/[lmdze]/trunk/phylmd/physiq.f
ViewVC logotype

Diff of /trunk/phylmd/physiq.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/physiq.f90 revision 49 by guez, Wed Aug 24 11:43:14 2011 UTC trunk/Sources/phylmd/physiq.f revision 227 by guez, Thu Nov 2 15:47:03 2017 UTC
# Line 4  module physiq_m Line 4  module physiq_m
4    
5  contains  contains
6    
7    SUBROUTINE physiq(lafin, rdayvrai, time, dtphys, paprs, play, pphi, pphis, &    SUBROUTINE physiq(lafin, dayvrai, time, paprs, play, pphi, pphis, u, v, t, &
8         u, v, t, qx, omega, d_u, d_v, d_t, d_qx, d_ps, dudyn, PVteta)         qx, omega, d_u, d_v, d_t, d_qx)
9    
10      ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28 (SVN revision 678)      ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28
11      ! Author: Z.X. Li (LMD/CNRS) 1993      ! (subversion revision 678)
12    
13      ! This is the main procedure for the "physics" part of the program.      ! Author: Z. X. Li (LMD/CNRS) 1993
   
     use abort_gcm_m, only: abort_gcm  
     USE calendar, only: ymds2ju  
     use clesphys, only: ecrit_hf, ecrit_ins, ecrit_mth, cdmmax, cdhmax, &  
          co2_ppm, ecrit_reg, ecrit_tra, ksta, ksta_ter, ok_kzmin  
     use clesphys2, only: iflag_con, ok_orolf, ok_orodr, nbapp_rad, &  
          cycle_diurne, new_oliq, soil_model  
     use clmain_m, only: clmain  
     use comgeomphy  
     use concvl_m, only: concvl  
     use conf_gcm_m, only: raz_date, offline  
     use conf_phys_m, only: conf_phys  
     use ctherm  
     use dimens_m, only: jjm, iim, llm, nqmx  
     use dimphy, only: klon, nbtr  
     use dimsoil, only: nsoilmx  
     use fcttre, only: thermcep, foeew, qsats, qsatl  
     use hgardfou_m, only: hgardfou  
     USE histcom, only: histsync  
     USE histwrite_m, only: histwrite  
     use indicesol, only: nbsrf, is_ter, is_lic, is_sic, is_oce, clnsurf, epsfra  
     use ini_histhf_m, only: ini_histhf  
     use ini_histday_m, only: ini_histday  
     use ini_histins_m, only: ini_histins  
     use iniprint, only: prt_level  
     use oasis_m  
     use orbite_m, only: orbite, zenang  
     use ozonecm_m, only: ozonecm  
     use phyetat0_m, only: phyetat0, rlat, rlon  
     use phyredem_m, only: phyredem  
     use phystokenc_m, only: phystokenc  
     use phytrac_m, only: phytrac  
     use qcheck_m, only: qcheck  
     use radepsi  
     use radopt  
     use SUPHEC_M, only: rcpd, rtt, rlvtt, rg, ra, rsigma, retv, romega  
     use temps, only: itau_phy, day_ref, annee_ref  
     use yoethf_m  
14    
15      ! Variables argument:      ! This is the main procedure for the "physics" part of the program.
16    
17      REAL, intent(in):: rdayvrai      use aaam_bud_m, only: aaam_bud
18      ! (elapsed time since January 1st 0h of the starting year, in days)      USE abort_gcm_m, ONLY: abort_gcm
19        use ajsec_m, only: ajsec
20        use calltherm_m, only: calltherm
21        USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ksta, ksta_ter, ok_kzmin, &
22             ok_instan
23        USE clesphys2, ONLY: conv_emanuel, nbapp_rad, new_oliq, ok_orodr, ok_orolf
24        USE clmain_m, ONLY: clmain
25        use clouds_gno_m, only: clouds_gno
26        use comconst, only: dtphys
27        USE comgeomphy, ONLY: airephy
28        USE concvl_m, ONLY: concvl
29        USE conf_gcm_m, ONLY: lmt_pas
30        USE conf_phys_m, ONLY: conf_phys
31        use conflx_m, only: conflx
32        USE ctherm, ONLY: iflag_thermals, nsplit_thermals
33        use diagcld2_m, only: diagcld2
34        USE dimens_m, ONLY: llm, nqmx
35        USE dimphy, ONLY: klon
36        USE dimsoil, ONLY: nsoilmx
37        use drag_noro_m, only: drag_noro
38        use dynetat0_m, only: day_ref, annee_ref
39        USE fcttre, ONLY: foeew
40        use fisrtilp_m, only: fisrtilp
41        USE hgardfou_m, ONLY: hgardfou
42        USE histsync_m, ONLY: histsync
43        USE histwrite_phy_m, ONLY: histwrite_phy
44        USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &
45             nbsrf
46        USE ini_histins_m, ONLY: ini_histins, nid_ins
47        use lift_noro_m, only: lift_noro
48        use netcdf95, only: NF95_CLOSE
49        use newmicro_m, only: newmicro
50        use nr_util, only: assert
51        use nuage_m, only: nuage
52        USE orbite_m, ONLY: orbite
53        USE ozonecm_m, ONLY: ozonecm
54        USE phyetat0_m, ONLY: phyetat0
55        USE phyredem_m, ONLY: phyredem
56        USE phyredem0_m, ONLY: phyredem0
57        USE phytrac_m, ONLY: phytrac
58        use radlwsw_m, only: radlwsw
59        use yoegwd, only: sugwd
60        USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt, rmo3, md
61        use time_phylmdz, only: itap, increment_itap
62        use transp_m, only: transp
63        use transp_lay_m, only: transp_lay
64        use unit_nml_m, only: unit_nml
65        USE ymds2ju_m, ONLY: ymds2ju
66        USE yoethf_m, ONLY: r2es, rvtmp2
67        use zenang_m, only: zenang
68    
     REAL, intent(in):: time ! heure de la journée en fraction de jour  
     REAL, intent(in):: dtphys ! pas d'integration pour la physique (seconde)  
69      logical, intent(in):: lafin ! dernier passage      logical, intent(in):: lafin ! dernier passage
70    
71      REAL, intent(in):: paprs(klon, llm+1)      integer, intent(in):: dayvrai
72      ! (pression pour chaque inter-couche, en Pa)      ! current day number, based at value 1 on January 1st of annee_ref
   
     REAL, intent(in):: play(klon, llm)  
     ! (input pression pour le mileu de chaque couche (en Pa))  
   
     REAL, intent(in):: pphi(klon, llm)  
     ! (input geopotentiel de chaque couche (g z) (reference sol))  
   
     REAL pphis(klon) ! input geopotentiel du sol  
   
     REAL, intent(in):: u(klon, llm)  
     ! vitesse dans la direction X (de O a E) en m/s  
       
     REAL, intent(in):: v(klon, llm) ! vitesse Y (de S a N) en m/s  
     REAL t(klon, llm) ! input temperature (K)  
   
     REAL, intent(in):: qx(klon, llm, nqmx)  
     ! (humidité spécifique et fractions massiques des autres traceurs)  
   
     REAL omega(klon, llm) ! input vitesse verticale en Pa/s  
     REAL, intent(out):: d_u(klon, llm) ! tendance physique de "u" (m/s/s)  
     REAL, intent(out):: d_v(klon, llm) ! tendance physique de "v" (m/s/s)  
     REAL, intent(out):: d_t(klon, llm) ! tendance physique de "t" (K/s)  
     REAL d_qx(klon, llm, nqmx) ! output tendance physique de "qx" (kg/kg/s)  
     REAL d_ps(klon) ! output tendance physique de la pression au sol  
   
     LOGICAL:: firstcal = .true.  
73    
74      INTEGER nbteta      REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour
     PARAMETER(nbteta=3)  
75    
76      REAL PVteta(klon, nbteta)      REAL, intent(in):: paprs(:, :) ! (klon, llm + 1)
77      ! (output vorticite potentielle a des thetas constantes)      ! pression pour chaque inter-couche, en Pa
78    
79      LOGICAL ok_cvl ! pour activer le nouveau driver pour convection KE      REAL, intent(in):: play(:, :) ! (klon, llm)
80      PARAMETER (ok_cvl=.TRUE.)      ! pression pour le mileu de chaque couche (en Pa)
     LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface  
     PARAMETER (ok_gust=.FALSE.)  
81    
82      LOGICAL check ! Verifier la conservation du modele en eau      REAL, intent(in):: pphi(:, :) ! (klon, llm)
83      PARAMETER (check=.FALSE.)      ! géopotentiel de chaque couche (référence sol)
84    
85      LOGICAL, PARAMETER:: ok_stratus=.FALSE.      REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol
     ! Ajouter artificiellement les stratus  
86    
87      ! Parametres lies au coupleur OASIS:      REAL, intent(in):: u(:, :) ! (klon, llm)
88      INTEGER, SAVE :: npas, nexca      ! vitesse dans la direction X (de O a E) en m / s
     logical rnpb  
     parameter(rnpb=.true.)  
89    
90      character(len=6), save:: ocean      REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m / s
91      ! (type de modèle océan à utiliser: "force" ou "slab" mais pas "couple")      REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)
92    
93      logical ok_ocean      REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)
94      SAVE ok_ocean      ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)
95    
96      ! "slab" ocean      REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa / s
97      REAL, save:: tslab(klon) ! temperature of ocean slab      REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)
98      REAL, save:: seaice(klon) ! glace de mer (kg/m2)      REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)
99      REAL fluxo(klon) ! flux turbulents ocean-glace de mer      REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K / s)
     REAL fluxg(klon) ! flux turbulents ocean-atmosphere  
100    
101      ! Modele thermique du sol, a activer pour le cycle diurne:      REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)
102      logical, save:: ok_veget      ! tendance physique de "qx" (s-1)
     LOGICAL, save:: ok_journe ! sortir le fichier journalier  
103    
104      LOGICAL ok_mensuel ! sortir le fichier mensuel      ! Local:
105    
106      LOGICAL ok_instan ! sortir le fichier instantane      LOGICAL:: firstcal = .true.
     save ok_instan  
107    
108      LOGICAL ok_region ! sortir le fichier regional      LOGICAL, PARAMETER:: ok_stratus = .FALSE.
109      PARAMETER (ok_region=.FALSE.)      ! Ajouter artificiellement les stratus
110    
111      ! pour phsystoke avec thermiques      ! pour phystoke avec thermiques
112      REAL fm_therm(klon, llm+1)      REAL fm_therm(klon, llm + 1)
113      REAL entr_therm(klon, llm)      REAL entr_therm(klon, llm)
114      real, save:: q2(klon, llm+1, nbsrf)      real, save:: q2(klon, llm + 1, nbsrf)
115    
116      INTEGER ivap ! indice de traceurs pour vapeur d'eau      INTEGER, PARAMETER:: ivap = 1 ! indice de traceur pour vapeur d'eau
117      PARAMETER (ivap=1)      INTEGER, PARAMETER:: iliq = 2 ! indice de traceur pour eau liquide
     INTEGER iliq ! indice de traceurs pour eau liquide  
     PARAMETER (iliq=2)  
118    
119      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)
120      LOGICAL, save:: ancien_ok      LOGICAL, save:: ancien_ok
121    
122      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K/s)      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K / s)
123      REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg/kg/s)      REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg / kg / s)
124    
125      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)
126    
127      !IM Amip2 PV a theta constante      REAL, save:: swdn0(klon, llm + 1), swdn(klon, llm + 1)
128        REAL, save:: swup0(klon, llm + 1), swup(klon, llm + 1)
129    
130      CHARACTER(LEN=3) ctetaSTD(nbteta)      REAL, save:: lwdn0(klon, llm + 1), lwdn(klon, llm + 1)
131      DATA ctetaSTD/'350', '380', '405'/      REAL, save:: lwup0(klon, llm + 1), lwup(klon, llm + 1)
     REAL rtetaSTD(nbteta)  
     DATA rtetaSTD/350., 380., 405./  
   
     !MI Amip2 PV a theta constante  
   
     INTEGER klevp1  
     PARAMETER(klevp1=llm+1)  
   
     REAL swdn0(klon, klevp1), swdn(klon, klevp1)  
     REAL swup0(klon, klevp1), swup(klon, klevp1)  
     SAVE swdn0, swdn, swup0, swup  
   
     REAL lwdn0(klon, klevp1), lwdn(klon, klevp1)  
     REAL lwup0(klon, klevp1), lwup(klon, klevp1)  
     SAVE lwdn0, lwdn, lwup0, lwup  
   
     !IM Amip2  
     ! variables a une pression donnee  
   
     integer nlevSTD  
     PARAMETER(nlevSTD=17)  
     real rlevSTD(nlevSTD)  
     DATA rlevSTD/100000., 92500., 85000., 70000., &  
          60000., 50000., 40000., 30000., 25000., 20000., &  
          15000., 10000., 7000., 5000., 3000., 2000., 1000./  
     CHARACTER(LEN=4) clevSTD(nlevSTD)  
     DATA clevSTD/'1000', '925 ', '850 ', '700 ', '600 ', &  
          '500 ', '400 ', '300 ', '250 ', '200 ', '150 ', '100 ', &  
          '70 ', '50 ', '30 ', '20 ', '10 '/  
132    
133      ! prw: precipitable water      ! prw: precipitable water
134      real prw(klon)      real prw(klon)
135    
136      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg/m2)      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg / m2)
137      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg/kg)      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg / kg)
138      REAL flwp(klon), fiwp(klon)      REAL flwp(klon), fiwp(klon)
139      REAL flwc(klon, llm), fiwc(klon, llm)      REAL flwc(klon, llm), fiwc(klon, llm)
140    
     INTEGER kmax, lmax  
     PARAMETER(kmax=8, lmax=8)  
     INTEGER kmaxm1, lmaxm1  
     PARAMETER(kmaxm1=kmax-1, lmaxm1=lmax-1)  
   
     REAL zx_tau(kmaxm1), zx_pc(lmaxm1)  
     DATA zx_tau/0.0, 0.3, 1.3, 3.6, 9.4, 23., 60./  
     DATA zx_pc/50., 180., 310., 440., 560., 680., 800./  
   
     ! cldtopres pression au sommet des nuages  
     REAL cldtopres(lmaxm1)  
     DATA cldtopres/50., 180., 310., 440., 560., 680., 800./  
   
     ! taulev: numero du niveau de tau dans les sorties ISCCP  
     CHARACTER(LEN=4) taulev(kmaxm1)  
   
     DATA taulev/'tau0', 'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'/  
     CHARACTER(LEN=3) pclev(lmaxm1)  
     DATA pclev/'pc1', 'pc2', 'pc3', 'pc4', 'pc5', 'pc6', 'pc7'/  
   
     CHARACTER(LEN=28) cnameisccp(lmaxm1, kmaxm1)  
     DATA cnameisccp/'pc< 50hPa, tau< 0.3', 'pc= 50-180hPa, tau< 0.3', &  
          'pc= 180-310hPa, tau< 0.3', 'pc= 310-440hPa, tau< 0.3', &  
          'pc= 440-560hPa, tau< 0.3', 'pc= 560-680hPa, tau< 0.3', &  
          'pc= 680-800hPa, tau< 0.3', 'pc< 50hPa, tau= 0.3-1.3', &  
          'pc= 50-180hPa, tau= 0.3-1.3', 'pc= 180-310hPa, tau= 0.3-1.3', &  
          'pc= 310-440hPa, tau= 0.3-1.3', 'pc= 440-560hPa, tau= 0.3-1.3', &  
          'pc= 560-680hPa, tau= 0.3-1.3', 'pc= 680-800hPa, tau= 0.3-1.3', &  
          'pc< 50hPa, tau= 1.3-3.6', 'pc= 50-180hPa, tau= 1.3-3.6', &  
          'pc= 180-310hPa, tau= 1.3-3.6', 'pc= 310-440hPa, tau= 1.3-3.6', &  
          'pc= 440-560hPa, tau= 1.3-3.6', 'pc= 560-680hPa, tau= 1.3-3.6', &  
          'pc= 680-800hPa, tau= 1.3-3.6', 'pc< 50hPa, tau= 3.6-9.4', &  
          'pc= 50-180hPa, tau= 3.6-9.4', 'pc= 180-310hPa, tau= 3.6-9.4', &  
          'pc= 310-440hPa, tau= 3.6-9.4', 'pc= 440-560hPa, tau= 3.6-9.4', &  
          'pc= 560-680hPa, tau= 3.6-9.4', 'pc= 680-800hPa, tau= 3.6-9.4', &  
          'pc< 50hPa, tau= 9.4-23', 'pc= 50-180hPa, tau= 9.4-23', &  
          'pc= 180-310hPa, tau= 9.4-23', 'pc= 310-440hPa, tau= 9.4-23', &  
          'pc= 440-560hPa, tau= 9.4-23', 'pc= 560-680hPa, tau= 9.4-23', &  
          'pc= 680-800hPa, tau= 9.4-23', 'pc< 50hPa, tau= 23-60', &  
          'pc= 50-180hPa, tau= 23-60', 'pc= 180-310hPa, tau= 23-60', &  
          'pc= 310-440hPa, tau= 23-60', 'pc= 440-560hPa, tau= 23-60', &  
          'pc= 560-680hPa, tau= 23-60', 'pc= 680-800hPa, tau= 23-60', &  
          'pc< 50hPa, tau> 60.', 'pc= 50-180hPa, tau> 60.', &  
          'pc= 180-310hPa, tau> 60.', 'pc= 310-440hPa, tau> 60.', &  
          'pc= 440-560hPa, tau> 60.', 'pc= 560-680hPa, tau> 60.', &  
          'pc= 680-800hPa, tau> 60.'/  
   
     !IM ISCCP simulator v3.4  
   
     integer nid_hf, nid_hf3d  
     save nid_hf, nid_hf3d  
   
141      ! Variables propres a la physique      ! Variables propres a la physique
142    
143      INTEGER, save:: radpas      INTEGER, save:: radpas
144      ! (Radiative transfer computations are made every "radpas" call to      ! Radiative transfer computations are made every "radpas" call to
145      ! "physiq".)      ! "physiq".
   
     REAL radsol(klon)  
     SAVE radsol ! bilan radiatif au sol calcule par code radiatif  
   
     INTEGER, SAVE:: itap ! number of calls to "physiq"  
146    
147        REAL, save:: radsol(klon) ! bilan radiatif au sol calcule par code radiatif
148      REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction      REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction
149    
150      REAL, save:: ftsoil(klon, nsoilmx, nbsrf)      REAL, save:: ftsoil(klon, nsoilmx, nbsrf)
151      ! soil temperature of surface fraction      ! soil temperature of surface fraction
152    
153      REAL fevap(klon, nbsrf)      REAL, save:: fevap(klon, nbsrf) ! evaporation
     SAVE fevap ! evaporation  
154      REAL fluxlat(klon, nbsrf)      REAL fluxlat(klon, nbsrf)
     SAVE fluxlat  
   
     REAL fqsurf(klon, nbsrf)  
     SAVE fqsurf ! humidite de l'air au contact de la surface  
   
     REAL, save:: qsol(klon) ! hauteur d'eau dans le sol  
155    
156      REAL fsnow(klon, nbsrf)      REAL, save:: fqsurf(klon, nbsrf)
157      SAVE fsnow ! epaisseur neigeuse      ! humidite de l'air au contact de la surface
158    
159      REAL falbe(klon, nbsrf)      REAL, save:: qsol(klon) ! column-density of water in soil, in kg m-2
160      SAVE falbe ! albedo par type de surface      REAL, save:: fsnow(klon, nbsrf) ! \'epaisseur neigeuse
161      REAL falblw(klon, nbsrf)      REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface
     SAVE falblw ! albedo par type de surface  
162    
163      ! Paramètres de l'orographie à l'échelle sous-maille (OESM) :      ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :
164      REAL, save:: zmea(klon) ! orographie moyenne      REAL, save:: zmea(klon) ! orographie moyenne
165      REAL, save:: zstd(klon) ! deviation standard de l'OESM      REAL, save:: zstd(klon) ! deviation standard de l'OESM
166      REAL, save:: zsig(klon) ! pente de l'OESM      REAL, save:: zsig(klon) ! pente de l'OESM
# Line 289  contains Line 169  contains
169      REAL, save:: zpic(klon) ! Maximum de l'OESM      REAL, save:: zpic(klon) ! Maximum de l'OESM
170      REAL, save:: zval(klon) ! Minimum de l'OESM      REAL, save:: zval(klon) ! Minimum de l'OESM
171      REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM      REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM
   
172      REAL zulow(klon), zvlow(klon)      REAL zulow(klon), zvlow(klon)
173        INTEGER igwd, itest(klon)
174    
175      INTEGER igwd, idx(klon), itest(klon)      REAL, save:: agesno(klon, nbsrf) ! age de la neige
176        REAL, save:: run_off_lic_0(klon)
177    
178      REAL agesno(klon, nbsrf)      ! Variables li\'ees \`a la convection d'Emanuel :
179      SAVE agesno ! age de la neige      REAL, save:: Ma(klon, llm) ! undilute upward mass flux
180        REAL, save:: qcondc(klon, llm) ! in-cld water content from convect
181        REAL, save:: sig1(klon, llm), w01(klon, llm)
182    
183      REAL run_off_lic_0(klon)      ! Variables pour la couche limite (Alain Lahellec) :
184      SAVE run_off_lic_0      REAL cdragh(klon) ! drag coefficient pour T and Q
185      !KE43      REAL cdragm(klon) ! drag coefficient pour vent
     ! Variables liees a la convection de K. Emanuel (sb):  
186    
187      REAL bas, top ! cloud base and top levels      REAL ycoefh(klon, llm) ! coef d'echange pour phytrac
     SAVE bas  
     SAVE top  
188    
189      REAL Ma(klon, llm) ! undilute upward mass flux      REAL, save:: ffonte(klon, nbsrf)
190      SAVE Ma      ! flux thermique utilise pour fondre la neige
     REAL qcondc(klon, llm) ! in-cld water content from convect  
     SAVE qcondc  
     REAL ema_work1(klon, llm), ema_work2(klon, llm)  
     SAVE ema_work1, ema_work2  
191    
192      REAL wd(klon) ! sb      REAL, save:: fqcalving(klon, nbsrf)
193      SAVE wd ! sb      ! flux d'eau "perdue" par la surface et necessaire pour limiter la
194        ! hauteur de neige, en kg / m2 / s
195    
196      ! Variables locales pour la couche limite (al1):      REAL zxffonte(klon), zxfqcalving(klon)
197    
198      ! Variables locales:      REAL, save:: pfrac_impa(klon, llm)! Produits des coefs lessivage impaction
199        REAL, save:: pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation
200    
201      REAL cdragh(klon) ! drag coefficient pour T and Q      REAL, save:: pfrac_1nucl(klon, llm)
202      REAL cdragm(klon) ! drag coefficient pour vent      ! Produits des coefs lessi nucl (alpha = 1)
203    
204      !AA Pour phytrac      REAL frac_impa(klon, llm) ! fraction d'a\'erosols lessiv\'es (impaction)
     REAL ycoefh(klon, llm) ! coef d'echange pour phytrac  
     REAL yu1(klon) ! vents dans la premiere couche U  
     REAL yv1(klon) ! vents dans la premiere couche V  
     REAL ffonte(klon, nbsrf) !Flux thermique utilise pour fondre la neige  
     REAL fqcalving(klon, nbsrf) !Flux d'eau "perdue" par la surface  
     ! !et necessaire pour limiter la  
     ! !hauteur de neige, en kg/m2/s  
     REAL zxffonte(klon), zxfqcalving(klon)  
   
     REAL pfrac_impa(klon, llm)! Produits des coefs lessivage impaction  
     save pfrac_impa  
     REAL pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation  
     save pfrac_nucl  
     REAL pfrac_1nucl(klon, llm)! Produits des coefs lessi nucl (alpha = 1)  
     save pfrac_1nucl  
     REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction)  
205      REAL frac_nucl(klon, llm) ! idem (nucleation)      REAL frac_nucl(klon, llm) ! idem (nucleation)
206    
207      !AA      REAL, save:: rain_fall(klon)
208      REAL rain_fall(klon) ! pluie      ! liquid water mass flux (kg / m2 / s), positive down
209      REAL snow_fall(klon) ! neige  
210      save snow_fall, rain_fall      REAL, save:: snow_fall(klon)
211      !IM cf FH pour Tiedtke 080604      ! solid water mass flux (kg / m2 / s), positive down
212    
213      REAL rain_tiedtke(klon), snow_tiedtke(klon)      REAL rain_tiedtke(klon), snow_tiedtke(klon)
214    
215      REAL evap(klon), devap(klon) ! evaporation et sa derivee      REAL evap(klon) ! flux d'\'evaporation au sol
216      REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee      real devap(klon) ! derivative of the evaporation flux at the surface
217      REAL dlw(klon) ! derivee infra rouge      REAL sens(klon) ! flux de chaleur sensible au sol
218      SAVE dlw      real dsens(klon) ! derivee du flux de chaleur sensible au sol
219        REAL, save:: dlw(klon) ! derivative of infra-red flux
220      REAL bils(klon) ! bilan de chaleur au sol      REAL bils(klon) ! bilan de chaleur au sol
221      REAL fder(klon) ! Derive de flux (sensible et latente)      REAL fder(klon) ! Derive de flux (sensible et latente)
     save fder  
222      REAL ve(klon) ! integr. verticale du transport meri. de l'energie      REAL ve(klon) ! integr. verticale du transport meri. de l'energie
223      REAL vq(klon) ! integr. verticale du transport meri. de l'eau      REAL vq(klon) ! integr. verticale du transport meri. de l'eau
224      REAL ue(klon) ! integr. verticale du transport zonal de l'energie      REAL ue(klon) ! integr. verticale du transport zonal de l'energie
225      REAL uq(klon) ! integr. verticale du transport zonal de l'eau      REAL uq(klon) ! integr. verticale du transport zonal de l'eau
226    
227      REAL frugs(klon, nbsrf) ! longueur de rugosite      REAL, save:: frugs(klon, nbsrf) ! longueur de rugosite
     save frugs  
228      REAL zxrugs(klon) ! longueur de rugosite      REAL zxrugs(klon) ! longueur de rugosite
229    
230      ! Conditions aux limites      ! Conditions aux limites
231    
232      INTEGER julien      INTEGER julien
233        REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface
234      INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day      REAL, save:: albsol(klon) ! albedo du sol total, visible, moyen par maille
     REAL pctsrf(klon, nbsrf)  
     !IM  
     REAL pctsrf_new(klon, nbsrf) !pourcentage surfaces issus d'ORCHIDEE  
   
     SAVE pctsrf ! sous-fraction du sol  
     REAL albsol(klon)  
     SAVE albsol ! albedo du sol total  
     REAL albsollw(klon)  
     SAVE albsollw ! albedo du sol total  
   
235      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU
236        real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2
237    
238      ! Declaration des procedures appelees      real, save:: clwcon(klon, llm), rnebcon(klon, llm)
239        real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)
     EXTERNAL alboc ! calculer l'albedo sur ocean  
     EXTERNAL ajsec ! ajustement sec  
     !KE43  
     EXTERNAL conema3 ! convect4.3  
     EXTERNAL fisrtilp ! schema de condensation a grande echelle (pluie)  
     EXTERNAL nuage ! calculer les proprietes radiatives  
     EXTERNAL radlwsw ! rayonnements solaire et infrarouge  
     EXTERNAL transp ! transport total de l'eau et de l'energie  
   
     ! Variables locales  
   
     real clwcon(klon, llm), rnebcon(klon, llm)  
     real clwcon0(klon, llm), rnebcon0(klon, llm)  
   
     save rnebcon, clwcon  
240    
241      REAL rhcl(klon, llm) ! humiditi relative ciel clair      REAL rhcl(klon, llm) ! humiditi relative ciel clair
242      REAL dialiq(klon, llm) ! eau liquide nuageuse      REAL dialiq(klon, llm) ! eau liquide nuageuse
# Line 408  contains Line 246  contains
246      REAL cldtau(klon, llm) ! epaisseur optique      REAL cldtau(klon, llm) ! epaisseur optique
247      REAL cldemi(klon, llm) ! emissivite infrarouge      REAL cldemi(klon, llm) ! emissivite infrarouge
248    
249      REAL fluxq(klon, llm, nbsrf) ! flux turbulent d'humidite      REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface
250      REAL fluxt(klon, llm, nbsrf) ! flux turbulent de chaleur      REAL flux_t(klon, nbsrf) ! flux turbulent de chaleur à la surface
251      REAL fluxu(klon, llm, nbsrf) ! flux turbulent de vitesse u      REAL flux_u(klon, nbsrf) ! flux turbulent de vitesse u à la surface
252      REAL fluxv(klon, llm, nbsrf) ! flux turbulent de vitesse v      REAL flux_v(klon, nbsrf) ! flux turbulent de vitesse v à la surface
253    
254      REAL zxfluxt(klon, llm)      ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que
255      REAL zxfluxq(klon, llm)      ! les variables soient r\'emanentes.
256      REAL zxfluxu(klon, llm)      REAL, save:: heat(klon, llm) ! chauffage solaire
257      REAL zxfluxv(klon, llm)      REAL, save:: heat0(klon, llm) ! chauffage solaire ciel clair
258        REAL, save:: cool(klon, llm) ! refroidissement infrarouge
259      REAL heat(klon, llm) ! chauffage solaire      REAL, save:: cool0(klon, llm) ! refroidissement infrarouge ciel clair
260      REAL heat0(klon, llm) ! chauffage solaire ciel clair      REAL, save:: topsw(klon), toplw(klon), solsw(klon)
261      REAL cool(klon, llm) ! refroidissement infrarouge      REAL, save:: sollw(klon) ! rayonnement infrarouge montant \`a la surface
262      REAL cool0(klon, llm) ! refroidissement infrarouge ciel clair      real, save:: sollwdown(klon) ! downward LW flux at surface
263      REAL topsw(klon), toplw(klon), solsw(klon), sollw(klon)      REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)
264      real sollwdown(klon) ! downward LW flux at surface      REAL, save:: albpla(klon)
265      REAL topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)      REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous-surface
266      REAL albpla(klon)      REAL fsolsw(klon, nbsrf) ! flux solaire absorb\'e pour chaque sous-surface
267      REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous surface  
268      REAL fsolsw(klon, nbsrf) ! flux solaire absorb. pour chaque sous surface      REAL conv_q(klon, llm) ! convergence de l'humidite (kg / kg / s)
269      ! Le rayonnement n'est pas calcule tous les pas, il faut donc      REAL conv_t(klon, llm) ! convergence of temperature (K / s)
270      ! sauvegarder les sorties du rayonnement  
271      SAVE heat, cool, albpla, topsw, toplw, solsw, sollw, sollwdown      REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut
272      SAVE topsw0, toplw0, solsw0, sollw0, heat0, cool0      REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree
273    
274      INTEGER itaprad      REAL zxfluxlat(klon)
275      SAVE itaprad      REAL dist, mu0(klon), fract(klon)
276        real longi
     REAL conv_q(klon, llm) ! convergence de l'humidite (kg/kg/s)  
     REAL conv_t(klon, llm) ! convergence of temperature (K/s)  
   
     REAL cldl(klon), cldm(klon), cldh(klon) !nuages bas, moyen et haut  
     REAL cldt(klon), cldq(klon) !nuage total, eau liquide integree  
   
     REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon)  
   
     REAL dist, rmu0(klon), fract(klon)  
     REAL zdtime ! pas de temps du rayonnement (s)  
     real zlongi  
   
277      REAL z_avant(klon), z_apres(klon), z_factor(klon)      REAL z_avant(klon), z_apres(klon), z_factor(klon)
278      LOGICAL zx_ajustq      REAL zb
279        REAL zx_t, zx_qs, zcor
     REAL za, zb  
     REAL zx_t, zx_qs, zdelta, zcor, zlvdcp, zlsdcp  
280      real zqsat(klon, llm)      real zqsat(klon, llm)
281      INTEGER i, k, iq, nsrf      INTEGER i, k, iq, nsrf
     REAL t_coup  
     PARAMETER (t_coup=234.0)  
   
282      REAL zphi(klon, llm)      REAL zphi(klon, llm)
283    
284      !IM cf. AM Variables locales pour la CLA (hbtm2)      ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm)
285    
286      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite
287      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA
288      REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite      REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite
289      REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite      REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite
290      REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite      REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite
291      REAL, SAVE:: pblt(klon, nbsrf) ! T a la Hauteur de couche limite      REAL, SAVE:: pblt(klon, nbsrf) ! T \`a la hauteur de couche limite
292      REAL, SAVE:: therm(klon, nbsrf)      REAL, SAVE:: therm(klon, nbsrf)
293      REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape      REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape
294      REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition      REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition
295      REAL, SAVE:: trmb3(klon, nbsrf) ! Point Omega      REAL, SAVE:: trmb3(klon, nbsrf) ! Point Omega
296      ! Grdeurs de sorties      ! Grandeurs de sorties
297      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)
298      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)
299      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)
300      REAL s_trmb3(klon)      REAL s_trmb3(klon)
301    
302      ! Variables locales pour la convection de K. Emanuel (sb):      ! Variables pour la convection de K. Emanuel :
303    
304      REAL upwd(klon, llm) ! saturated updraft mass flux      REAL upwd(klon, llm) ! saturated updraft mass flux
305      REAL dnwd(klon, llm) ! saturated downdraft mass flux      REAL dnwd(klon, llm) ! saturated downdraft mass flux
306      REAL dnwd0(klon, llm) ! unsaturated downdraft mass flux      REAL, save:: cape(klon)
307      REAL tvp(klon, llm) ! virtual temp of lifted parcel  
     REAL cape(klon) ! CAPE  
     SAVE cape  
   
     REAL pbase(klon) ! cloud base pressure  
     SAVE pbase  
     REAL bbase(klon) ! cloud base buoyancy  
     SAVE bbase  
     REAL rflag(klon) ! flag fonctionnement de convect  
308      INTEGER iflagctrl(klon) ! flag fonctionnement de convect      INTEGER iflagctrl(klon) ! flag fonctionnement de convect
     ! -- convect43:  
     INTEGER ntra ! nb traceurs pour convect4.3  
     REAL dtvpdt1(klon, llm), dtvpdq1(klon, llm)  
     REAL dplcldt(klon), dplcldr(klon)  
309    
310      ! Variables du changement      ! Variables du changement
311    
312      ! con: convection      ! con: convection
313      ! lsc: condensation a grande echelle (Large-Scale-Condensation)      ! lsc: large scale condensation
314      ! ajs: ajustement sec      ! ajs: ajustement sec
315      ! eva: evaporation de l'eau liquide nuageuse      ! eva: \'evaporation de l'eau liquide nuageuse
316      ! vdf: couche limite (Vertical DiFfusion)      ! vdf: vertical diffusion in boundary layer
317      REAL d_t_con(klon, llm), d_q_con(klon, llm)      REAL d_t_con(klon, llm), d_q_con(klon, llm)
318      REAL d_u_con(klon, llm), d_v_con(klon, llm)      REAL, save:: d_u_con(klon, llm), d_v_con(klon, llm)
319      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)
320      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)
321      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)
322      REAL rneb(klon, llm)      REAL rneb(klon, llm)
323    
324      REAL pmfu(klon, llm), pmfd(klon, llm)      REAL mfu(klon, llm), mfd(klon, llm)
325      REAL pen_u(klon, llm), pen_d(klon, llm)      REAL pen_u(klon, llm), pen_d(klon, llm)
326      REAL pde_u(klon, llm), pde_d(klon, llm)      REAL pde_u(klon, llm), pde_d(klon, llm)
327      INTEGER kcbot(klon), kctop(klon), kdtop(klon)      INTEGER kcbot(klon), kctop(klon), kdtop(klon)
328      REAL pmflxr(klon, llm+1), pmflxs(klon, llm+1)      REAL pmflxr(klon, llm + 1), pmflxs(klon, llm + 1)
329      REAL prfl(klon, llm+1), psfl(klon, llm+1)      REAL prfl(klon, llm + 1), psfl(klon, llm + 1)
   
     INTEGER ibas_con(klon), itop_con(klon)  
330    
331      SAVE ibas_con, itop_con      INTEGER, save:: ibas_con(klon), itop_con(klon)
332        real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa
333    
334      REAL rain_con(klon), rain_lsc(klon)      REAL, save:: rain_con(klon)
335      REAL snow_con(klon), snow_lsc(klon)      real rain_lsc(klon)
336      REAL d_ts(klon, nbsrf)      REAL, save:: snow_con(klon) ! neige (mm / s)
337        real snow_lsc(klon)
338        REAL d_ts(klon, nbsrf) ! variation of ftsol
339    
340      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)
341      REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)      REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)
# Line 535  contains Line 345  contains
345      REAL d_u_lif(klon, llm), d_v_lif(klon, llm)      REAL d_u_lif(klon, llm), d_v_lif(klon, llm)
346      REAL d_t_lif(klon, llm)      REAL d_t_lif(klon, llm)
347    
348      REAL ratqs(klon, llm), ratqss(klon, llm), ratqsc(klon, llm)      REAL, save:: ratqs(klon, llm)
349      real ratqsbas, ratqshaut      real ratqss(klon, llm), ratqsc(klon, llm)
350      save ratqsbas, ratqshaut, ratqs      real:: ratqsbas = 0.01, ratqshaut = 0.3
351    
352      ! Parametres lies au nouveau schema de nuages (SB, PDF)      ! Parametres lies au nouveau schema de nuages (SB, PDF)
353      real, save:: fact_cldcon      real:: fact_cldcon = 0.375
354      real, save:: facttemps      real:: facttemps = 1.e-4
355      logical ok_newmicro      logical:: ok_newmicro = .true.
     save ok_newmicro  
356      real facteur      real facteur
357    
358      integer iflag_cldcon      integer:: iflag_cldcon = 1
     save iflag_cldcon  
   
359      logical ptconv(klon, llm)      logical ptconv(klon, llm)
360    
361      ! Variables locales pour effectuer les appels en série      ! Variables pour effectuer les appels en s\'erie :
362    
363      REAL t_seri(klon, llm), q_seri(klon, llm)      REAL t_seri(klon, llm), q_seri(klon, llm)
364      REAL ql_seri(klon, llm), qs_seri(klon, llm)      REAL ql_seri(klon, llm)
365      REAL u_seri(klon, llm), v_seri(klon, llm)      REAL u_seri(klon, llm), v_seri(klon, llm)
366        REAL tr_seri(klon, llm, nqmx - 2)
     REAL tr_seri(klon, llm, nbtr)  
     REAL d_tr(klon, llm, nbtr)  
367    
368      REAL zx_rh(klon, llm)      REAL zx_rh(klon, llm)
369    
# Line 567  contains Line 372  contains
372      REAL zustrph(klon), zvstrph(klon)      REAL zustrph(klon), zvstrph(klon)
373      REAL aam, torsfc      REAL aam, torsfc
374    
     REAL dudyn(iim+1, jjm + 1, llm)  
   
     REAL zx_tmp_fi2d(klon) ! variable temporaire grille physique  
     REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm)  
   
     INTEGER, SAVE:: nid_day, nid_ins  
   
375      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.
376      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.
377      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.
378      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.
379    
     REAL zsto  
   
     character(len=20) modname  
     character(len=80) abort_message  
     logical ok_sync  
380      real date0      real date0
381        REAL tsol(klon)
382    
383        REAL d_t_ec(klon, llm)
384        ! tendance due \`a la conversion d'\'energie cin\'etique en
385        ! énergie thermique
386    
387        REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf)
388        ! temperature and humidity at 2 m
389    
390      ! Variables liees au bilan d'energie et d'enthalpi      REAL, save:: u10m_srf(klon, nbsrf), v10m_srf(klon, nbsrf)
391      REAL ztsol(klon)      ! composantes du vent \`a 10 m
392      REAL d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec      
393      REAL d_h_vcol_phy      REAL zt2m(klon), zq2m(klon) ! température, humidité 2 m moyenne sur 1 maille
394      REAL fs_bound, fq_bound      REAL u10m(klon), v10m(klon) ! vent \`a 10 m moyenn\' sur les sous-surfaces
395      SAVE d_h_vcol_phy  
396      REAL zero_v(klon)      ! Aerosol effects:
397      CHARACTER(LEN=15) ztit  
398      INTEGER ip_ebil ! PRINT level for energy conserv. diag.      REAL, save:: topswad(klon), solswad(klon) ! aerosol direct effect
399      SAVE ip_ebil      LOGICAL:: ok_ade = .false. ! apply aerosol direct effect
     DATA ip_ebil/0/  
     INTEGER, SAVE:: if_ebil ! level for energy conservation diagnostics  
     !+jld ec_conser  
     REAL d_t_ec(klon, llm) ! tendance du a la conersion Ec -> E thermique  
     REAL ZRCPD  
     !-jld ec_conser  
     !IM: t2m, q2m, u10m, v10m  
     REAL t2m(klon, nbsrf), q2m(klon, nbsrf) ! temperature and humidity at 2 m  
     REAL u10m(klon, nbsrf), v10m(klon, nbsrf) !vents a 10m  
     REAL zt2m(klon), zq2m(klon) !temp., hum. 2m moyenne s/ 1 maille  
     REAL zu10m(klon), zv10m(klon) !vents a 10m moyennes s/1 maille  
     !jq Aerosol effects (Johannes Quaas, 27/11/2003)  
     REAL sulfate(klon, llm) ! SO4 aerosol concentration [ug/m3]  
   
     REAL, save:: sulfate_pi(klon, llm)  
     ! (SO4 aerosol concentration, in ug/m3, pre-industrial value)  
   
     REAL cldtaupi(klon, llm)  
     ! (Cloud optical thickness for pre-industrial (pi) aerosols)  
   
     REAL re(klon, llm) ! Cloud droplet effective radius  
     REAL fl(klon, llm) ! denominator of re  
   
     ! Aerosol optical properties  
     REAL tau_ae(klon, llm, 2), piz_ae(klon, llm, 2)  
     REAL cg_ae(klon, llm, 2)  
   
     REAL topswad(klon), solswad(klon) ! Aerosol direct effect.  
     ! ok_ade=True -ADE=topswad-topsw  
   
     REAL topswai(klon), solswai(klon) ! Aerosol indirect effect.  
     ! ok_aie=True ->  
     ! ok_ade=True -AIE=topswai-topswad  
     ! ok_ade=F -AIE=topswai-topsw  
   
     REAL aerindex(klon) ! POLDER aerosol index  
   
     ! Parameters  
     LOGICAL ok_ade, ok_aie ! Apply aerosol (in)direct effects or not  
     REAL bl95_b0, bl95_b1 ! Parameter in Boucher and Lohmann (1995)  
   
     SAVE ok_ade, ok_aie, bl95_b0, bl95_b1  
     SAVE u10m  
     SAVE v10m  
     SAVE t2m  
     SAVE q2m  
     SAVE ffonte  
     SAVE fqcalving  
     SAVE piz_ae  
     SAVE tau_ae  
     SAVE cg_ae  
     SAVE rain_con  
     SAVE snow_con  
     SAVE topswai  
     SAVE topswad  
     SAVE solswai  
     SAVE solswad  
     SAVE d_u_con  
     SAVE d_v_con  
     SAVE rnebcon0  
     SAVE clwcon0  
400    
401      real zmasse(klon, llm)      REAL:: bl95_b0 = 2., bl95_b1 = 0.2
402        ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus
403        ! B). They link cloud droplet number concentration to aerosol mass
404        ! concentration.
405    
406        real zmasse(klon, llm)
407      ! (column-density of mass of air in a cell, in kg m-2)      ! (column-density of mass of air in a cell, in kg m-2)
408    
409      real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2      integer, save:: ncid_startphy
410    
411        namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, &
412             ratqsbas, ratqshaut, ok_ade, bl95_b0, bl95_b1, iflag_thermals, &
413             nsplit_thermals
414    
415      !----------------------------------------------------------------      !----------------------------------------------------------------
416    
417      modname = 'physiq'      IF (nqmx < 2) CALL abort_gcm('physiq', &
418      IF (if_ebil >= 1) THEN           'eaux vapeur et liquide sont indispensables')
        DO i=1, klon  
           zero_v(i)=0.  
        END DO  
     END IF  
     ok_sync=.TRUE.  
     IF (nqmx < 2) THEN  
        abort_message = 'eaux vapeur et liquide sont indispensables'  
        CALL abort_gcm(modname, abort_message, 1)  
     ENDIF  
419    
420      test_firstcal: IF (firstcal) THEN      test_firstcal: IF (firstcal) THEN
421         ! initialiser         ! initialiser
422         u10m=0.         u10m_srf = 0.
423         v10m=0.         v10m_srf = 0.
424         t2m=0.         t2m = 0.
425         q2m=0.         q2m = 0.
426         ffonte=0.         ffonte = 0.
427         fqcalving=0.         fqcalving = 0.
428         piz_ae=0.         rain_con = 0.
429         tau_ae=0.         snow_con = 0.
430         cg_ae=0.         d_u_con = 0.
431         rain_con(:)=0.         d_v_con = 0.
432         snow_con(:)=0.         rnebcon0 = 0.
433         bl95_b0=0.         clwcon0 = 0.
434         bl95_b1=0.         rnebcon = 0.
435         topswai(:)=0.         clwcon = 0.
        topswad(:)=0.  
        solswai(:)=0.  
        solswad(:)=0.  
   
        d_u_con = 0.0  
        d_v_con = 0.0  
        rnebcon0 = 0.0  
        clwcon0 = 0.0  
        rnebcon = 0.0  
        clwcon = 0.0  
   
436         pblh =0. ! Hauteur de couche limite         pblh =0. ! Hauteur de couche limite
437         plcl =0. ! Niveau de condensation de la CLA         plcl =0. ! Niveau de condensation de la CLA
438         capCL =0. ! CAPE de couche limite         capCL =0. ! CAPE de couche limite
439         oliqCL =0. ! eau_liqu integree de couche limite         oliqCL =0. ! eau_liqu integree de couche limite
440         cteiCL =0. ! cloud top instab. crit. couche limite         cteiCL =0. ! cloud top instab. crit. couche limite
441         pblt =0. ! T a la Hauteur de couche limite         pblt =0.
442         therm =0.         therm =0.
443         trmb1 =0. ! deep_cape         trmb1 =0. ! deep_cape
444         trmb2 =0. ! inhibition         trmb2 =0. ! inhibition
445         trmb3 =0. ! Point Omega         trmb3 =0. ! Point Omega
446    
447         IF (if_ebil >= 1) d_h_vcol_phy=0.         iflag_thermals = 0
448           nsplit_thermals = 1
449           print *, "Enter namelist 'physiq_nml'."
450           read(unit=*, nml=physiq_nml)
451           write(unit_nml, nml=physiq_nml)
452    
453         ! appel a la lecture du run.def physique         call conf_phys
   
        call conf_phys(ocean, ok_veget, ok_journe, ok_mensuel, &  
             ok_instan, fact_cldcon, facttemps, ok_newmicro, &  
             iflag_cldcon, ratqsbas, ratqshaut, if_ebil, &  
             ok_ade, ok_aie, &  
             bl95_b0, bl95_b1, &  
             iflag_thermals, nsplit_thermals)  
454    
455         ! Initialiser les compteurs:         ! Initialiser les compteurs:
456    
457         frugs = 0.         frugs = 0.
458         itap = 0         CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
459         itaprad = 0              fevap, rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, &
460         CALL phyetat0("startphy.nc", pctsrf, ftsol, ftsoil, ocean, tslab, &              agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, &
461              seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, rain_fall, &              q_ancien, ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
462              snow_fall, solsw, sollwdown, dlw, radsol, frugs, agesno, zmea, &              w01, ncid_startphy)
             zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, &  
             ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0)  
463    
464         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial
465         q2=1.e-8         q2 = 1e-8
466    
467         radpas = NINT(86400. / dtphys / nbapp_rad)         radpas = lmt_pas / nbapp_rad
468           print *, "radpas = ", radpas
        ! on remet le calendrier a zero  
        IF (raz_date) itau_phy = 0  
   
        PRINT *, 'cycle_diurne = ', cycle_diurne  
   
        IF(ocean.NE.'force ') THEN  
           ok_ocean=.TRUE.  
        ENDIF  
   
        CALL printflag(radpas, ok_ocean, ok_oasis, ok_journe, ok_instan, &  
             ok_region)  
   
        IF (dtphys*REAL(radpas).GT.21600..AND.cycle_diurne) THEN  
           print *,'Nbre d appels au rayonnement insuffisant'  
           print *,"Au minimum 4 appels par jour si cycle diurne"  
           abort_message='Nbre d appels au rayonnement insuffisant'  
           call abort_gcm(modname, abort_message, 1)  
        ENDIF  
        print *,"Clef pour la convection, iflag_con=", iflag_con  
        print *,"Clef pour le driver de la convection, ok_cvl=", &  
             ok_cvl  
   
        ! Initialisation pour la convection de K.E. (sb):  
        IF (iflag_con >= 3) THEN  
   
           print *,"*** Convection de Kerry Emanuel 4.3 "  
   
           !IM15/11/02 rajout initialisation ibas_con, itop_con cf. SB =>BEG  
           DO i = 1, klon  
              ibas_con(i) = 1  
              itop_con(i) = 1  
           ENDDO  
           !IM15/11/02 rajout initialisation ibas_con, itop_con cf. SB =>END  
469    
470           ! Initialisation pour le sch\'ema de convection d'Emanuel :
471           IF (conv_emanuel) THEN
472              ibas_con = 1
473              itop_con = 1
474         ENDIF         ENDIF
475    
476         IF (ok_orodr) THEN         IF (ok_orodr) THEN
477            rugoro = MAX(1e-5, zstd * zsig / 2)            rugoro = MAX(1e-5, zstd * zsig / 2)
478            CALL SUGWD(klon, llm, paprs, play)            CALL SUGWD(paprs, play)
479         else         else
480            rugoro = 0.            rugoro = 0.
481         ENDIF         ENDIF
482    
483         lmt_pas = NINT(86400. / dtphys) ! tous les jours         ecrit_ins = NINT(ecrit_ins / dtphys)
        print *, 'Number of time steps of "physics" per day: ', lmt_pas  
   
        ecrit_ins = NINT(ecrit_ins/dtphys)  
        ecrit_hf = NINT(ecrit_hf/dtphys)  
        ecrit_mth = NINT(ecrit_mth/dtphys)  
        ecrit_tra = NINT(86400.*ecrit_tra/dtphys)  
        ecrit_reg = NINT(ecrit_reg/dtphys)  
   
        ! Initialiser le couplage si necessaire  
   
        npas = 0  
        nexca = 0  
   
        print *,'AVANT HIST IFLAG_CON=', iflag_con  
484    
485         ! Initialisation des sorties         ! Initialisation des sorties
486    
487         call ini_histhf(dtphys, nid_hf, nid_hf3d)         call ini_histins(dtphys, ok_newmicro)
488         call ini_histday(dtphys, ok_journe, nid_day, nqmx)         CALL ymds2ju(annee_ref, 1, day_ref, 0., date0)
489         call ini_histins(dtphys, ok_instan, nid_ins)         ! Positionner date0 pour initialisation de ORCHIDEE
490         CALL ymds2ju(annee_ref, 1, int(day_ref), 0., date0)         print *, 'physiq date0: ', date0
491         !XXXPB Positionner date0 pour initialisation de ORCHIDEE         CALL phyredem0
        WRITE(*, *) 'physiq date0 : ', date0  
492      ENDIF test_firstcal      ENDIF test_firstcal
493    
494      ! Mettre a zero des variables de sortie (pour securite)      ! We will modify variables *_seri and we will not touch variables
495        ! u, v, t, qx:
496        t_seri = t
497        u_seri = u
498        v_seri = v
499        q_seri = qx(:, :, ivap)
500        ql_seri = qx(:, :, iliq)
501        tr_seri = qx(:, :, 3:nqmx)
502    
503      DO i = 1, klon      tsol = sum(ftsol * pctsrf, dim = 2)
        d_ps(i) = 0.0  
     ENDDO  
     DO iq = 1, nqmx  
        DO k = 1, llm  
           DO i = 1, klon  
              d_qx(i, k, iq) = 0.0  
           ENDDO  
        ENDDO  
     ENDDO  
     da=0.  
     mp=0.  
     phi=0.  
   
     ! Ne pas affecter les valeurs entrees de u, v, h, et q  
   
     DO k = 1, llm  
        DO i = 1, klon  
           t_seri(i, k) = t(i, k)  
           u_seri(i, k) = u(i, k)  
           v_seri(i, k) = v(i, k)  
           q_seri(i, k) = qx(i, k, ivap)  
           ql_seri(i, k) = qx(i, k, iliq)  
           qs_seri(i, k) = 0.  
        ENDDO  
     ENDDO  
     IF (nqmx >= 3) THEN  
        tr_seri(:, :, :nqmx-2) = qx(:, :, 3:nqmx)  
     ELSE  
        tr_seri(:, :, 1) = 0.  
     ENDIF  
   
     DO i = 1, klon  
        ztsol(i) = 0.  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           ztsol(i) = ztsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
504    
505      IF (if_ebil >= 1) THEN      ! Diagnostic de la tendance dynamique :
        ztit='after dynamic'  
        CALL diagetpq(airephy, ztit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        ! Comme les tendances de la physique sont ajoute dans la dynamique,  
        ! on devrait avoir que la variation d'entalpie par la dynamique  
        ! est egale a la variation de la physique au pas de temps precedent.  
        ! Donc la somme de ces 2 variations devrait etre nulle.  
        call diagphy(airephy, ztit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol+d_h_vcol_phy, &  
             d_qt, 0., fs_bound, fq_bound)  
     END IF  
   
     ! Diagnostiquer la tendance dynamique  
506      IF (ancien_ok) THEN      IF (ancien_ok) THEN
507         DO k = 1, llm         DO k = 1, llm
508            DO i = 1, klon            DO i = 1, klon
# Line 879  contains Line 513  contains
513      ELSE      ELSE
514         DO k = 1, llm         DO k = 1, llm
515            DO i = 1, klon            DO i = 1, klon
516               d_t_dyn(i, k) = 0.0               d_t_dyn(i, k) = 0.
517               d_q_dyn(i, k) = 0.0               d_q_dyn(i, k) = 0.
518            ENDDO            ENDDO
519         ENDDO         ENDDO
520         ancien_ok = .TRUE.         ancien_ok = .TRUE.
# Line 896  contains Line 530  contains
530      ! Check temperatures:      ! Check temperatures:
531      CALL hgardfou(t_seri, ftsol)      CALL hgardfou(t_seri, ftsol)
532    
533      ! Incrementer le compteur de la physique      call increment_itap
534      itap = itap + 1      julien = MOD(dayvrai, 360)
     julien = MOD(NINT(rdayvrai), 360)  
535      if (julien == 0) julien = 360      if (julien == 0) julien = 360
536    
537      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k)-paprs(:, k+1)) / rg      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg
   
     ! Mettre en action les conditions aux limites (albedo, sst, etc.).  
   
     ! Prescrire l'ozone et calculer l'albedo sur l'ocean.  
     if (nqmx >= 5) then  
        wo = qx(:, :, 5) * zmasse / dobson_u / 1e3  
     else IF (MOD(itap - 1, lmt_pas) == 0) THEN  
        wo = ozonecm(REAL(julien), paprs)  
     ENDIF  
538    
539      ! Re-evaporer l'eau liquide nuageuse      ! \'Evaporation de l'eau liquide nuageuse :
540        DO k = 1, llm
     DO k = 1, llm ! re-evaporation de l'eau liquide nuageuse  
541         DO i = 1, klon         DO i = 1, klon
542            zlvdcp=RLVTT/RCPD/(1.0+RVTMP2*q_seri(i, k))            zb = MAX(0., ql_seri(i, k))
543            zlsdcp=RLVTT/RCPD/(1.0+RVTMP2*q_seri(i, k))            t_seri(i, k) = t_seri(i, k) &
544            zdelta = MAX(0., SIGN(1., RTT-t_seri(i, k)))                 - zb * RLVTT / RCPD / (1. + RVTMP2 * q_seri(i, k))
           zb = MAX(0.0, ql_seri(i, k))  
           za = - MAX(0.0, ql_seri(i, k)) &  
                * (zlvdcp*(1.-zdelta)+zlsdcp*zdelta)  
           t_seri(i, k) = t_seri(i, k) + za  
545            q_seri(i, k) = q_seri(i, k) + zb            q_seri(i, k) = q_seri(i, k) + zb
           ql_seri(i, k) = 0.0  
546         ENDDO         ENDDO
547      ENDDO      ENDDO
548        ql_seri = 0.
549    
550      IF (if_ebil >= 2) THEN      frugs = MAX(frugs, 0.000015)
551         ztit='after reevap'      zxrugs = sum(frugs * pctsrf, dim = 2)
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 1, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
552    
553      END IF      ! Calculs n\'ecessaires au calcul de l'albedo dans l'interface avec
554        ! la surface.
555    
556      ! Appeler la diffusion verticale (programme de couche limite)      CALL orbite(REAL(julien), longi, dist)
557        CALL zenang(longi, time, dtphys * radpas, mu0, fract)
558      DO i = 1, klon      albsol = sum(falbe * pctsrf, dim = 2)
559         zxrugs(i) = 0.0  
560      ENDDO      ! R\'epartition sous maille des flux longwave et shortwave
561      DO nsrf = 1, nbsrf      ! R\'epartition du longwave par sous-surface lin\'earis\'ee
562         DO i = 1, klon  
563            frugs(i, nsrf) = MAX(frugs(i, nsrf), 0.000015)      forall (nsrf = 1: nbsrf)
564         ENDDO         fsollw(:, nsrf) = sollw + 4. * RSIGMA * tsol**3 &
565      ENDDO              * (tsol - ftsol(:, nsrf))
566      DO nsrf = 1, nbsrf         fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol)
567         DO i = 1, klon      END forall
568            zxrugs(i) = zxrugs(i) + frugs(i, nsrf)*pctsrf(i, nsrf)  
569         ENDDO      CALL clmain(dtphys, pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, &
570      ENDDO           ftsol, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, &
571             paprs, play, fsnow, fqsurf, fevap, falbe, fluxlat, rain_fall, &
572      ! calculs necessaires au calcul de l'albedo dans l'interface           snow_fall, fsolsw, fsollw, frugs, agesno, rugoro, d_t_vdf, d_q_vdf, &
573             d_u_vdf, d_v_vdf, d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, &
574      CALL orbite(REAL(julien), zlongi, dist)           cdragm, q2, dsens, devap, ycoefh, t2m, q2m, u10m_srf, v10m_srf, &
     IF (cycle_diurne) THEN  
        zdtime = dtphys * REAL(radpas)  
        CALL zenang(zlongi, time, zdtime, rmu0, fract)  
     ELSE  
        rmu0 = -999.999  
     ENDIF  
   
     ! Calcul de l'abedo moyen par maille  
     albsol(:)=0.  
     albsollw(:)=0.  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           albsol(i) = albsol(i) + falbe(i, nsrf) * pctsrf(i, nsrf)  
           albsollw(i) = albsollw(i) + falblw(i, nsrf) * pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     ! Repartition sous maille des flux LW et SW  
     ! Repartition du longwave par sous-surface linearisee  
   
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           fsollw(i, nsrf) = sollw(i) &  
                + 4.0*RSIGMA*ztsol(i)**3 * (ztsol(i)-ftsol(i, nsrf))  
           fsolsw(i, nsrf) = solsw(i)*(1.-falbe(i, nsrf))/(1.-albsol(i))  
        ENDDO  
     ENDDO  
   
     fder = dlw  
   
     ! Couche limite:  
   
     CALL clmain(dtphys, itap, date0, pctsrf, pctsrf_new, t_seri, q_seri, &  
          u_seri, v_seri, julien, rmu0, co2_ppm, ok_veget, ocean, npas, nexca, &  
          ftsol, soil_model, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, &  
          qsol, paprs, play, fsnow, fqsurf, fevap, falbe, falblw, fluxlat, &  
          rain_fall, snow_fall, fsolsw, fsollw, sollwdown, fder, rlon, rlat, &  
          cuphy, cvphy, frugs, firstcal, lafin, agesno, rugoro, d_t_vdf, &  
          d_q_vdf, d_u_vdf, d_v_vdf, d_ts, fluxt, fluxq, fluxu, fluxv, cdragh, &  
          cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, &  
575           pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, plcl, &           pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, plcl, &
576           fqcalving, ffonte, run_off_lic_0, fluxo, fluxg, tslab, seaice)           fqcalving, ffonte, run_off_lic_0)
577    
578      ! Incrémentation des flux      ! Incr\'ementation des flux
579    
580      zxfluxt=0.      sens = - sum(flux_t * pctsrf, dim = 2)
581      zxfluxq=0.      evap = - sum(flux_q * pctsrf, dim = 2)
582      zxfluxu=0.      fder = dlw + dsens + devap
     zxfluxv=0.  
     DO nsrf = 1, nbsrf  
        DO k = 1, llm  
           DO i = 1, klon  
              zxfluxt(i, k) = zxfluxt(i, k) + &  
                   fluxt(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxq(i, k) = zxfluxq(i, k) + &  
                   fluxq(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxu(i, k) = zxfluxu(i, k) + &  
                   fluxu(i, k, nsrf) * pctsrf(i, nsrf)  
              zxfluxv(i, k) = zxfluxv(i, k) + &  
                   fluxv(i, k, nsrf) * pctsrf(i, nsrf)  
           END DO  
        END DO  
     END DO  
     DO i = 1, klon  
        sens(i) = - zxfluxt(i, 1) ! flux de chaleur sensible au sol  
        evap(i) = - zxfluxq(i, 1) ! flux d'evaporation au sol  
        fder(i) = dlw(i) + dsens(i) + devap(i)  
     ENDDO  
583    
584      DO k = 1, llm      DO k = 1, llm
585         DO i = 1, klon         DO i = 1, klon
# Line 1036  contains Line 590  contains
590         ENDDO         ENDDO
591      ENDDO      ENDDO
592    
     IF (if_ebil >= 2) THEN  
        ztit='after clmain'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             sens, evap, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
     END IF  
   
593      ! Update surface temperature:      ! Update surface temperature:
594    
595      DO i = 1, klon      call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf')
596         zxtsol(i) = 0.0      ftsol = ftsol + d_ts
597         zxfluxlat(i) = 0.0      tsol = sum(ftsol * pctsrf, dim = 2)
598        zxfluxlat = sum(fluxlat * pctsrf, dim = 2)
599         zt2m(i) = 0.0      zt2m = sum(t2m * pctsrf, dim = 2)
600         zq2m(i) = 0.0      zq2m = sum(q2m * pctsrf, dim = 2)
601         zu10m(i) = 0.0      u10m = sum(u10m_srf * pctsrf, dim = 2)
602         zv10m(i) = 0.0      v10m = sum(v10m_srf * pctsrf, dim = 2)
603         zxffonte(i) = 0.0      zxffonte = sum(ffonte * pctsrf, dim = 2)
604         zxfqcalving(i) = 0.0      zxfqcalving = sum(fqcalving * pctsrf, dim = 2)
605        s_pblh = sum(pblh * pctsrf, dim = 2)
606         s_pblh(i) = 0.0      s_lcl = sum(plcl * pctsrf, dim = 2)
607         s_lcl(i) = 0.0      s_capCL = sum(capCL * pctsrf, dim = 2)
608         s_capCL(i) = 0.0      s_oliqCL = sum(oliqCL * pctsrf, dim = 2)
609         s_oliqCL(i) = 0.0      s_cteiCL = sum(cteiCL * pctsrf, dim = 2)
610         s_cteiCL(i) = 0.0      s_pblT = sum(pblT * pctsrf, dim = 2)
611         s_pblT(i) = 0.0      s_therm = sum(therm * pctsrf, dim = 2)
612         s_therm(i) = 0.0      s_trmb1 = sum(trmb1 * pctsrf, dim = 2)
613         s_trmb1(i) = 0.0      s_trmb2 = sum(trmb2 * pctsrf, dim = 2)
614         s_trmb2(i) = 0.0      s_trmb3 = sum(trmb3 * pctsrf, dim = 2)
        s_trmb3(i) = 0.0  
   
        IF (abs(pctsrf(i, is_ter) + pctsrf(i, is_lic) + &  
             pctsrf(i, is_oce) + pctsrf(i, is_sic) - 1.) .GT. EPSFRA) &  
             THEN  
           WRITE(*, *) 'physiq : pb sous surface au point ', i, &  
                pctsrf(i, 1 : nbsrf)  
        ENDIF  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           ftsol(i, nsrf) = ftsol(i, nsrf) + d_ts(i, nsrf)  
           zxtsol(i) = zxtsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)  
           zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf)*pctsrf(i, nsrf)  
   
           zt2m(i) = zt2m(i) + t2m(i, nsrf)*pctsrf(i, nsrf)  
           zq2m(i) = zq2m(i) + q2m(i, nsrf)*pctsrf(i, nsrf)  
           zu10m(i) = zu10m(i) + u10m(i, nsrf)*pctsrf(i, nsrf)  
           zv10m(i) = zv10m(i) + v10m(i, nsrf)*pctsrf(i, nsrf)  
           zxffonte(i) = zxffonte(i) + ffonte(i, nsrf)*pctsrf(i, nsrf)  
           zxfqcalving(i) = zxfqcalving(i) + &  
                fqcalving(i, nsrf)*pctsrf(i, nsrf)  
           s_pblh(i) = s_pblh(i) + pblh(i, nsrf)*pctsrf(i, nsrf)  
           s_lcl(i) = s_lcl(i) + plcl(i, nsrf)*pctsrf(i, nsrf)  
           s_capCL(i) = s_capCL(i) + capCL(i, nsrf) *pctsrf(i, nsrf)  
           s_oliqCL(i) = s_oliqCL(i) + oliqCL(i, nsrf) *pctsrf(i, nsrf)  
           s_cteiCL(i) = s_cteiCL(i) + cteiCL(i, nsrf) *pctsrf(i, nsrf)  
           s_pblT(i) = s_pblT(i) + pblT(i, nsrf) *pctsrf(i, nsrf)  
           s_therm(i) = s_therm(i) + therm(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb1(i) = s_trmb1(i) + trmb1(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb2(i) = s_trmb2(i) + trmb2(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb3(i) = s_trmb3(i) + trmb3(i, nsrf) *pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     ! Si une sous-fraction n'existe pas, elle prend la temp. moyenne  
615    
616        ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne :
617      DO nsrf = 1, nbsrf      DO nsrf = 1, nbsrf
618         DO i = 1, klon         DO i = 1, klon
619            IF (pctsrf(i, nsrf) < epsfra) ftsol(i, nsrf) = zxtsol(i)            IF (pctsrf(i, nsrf) < epsfra) then
620                 ftsol(i, nsrf) = tsol(i)
621            IF (pctsrf(i, nsrf) < epsfra) t2m(i, nsrf) = zt2m(i)               t2m(i, nsrf) = zt2m(i)
622            IF (pctsrf(i, nsrf) < epsfra) q2m(i, nsrf) = zq2m(i)               q2m(i, nsrf) = zq2m(i)
623            IF (pctsrf(i, nsrf) < epsfra) u10m(i, nsrf) = zu10m(i)               u10m_srf(i, nsrf) = u10m(i)
624            IF (pctsrf(i, nsrf) < epsfra) v10m(i, nsrf) = zv10m(i)               v10m_srf(i, nsrf) = v10m(i)
625            IF (pctsrf(i, nsrf) < epsfra) ffonte(i, nsrf) = zxffonte(i)               ffonte(i, nsrf) = zxffonte(i)
626            IF (pctsrf(i, nsrf) < epsfra) &               fqcalving(i, nsrf) = zxfqcalving(i)
627                 fqcalving(i, nsrf) = zxfqcalving(i)               pblh(i, nsrf) = s_pblh(i)
628            IF (pctsrf(i, nsrf) < epsfra) pblh(i, nsrf)=s_pblh(i)               plcl(i, nsrf) = s_lcl(i)
629            IF (pctsrf(i, nsrf) < epsfra) plcl(i, nsrf)=s_lcl(i)               capCL(i, nsrf) = s_capCL(i)
630            IF (pctsrf(i, nsrf) < epsfra) capCL(i, nsrf)=s_capCL(i)               oliqCL(i, nsrf) = s_oliqCL(i)
631            IF (pctsrf(i, nsrf) < epsfra) oliqCL(i, nsrf)=s_oliqCL(i)               cteiCL(i, nsrf) = s_cteiCL(i)
632            IF (pctsrf(i, nsrf) < epsfra) cteiCL(i, nsrf)=s_cteiCL(i)               pblT(i, nsrf) = s_pblT(i)
633            IF (pctsrf(i, nsrf) < epsfra) pblT(i, nsrf)=s_pblT(i)               therm(i, nsrf) = s_therm(i)
634            IF (pctsrf(i, nsrf) < epsfra) therm(i, nsrf)=s_therm(i)               trmb1(i, nsrf) = s_trmb1(i)
635            IF (pctsrf(i, nsrf) < epsfra) trmb1(i, nsrf)=s_trmb1(i)               trmb2(i, nsrf) = s_trmb2(i)
636            IF (pctsrf(i, nsrf) < epsfra) trmb2(i, nsrf)=s_trmb2(i)               trmb3(i, nsrf) = s_trmb3(i)
637            IF (pctsrf(i, nsrf) < epsfra) trmb3(i, nsrf)=s_trmb3(i)            end IF
638         ENDDO         ENDDO
639      ENDDO      ENDDO
640    
641      ! Calculer la derive du flux infrarouge      dlw = - 4. * RSIGMA * tsol**3
642    
643      DO i = 1, klon      ! Appeler la convection
644         dlw(i) = - 4.0*RSIGMA*zxtsol(i)**3  
645      ENDDO      if (conv_emanuel) then
646           CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, &
647      ! Appeler la convection (au choix)              d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, &
648                upwd, dnwd, Ma, cape, iflagctrl, qcondc, pmflxr, da, phi, mp)
649      DO k = 1, llm         snow_con = 0.
650         DO i = 1, klon         clwcon0 = qcondc
651            conv_q(i, k) = d_q_dyn(i, k) &         mfu = upwd + dnwd
652                 + d_q_vdf(i, k)/dtphys  
653            conv_t(i, k) = d_t_dyn(i, k) &         zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play)
654                 + d_t_vdf(i, k)/dtphys         zqsat = zqsat / (1. - retv * zqsat)
655         ENDDO  
656      ENDDO         ! Properties of convective clouds
657      IF (check) THEN         clwcon0 = fact_cldcon * clwcon0
658         za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)         call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &
659         print *, "avantcon=", za              rnebcon0)
660      ENDIF  
661      zx_ajustq = .FALSE.         forall (i = 1:klon) ema_pct(i) = paprs(i, itop_con(i) + 1)
662      IF (iflag_con == 2) zx_ajustq=.TRUE.         mfd = 0.
663      IF (zx_ajustq) THEN         pen_u = 0.
664         DO i = 1, klon         pen_d = 0.
665            z_avant(i) = 0.0         pde_d = 0.
666         ENDDO         pde_u = 0.
667         DO k = 1, llm      else
668            DO i = 1, klon         conv_q = d_q_dyn + d_q_vdf / dtphys
669               z_avant(i) = z_avant(i) + (q_seri(i, k)+ql_seri(i, k)) &         conv_t = d_t_dyn + d_t_vdf / dtphys
670                    *zmasse(i, k)         z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)
671            ENDDO         CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:- 1), &
672         ENDDO              q_seri(:, llm:1:- 1), conv_t, conv_q, - evap, omega, &
673      ENDIF              d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:- 1), &
674      IF (iflag_con == 1) THEN              mfd(:, llm:1:- 1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, &
675         stop 'reactiver le call conlmd dans physiq.F'              kdtop, pmflxr, pmflxs)
     ELSE IF (iflag_con == 2) THEN  
        CALL conflx(dtphys, paprs, play, t_seri, q_seri, &  
             conv_t, conv_q, zxfluxq(1, 1), omega, &  
             d_t_con, d_q_con, rain_con, snow_con, &  
             pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, &  
             kcbot, kctop, kdtop, pmflxr, pmflxs)  
676         WHERE (rain_con < 0.) rain_con = 0.         WHERE (rain_con < 0.) rain_con = 0.
677         WHERE (snow_con < 0.) snow_con = 0.         WHERE (snow_con < 0.) snow_con = 0.
678         DO i = 1, klon         ibas_con = llm + 1 - kcbot
679            ibas_con(i) = llm+1 - kcbot(i)         itop_con = llm + 1 - kctop
680            itop_con(i) = llm+1 - kctop(i)      END if
        ENDDO  
     ELSE IF (iflag_con >= 3) THEN  
        ! nb of tracers for the KE convection:  
        ! MAF la partie traceurs est faite dans phytrac  
        ! on met ntra=1 pour limiter les appels mais on peut  
        ! supprimer les calculs / ftra.  
        ntra = 1  
        ! Schema de convection modularise et vectorise:  
        ! (driver commun aux versions 3 et 4)  
   
        IF (ok_cvl) THEN ! new driver for convectL  
           CALL concvl(iflag_con, dtphys, paprs, play, t_seri, q_seri, &  
                u_seri, v_seri, tr_seri, ntra, ema_work1, ema_work2, d_t_con, &  
                d_q_con, d_u_con, d_v_con, d_tr, rain_con, snow_con, ibas_con, &  
                itop_con, upwd, dnwd, dnwd0, Ma, cape, tvp, iflagctrl, pbase, &  
                bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr, qcondc, wd, pmflxr, &  
                pmflxs, da, phi, mp)  
   
           clwcon0=qcondc  
           pmfu=upwd+dnwd  
        ELSE  
           ! MAF conema3 ne contient pas les traceurs  
           CALL conema3 (dtphys, paprs, play, t_seri, q_seri, &  
                u_seri, v_seri, tr_seri, ntra, &  
                ema_work1, ema_work2, &  
                d_t_con, d_q_con, d_u_con, d_v_con, d_tr, &  
                rain_con, snow_con, ibas_con, itop_con, &  
                upwd, dnwd, dnwd0, bas, top, &  
                Ma, cape, tvp, rflag, &  
                pbase &  
                , bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr &  
                , clwcon0)  
        ENDIF ! ok_cvl  
   
        IF (.NOT. ok_gust) THEN  
           do i = 1, klon  
              wd(i)=0.0  
           enddo  
        ENDIF  
   
        ! Calcul des proprietes des nuages convectifs  
   
        DO k = 1, llm  
           DO i = 1, klon  
              zx_t = t_seri(i, k)  
              IF (thermcep) THEN  
                 zdelta = MAX(0., SIGN(1., rtt-zx_t))  
                 zx_qs = r2es * FOEEW(zx_t, zdelta)/play(i, k)  
                 zx_qs = MIN(0.5, zx_qs)  
                 zcor = 1./(1.-retv*zx_qs)  
                 zx_qs = zx_qs*zcor  
              ELSE  
                 IF (zx_t < t_coup) THEN  
                    zx_qs = qsats(zx_t)/play(i, k)  
                 ELSE  
                    zx_qs = qsatl(zx_t)/play(i, k)  
                 ENDIF  
              ENDIF  
              zqsat(i, k)=zx_qs  
           ENDDO  
        ENDDO  
   
        ! calcul des proprietes des nuages convectifs  
        clwcon0=fact_cldcon*clwcon0  
        call clouds_gno &  
             (klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, rnebcon0)  
     ELSE  
        print *, "iflag_con non-prevu", iflag_con  
        stop 1  
     ENDIF  
681    
682      DO k = 1, llm      DO k = 1, llm
683         DO i = 1, klon         DO i = 1, klon
# Line 1255  contains Line 688  contains
688         ENDDO         ENDDO
689      ENDDO      ENDDO
690    
691      IF (if_ebil >= 2) THEN      IF (.not. conv_emanuel) THEN
692         ztit='after convect'         z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)
693         CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &         z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, rain_con, snow_con, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
     END IF  
   
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        print *,"aprescon=", za  
        zx_t = 0.0  
        za = 0.0  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_con(i)+ &  
                snow_con(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtphys  
        print *,"Precip=", zx_t  
     ENDIF  
     IF (zx_ajustq) THEN  
        DO i = 1, klon  
           z_apres(i) = 0.0  
        ENDDO  
694         DO k = 1, llm         DO k = 1, llm
695            DO i = 1, klon            DO i = 1, klon
696               z_apres(i) = z_apres(i) + (q_seri(i, k)+ql_seri(i, k)) &               IF (z_factor(i) > 1. + 1E-8 .OR. z_factor(i) < 1. - 1E-8) THEN
                   *zmasse(i, k)  
           ENDDO  
        ENDDO  
        DO i = 1, klon  
           z_factor(i) = (z_avant(i)-(rain_con(i)+snow_con(i))*dtphys) &  
                /z_apres(i)  
        ENDDO  
        DO k = 1, llm  
           DO i = 1, klon  
              IF (z_factor(i).GT.(1.0+1.0E-08) .OR. &  
                   z_factor(i) < (1.0-1.0E-08)) THEN  
697                  q_seri(i, k) = q_seri(i, k) * z_factor(i)                  q_seri(i, k) = q_seri(i, k) * z_factor(i)
698               ENDIF               ENDIF
699            ENDDO            ENDDO
700         ENDDO         ENDDO
701      ENDIF      ENDIF
     zx_ajustq=.FALSE.  
702    
703      ! Convection seche (thermiques ou ajustement)      ! Convection s\`eche (thermiques ou ajustement)
704    
705      d_t_ajs=0.      d_t_ajs = 0.
706      d_u_ajs=0.      d_u_ajs = 0.
707      d_v_ajs=0.      d_v_ajs = 0.
708      d_q_ajs=0.      d_q_ajs = 0.
709      fm_therm=0.      fm_therm = 0.
710      entr_therm=0.      entr_therm = 0.
711    
712      if (iflag_thermals == 0) then      if (iflag_thermals == 0) then
713         ! Ajustement sec         ! Ajustement sec
# Line 1318  contains Line 715  contains
715         t_seri = t_seri + d_t_ajs         t_seri = t_seri + d_t_ajs
716         q_seri = q_seri + d_q_ajs         q_seri = q_seri + d_q_ajs
717      else      else
        ! Thermiques  
718         call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, &         call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, &
719              q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)              q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)
720      endif      endif
721    
     IF (if_ebil >= 2) THEN  
        ztit='after dry_adjust'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
     END IF  
   
722      ! Caclul des ratqs      ! Caclul des ratqs
723    
724      ! ratqs convectifs a l'ancienne en fonction de q(z=0)-q / q      ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q
725      ! on ecrase le tableau ratqsc calcule par clouds_gno      ! on \'ecrase le tableau ratqsc calcul\'e par clouds_gno
726      if (iflag_cldcon == 1) then      if (iflag_cldcon == 1) then
727         do k=1, llm         do k = 1, llm
728            do i=1, klon            do i = 1, klon
729               if(ptconv(i, k)) then               if(ptconv(i, k)) then
730                  ratqsc(i, k)=ratqsbas &                  ratqsc(i, k) = ratqsbas + fact_cldcon &
731                       +fact_cldcon*(q_seri(i, 1)-q_seri(i, k))/q_seri(i, k)                       * (q_seri(i, 1) - q_seri(i, k)) / q_seri(i, k)
732               else               else
733                  ratqsc(i, k)=0.                  ratqsc(i, k) = 0.
734               endif               endif
735            enddo            enddo
736         enddo         enddo
737      endif      endif
738    
739      ! ratqs stables      ! ratqs stables
740      do k=1, llm      do k = 1, llm
741         do i=1, klon         do i = 1, klon
742            ratqss(i, k)=ratqsbas+(ratqshaut-ratqsbas)* &            ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &
743                 min((paprs(i, 1)-play(i, k))/(paprs(i, 1)-30000.), 1.)                 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)
744         enddo         enddo
745      enddo      enddo
746    
747      ! ratqs final      ! ratqs final
748      if (iflag_cldcon == 1 .or.iflag_cldcon == 2) then      if (iflag_cldcon == 1 .or. iflag_cldcon == 2) then
749         ! les ratqs sont une conbinaison de ratqss et ratqsc         ! les ratqs sont une conbinaison de ratqss et ratqsc
750         ! ratqs final         ! ratqs final
751         ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de         ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de
752         ! relaxation des ratqs         ! relaxation des ratqs
753         facteur=exp(-dtphys*facttemps)         ratqs = max(ratqs * exp(- dtphys * facttemps), ratqss)
754         ratqs=max(ratqs*facteur, ratqss)         ratqs = max(ratqs, ratqsc)
        ratqs=max(ratqs, ratqsc)  
755      else      else
756         ! on ne prend que le ratqs stable pour fisrtilp         ! on ne prend que le ratqs stable pour fisrtilp
757         ratqs=ratqss         ratqs = ratqss
758      endif      endif
759    
760      ! Appeler le processus de condensation a grande echelle      CALL fisrtilp(dtphys, paprs, play, t_seri, q_seri, ptconv, ratqs, &
761      ! et le processus de precipitation           d_t_lsc, d_q_lsc, d_ql_lsc, rneb, cldliq, rain_lsc, snow_lsc, &
762      CALL fisrtilp(dtphys, paprs, play, &           pfrac_impa, pfrac_nucl, pfrac_1nucl, frac_impa, frac_nucl, prfl, &
763           t_seri, q_seri, ptconv, ratqs, &           psfl, rhcl)
          d_t_lsc, d_q_lsc, d_ql_lsc, rneb, cldliq, &  
          rain_lsc, snow_lsc, &  
          pfrac_impa, pfrac_nucl, pfrac_1nucl, &  
          frac_impa, frac_nucl, &  
          prfl, psfl, rhcl)  
764    
765      WHERE (rain_lsc < 0) rain_lsc = 0.      WHERE (rain_lsc < 0) rain_lsc = 0.
766      WHERE (snow_lsc < 0) snow_lsc = 0.      WHERE (snow_lsc < 0) snow_lsc = 0.
# Line 1390  contains Line 773  contains
773            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)
774         ENDDO         ENDDO
775      ENDDO      ENDDO
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        print *,"apresilp=", za  
        zx_t = 0.0  
        za = 0.0  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_lsc(i) &  
                + snow_lsc(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtphys  
        print *,"Precip=", zx_t  
     ENDIF  
   
     IF (if_ebil >= 2) THEN  
        ztit='after fisrt'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, rain_lsc, snow_lsc, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
     END IF  
776    
777      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
778    
779      ! 1. NUAGES CONVECTIFS      ! 1. NUAGES CONVECTIFS
780    
781      IF (iflag_cldcon.le.-1) THEN ! seulement pour Tiedtke      IF (iflag_cldcon <= - 1) THEN
782         snow_tiedtke=0.         ! seulement pour Tiedtke
783         if (iflag_cldcon == -1) then         snow_tiedtke = 0.
784            rain_tiedtke=rain_con         if (iflag_cldcon == - 1) then
785              rain_tiedtke = rain_con
786         else         else
787            rain_tiedtke=0.            rain_tiedtke = 0.
788            do k=1, llm            do k = 1, llm
789               do i=1, klon               do i = 1, klon
790                  if (d_q_con(i, k) < 0.) then                  if (d_q_con(i, k) < 0.) then
791                     rain_tiedtke(i)=rain_tiedtke(i)-d_q_con(i, k)/dtphys &                     rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k) / dtphys &
792                          *zmasse(i, k)                          * zmasse(i, k)
793                  endif                  endif
794               enddo               enddo
795            enddo            enddo
796         endif         endif
797    
798         ! Nuages diagnostiques pour Tiedtke         ! Nuages diagnostiques pour Tiedtke
799         CALL diagcld1(paprs, play, &         CALL diagcld1(paprs, play, rain_tiedtke, snow_tiedtke, ibas_con, &
800              rain_tiedtke, snow_tiedtke, ibas_con, itop_con, &              itop_con, diafra, dialiq)
             diafra, dialiq)  
801         DO k = 1, llm         DO k = 1, llm
802            DO i = 1, klon            DO i = 1, klon
803               IF (diafra(i, k).GT.cldfra(i, k)) THEN               IF (diafra(i, k) > cldfra(i, k)) THEN
804                  cldliq(i, k) = dialiq(i, k)                  cldliq(i, k) = dialiq(i, k)
805                  cldfra(i, k) = diafra(i, k)                  cldfra(i, k) = diafra(i, k)
806               ENDIF               ENDIF
807            ENDDO            ENDDO
808         ENDDO         ENDDO
809      ELSE IF (iflag_cldcon == 3) THEN      ELSE IF (iflag_cldcon == 3) THEN
810         ! On prend pour les nuages convectifs le max du calcul de la         ! On prend pour les nuages convectifs le maximum du calcul de
811         ! convection et du calcul du pas de temps précédent diminué d'un facteur         ! la convection et du calcul du pas de temps pr\'ec\'edent diminu\'e
812         ! facttemps         ! d'un facteur facttemps.
813         facteur = dtphys *facttemps         facteur = dtphys * facttemps
814         do k=1, llm         do k = 1, llm
815            do i=1, klon            do i = 1, klon
816               rnebcon(i, k)=rnebcon(i, k)*facteur               rnebcon(i, k) = rnebcon(i, k) * facteur
817               if (rnebcon0(i, k)*clwcon0(i, k).gt.rnebcon(i, k)*clwcon(i, k)) &               if (rnebcon0(i, k) * clwcon0(i, k) &
818                    then                    > rnebcon(i, k) * clwcon(i, k)) then
819                  rnebcon(i, k)=rnebcon0(i, k)                  rnebcon(i, k) = rnebcon0(i, k)
820                  clwcon(i, k)=clwcon0(i, k)                  clwcon(i, k) = clwcon0(i, k)
821               endif               endif
822            enddo            enddo
823         enddo         enddo
824    
825         ! On prend la somme des fractions nuageuses et des contenus en eau         ! On prend la somme des fractions nuageuses et des contenus en eau
826         cldfra=min(max(cldfra, rnebcon), 1.)         cldfra = min(max(cldfra, rnebcon), 1.)
827         cldliq=cldliq+rnebcon*clwcon         cldliq = cldliq + rnebcon * clwcon
828      ENDIF      ENDIF
829    
830      ! 2. NUAGES STARTIFORMES      ! 2. Nuages stratiformes
831    
832      IF (ok_stratus) THEN      IF (ok_stratus) THEN
833         CALL diagcld2(paprs, play, t_seri, q_seri, diafra, dialiq)         CALL diagcld2(paprs, play, t_seri, q_seri, diafra, dialiq)
834         DO k = 1, llm         DO k = 1, llm
835            DO i = 1, klon            DO i = 1, klon
836               IF (diafra(i, k).GT.cldfra(i, k)) THEN               IF (diafra(i, k) > cldfra(i, k)) THEN
837                  cldliq(i, k) = dialiq(i, k)                  cldliq(i, k) = dialiq(i, k)
838                  cldfra(i, k) = diafra(i, k)                  cldfra(i, k) = diafra(i, k)
839               ENDIF               ENDIF
# Line 1482  contains Line 842  contains
842      ENDIF      ENDIF
843    
844      ! Precipitation totale      ! Precipitation totale
   
845      DO i = 1, klon      DO i = 1, klon
846         rain_fall(i) = rain_con(i) + rain_lsc(i)         rain_fall(i) = rain_con(i) + rain_lsc(i)
847         snow_fall(i) = snow_con(i) + snow_lsc(i)         snow_fall(i) = snow_con(i) + snow_lsc(i)
848      ENDDO      ENDDO
849    
850      IF (if_ebil >= 2) THEN      ! Humidit\'e relative pour diagnostic :
        ztit="after diagcld"  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
     END IF  
   
     ! Calculer l'humidite relative pour diagnostique  
   
851      DO k = 1, llm      DO k = 1, llm
852         DO i = 1, klon         DO i = 1, klon
853            zx_t = t_seri(i, k)            zx_t = t_seri(i, k)
854            IF (thermcep) THEN            zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t) / play(i, k)
855               zdelta = MAX(0., SIGN(1., rtt-zx_t))            zx_qs = MIN(0.5, zx_qs)
856               zx_qs = r2es * FOEEW(zx_t, zdelta)/play(i, k)            zcor = 1. / (1. - retv * zx_qs)
857               zx_qs = MIN(0.5, zx_qs)            zx_qs = zx_qs * zcor
858               zcor = 1./(1.-retv*zx_qs)            zx_rh(i, k) = q_seri(i, k) / zx_qs
859               zx_qs = zx_qs*zcor            zqsat(i, k) = zx_qs
           ELSE  
              IF (zx_t < t_coup) THEN  
                 zx_qs = qsats(zx_t)/play(i, k)  
              ELSE  
                 zx_qs = qsatl(zx_t)/play(i, k)  
              ENDIF  
           ENDIF  
           zx_rh(i, k) = q_seri(i, k)/zx_qs  
           zqsat(i, k)=zx_qs  
860         ENDDO         ENDDO
861      ENDDO      ENDDO
     !jq - introduce the aerosol direct and first indirect radiative forcings  
     !jq - Johannes Quaas, 27/11/2003 (quaas@lmd.jussieu.fr)  
     IF (ok_ade.OR.ok_aie) THEN  
        ! Get sulfate aerosol distribution  
        CALL readsulfate(rdayvrai, firstcal, sulfate)  
        CALL readsulfate_preind(rdayvrai, firstcal, sulfate_pi)  
   
        ! Calculate aerosol optical properties (Olivier Boucher)  
        CALL aeropt(play, paprs, t_seri, sulfate, rhcl, &  
             tau_ae, piz_ae, cg_ae, aerindex)  
     ELSE  
        tau_ae=0.0  
        piz_ae=0.0  
        cg_ae=0.0  
     ENDIF  
   
     ! Calculer les parametres optiques des nuages et quelques  
     ! parametres pour diagnostiques:  
862    
863        ! Param\`etres optiques des nuages et quelques param\`etres pour
864        ! diagnostics :
865      if (ok_newmicro) then      if (ok_newmicro) then
866         CALL newmicro (paprs, play, ok_newmicro, &         CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &
867              t_seri, cldliq, cldfra, cldtau, cldemi, &              cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc)
             cldh, cldl, cldm, cldt, cldq, &  
             flwp, fiwp, flwc, fiwc, &  
             ok_aie, &  
             sulfate, sulfate_pi, &  
             bl95_b0, bl95_b1, &  
             cldtaupi, re, fl)  
868      else      else
869         CALL nuage (paprs, play, &         CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &
870              t_seri, cldliq, cldfra, cldtau, cldemi, &              cldl, cldm, cldt, cldq)
             cldh, cldl, cldm, cldt, cldq, &  
             ok_aie, &  
             sulfate, sulfate_pi, &  
             bl95_b0, bl95_b1, &  
             cldtaupi, re, fl)  
   
871      endif      endif
872    
873      ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.      IF (MOD(itap - 1, radpas) == 0) THEN
874           wo = ozonecm(REAL(julien), paprs)
875      IF (MOD(itaprad, radpas) == 0) THEN         albsol = sum(falbe * pctsrf, dim = 2)
876         DO i = 1, klon         CALL radlwsw(dist, mu0, fract, paprs, play, tsol, albsol, t_seri, &
877            albsol(i) = falbe(i, is_oce) * pctsrf(i, is_oce) &              q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, &
878                 + falbe(i, is_lic) * pctsrf(i, is_lic) &              radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, &
879                 + falbe(i, is_ter) * pctsrf(i, is_ter) &              toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, &
880                 + falbe(i, is_sic) * pctsrf(i, is_sic)              swup0, swup, ok_ade, topswad, solswad)
           albsollw(i) = falblw(i, is_oce) * pctsrf(i, is_oce) &  
                + falblw(i, is_lic) * pctsrf(i, is_lic) &  
                + falblw(i, is_ter) * pctsrf(i, is_ter) &  
                + falblw(i, is_sic) * pctsrf(i, is_sic)  
        ENDDO  
        ! nouveau rayonnement (compatible Arpege-IFS):  
        CALL radlwsw(dist, rmu0, fract, paprs, play, zxtsol, albsol, &  
             albsollw, t_seri, q_seri, wo, cldfra, cldemi, cldtau, heat, &  
             heat0, cool, cool0, radsol, albpla, topsw, toplw, solsw, sollw, &  
             sollwdown, topsw0, toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, &  
             lwup, swdn0, swdn, swup0, swup, ok_ade, ok_aie, tau_ae, piz_ae, &  
             cg_ae, topswad, solswad, cldtaupi, topswai, solswai)  
        itaprad = 0  
881      ENDIF      ENDIF
     itaprad = itaprad + 1  
882    
883      ! Ajouter la tendance des rayonnements (tous les pas)      ! Ajouter la tendance des rayonnements (tous les pas)
   
884      DO k = 1, llm      DO k = 1, llm
885         DO i = 1, klon         DO i = 1, klon
886            t_seri(i, k) = t_seri(i, k) &            t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys &
887                 + (heat(i, k)-cool(i, k)) * dtphys/86400.                 / 86400.
888         ENDDO         ENDDO
889      ENDDO      ENDDO
890    
891      IF (if_ebil >= 2) THEN      ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage)
        ztit='after rad'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil, topsw, toplw, solsw, sollw, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
     END IF  
   
     ! Calculer l'hydrologie de la surface  
     DO i = 1, klon  
        zxqsurf(i) = 0.0  
        zxsnow(i) = 0.0  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxqsurf(i) = zxqsurf(i) + fqsurf(i, nsrf)*pctsrf(i, nsrf)  
           zxsnow(i) = zxsnow(i) + fsnow(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     ! Calculer le bilan du sol et la derive de temperature (couplage)  
   
892      DO i = 1, klon      DO i = 1, klon
893         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)
894      ENDDO      ENDDO
895    
896      !mod deb lott(jan95)      ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille :
     ! Appeler le programme de parametrisation de l'orographie  
     ! a l'echelle sous-maille:  
897    
898      IF (ok_orodr) THEN      IF (ok_orodr) THEN
899         ! selection des points pour lesquels le shema est actif:         ! S\'election des points pour lesquels le sch\'ema est actif :
900         igwd=0         igwd = 0
901         DO i=1, klon         DO i = 1, klon
902            itest(i)=0            itest(i) = 0
903            IF (((zpic(i)-zmea(i)).GT.100.).AND.(zstd(i).GT.10.0)) THEN            IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN
904               itest(i)=1               itest(i) = 1
905               igwd=igwd+1               igwd = igwd + 1
              idx(igwd)=i  
906            ENDIF            ENDIF
907         ENDDO         ENDDO
908    
909         CALL drag_noro(klon, llm, dtphys, paprs, play, &         CALL drag_noro(klon, llm, dtphys, paprs, play, zmea, zstd, zsig, zgam, &
910              zmea, zstd, zsig, zgam, zthe, zpic, zval, &              zthe, zpic, zval, itest, t_seri, u_seri, v_seri, zulow, zvlow, &
911              igwd, idx, itest, &              zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro)
             t_seri, u_seri, v_seri, &  
             zulow, zvlow, zustrdr, zvstrdr, &  
             d_t_oro, d_u_oro, d_v_oro)  
912    
913         ! ajout des tendances         ! ajout des tendances
914         DO k = 1, llm         DO k = 1, llm
# Line 1651  contains Line 921  contains
921      ENDIF      ENDIF
922    
923      IF (ok_orolf) THEN      IF (ok_orolf) THEN
924         ! selection des points pour lesquels le shema est actif:         ! S\'election des points pour lesquels le sch\'ema est actif :
925         igwd=0         igwd = 0
926         DO i=1, klon         DO i = 1, klon
927            itest(i)=0            itest(i) = 0
928            IF ((zpic(i)-zmea(i)).GT.100.) THEN            IF (zpic(i) - zmea(i) > 100.) THEN
929               itest(i)=1               itest(i) = 1
930               igwd=igwd+1               igwd = igwd + 1
              idx(igwd)=i  
931            ENDIF            ENDIF
932         ENDDO         ENDDO
933    
934         CALL lift_noro(klon, llm, dtphys, paprs, play, rlat, zmea, zstd, zpic, &         CALL lift_noro(dtphys, paprs, play, zmea, zstd, zpic, itest, t_seri, &
935              itest, t_seri, u_seri, v_seri, zulow, zvlow, zustrli, zvstrli, &              u_seri, v_seri, zulow, zvlow, zustrli, zvstrli, d_t_lif, &
936              d_t_lif, d_u_lif, d_v_lif)              d_u_lif, d_v_lif)
937    
938         ! ajout des tendances         ! Ajout des tendances :
939         DO k = 1, llm         DO k = 1, llm
940            DO i = 1, klon            DO i = 1, klon
941               t_seri(i, k) = t_seri(i, k) + d_t_lif(i, k)               t_seri(i, k) = t_seri(i, k) + d_t_lif(i, k)
# Line 1676  contains Line 945  contains
945         ENDDO         ENDDO
946      ENDIF      ENDIF
947    
948      ! STRESS NECESSAIRES: TOUTE LA PHYSIQUE      ! Stress n\'ecessaires : toute la physique
949    
950      DO i = 1, klon      DO i = 1, klon
951         zustrph(i)=0.         zustrph(i) = 0.
952         zvstrph(i)=0.         zvstrph(i) = 0.
953      ENDDO      ENDDO
954      DO k = 1, llm      DO k = 1, llm
955         DO i = 1, klon         DO i = 1, klon
956            zustrph(i)=zustrph(i)+(u_seri(i, k)-u(i, k))/dtphys* zmasse(i, k)            zustrph(i) = zustrph(i) + (u_seri(i, k) - u(i, k)) / dtphys &
957            zvstrph(i)=zvstrph(i)+(v_seri(i, k)-v(i, k))/dtphys* zmasse(i, k)                 * zmasse(i, k)
958              zvstrph(i) = zvstrph(i) + (v_seri(i, k) - v(i, k)) / dtphys &
959                   * zmasse(i, k)
960         ENDDO         ENDDO
961      ENDDO      ENDDO
962    
963      !IM calcul composantes axiales du moment angulaire et couple des montagnes      CALL aaam_bud(rg, romega, pphis, zustrdr, zustrli, zustrph, zvstrdr, &
964             zvstrli, zvstrph, paprs, u, v, aam, torsfc)
     CALL aaam_bud(27, klon, llm, time, ra, rg, romega, rlat, rlon, pphis, &  
          zustrdr, zustrli, zustrph, zvstrdr, zvstrli, zvstrph, paprs, u, v, &  
          aam, torsfc)  
   
     IF (if_ebil >= 2) THEN  
        ztit='after orography'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
     END IF  
965    
966      ! Calcul des tendances traceurs      ! Calcul des tendances traceurs
967      call phytrac(rnpb, itap, lmt_pas, julien, time, firstcal, lafin, &      call phytrac(julien, time, firstcal, lafin, dtphys, t, paprs, play, mfu, &
968           nqmx-2, dtphys, u, t, paprs, play, pmfu, pmfd, pen_u, pde_u, &           mfd, pde_u, pen_d, ycoefh, fm_therm, entr_therm, u(:, 1), v(:, 1), &
969           pen_d, pde_d, ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, pctsrf, &           ftsol, pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, dnwd, &
970           frac_impa, frac_nucl, pphis, albsol, rhcl, cldfra, rneb, &           tr_seri, zmasse, ncid_startphy)
          diafra, cldliq, pmflxr, pmflxs, prfl, psfl, da, phi, mp, upwd, dnwd, &  
          tr_seri, zmasse)  
   
     IF (offline) THEN  
        call phystokenc(dtphys, rlon, rlat, t, pmfu, pmfd, pen_u, pde_u, &  
             pen_d, pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, &  
             pctsrf, frac_impa, frac_nucl, pphis, airephy, dtphys, itap)  
     ENDIF  
971    
972      ! Calculer le transport de l'eau et de l'energie (diagnostique)      ! Calculer le transport de l'eau et de l'energie (diagnostique)
973      CALL transp(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, &      CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq)
          ue, uq)  
974    
975      ! diag. bilKP      ! diag. bilKP
976    
977      CALL transp_lay (paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, &      CALL transp_lay(paprs, t_seri, q_seri, u_seri, v_seri, zphi, &
978           ve_lay, vq_lay, ue_lay, uq_lay)           ve_lay, vq_lay, ue_lay, uq_lay)
979    
980      ! Accumuler les variables a stocker dans les fichiers histoire:      ! Accumuler les variables a stocker dans les fichiers histoire:
981    
982      !+jld ec_conser      ! conversion Ec en énergie thermique
983      DO k = 1, llm      DO k = 1, llm
984         DO i = 1, klon         DO i = 1, klon
985            ZRCPD = RCPD*(1.0+RVTMP2*q_seri(i, k))            d_t_ec(i, k) = 0.5 / (RCPD * (1. + RVTMP2 * q_seri(i, k))) &
986            d_t_ec(i, k)=0.5/ZRCPD &                 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)
987                 *(u(i, k)**2+v(i, k)**2-u_seri(i, k)**2-v_seri(i, k)**2)            t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)
988            t_seri(i, k)=t_seri(i, k)+d_t_ec(i, k)            d_t_ec(i, k) = d_t_ec(i, k) / dtphys
           d_t_ec(i, k) = d_t_ec(i, k)/dtphys  
989         END DO         END DO
990      END DO      END DO
     !-jld ec_conser  
     IF (if_ebil >= 1) THEN  
        ztit='after physic'  
        CALL diagetpq(airephy, ztit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        ! Comme les tendances de la physique sont ajoute dans la dynamique,  
        ! on devrait avoir que la variation d'entalpie par la dynamique  
        ! est egale a la variation de la physique au pas de temps precedent.  
        ! Donc la somme de ces 2 variations devrait etre nulle.  
        call diagphy(airephy, ztit, ip_ebil, topsw, toplw, solsw, sollw, sens, &  
             evap, rain_fall, snow_fall, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound)  
   
        d_h_vcol_phy=d_h_vcol  
   
     END IF  
991    
992      ! SORTIES      ! SORTIES
993    
994      !cc prw = eau precipitable      ! prw = eau precipitable
995      DO i = 1, klon      DO i = 1, klon
996         prw(i) = 0.         prw(i) = 0.
997         DO k = 1, llm         DO k = 1, llm
998            prw(i) = prw(i) + q_seri(i, k)*zmasse(i, k)            prw(i) = prw(i) + q_seri(i, k) * zmasse(i, k)
999         ENDDO         ENDDO
1000      ENDDO      ENDDO
1001    
# Line 1777  contains Line 1011  contains
1011         ENDDO         ENDDO
1012      ENDDO      ENDDO
1013    
1014      IF (nqmx >= 3) THEN      DO iq = 3, nqmx
1015         DO iq = 3, nqmx         DO k = 1, llm
1016            DO k = 1, llm            DO i = 1, klon
1017               DO i = 1, klon               d_qx(i, k, iq) = (tr_seri(i, k, iq - 2) - qx(i, k, iq)) / dtphys
                 d_qx(i, k, iq) = (tr_seri(i, k, iq-2) - qx(i, k, iq)) / dtphys  
              ENDDO  
1018            ENDDO            ENDDO
1019         ENDDO         ENDDO
1020      ENDIF      ENDDO
1021    
1022      ! Sauvegarder les valeurs de t et q a la fin de la physique:      ! Sauvegarder les valeurs de t et q a la fin de la physique:
1023      DO k = 1, llm      DO k = 1, llm
# Line 1795  contains Line 1027  contains
1027         ENDDO         ENDDO
1028      ENDDO      ENDDO
1029    
1030      ! Ecriture des sorties      CALL histwrite_phy("phis", pphis)
1031      call write_histhf      CALL histwrite_phy("aire", airephy)
1032      call write_histday      CALL histwrite_phy("psol", paprs(:, 1))
1033      call write_histins      CALL histwrite_phy("precip", rain_fall + snow_fall)
1034        CALL histwrite_phy("plul", rain_lsc + snow_lsc)
1035      ! Si c'est la fin, il faut conserver l'etat de redemarrage      CALL histwrite_phy("pluc", rain_con + snow_con)
1036      IF (lafin) THEN      CALL histwrite_phy("tsol", tsol)
1037         itau_phy = itau_phy + itap      CALL histwrite_phy("t2m", zt2m)
1038         CALL phyredem("restartphy.nc", rlat, rlon, pctsrf, ftsol, ftsoil, &      CALL histwrite_phy("q2m", zq2m)
1039              tslab, seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, &      CALL histwrite_phy("u10m", u10m)
1040              rain_fall, snow_fall, solsw, sollwdown, dlw, radsol, frugs, &      CALL histwrite_phy("v10m", v10m)
1041              agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, &      CALL histwrite_phy("snow", snow_fall)
1042              q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0)      CALL histwrite_phy("cdrm", cdragm)
1043      ENDIF      CALL histwrite_phy("cdrh", cdragh)
1044        CALL histwrite_phy("topl", toplw)
1045      firstcal = .FALSE.      CALL histwrite_phy("evap", evap)
1046        CALL histwrite_phy("sols", solsw)
1047    contains      CALL histwrite_phy("soll", sollw)
1048        CALL histwrite_phy("solldown", sollwdown)
1049      subroutine write_histday      CALL histwrite_phy("bils", bils)
1050        CALL histwrite_phy("sens", - sens)
1051        use gr_phy_write_3d_m, only: gr_phy_write_3d      CALL histwrite_phy("fder", fder)
1052        integer itau_w ! pas de temps ecriture      CALL histwrite_phy("dtsvdfo", d_ts(:, is_oce))
1053        CALL histwrite_phy("dtsvdft", d_ts(:, is_ter))
1054        !------------------------------------------------      CALL histwrite_phy("dtsvdfg", d_ts(:, is_lic))
1055        CALL histwrite_phy("dtsvdfi", d_ts(:, is_sic))
       if (ok_journe) THEN  
          itau_w = itau_phy + itap  
          if (nqmx <= 4) then  
             call histwrite(nid_day, "Sigma_O3_Royer", itau_w, &  
                  gr_phy_write_3d(wo) * 1e3)  
             ! (convert "wo" from kDU to DU)  
          end if  
          if (ok_sync) then  
             call histsync(nid_day)  
          endif  
       ENDIF  
   
     End subroutine write_histday  
   
     !****************************  
   
     subroutine write_histhf  
1056    
1057        ! From phylmd/write_histhf.h, version 1.5 2005/05/25 13:10:09      DO nsrf = 1, nbsrf
1058           CALL histwrite_phy("pourc_"//clnsurf(nsrf), pctsrf(:, nsrf) * 100.)
1059        !------------------------------------------------         CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf))
1060           CALL histwrite_phy("sens_"//clnsurf(nsrf), flux_t(:, nsrf))
1061        call write_histhf3d         CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf))
1062           CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf))
1063        IF (ok_sync) THEN         CALL histwrite_phy("taux_"//clnsurf(nsrf), flux_u(:, nsrf))
1064           call histsync(nid_hf)         CALL histwrite_phy("tauy_"//clnsurf(nsrf), flux_v(:, nsrf))
1065        ENDIF         CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf))
1066           CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf))
1067      end subroutine write_histhf         CALL histwrite_phy("u10m_"//clnsurf(nsrf), u10m_srf(:, nsrf))
1068           CALL histwrite_phy("v10m_"//clnsurf(nsrf), v10m_srf(:, nsrf))
1069      !***************************************************************      END DO
   
     subroutine write_histins  
   
       ! From phylmd/write_histins.h, version 1.2 2005/05/25 13:10:09  
   
       real zout  
       integer itau_w ! pas de temps ecriture  
   
       !--------------------------------------------------  
   
       IF (ok_instan) THEN  
          ! Champs 2D:  
   
          zsto = dtphys * ecrit_ins  
          zout = dtphys * ecrit_ins  
          itau_w = itau_phy + itap  
   
          i = NINT(zout/zsto)  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), pphis, zx_tmp_2d)  
          CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d)  
   
          i = NINT(zout/zsto)  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), airephy, zx_tmp_2d)  
          CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = paprs(i, 1)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "psol", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_fall(i) + snow_fall(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "precip", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_lsc(i) + snow_lsc(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "plul", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_con(i) + snow_con(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "pluc", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zxtsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "tsol", itau_w, zx_tmp_2d)  
          !ccIM  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zt2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "t2m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zq2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "q2m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zu10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "u10m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zv10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "v10m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), snow_fall, zx_tmp_2d)  
          CALL histwrite(nid_ins, "snow", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), cdragm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrm", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), cdragh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrh", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), toplw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "topl", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), evap, zx_tmp_2d)  
          CALL histwrite(nid_ins, "evap", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), solsw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sols", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "soll", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sollwdown, zx_tmp_2d)  
          CALL histwrite(nid_ins, "solldown", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), bils, zx_tmp_2d)  
          CALL histwrite(nid_ins, "bils", itau_w, zx_tmp_2d)  
   
          zx_tmp_fi2d(1:klon)=-1*sens(1:klon)  
          ! CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sens, zx_tmp_2d)  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sens", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), fder, zx_tmp_2d)  
          CALL histwrite(nid_ins, "fder", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_oce), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfo", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_ter), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdft", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_lic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfg", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_sic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfi", itau_w, zx_tmp_2d)  
   
          DO nsrf = 1, nbsrf  
             !XXX  
             zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf)*100.  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "pourc_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "fract_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxt(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "sens_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxlat(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "lat_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = ftsol(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tsol_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxu(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "taux_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxv(1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tauy_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = frugs(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "rugs_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = falbe(1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "albe_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
          END DO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), albsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albs", itau_w, zx_tmp_2d)  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), albsollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albslw", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zxrugs, zx_tmp_2d)  
          CALL histwrite(nid_ins, "rugs", itau_w, zx_tmp_2d)  
   
          !IM cf. AM 081204 BEG  
   
          !HBTM2  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_pblh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblh", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_pblt, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblt", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_lcl, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_lcl", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_capCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_capCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_oliqCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_oliqCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_cteiCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_cteiCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_therm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_therm", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb1, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb1", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb2, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb2", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb3, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb3", itau_w, zx_tmp_2d)  
   
          !IM cf. AM 081204 END  
   
          ! Champs 3D:  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), t_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "temp", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), u_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitu", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), v_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitv", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), zphi, zx_tmp_3d)  
          CALL histwrite(nid_ins, "geop", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), play, zx_tmp_3d)  
          CALL histwrite(nid_ins, "pres", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), d_t_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dtvdf", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), d_q_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d)  
   
          if (ok_sync) then  
             call histsync(nid_ins)  
          endif  
       ENDIF  
   
     end subroutine write_histins  
   
     !****************************************************  
   
     subroutine write_histhf3d  
   
       ! From phylmd/write_histhf3d.h, version 1.2 2005/05/25 13:10:09  
   
       integer itau_w ! pas de temps ecriture  
   
       !-------------------------------------------------------  
   
       itau_w = itau_phy + itap  
   
       ! Champs 3D:  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), t_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "temp", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), qx(1, 1, ivap), zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "ovap", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), u_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitu", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), v_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitv", itau_w, zx_tmp_3d)  
   
       if (nbtr >= 3) then  
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), tr_seri(1, 1, 3), &  
               zx_tmp_3d)  
          CALL histwrite(nid_hf3d, "O3", itau_w, zx_tmp_3d)  
       end if  
1070    
1071        if (ok_sync) then      CALL histwrite_phy("albs", albsol)
1072           call histsync(nid_hf3d)      CALL histwrite_phy("tro3", wo * dobson_u * 1e3 / zmasse / rmo3 * md)
1073        endif      CALL histwrite_phy("rugs", zxrugs)
1074        CALL histwrite_phy("s_pblh", s_pblh)
1075        CALL histwrite_phy("s_pblt", s_pblt)
1076        CALL histwrite_phy("s_lcl", s_lcl)
1077        CALL histwrite_phy("s_capCL", s_capCL)
1078        CALL histwrite_phy("s_oliqCL", s_oliqCL)
1079        CALL histwrite_phy("s_cteiCL", s_cteiCL)
1080        CALL histwrite_phy("s_therm", s_therm)
1081        CALL histwrite_phy("s_trmb1", s_trmb1)
1082        CALL histwrite_phy("s_trmb2", s_trmb2)
1083        CALL histwrite_phy("s_trmb3", s_trmb3)
1084    
1085        if (conv_emanuel) then
1086           CALL histwrite_phy("ptop", ema_pct)
1087           CALL histwrite_phy("dnwd0", - mp)
1088        end if
1089    
1090        CALL histwrite_phy("temp", t_seri)
1091        CALL histwrite_phy("vitu", u_seri)
1092        CALL histwrite_phy("vitv", v_seri)
1093        CALL histwrite_phy("geop", zphi)
1094        CALL histwrite_phy("pres", play)
1095        CALL histwrite_phy("dtvdf", d_t_vdf)
1096        CALL histwrite_phy("dqvdf", d_q_vdf)
1097        CALL histwrite_phy("rhum", zx_rh)
1098        CALL histwrite_phy("d_t_ec", d_t_ec)
1099        CALL histwrite_phy("dtsw0", heat0 / 86400.)
1100        CALL histwrite_phy("dtlw0", - cool0 / 86400.)
1101        CALL histwrite_phy("msnow", sum(fsnow * pctsrf, dim = 2))
1102        call histwrite_phy("qsurf", sum(fqsurf * pctsrf, dim = 2))
1103    
1104        if (ok_instan) call histsync(nid_ins)
1105    
1106        IF (lafin) then
1107           call NF95_CLOSE(ncid_startphy)
1108           CALL phyredem(pctsrf, ftsol, ftsoil, fqsurf, qsol, &
1109                fsnow, falbe, fevap, rain_fall, snow_fall, solsw, sollw, dlw, &
1110                radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, &
1111                t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
1112                w01)
1113        end IF
1114    
1115      end subroutine write_histhf3d      firstcal = .FALSE.
1116    
1117    END SUBROUTINE physiq    END SUBROUTINE physiq
1118    

Legend:
Removed from v.49  
changed lines
  Added in v.227

  ViewVC Help
Powered by ViewVC 1.1.21