac_impa, frac_nucl, pphis, albsol, rhcl, cldfra, rneb, &           zmasse, ncid_startphy)
          diafra, cldliq, pmflxr, pmflxs, prfl, psfl, da, phi, mp, upwd, dnwd, &  
          tr_seri, zmasse)  
   
     IF (offline) THEN  
        call phystokenc(dtphys, rlon, rlat, t, pmfu, pmfd, pen_u, pde_u, &  
             pen_d, pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, &  
             pctsrf, frac_impa, frac_nucl, pphis, airephy, dtphys, itap)  
     ENDIF  
972    
973      ! Calculer le transport de l'eau et de l'energie (diagnostique)      ! Calculer le transport de l'eau et de l'energie (diagnostique)
974      CALL transp(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, &      CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq)
          ue, uq)  
975    
976      ! diag. bilKP      ! diag. bilKP
977    
978      CALL transp_lay (paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, &      CALL transp_lay(paprs, t_seri, q_seri, u_seri, v_seri, zphi, &
979           ve_lay, vq_lay, ue_lay, uq_lay)           ve_lay, vq_lay, ue_lay, uq_lay)
980    
981      ! Accumuler les variables a stocker dans les fichiers histoire:      ! Accumuler les variables a stocker dans les fichiers histoire:
982    
983      !+jld ec_conser      ! conversion Ec en énergie thermique
984      DO k = 1, llm      DO k = 1, llm
985         DO i = 1, klon         DO i = 1, klon
986            ZRCPD = RCPD*(1.0+RVTMP2*q_seri(i, k))            d_t_ec(i, k) = 0.5 / (RCPD * (1. + RVTMP2 * q_seri(i, k))) &
987            d_t_ec(i, k)=0.5/ZRCPD &                 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)
988                 *(u(i, k)**2+v(i, k)**2-u_seri(i, k)**2-v_seri(i, k)**2)            t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)
989            t_seri(i, k)=t_seri(i, k)+d_t_ec(i, k)            d_t_ec(i, k) = d_t_ec(i, k) / dtphys
           d_t_ec(i, k) = d_t_ec(i, k)/dtphys  
990         END DO         END DO
991      END DO      END DO
     !-jld ec_conser  
     IF (if_ebil >= 1) THEN  
        ztit='after physic'  
        CALL diagetpq(airephy, ztit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        ! Comme les tendances de la physique sont ajoute dans la dynamique,  
        ! on devrait avoir que la variation d'entalpie par la dynamique  
        ! est egale a la variation de la physique au pas de temps precedent.  
        ! Donc la somme de ces 2 variations devrait etre nulle.  
        call diagphy(airephy, ztit, ip_ebil, topsw, toplw, solsw, sollw, sens, &  
             evap, rain_fall, snow_fall, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound )  
   
        d_h_vcol_phy=d_h_vcol  
   
     END IF  
992    
993      ! SORTIES      ! SORTIES
994    
995      !cc prw = eau precipitable      ! prw = eau precipitable
996      DO i = 1, klon      DO i = 1, klon
997         prw(i) = 0.         prw(i) = 0.
998         DO k = 1, llm         DO k = 1, llm
999            prw(i) = prw(i) + q_seri(i, k)*zmasse(i, k)            prw(i) = prw(i) + q_seri(i, k) * zmasse(i, k)
1000         ENDDO         ENDDO
1001      ENDDO      ENDDO
1002    
# Line 1805  contains Line 1004  contains
1004    
1005      DO k = 1, llm      DO k = 1, llm
1006         DO i = 1, klon         DO i = 1, klon
1007            d_u(i, k) = ( u_seri(i, k) - u(i, k) ) / dtphys            d_u(i, k) = (u_seri(i, k) - u(i, k)) / dtphys
1008            d_v(i, k) = ( v_seri(i, k) - v(i, k) ) / dtphys            d_v(i, k) = (v_seri(i, k) - v(i, k)) / dtphys
1009            d_t(i, k) = ( t_seri(i, k)-t(i, k) ) / dtphys            d_t(i, k) = (t_seri(i, k) - t(i, k)) / dtphys
1010            d_qx(i, k, ivap) = ( q_seri(i, k) - qx(i, k, ivap) ) / dtphys            d_qx(i, k, ivap) = (q_seri(i, k) - qx(i, k, ivap)) / dtphys
1011            d_qx(i, k, iliq) = ( ql_seri(i, k) - qx(i, k, iliq) ) / dtphys            d_qx(i, k, iliq) = (ql_seri(i, k) - qx(i, k, iliq)) / dtphys
1012         ENDDO         ENDDO
1013      ENDDO      ENDDO
1014    
1015      IF (nqmx >= 3) THEN      DO iq = 3, nqmx
1016         DO iq = 3, nqmx         DO k = 1, llm
1017            DO k = 1, llm            DO i = 1, klon
1018               DO i = 1, klon               d_qx(i, k, iq) = (tr_seri(i, k, iq - 2) - qx(i, k, iq)) / dtphys
                 d_qx(i, k, iq) = (tr_seri(i, k, iq-2) - qx(i, k, iq)) / dtphys  
              ENDDO  
1019            ENDDO            ENDDO
1020         ENDDO         ENDDO
1021      ENDIF      ENDDO
1022    
1023      ! Sauvegarder les valeurs de t et q a la fin de la physique:      ! Sauvegarder les valeurs de t et q a la fin de la physique:
1024      DO k = 1, llm      DO k = 1, llm
# Line 1831  contains Line 1028  contains
1028         ENDDO         ENDDO
1029      ENDDO      ENDDO
1030    
1031      ! Ecriture des sorties      CALL histwrite_phy("phis", pphis)
1032      call write_histhf      CALL histwrite_phy("aire", airephy)
1033      call write_histday      CALL histwrite_phy("psol", paprs(:, 1))
1034      call write_histins      CALL histwrite_phy("precip", rain_fall + snow_fall)
1035        CALL histwrite_phy("plul", rain_lsc + snow_lsc)
1036      ! Si c'est la fin, il faut conserver l'etat de redemarrage      CALL histwrite_phy("pluc", rain_con + snow_con)
1037      IF (lafin) THEN      CALL histwrite_phy("tsol", tsol)
1038         itau_phy = itau_phy + itap      CALL histwrite_phy("t2m", zt2m)
1039         CALL phyredem("restartphy.nc", rlat, rlon, pctsrf, ftsol, &      CALL histwrite_phy("q2m", zq2m)
1040              ftsoil, tslab, seaice, fqsurf, qsol, &      CALL histwrite_phy("u10m", u10m)
1041              fsnow, falbe, falblw, fevap, rain_fall, snow_fall, &      CALL histwrite_phy("v10m", v10m)
1042              solsw, sollwdown, dlw, &      CALL histwrite_phy("snow", snow_fall)
1043              radsol, frugs, agesno, &      CALL histwrite_phy("cdrm", cdragm)
1044              zmea, zstd, zsig, zgam, zthe, zpic, zval, &      CALL histwrite_phy("cdrh", cdragh)
1045              t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0)      CALL histwrite_phy("topl", toplw)
1046      ENDIF      CALL histwrite_phy("evap", evap)
1047        CALL histwrite_phy("sols", solsw)
1048      firstcal = .FALSE.      CALL histwrite_phy("soll", sollw)
1049        CALL histwrite_phy("solldown", sollwdown)
1050    contains      CALL histwrite_phy("bils", bils)
1051        CALL histwrite_phy("sens", - sens)
1052      subroutine write_histday      CALL histwrite_phy("fder", fder)
1053        CALL histwrite_phy("dtsvdfo", d_ts(:, is_oce))
1054        use gr_phy_write_3d_m, only: gr_phy_write_3d      CALL histwrite_phy("dtsvdft", d_ts(:, is_ter))
1055        integer itau_w ! pas de temps ecriture      CALL histwrite_phy("dtsvdfg", d_ts(:, is_lic))
1056        CALL histwrite_phy("dtsvdfi", d_ts(:, is_sic))
       !------------------------------------------------  
   
       if (ok_journe) THEN  
          itau_w = itau_phy + itap  
          if (nqmx <= 4) then  
             call histwrite(nid_day, "Sigma_O3_Royer", itau_w, &  
                  gr_phy_write_3d(wo) * 1e3)  
             ! (convert "wo" from kDU to DU)  
          end if  
          if (ok_sync) then  
             call histsync(nid_day)  
          endif  
       ENDIF  
   
     End subroutine write_histday  
   
     !****************************  
1057    
1058      subroutine write_histhf      DO nsrf = 1, nbsrf
1059           CALL histwrite_phy("pourc_"//clnsurf(nsrf), pctsrf(:, nsrf) * 100.)
1060        ! From phylmd/write_histhf.h, version 1.5 2005/05/25 13:10:09         CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf))
1061           CALL histwrite_phy("sens_"//clnsurf(nsrf), flux_t(:, nsrf))
1062        !------------------------------------------------         CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf))
1063           CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf))
1064        call write_histhf3d         CALL histwrite_phy("taux_"//clnsurf(nsrf), flux_u(:, nsrf))
1065           CALL histwrite_phy("tauy_"//clnsurf(nsrf), flux_v(:, nsrf))
1066        IF (ok_sync) THEN         CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf))
1067           call histsync(nid_hf)         CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf))
1068        ENDIF         CALL histwrite_phy("u10m_"//clnsurf(nsrf), u10m_srf(:, nsrf))
1069           CALL histwrite_phy("v10m_"//clnsurf(nsrf), v10m_srf(:, nsrf))
1070      end subroutine write_histhf      END DO
   
     !***************************************************************  
   
     subroutine write_histins  
   
       ! From phylmd/write_histins.h, version 1.2 2005/05/25 13:10:09  
   
       real zout  
       integer itau_w ! pas de temps ecriture  
   
       !--------------------------------------------------  
   
       IF (ok_instan) THEN  
          ! Champs 2D:  
   
          zsto = dtphys * ecrit_ins  
          zout = dtphys * ecrit_ins  
          itau_w = itau_phy + itap  
   
          i = NINT(zout/zsto)  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), pphis, zx_tmp_2d)  
          CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d)  
   
          i = NINT(zout/zsto)  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), airephy, zx_tmp_2d)  
          CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = paprs(i, 1)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "psol", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_fall(i) + snow_fall(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "precip", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_lsc(i) + snow_lsc(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "plul", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_con(i) + snow_con(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "pluc", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zxtsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "tsol", itau_w, zx_tmp_2d)  
          !ccIM  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zt2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "t2m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zq2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "q2m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zu10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "u10m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zv10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "v10m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), snow_fall, zx_tmp_2d)  
          CALL histwrite(nid_ins, "snow", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), cdragm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrm", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), cdragh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrh", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), toplw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "topl", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), evap, zx_tmp_2d)  
          CALL histwrite(nid_ins, "evap", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), solsw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sols", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "soll", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sollwdown, zx_tmp_2d)  
          CALL histwrite(nid_ins, "solldown", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), bils, zx_tmp_2d)  
          CALL histwrite(nid_ins, "bils", itau_w, zx_tmp_2d)  
   
          zx_tmp_fi2d(1:klon)=-1*sens(1:klon)  
          ! CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sens, zx_tmp_2d)  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sens", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), fder, zx_tmp_2d)  
          CALL histwrite(nid_ins, "fder", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_oce), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfo", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_ter), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdft", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_lic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfg", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_sic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfi", itau_w, zx_tmp_2d)  
   
          DO nsrf = 1, nbsrf  
             !XXX  
             zx_tmp_fi2d(1 : klon) = pctsrf( 1 : klon, nsrf)*100.  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "pourc_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = pctsrf( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "fract_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxt( 1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "sens_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxlat( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "lat_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = ftsol( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tsol_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxu( 1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "taux_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxv( 1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tauy_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = frugs( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "rugs_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = falbe( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "albe_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
          END DO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), albsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albs", itau_w, zx_tmp_2d)  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), albsollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albslw", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zxrugs, zx_tmp_2d)  
          CALL histwrite(nid_ins, "rugs", itau_w, zx_tmp_2d)  
   
          !IM cf. AM 081204 BEG  
   
          !HBTM2  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_pblh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblh", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_pblt, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblt", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_lcl, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_lcl", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_capCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_capCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_oliqCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_oliqCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_cteiCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_cteiCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_therm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_therm", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb1, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb1", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb2, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb2", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb3, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb3", itau_w, zx_tmp_2d)  
   
          !IM cf. AM 081204 END  
   
          ! Champs 3D:  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), t_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "temp", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), u_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitu", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), v_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitv", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), zphi, zx_tmp_3d)  
          CALL histwrite(nid_ins, "geop", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), play, zx_tmp_3d)  
          CALL histwrite(nid_ins, "pres", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), d_t_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dtvdf", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), d_q_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d)  
   
          if (ok_sync) then  
             call histsync(nid_ins)  
          endif  
       ENDIF  
   
     end subroutine write_histins  
   
     !****************************************************  
   
     subroutine write_histhf3d  
   
       ! From phylmd/write_histhf3d.h, version 1.2 2005/05/25 13:10:09  
   
       integer itau_w ! pas de temps ecriture  
   
       !-------------------------------------------------------  
   
       itau_w = itau_phy + itap  
   
       ! Champs 3D:  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), t_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "temp", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), qx(1, 1, ivap), zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "ovap", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), u_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitu", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), v_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitv", itau_w, zx_tmp_3d)  
   
       if (nbtr >= 3) then  
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), tr_seri(1, 1, 3), &  
               zx_tmp_3d)  
          CALL histwrite(nid_hf3d, "O3", itau_w, zx_tmp_3d)  
       end if  
1071    
1072        if (ok_sync) then      CALL histwrite_phy("albs", albsol)
1073           call histsync(nid_hf3d)      CALL histwrite_phy("tro3", wo * dobson_u * 1e3 / zmasse / rmo3 * md)
1074        endif      CALL histwrite_phy("rugs", zxrugs)
1075        CALL histwrite_phy("s_pblh", s_pblh)
1076        CALL histwrite_phy("s_pblt", s_pblt)
1077        CALL histwrite_phy("s_lcl", s_lcl)
1078        CALL histwrite_phy("s_capCL", s_capCL)
1079        CALL histwrite_phy("s_oliqCL", s_oliqCL)
1080        CALL histwrite_phy("s_cteiCL", s_cteiCL)
1081        CALL histwrite_phy("s_therm", s_therm)
1082        CALL histwrite_phy("s_trmb1", s_trmb1)
1083        CALL histwrite_phy("s_trmb2", s_trmb2)
1084        CALL histwrite_phy("s_trmb3", s_trmb3)
1085    
1086        if (conv_emanuel) then
1087           CALL histwrite_phy("ptop", ema_pct)
1088           CALL histwrite_phy("dnwd0", - mp)
1089        end if
1090    
1091        CALL histwrite_phy("temp", t_seri)
1092        CALL histwrite_phy("vitu", u_seri)
1093        CALL histwrite_phy("vitv", v_seri)
1094        CALL histwrite_phy("geop", zphi)
1095        CALL histwrite_phy("pres", play)
1096        CALL histwrite_phy("dtvdf", d_t_vdf)
1097        CALL histwrite_phy("dqvdf", d_q_vdf)
1098        CALL histwrite_phy("rhum", zx_rh)
1099        CALL histwrite_phy("d_t_ec", d_t_ec)
1100        CALL histwrite_phy("dtsw0", heat0 / 86400.)
1101        CALL histwrite_phy("dtlw0", - cool0 / 86400.)
1102        CALL histwrite_phy("msnow", sum(fsnow * pctsrf, dim = 2))
1103        call histwrite_phy("qsurf", sum(fqsurf * pctsrf, dim = 2))
1104    
1105        if (ok_instan) call histsync(nid_ins)
1106    
1107        IF (lafin) then
1108           call NF95_CLOSE(ncid_startphy)
1109           CALL phyredem(pctsrf, ftsol, ftsoil, fqsurf, qsol, &
1110                fsnow, falbe, fevap, rain_fall, snow_fall, solsw, sollw, dlw, &
1111                radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, &
1112                t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
1113                w01)
1114        end IF
1115    
1116      end subroutine write_histhf3d      firstcal = .FALSE.
1117    
1118    END SUBROUTINE physiq    END SUBROUTINE physiq
1119    

Legend:
Removed from v.47  
changed lines
  Added in v.225

  ViewVC Help
Powered by ViewVC 1.1.21