--- trunk/phylmd/physiq.f 2014/05/13 17:23:16 98 +++ trunk/Sources/phylmd/physiq.f 2016/03/16 11:11:27 182 @@ -4,13 +4,13 @@ contains - SUBROUTINE physiq(lafin, rdayvrai, time, dtphys, paprs, play, pphi, pphis, & - u, v, t, qx, omega, d_u, d_v, d_t, d_qx) + SUBROUTINE physiq(lafin, dayvrai, time, paprs, play, pphi, pphis, u, v, t, & + qx, omega, d_u, d_v, d_t, d_qx) ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28 ! (subversion revision 678) - ! Author: Z.X. Li (LMD/CNRS) 1993 + ! Author: Z. X. Li (LMD/CNRS) 1993 ! This is the main procedure for the "physics" part of the program. @@ -19,15 +19,16 @@ use aeropt_m, only: aeropt use ajsec_m, only: ajsec use calltherm_m, only: calltherm - USE clesphys, ONLY: cdhmax, cdmmax, co2_ppm, ecrit_hf, ecrit_ins, & - ecrit_mth, ecrit_reg, ecrit_tra, ksta, ksta_ter, ok_kzmin - USE clesphys2, ONLY: cycle_diurne, iflag_con, nbapp_rad, new_oliq, & - ok_orodr, ok_orolf, soil_model + USE clesphys, ONLY: cdhmax, cdmmax, ecrit_hf, ecrit_ins, ecrit_mth, & + ecrit_reg, ecrit_tra, ksta, ksta_ter, ok_kzmin + USE clesphys2, ONLY: cycle_diurne, conv_emanuel, nbapp_rad, new_oliq, & + ok_orodr, ok_orolf USE clmain_m, ONLY: clmain use clouds_gno_m, only: clouds_gno - USE comgeomphy, ONLY: airephy, cuphy, cvphy + use comconst, only: dtphys + USE comgeomphy, ONLY: airephy USE concvl_m, ONLY: concvl - USE conf_gcm_m, ONLY: offline, raz_date + USE conf_gcm_m, ONLY: offline, raz_date, day_step, iphysiq USE conf_phys_m, ONLY: conf_phys use conflx_m, only: conflx USE ctherm, ONLY: iflag_thermals, nsplit_thermals @@ -38,25 +39,31 @@ USE dimphy, ONLY: klon USE dimsoil, ONLY: nsoilmx use drag_noro_m, only: drag_noro + use dynetat0_m, only: day_ref, annee_ref USE fcttre, ONLY: foeew, qsatl, qsats, thermcep use fisrtilp_m, only: fisrtilp USE hgardfou_m, ONLY: hgardfou USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, & nbsrf USE ini_histins_m, ONLY: ini_histins + use netcdf95, only: NF95_CLOSE use newmicro_m, only: newmicro + use nuage_m, only: nuage USE orbite_m, ONLY: orbite USE ozonecm_m, ONLY: ozonecm USE phyetat0_m, ONLY: phyetat0, rlat, rlon USE phyredem_m, ONLY: phyredem + USE phyredem0_m, ONLY: phyredem0 USE phystokenc_m, ONLY: phystokenc USE phytrac_m, ONLY: phytrac USE qcheck_m, ONLY: qcheck use radlwsw_m, only: radlwsw use readsulfate_m, only: readsulfate - use sugwd_m, only: sugwd - USE suphec_m, ONLY: ra, rcpd, retv, rg, rlvtt, romega, rsigma, rtt - USE temps, ONLY: annee_ref, day_ref, itau_phy + use readsulfate_preind_m, only: readsulfate_preind + use yoegwd, only: sugwd + USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt + use transp_m, only: transp + use transp_lay_m, only: transp_lay use unit_nml_m, only: unit_nml USE ymds2ju_m, ONLY: ymds2ju USE yoethf_m, ONLY: r2es, rvtmp2 @@ -64,11 +71,10 @@ logical, intent(in):: lafin ! dernier passage - REAL, intent(in):: rdayvrai - ! (elapsed time since January 1st 0h of the starting year, in days) + integer, intent(in):: dayvrai + ! current day number, based at value 1 on January 1st of annee_ref REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour - REAL, intent(in):: dtphys ! pas d'integration pour la physique (seconde) REAL, intent(in):: paprs(:, :) ! (klon, llm + 1) ! pression pour chaque inter-couche, en Pa @@ -111,19 +117,6 @@ LOGICAL, PARAMETER:: ok_stratus = .FALSE. ! Ajouter artificiellement les stratus - character(len = 6):: ocean = 'force ' - ! (type de mod\`ele oc\'ean \`a utiliser: "force" ou "slab" mais - ! pas "couple") - - ! "slab" ocean - REAL, save:: tslab(klon) ! temperature of ocean slab - REAL, save:: seaice(klon) ! glace de mer (kg/m2) - REAL fluxo(klon) ! flux turbulents ocean-glace de mer - REAL fluxg(klon) ! flux turbulents ocean-atmosphere - - ! Modele thermique du sol, a activer pour le cycle diurne: - logical:: ok_veget = .false. ! type de modele de vegetation utilise - logical:: ok_journe = .false., ok_mensuel = .true., ok_instan = .false. ! sorties journalieres, mensuelles et instantanees dans les ! fichiers histday, histmth et histins @@ -160,14 +153,6 @@ integer nlevSTD PARAMETER(nlevSTD = 17) - real rlevSTD(nlevSTD) - DATA rlevSTD/100000., 92500., 85000., 70000., & - 60000., 50000., 40000., 30000., 25000., 20000., & - 15000., 10000., 7000., 5000., 3000., 2000., 1000./ - CHARACTER(LEN = 4) clevSTD(nlevSTD) - DATA clevSTD/'1000', '925 ', '850 ', '700 ', '600 ', & - '500 ', '400 ', '300 ', '250 ', '200 ', '150 ', '100 ', & - '70 ', '50 ', '30 ', '20 ', '10 '/ ! prw: precipitable water real prw(klon) @@ -180,62 +165,18 @@ INTEGER kmax, lmax PARAMETER(kmax = 8, lmax = 8) INTEGER kmaxm1, lmaxm1 - PARAMETER(kmaxm1 = kmax-1, lmaxm1 = lmax-1) - - REAL zx_tau(kmaxm1), zx_pc(lmaxm1) - DATA zx_tau/0., 0.3, 1.3, 3.6, 9.4, 23., 60./ - DATA zx_pc/50., 180., 310., 440., 560., 680., 800./ - - ! cldtopres pression au sommet des nuages - REAL cldtopres(lmaxm1) - DATA cldtopres/50., 180., 310., 440., 560., 680., 800./ - - ! taulev: numero du niveau de tau dans les sorties ISCCP - CHARACTER(LEN = 4) taulev(kmaxm1) - - DATA taulev/'tau0', 'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'/ - CHARACTER(LEN = 3) pclev(lmaxm1) - DATA pclev/'pc1', 'pc2', 'pc3', 'pc4', 'pc5', 'pc6', 'pc7'/ - - CHARACTER(LEN = 28) cnameisccp(lmaxm1, kmaxm1) - DATA cnameisccp/'pc< 50hPa, tau< 0.3', 'pc= 50-180hPa, tau< 0.3', & - 'pc= 180-310hPa, tau< 0.3', 'pc= 310-440hPa, tau< 0.3', & - 'pc= 440-560hPa, tau< 0.3', 'pc= 560-680hPa, tau< 0.3', & - 'pc= 680-800hPa, tau< 0.3', 'pc< 50hPa, tau= 0.3-1.3', & - 'pc= 50-180hPa, tau= 0.3-1.3', 'pc= 180-310hPa, tau= 0.3-1.3', & - 'pc= 310-440hPa, tau= 0.3-1.3', 'pc= 440-560hPa, tau= 0.3-1.3', & - 'pc= 560-680hPa, tau= 0.3-1.3', 'pc= 680-800hPa, tau= 0.3-1.3', & - 'pc< 50hPa, tau= 1.3-3.6', 'pc= 50-180hPa, tau= 1.3-3.6', & - 'pc= 180-310hPa, tau= 1.3-3.6', 'pc= 310-440hPa, tau= 1.3-3.6', & - 'pc= 440-560hPa, tau= 1.3-3.6', 'pc= 560-680hPa, tau= 1.3-3.6', & - 'pc= 680-800hPa, tau= 1.3-3.6', 'pc< 50hPa, tau= 3.6-9.4', & - 'pc= 50-180hPa, tau= 3.6-9.4', 'pc= 180-310hPa, tau= 3.6-9.4', & - 'pc= 310-440hPa, tau= 3.6-9.4', 'pc= 440-560hPa, tau= 3.6-9.4', & - 'pc= 560-680hPa, tau= 3.6-9.4', 'pc= 680-800hPa, tau= 3.6-9.4', & - 'pc< 50hPa, tau= 9.4-23', 'pc= 50-180hPa, tau= 9.4-23', & - 'pc= 180-310hPa, tau= 9.4-23', 'pc= 310-440hPa, tau= 9.4-23', & - 'pc= 440-560hPa, tau= 9.4-23', 'pc= 560-680hPa, tau= 9.4-23', & - 'pc= 680-800hPa, tau= 9.4-23', 'pc< 50hPa, tau= 23-60', & - 'pc= 50-180hPa, tau= 23-60', 'pc= 180-310hPa, tau= 23-60', & - 'pc= 310-440hPa, tau= 23-60', 'pc= 440-560hPa, tau= 23-60', & - 'pc= 560-680hPa, tau= 23-60', 'pc= 680-800hPa, tau= 23-60', & - 'pc< 50hPa, tau> 60.', 'pc= 50-180hPa, tau> 60.', & - 'pc= 180-310hPa, tau> 60.', 'pc= 310-440hPa, tau> 60.', & - 'pc= 440-560hPa, tau> 60.', 'pc= 560-680hPa, tau> 60.', & - 'pc= 680-800hPa, tau> 60.'/ - - ! ISCCP simulator v3.4 + PARAMETER(kmaxm1 = kmax - 1, lmaxm1 = lmax - 1) ! Variables propres a la physique INTEGER, save:: radpas - ! (Radiative transfer computations are made every "radpas" call to - ! "physiq".) + ! Radiative transfer computations are made every "radpas" call to + ! "physiq". REAL radsol(klon) SAVE radsol ! bilan radiatif au sol calcule par code radiatif - INTEGER, SAVE:: itap ! number of calls to "physiq" + INTEGER:: itap = 0 ! number of calls to "physiq" REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction @@ -249,10 +190,11 @@ REAL, save:: fqsurf(klon, nbsrf) ! humidite de l'air au contact de la surface - REAL, save:: qsol(klon) ! hauteur d'eau dans le sol + REAL, save:: qsol(klon) + ! column-density of water in soil, in kg m-2 + REAL, save:: fsnow(klon, nbsrf) ! epaisseur neigeuse - REAL, save:: falbe(klon, nbsrf) ! albedo par type de surface - REAL, save:: falblw(klon, nbsrf) ! albedo par type de surface + REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) : REAL, save:: zmea(klon) ! orographie moyenne @@ -263,10 +205,8 @@ REAL, save:: zpic(klon) ! Maximum de l'OESM REAL, save:: zval(klon) ! Minimum de l'OESM REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM - REAL zulow(klon), zvlow(klon) - - INTEGER igwd, idx(klon), itest(klon) + INTEGER igwd, itest(klon) REAL agesno(klon, nbsrf) SAVE agesno ! age de la neige @@ -283,9 +223,7 @@ REAL, save:: sig1(klon, llm), w01(klon, llm) REAL, save:: wd(klon) - ! Variables locales pour la couche limite (al1): - - ! Variables locales: + ! Variables pour la couche limite (al1): REAL cdragh(klon) ! drag coefficient pour T and Q REAL cdragm(klon) ! drag coefficient pour vent @@ -309,8 +247,11 @@ REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction) REAL frac_nucl(klon, llm) ! idem (nucleation) - REAL, save:: rain_fall(klon) ! pluie - REAL, save:: snow_fall(klon) ! neige + REAL, save:: rain_fall(klon) + ! liquid water mass flux (kg/m2/s), positive down + + REAL, save:: snow_fall(klon) + ! solid water mass flux (kg/m2/s), positive down REAL rain_tiedtke(klon), snow_tiedtke(klon) @@ -319,8 +260,7 @@ REAL dlw(klon) ! derivee infra rouge SAVE dlw REAL bils(klon) ! bilan de chaleur au sol - REAL fder(klon) ! Derive de flux (sensible et latente) - save fder + REAL, save:: fder(klon) ! Derive de flux (sensible et latente) REAL ve(klon) ! integr. verticale du transport meri. de l'energie REAL vq(klon) ! integr. verticale du transport meri. de l'eau REAL ue(klon) ! integr. verticale du transport zonal de l'energie @@ -335,17 +275,9 @@ INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface REAL pctsrf_new(klon, nbsrf) ! pourcentage surfaces issus d'ORCHIDEE - REAL, save:: albsol(klon) ! albedo du sol total - REAL, save:: albsollw(klon) ! albedo du sol total + REAL, save:: albsol(klon) ! albedo du sol total visible REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU - ! Declaration des procedures appelees - - EXTERNAL nuage ! calculer les proprietes radiatives - EXTERNAL transp ! transport total de l'eau et de l'energie - - ! Variables locales - real, save:: clwcon(klon, llm), rnebcon(klon, llm) real, save:: clwcon0(klon, llm), rnebcon0(klon, llm) @@ -370,21 +302,16 @@ ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que ! les variables soient r\'emanentes. REAL, save:: heat(klon, llm) ! chauffage solaire - REAL heat0(klon, llm) ! chauffage solaire ciel clair + REAL, save:: heat0(klon, llm) ! chauffage solaire ciel clair REAL, save:: cool(klon, llm) ! refroidissement infrarouge - REAL cool0(klon, llm) ! refroidissement infrarouge ciel clair + REAL, save:: cool0(klon, llm) ! refroidissement infrarouge ciel clair REAL, save:: topsw(klon), toplw(klon), solsw(klon) REAL, save:: sollw(klon) ! rayonnement infrarouge montant \`a la surface real, save:: sollwdown(klon) ! downward LW flux at surface REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon) - REAL albpla(klon) + REAL, save:: albpla(klon) REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous surface REAL fsolsw(klon, nbsrf) ! flux solaire absorb. pour chaque sous surface - SAVE albpla - SAVE heat0, cool0 - - INTEGER itaprad - SAVE itaprad REAL conv_q(klon, llm) ! convergence de l'humidite (kg/kg/s) REAL conv_t(klon, llm) ! convergence of temperature (K/s) @@ -394,17 +321,17 @@ REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon) - REAL dist, rmu0(klon), fract(klon) - real zlongi + REAL dist, mu0(klon), fract(klon) + real longi REAL z_avant(klon), z_apres(klon), z_factor(klon) REAL za, zb - REAL zx_t, zx_qs, zdelta, zcor + REAL zx_t, zx_qs, zcor real zqsat(klon, llm) INTEGER i, k, iq, nsrf REAL, PARAMETER:: t_coup = 234. REAL zphi(klon, llm) - ! cf. AM Variables locales pour la CLA (hbtm2) + ! cf. AM Variables pour la CLA (hbtm2) REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA @@ -422,7 +349,7 @@ REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon) REAL s_trmb3(klon) - ! Variables locales pour la convection de K. Emanuel : + ! Variables pour la convection de K. Emanuel : REAL upwd(klon, llm) ! saturated updraft mass flux REAL dnwd(klon, llm) ! saturated downdraft mass flux @@ -456,7 +383,8 @@ INTEGER, save:: ibas_con(klon), itop_con(klon) REAL rain_con(klon), rain_lsc(klon) - REAL snow_con(klon), snow_lsc(klon) + REAL, save:: snow_con(klon) + real snow_lsc(klon) REAL d_ts(klon, nbsrf) REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm) @@ -480,7 +408,7 @@ integer:: iflag_cldcon = 1 logical ptconv(klon, llm) - ! Variables locales pour effectuer les appels en s\'erie : + ! Variables pour effectuer les appels en s\'erie : REAL t_seri(klon, llm), q_seri(klon, llm) REAL ql_seri(klon, llm) @@ -503,14 +431,12 @@ REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert. REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert. - REAL zsto real date0 ! Variables li\'ees au bilan d'\'energie et d'enthalpie : REAL ztsol(klon) REAL d_h_vcol, d_qt, d_ec REAL, SAVE:: d_h_vcol_phy - REAL fs_bound, fq_bound REAL zero_v(klon) CHARACTER(LEN = 20) tit INTEGER:: ip_ebil = 0 ! print level for energy conservation diagnostics @@ -529,7 +455,7 @@ REAL sulfate(klon, llm) ! SO4 aerosol concentration (micro g/m3) REAL, save:: sulfate_pi(klon, llm) - ! SO4 aerosol concentration, in micro g/m3, pre-industrial value + ! SO4 aerosol concentration, in \mu g/m3, pre-industrial value REAL cldtaupi(klon, llm) ! cloud optical thickness for pre-industrial (pi) aerosols @@ -561,7 +487,6 @@ SAVE ffonte SAVE fqcalving SAVE rain_con - SAVE snow_con SAVE topswai SAVE topswad SAVE solswai @@ -573,17 +498,17 @@ ! (column-density of mass of air in a cell, in kg m-2) real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2 + integer, save:: ncid_startphy, itau_phy - namelist /physiq_nml/ ocean, ok_veget, ok_journe, ok_mensuel, ok_instan, & - fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, ratqsbas, & - ratqshaut, if_ebil, ok_ade, ok_aie, bl95_b0, bl95_b1, iflag_thermals, & - nsplit_thermals + namelist /physiq_nml/ ok_journe, ok_mensuel, ok_instan, fact_cldcon, & + facttemps, ok_newmicro, iflag_cldcon, ratqsbas, ratqshaut, if_ebil, & + ok_ade, ok_aie, bl95_b0, bl95_b1, iflag_thermals, nsplit_thermals !---------------------------------------------------------------- IF (if_ebil >= 1) zero_v = 0. IF (nqmx < 2) CALL abort_gcm('physiq', & - 'eaux vapeur et liquide sont indispensables', 1) + 'eaux vapeur et liquide sont indispensables') test_firstcal: IF (firstcal) THEN ! initialiser @@ -634,33 +559,27 @@ ! Initialiser les compteurs: frugs = 0. - itap = 0 - itaprad = 0 - CALL phyetat0("startphy.nc", pctsrf, ftsol, ftsoil, ocean, tslab, & - seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, rain_fall, & - snow_fall, solsw, sollw, dlw, radsol, frugs, agesno, zmea, & - zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, & - ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01) + CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, & + fsnow, falbe, fevap, rain_fall, snow_fall, solsw, sollw, dlw, & + radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, & + t_ancien, q_ancien, ancien_ok, rnebcon, ratqs, clwcon, & + run_off_lic_0, sig1, w01, ncid_startphy, itau_phy) ! ATTENTION : il faudra a terme relire q2 dans l'etat initial q2 = 1e-8 - radpas = NINT(86400. / dtphys / nbapp_rad) + lmt_pas = day_step / iphysiq + print *, 'Number of time steps of "physics" per day: ', lmt_pas - ! on remet le calendrier a zero - IF (raz_date) itau_phy = 0 + radpas = lmt_pas / nbapp_rad - PRINT *, 'cycle_diurne = ', cycle_diurne - CALL printflag(radpas, ocean /= 'force', ok_journe, ok_instan, ok_region) + ! On remet le calendrier a zero + IF (raz_date) itau_phy = 0 - IF (dtphys * REAL(radpas) > 21600. .AND. cycle_diurne) THEN - print *, "Au minimum 4 appels par jour si cycle diurne" - call abort_gcm('physiq', & - "Nombre d'appels au rayonnement insuffisant", 1) - ENDIF + CALL printflag(radpas, ok_journe, ok_instan, ok_region) ! Initialisation pour le sch\'ema de convection d'Emanuel : - IF (iflag_con >= 3) THEN + IF (conv_emanuel) THEN ibas_con = 1 itop_con = 1 ENDIF @@ -672,9 +591,6 @@ rugoro = 0. ENDIF - lmt_pas = NINT(86400. / dtphys) ! tous les jours - print *, 'Number of time steps of "physics" per day: ', lmt_pas - ecrit_ins = NINT(ecrit_ins/dtphys) ecrit_hf = NINT(ecrit_hf/dtphys) ecrit_mth = NINT(ecrit_mth/dtphys) @@ -683,17 +599,13 @@ ! Initialisation des sorties - call ini_histins(dtphys, ok_instan, nid_ins) - CALL ymds2ju(annee_ref, 1, int(day_ref), 0., date0) + call ini_histins(dtphys, ok_instan, nid_ins, itau_phy) + CALL ymds2ju(annee_ref, 1, day_ref, 0., date0) ! Positionner date0 pour initialisation de ORCHIDEE print *, 'physiq date0: ', date0 + CALL phyredem0(lmt_pas, itau_phy) ENDIF test_firstcal - ! Mettre a zero des variables de sortie (pour securite) - da = 0. - mp = 0. - phi = 0. - ! We will modify variables *_seri and we will not touch variables ! u, v, t, qx: t_seri = t @@ -701,7 +613,7 @@ v_seri = v q_seri = qx(:, :, ivap) ql_seri = qx(:, :, iliq) - tr_seri = qx(:, :, 3: nqmx) + tr_seri = qx(:, :, 3:nqmx) ztsol = sum(ftsol * pctsrf, dim = 2) @@ -749,10 +661,10 @@ ! Incrémenter le compteur de la physique itap = itap + 1 - julien = MOD(NINT(rdayvrai), 360) + julien = MOD(dayvrai, 360) if (julien == 0) julien = 360 - forall (k = 1: llm) zmasse(:, k) = (paprs(:, k)-paprs(:, k + 1)) / rg + forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg ! Prescrire l'ozone : wo = ozonecm(REAL(julien), paprs) @@ -779,18 +691,18 @@ frugs = MAX(frugs, 0.000015) zxrugs = sum(frugs * pctsrf, dim = 2) - ! Calculs nécessaires au calcul de l'albedo dans l'interface + ! Calculs nécessaires au calcul de l'albedo dans l'interface avec + ! la surface. - CALL orbite(REAL(julien), zlongi, dist) + CALL orbite(REAL(julien), longi, dist) IF (cycle_diurne) THEN - CALL zenang(zlongi, time, dtphys * REAL(radpas), rmu0, fract) + CALL zenang(longi, time, dtphys * radpas, mu0, fract) ELSE - rmu0 = -999.999 + mu0 = - 999.999 ENDIF ! Calcul de l'abedo moyen par maille albsol = sum(falbe * pctsrf, dim = 2) - albsollw = sum(falblw * pctsrf, dim = 2) ! R\'epartition sous maille des flux longwave et shortwave ! R\'epartition du longwave par sous-surface lin\'earis\'ee @@ -806,15 +718,14 @@ ! Couche limite: CALL clmain(dtphys, itap, pctsrf, pctsrf_new, t_seri, q_seri, u_seri, & - v_seri, julien, rmu0, co2_ppm, ok_veget, ocean, ftsol, soil_model, & - cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, play, & - fsnow, fqsurf, fevap, falbe, falblw, fluxlat, rain_fall, snow_fall, & - fsolsw, fsollw, fder, rlon, rlat, frugs, firstcal, agesno, rugoro, & - d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, fluxt, fluxq, fluxu, & - fluxv, cdragh, cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, & - u10m, v10m, pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, & - trmb3, plcl, fqcalving, ffonte, run_off_lic_0, fluxo, fluxg, tslab, & - seaice) + v_seri, julien, mu0, ftsol, cdmmax, cdhmax, ksta, ksta_ter, & + ok_kzmin, ftsoil, qsol, paprs, play, fsnow, fqsurf, fevap, falbe, & + fluxlat, rain_fall, snow_fall, fsolsw, fsollw, fder, rlat, frugs, & + firstcal, agesno, rugoro, d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, & + fluxt, fluxq, fluxu, fluxv, cdragh, cdragm, q2, dsens, devap, & + ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, pblh, capCL, oliqCL, cteiCL, & + pblT, therm, trmb1, trmb2, trmb3, plcl, fqcalving, ffonte, & + run_off_lic_0) ! Incr\'ementation des flux @@ -941,59 +852,30 @@ dlw(i) = - 4. * RSIGMA * zxtsol(i)**3 ENDDO - ! Appeler la convection (au choix) - - DO k = 1, llm - DO i = 1, klon - conv_q(i, k) = d_q_dyn(i, k) + d_q_vdf(i, k) / dtphys - conv_t(i, k) = d_t_dyn(i, k) + d_t_vdf(i, k) / dtphys - ENDDO - ENDDO - IF (check) print *, "avantcon = ", qcheck(paprs, q_seri, ql_seri) - if (iflag_con == 2) then - z_avant = sum((q_seri + ql_seri) * zmasse, dim=2) - CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:-1), & - q_seri(:, llm:1:-1), conv_t, conv_q, zxfluxq(:, 1), omega, & - d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:-1), & - mfd(:, llm:1:-1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, & - kdtop, pmflxr, pmflxs) - WHERE (rain_con < 0.) rain_con = 0. - WHERE (snow_con < 0.) snow_con = 0. - ibas_con = llm + 1 - kcbot - itop_con = llm + 1 - kctop - else - ! iflag_con >= 3 + ! Appeler la convection (au choix) + if (conv_emanuel) then + da = 0. + mp = 0. + phi = 0. CALL concvl(dtphys, paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, & w01, d_t_con, d_q_con, d_u_con, d_v_con, rain_con, snow_con, & ibas_con, itop_con, upwd, dnwd, dnwd0, Ma, cape, iflagctrl, & - qcondc, wd, pmflxr, pmflxs, da, phi, mp) + qcondc, wd, pmflxr, da, phi, mp) clwcon0 = qcondc mfu = upwd + dnwd IF (.NOT. ok_gust) wd = 0. - ! Calcul des propri\'et\'es des nuages convectifs - - DO k = 1, llm - DO i = 1, klon - IF (thermcep) THEN - zdelta = MAX(0., SIGN(1., rtt - t_seri(i, k))) - zqsat(i, k) = r2es * FOEEW(t_seri(i, k), zdelta) / play(i, k) - zqsat(i, k) = MIN(0.5, zqsat(i, k)) - zqsat(i, k) = zqsat(i, k) / (1.-retv*zqsat(i, k)) - ELSE - IF (t_seri(i, k) < t_coup) THEN - zqsat(i, k) = qsats(t_seri(i, k))/play(i, k) - ELSE - zqsat(i, k) = qsatl(t_seri(i, k))/play(i, k) - ENDIF - ENDIF - ENDDO - ENDDO + IF (thermcep) THEN + zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play) + zqsat = zqsat / (1. - retv * zqsat) + ELSE + zqsat = merge(qsats(t_seri), qsatl(t_seri), t_seri < t_coup) / play + ENDIF - ! calcul des proprietes des nuages convectifs + ! Properties of convective clouds clwcon0 = fact_cldcon * clwcon0 call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, & rnebcon0) @@ -1003,6 +885,19 @@ pen_d = 0. pde_d = 0. pde_u = 0. + else + conv_q = d_q_dyn + d_q_vdf / dtphys + conv_t = d_t_dyn + d_t_vdf / dtphys + z_avant = sum((q_seri + ql_seri) * zmasse, dim=2) + CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:- 1), & + q_seri(:, llm:1:- 1), conv_t, conv_q, zxfluxq(:, 1), omega, & + d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:- 1), & + mfd(:, llm:1:- 1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, & + kdtop, pmflxr, pmflxs) + WHERE (rain_con < 0.) rain_con = 0. + WHERE (snow_con < 0.) snow_con = 0. + ibas_con = llm + 1 - kcbot + itop_con = llm + 1 - kctop END if DO k = 1, llm @@ -1036,7 +931,7 @@ print *, "Precip = ", zx_t ENDIF - IF (iflag_con == 2) THEN + IF (.not. conv_emanuel) THEN z_apres = sum((q_seri + ql_seri) * zmasse, dim=2) z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres DO k = 1, llm @@ -1154,17 +1049,17 @@ ! 1. NUAGES CONVECTIFS - IF (iflag_cldcon <= -1) THEN + IF (iflag_cldcon <= - 1) THEN ! seulement pour Tiedtke snow_tiedtke = 0. - if (iflag_cldcon == -1) then + if (iflag_cldcon == - 1) then rain_tiedtke = rain_con else rain_tiedtke = 0. do k = 1, llm do i = 1, klon if (d_q_con(i, k) < 0.) then - rain_tiedtke(i) = rain_tiedtke(i)-d_q_con(i, k)/dtphys & + rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k)/dtphys & *zmasse(i, k) endif enddo @@ -1232,10 +1127,9 @@ DO i = 1, klon zx_t = t_seri(i, k) IF (thermcep) THEN - zdelta = MAX(0., SIGN(1., rtt-zx_t)) - zx_qs = r2es * FOEEW(zx_t, zdelta)/play(i, k) + zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t)/play(i, k) zx_qs = MIN(0.5, zx_qs) - zcor = 1./(1.-retv*zx_qs) + zcor = 1./(1. - retv*zx_qs) zx_qs = zx_qs*zcor ELSE IF (zx_t < t_coup) THEN @@ -1252,8 +1146,8 @@ ! Introduce the aerosol direct and first indirect radiative forcings: IF (ok_ade .OR. ok_aie) THEN ! Get sulfate aerosol distribution : - CALL readsulfate(rdayvrai, firstcal, sulfate) - CALL readsulfate_preind(rdayvrai, firstcal, sulfate_pi) + CALL readsulfate(dayvrai, time, firstcal, sulfate) + CALL readsulfate_preind(dayvrai, time, firstcal, sulfate_pi) CALL aeropt(play, paprs, t_seri, sulfate, rhcl, tau_ae, piz_ae, cg_ae, & aerindex) @@ -1275,34 +1169,25 @@ bl95_b1, cldtaupi, re, fl) endif - ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol. - IF (MOD(itaprad, radpas) == 0) THEN - DO i = 1, klon - albsol(i) = falbe(i, is_oce) * pctsrf(i, is_oce) & - + falbe(i, is_lic) * pctsrf(i, is_lic) & - + falbe(i, is_ter) * pctsrf(i, is_ter) & - + falbe(i, is_sic) * pctsrf(i, is_sic) - albsollw(i) = falblw(i, is_oce) * pctsrf(i, is_oce) & - + falblw(i, is_lic) * pctsrf(i, is_lic) & - + falblw(i, is_ter) * pctsrf(i, is_ter) & - + falblw(i, is_sic) * pctsrf(i, is_sic) - ENDDO + IF (MOD(itap - 1, radpas) == 0) THEN + ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol. + ! Calcul de l'abedo moyen par maille + albsol = sum(falbe * pctsrf, dim = 2) + ! Rayonnement (compatible Arpege-IFS) : - CALL radlwsw(dist, rmu0, fract, paprs, play, zxtsol, albsol, & - albsollw, t_seri, q_seri, wo, cldfra, cldemi, cldtau, heat, & - heat0, cool, cool0, radsol, albpla, topsw, toplw, solsw, sollw, & - sollwdown, topsw0, toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, & - lwup, swdn0, swdn, swup0, swup, ok_ade, ok_aie, tau_ae, piz_ae, & - cg_ae, topswad, solswad, cldtaupi, topswai, solswai) - itaprad = 0 + CALL radlwsw(dist, mu0, fract, paprs, play, zxtsol, albsol, t_seri, & + q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, & + radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, & + toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, & + swup0, swup, ok_ade, ok_aie, tau_ae, piz_ae, cg_ae, topswad, & + solswad, cldtaupi, topswai, solswai) ENDIF - itaprad = itaprad + 1 ! Ajouter la tendance des rayonnements (tous les pas) DO k = 1, llm DO i = 1, klon - t_seri(i, k) = t_seri(i, k) + (heat(i, k)-cool(i, k)) * dtphys/86400. + t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys/86400. ENDDO ENDDO @@ -1335,20 +1220,19 @@ ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille : IF (ok_orodr) THEN - ! selection des points pour lesquels le shema est actif: + ! S\'election des points pour lesquels le sch\'ema est actif : igwd = 0 DO i = 1, klon itest(i) = 0 - IF (((zpic(i)-zmea(i)) > 100.).AND.(zstd(i) > 10.)) THEN + IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN itest(i) = 1 igwd = igwd + 1 - idx(igwd) = i ENDIF ENDDO CALL drag_noro(klon, llm, dtphys, paprs, play, zmea, zstd, zsig, zgam, & - zthe, zpic, zval, igwd, idx, itest, t_seri, u_seri, v_seri, & - zulow, zvlow, zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro) + zthe, zpic, zval, itest, t_seri, u_seri, v_seri, zulow, zvlow, & + zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro) ! ajout des tendances DO k = 1, llm @@ -1365,10 +1249,9 @@ igwd = 0 DO i = 1, klon itest(i) = 0 - IF ((zpic(i) - zmea(i)) > 100.) THEN + IF (zpic(i) - zmea(i) > 100.) THEN itest(i) = 1 igwd = igwd + 1 - idx(igwd) = i ENDIF ENDDO @@ -1401,31 +1284,29 @@ ENDDO ENDDO - CALL aaam_bud(ra, rg, romega, rlat, rlon, pphis, zustrdr, zustrli, & - zustrph, zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc) + CALL aaam_bud(rg, romega, rlat, rlon, pphis, zustrdr, zustrli, zustrph, & + zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc) IF (if_ebil >= 2) CALL diagetpq(airephy, 'after orography', ip_ebil, 2, & 2, dtphys, t_seri, q_seri, ql_seri, u_seri, v_seri, paprs, d_h_vcol, & d_qt, d_ec) ! Calcul des tendances traceurs - call phytrac(itap, lmt_pas, julien, time, firstcal, lafin, dtphys, u, t, & + call phytrac(itap, lmt_pas, julien, time, firstcal, lafin, dtphys, t, & paprs, play, mfu, mfd, pde_u, pen_d, ycoefh, fm_therm, entr_therm, & - yu1, yv1, ftsol, pctsrf, frac_impa, frac_nucl, pphis, albsol, rhcl, & - cldfra, rneb, diafra, cldliq, pmflxr, pmflxs, prfl, psfl, da, phi, & - mp, upwd, dnwd, tr_seri, zmasse) + yu1, yv1, ftsol, pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, & + dnwd, tr_seri, zmasse, ncid_startphy, nid_ins, itau_phy) IF (offline) call phystokenc(dtphys, rlon, rlat, t, mfu, mfd, pen_u, & pde_u, pen_d, pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, & pctsrf, frac_impa, frac_nucl, pphis, airephy, dtphys, itap) ! Calculer le transport de l'eau et de l'energie (diagnostique) - CALL transp(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, & - ue, uq) + CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq) ! diag. bilKP - CALL transp_lay(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, & + CALL transp_lay(paprs, t_seri, q_seri, u_seri, v_seri, zphi, & ve_lay, vq_lay, ue_lay, uq_lay) ! Accumuler les variables a stocker dans les fichiers histoire: @@ -1479,7 +1360,7 @@ DO iq = 3, nqmx DO k = 1, llm DO i = 1, klon - d_qx(i, k, iq) = (tr_seri(i, k, iq-2) - qx(i, k, iq)) / dtphys + d_qx(i, k, iq) = (tr_seri(i, k, iq - 2) - qx(i, k, iq)) / dtphys ENDDO ENDDO ENDDO @@ -1492,18 +1373,16 @@ ENDDO ENDDO - ! Ecriture des sorties call write_histins - ! Si c'est la fin, il faut conserver l'etat de redemarrage - IF (lafin) THEN - itau_phy = itau_phy + itap - CALL phyredem("restartphy.nc", rlat, rlon, pctsrf, ftsol, ftsoil, & - tslab, seaice, fqsurf, qsol, fsnow, falbe, falblw, fevap, & - rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, & - agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, & - q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01) - ENDIF + IF (lafin) then + call NF95_CLOSE(ncid_startphy) + CALL phyredem(pctsrf, ftsol, ftsoil, fqsurf, qsol, & + fsnow, falbe, fevap, rain_fall, snow_fall, solsw, sollw, dlw, & + radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, & + t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, & + w01) + end IF firstcal = .FALSE. @@ -1513,12 +1392,13 @@ ! From phylmd/write_histins.h, version 1.2 2005/05/25 13:10:09 + ! Ecriture des sorties + use dimens_m, only: iim, jjm USE histsync_m, ONLY: histsync USE histwrite_m, ONLY: histwrite - real zout - integer itau_w ! pas de temps ecriture + integer i, itau_w ! pas de temps ecriture REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm) !-------------------------------------------------- @@ -1526,15 +1406,11 @@ IF (ok_instan) THEN ! Champs 2D: - zsto = dtphys * ecrit_ins - zout = dtphys * ecrit_ins itau_w = itau_phy + itap - i = NINT(zout/zsto) CALL gr_fi_ecrit(1, klon, iim, jjm + 1, pphis, zx_tmp_2d) CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d) - i = NINT(zout/zsto) CALL gr_fi_ecrit(1, klon, iim, jjm + 1, airephy, zx_tmp_2d) CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d) @@ -1604,7 +1480,7 @@ CALL gr_fi_ecrit(1, klon, iim, jjm + 1, bils, zx_tmp_2d) CALL histwrite(nid_ins, "bils", itau_w, zx_tmp_2d) - zx_tmp_fi2d(1:klon) = -1*sens(1:klon) + zx_tmp_fi2d(1:klon) = - sens(1:klon) ! CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sens, zx_tmp_2d) CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) CALL histwrite(nid_ins, "sens", itau_w, zx_tmp_2d) @@ -1666,7 +1542,7 @@ CALL histwrite(nid_ins, "rugs_"//clnsurf(nsrf), itau_w, & zx_tmp_2d) - zx_tmp_fi2d(1 : klon) = falbe(1 : klon, nsrf) + zx_tmp_fi2d(1 : klon) = falbe(:, nsrf) CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) CALL histwrite(nid_ins, "albe_"//clnsurf(nsrf), itau_w, & zx_tmp_2d) @@ -1674,8 +1550,6 @@ END DO CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsol, zx_tmp_2d) CALL histwrite(nid_ins, "albs", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsollw, zx_tmp_2d) - CALL histwrite(nid_ins, "albslw", itau_w, zx_tmp_2d) CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxrugs, zx_tmp_2d) CALL histwrite(nid_ins, "rugs", itau_w, zx_tmp_2d) @@ -1735,6 +1609,9 @@ CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_q_vdf, zx_tmp_3d) CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d) + CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, zx_rh, zx_tmp_3d) + CALL histwrite(nid_ins, "rhum", itau_w, zx_tmp_3d) + call histsync(nid_ins) ENDIF