--- trunk/Sources/phylmd/physiq.f 2017/03/22 13:40:27 214 +++ trunk/phylmd/physiq.f 2018/02/05 10:39:38 254 @@ -18,15 +18,14 @@ USE abort_gcm_m, ONLY: abort_gcm use ajsec_m, only: ajsec use calltherm_m, only: calltherm - USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ksta, ksta_ter, ok_kzmin, & - ok_instan + USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ok_instan USE clesphys2, ONLY: conv_emanuel, nbapp_rad, new_oliq, ok_orodr, ok_orolf USE clmain_m, ONLY: clmain use clouds_gno_m, only: clouds_gno use comconst, only: dtphys USE comgeomphy, ONLY: airephy USE concvl_m, ONLY: concvl - USE conf_gcm_m, ONLY: offline, lmt_pas + USE conf_gcm_m, ONLY: lmt_pas USE conf_phys_m, ONLY: conf_phys use conflx_m, only: conflx USE ctherm, ONLY: iflag_thermals, nsplit_thermals @@ -36,7 +35,7 @@ USE dimsoil, ONLY: nsoilmx use drag_noro_m, only: drag_noro use dynetat0_m, only: day_ref, annee_ref - USE fcttre, ONLY: foeew, qsatl, qsats + USE fcttre, ONLY: foeew use fisrtilp_m, only: fisrtilp USE hgardfou_m, ONLY: hgardfou USE histsync_m, ONLY: histsync @@ -44,16 +43,16 @@ USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, & nbsrf USE ini_histins_m, ONLY: ini_histins, nid_ins + use lift_noro_m, only: lift_noro use netcdf95, only: NF95_CLOSE use newmicro_m, only: newmicro use nr_util, only: assert use nuage_m, only: nuage USE orbite_m, ONLY: orbite USE ozonecm_m, ONLY: ozonecm - USE phyetat0_m, ONLY: phyetat0, rlat, rlon + USE phyetat0_m, ONLY: phyetat0 USE phyredem_m, ONLY: phyredem USE phyredem0_m, ONLY: phyredem0 - USE phystokenc_m, ONLY: phystokenc USE phytrac_m, ONLY: phytrac use radlwsw_m, only: radlwsw use yoegwd, only: sugwd @@ -156,10 +155,8 @@ REAL, save:: fqsurf(klon, nbsrf) ! humidite de l'air au contact de la surface - REAL, save:: qsol(klon) - ! column-density of water in soil, in kg m-2 - - REAL, save:: fsnow(klon, nbsrf) ! epaisseur neigeuse + REAL, save:: qsol(klon) ! column-density of water in soil, in kg m-2 + REAL, save:: fsnow(klon, nbsrf) ! \'epaisseur neigeuse REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) : @@ -172,7 +169,7 @@ REAL, save:: zval(klon) ! Minimum de l'OESM REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM REAL zulow(klon), zvlow(klon) - INTEGER igwd, itest(klon) + INTEGER ktest(klon) REAL, save:: agesno(klon, nbsrf) ! age de la neige REAL, save:: run_off_lic_0(klon) @@ -186,10 +183,7 @@ REAL cdragh(klon) ! drag coefficient pour T and Q REAL cdragm(klon) ! drag coefficient pour vent - ! Pour phytrac : - REAL ycoefh(klon, llm) ! coef d'echange pour phytrac - REAL yu1(klon) ! vents dans la premiere couche U - REAL yv1(klon) ! vents dans la premiere couche V + REAL coefh(klon, 2:llm) ! coef d'echange pour phytrac REAL, save:: ffonte(klon, nbsrf) ! flux thermique utilise pour fondre la neige @@ -221,9 +215,9 @@ real devap(klon) ! derivative of the evaporation flux at the surface REAL sens(klon) ! flux de chaleur sensible au sol real dsens(klon) ! derivee du flux de chaleur sensible au sol - REAL, save:: dlw(klon) ! derivee infra rouge + REAL, save:: dlw(klon) ! derivative of infra-red flux REAL bils(klon) ! bilan de chaleur au sol - REAL, save:: fder(klon) ! Derive de flux (sensible et latente) + REAL fder(klon) ! Derive de flux (sensible et latente) REAL ve(klon) ! integr. verticale du transport meri. de l'energie REAL vq(klon) ! integr. verticale du transport meri. de l'eau REAL ue(klon) ! integr. verticale du transport zonal de l'energie @@ -236,7 +230,7 @@ INTEGER julien REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface - REAL, save:: albsol(klon) ! albedo du sol total visible + REAL, save:: albsol(klon) ! albedo du sol total, visible, moyen par maille REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2 @@ -253,8 +247,9 @@ REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface REAL flux_t(klon, nbsrf) ! flux turbulent de chaleur à la surface - REAL flux_u(klon, nbsrf) ! flux turbulent de vitesse u à la surface - REAL flux_v(klon, nbsrf) ! flux turbulent de vitesse v à la surface + + REAL flux_u(klon, nbsrf), flux_v(klon, nbsrf) + ! tension du vent (flux turbulent de vent) à la surface, en Pa ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que ! les variables soient r\'emanentes. @@ -276,8 +271,7 @@ REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree - REAL zxqsurf(klon), zxsnow(klon), zxfluxlat(klon) - + REAL zxfluxlat(klon) REAL dist, mu0(klon), fract(klon) real longi REAL z_avant(klon), z_apres(klon), z_factor(klon) @@ -296,14 +290,10 @@ REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite REAL, SAVE:: pblt(klon, nbsrf) ! T \`a la hauteur de couche limite REAL, SAVE:: therm(klon, nbsrf) - REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape - REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition - REAL, SAVE:: trmb3(klon, nbsrf) ! Point Omega ! Grandeurs de sorties REAL s_pblh(klon), s_lcl(klon), s_capCL(klon) REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon) - REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon) - REAL s_trmb3(klon) + REAL s_therm(klon) ! Variables pour la convection de K. Emanuel : @@ -341,7 +331,7 @@ real rain_lsc(klon) REAL, save:: snow_con(klon) ! neige (mm / s) real snow_lsc(klon) - REAL d_ts(klon, nbsrf) + REAL d_ts(klon, nbsrf) ! variation of ftsol REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm) REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm) @@ -375,7 +365,6 @@ REAL zustrdr(klon), zvstrdr(klon) REAL zustrli(klon), zvstrli(klon) - REAL zustrph(klon), zvstrph(klon) REAL aam, torsfc REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert. @@ -384,7 +373,7 @@ REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert. real date0 - REAL ztsol(klon) + REAL tsol(klon) REAL d_t_ec(klon, llm) ! tendance due \`a la conversion d'\'energie cin\'etique en @@ -393,32 +382,16 @@ REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf) ! temperature and humidity at 2 m - REAL, save:: u10m(klon, nbsrf), v10m(klon, nbsrf) ! vents a 10 m + REAL, save:: u10m_srf(klon, nbsrf), v10m_srf(klon, nbsrf) + ! composantes du vent \`a 10 m + REAL zt2m(klon), zq2m(klon) ! température, humidité 2 m moyenne sur 1 maille - REAL zu10m(klon), zv10m(klon) ! vents a 10 m moyennes sur 1 maille + REAL u10m(klon), v10m(klon) ! vent \`a 10 m moyenn\' sur les sous-surfaces ! Aerosol effects: - REAL sulfate(klon, llm) ! SO4 aerosol concentration (micro g / m3) - - REAL, save:: sulfate_pi(klon, llm) - ! SO4 aerosol concentration, in \mu g / m3, pre-industrial value - - REAL cldtaupi(klon, llm) - ! cloud optical thickness for pre-industrial aerosols - - REAL re(klon, llm) ! Cloud droplet effective radius - REAL fl(klon, llm) ! denominator of re - - ! Aerosol optical properties - REAL, save:: tau_ae(klon, llm, 2), piz_ae(klon, llm, 2) - REAL, save:: cg_ae(klon, llm, 2) - REAL, save:: topswad(klon), solswad(klon) ! aerosol direct effect - REAL, save:: topswai(klon), solswai(klon) ! aerosol indirect effect - LOGICAL:: ok_ade = .false. ! apply aerosol direct effect - LOGICAL:: ok_aie = .false. ! apply aerosol indirect effect REAL:: bl95_b0 = 2., bl95_b1 = 0.2 ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus @@ -431,8 +404,8 @@ integer, save:: ncid_startphy namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, & - ratqsbas, ratqshaut, ok_ade, ok_aie, bl95_b0, bl95_b1, & - iflag_thermals, nsplit_thermals + ratqsbas, ratqshaut, ok_ade, bl95_b0, bl95_b1, iflag_thermals, & + nsplit_thermals !---------------------------------------------------------------- @@ -441,29 +414,20 @@ test_firstcal: IF (firstcal) THEN ! initialiser - u10m = 0. - v10m = 0. + u10m_srf = 0. + v10m_srf = 0. t2m = 0. q2m = 0. ffonte = 0. fqcalving = 0. - piz_ae = 0. - tau_ae = 0. - cg_ae = 0. rain_con = 0. snow_con = 0. - topswai = 0. - topswad = 0. - solswai = 0. - solswad = 0. - d_u_con = 0. d_v_con = 0. rnebcon0 = 0. clwcon0 = 0. rnebcon = 0. clwcon = 0. - pblh =0. ! Hauteur de couche limite plcl =0. ! Niveau de condensation de la CLA capCL =0. ! CAPE de couche limite @@ -471,9 +435,6 @@ cteiCL =0. ! cloud top instab. crit. couche limite pblt =0. therm =0. - trmb1 =0. ! deep_cape - trmb2 =0. ! inhibition - trmb3 =0. ! Point Omega iflag_thermals = 0 nsplit_thermals = 1 @@ -515,7 +476,7 @@ ! Initialisation des sorties - call ini_histins(dtphys) + call ini_histins(dtphys, ok_newmicro) CALL ymds2ju(annee_ref, 1, day_ref, 0., date0) ! Positionner date0 pour initialisation de ORCHIDEE print *, 'physiq date0: ', date0 @@ -531,7 +492,7 @@ ql_seri = qx(:, :, iliq) tr_seri = qx(:, :, 3:nqmx) - ztsol = sum(ftsol * pctsrf, dim = 2) + tsol = sum(ftsol * pctsrf, dim = 2) ! Diagnostic de la tendance dynamique : IF (ancien_ok) THEN @@ -586,28 +547,23 @@ CALL orbite(REAL(julien), longi, dist) CALL zenang(longi, time, dtphys * radpas, mu0, fract) - - ! Calcul de l'abedo moyen par maille albsol = sum(falbe * pctsrf, dim = 2) ! R\'epartition sous maille des flux longwave et shortwave ! R\'epartition du longwave par sous-surface lin\'earis\'ee forall (nsrf = 1: nbsrf) - fsollw(:, nsrf) = sollw + 4. * RSIGMA * ztsol**3 & - * (ztsol - ftsol(:, nsrf)) + fsollw(:, nsrf) = sollw + 4. * RSIGMA * tsol**3 & + * (tsol - ftsol(:, nsrf)) fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol) END forall - fder = dlw - CALL clmain(dtphys, pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, & - ftsol, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, & - paprs, play, fsnow, fqsurf, fevap, falbe, fluxlat, rain_fall, & - snow_fall, fsolsw, fsollw, fder, frugs, agesno, rugoro, d_t_vdf, & - d_q_vdf, d_u_vdf, d_v_vdf, d_ts, flux_t, flux_q, flux_u, flux_v, & - cdragh, cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m, & - v10m, pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, & + ftsol, cdmmax, cdhmax, ftsoil, qsol, paprs, play, fsnow, fqsurf, & + fevap, falbe, fluxlat, rain_fall, snow_fall, fsolsw, fsollw, frugs, & + agesno, rugoro, d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, flux_t, & + flux_q, flux_u, flux_v, cdragh, cdragm, q2, dsens, devap, coefh, t2m, & + q2m, u10m_srf, v10m_srf, pblh, capCL, oliqCL, cteiCL, pblT, therm, & plcl, fqcalving, ffonte, run_off_lic_0) ! Incr\'ementation des flux @@ -629,12 +585,12 @@ call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf') ftsol = ftsol + d_ts - ztsol = sum(ftsol * pctsrf, dim = 2) + tsol = sum(ftsol * pctsrf, dim = 2) zxfluxlat = sum(fluxlat * pctsrf, dim = 2) zt2m = sum(t2m * pctsrf, dim = 2) zq2m = sum(q2m * pctsrf, dim = 2) - zu10m = sum(u10m * pctsrf, dim = 2) - zv10m = sum(v10m * pctsrf, dim = 2) + u10m = sum(u10m_srf * pctsrf, dim = 2) + v10m = sum(v10m_srf * pctsrf, dim = 2) zxffonte = sum(ffonte * pctsrf, dim = 2) zxfqcalving = sum(fqcalving * pctsrf, dim = 2) s_pblh = sum(pblh * pctsrf, dim = 2) @@ -644,19 +600,16 @@ s_cteiCL = sum(cteiCL * pctsrf, dim = 2) s_pblT = sum(pblT * pctsrf, dim = 2) s_therm = sum(therm * pctsrf, dim = 2) - s_trmb1 = sum(trmb1 * pctsrf, dim = 2) - s_trmb2 = sum(trmb2 * pctsrf, dim = 2) - s_trmb3 = sum(trmb3 * pctsrf, dim = 2) ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne : DO nsrf = 1, nbsrf DO i = 1, klon IF (pctsrf(i, nsrf) < epsfra) then - ftsol(i, nsrf) = ztsol(i) + ftsol(i, nsrf) = tsol(i) t2m(i, nsrf) = zt2m(i) q2m(i, nsrf) = zq2m(i) - u10m(i, nsrf) = zu10m(i) - v10m(i, nsrf) = zv10m(i) + u10m_srf(i, nsrf) = u10m(i) + v10m_srf(i, nsrf) = v10m(i) ffonte(i, nsrf) = zxffonte(i) fqcalving(i, nsrf) = zxfqcalving(i) pblh(i, nsrf) = s_pblh(i) @@ -666,18 +619,11 @@ cteiCL(i, nsrf) = s_cteiCL(i) pblT(i, nsrf) = s_pblT(i) therm(i, nsrf) = s_therm(i) - trmb1(i, nsrf) = s_trmb1(i) - trmb2(i, nsrf) = s_trmb2(i) - trmb3(i, nsrf) = s_trmb3(i) end IF ENDDO ENDDO - ! Calculer la dérive du flux infrarouge - - DO i = 1, klon - dlw(i) = - 4. * RSIGMA * ztsol(i)**3 - ENDDO + dlw = - 4. * RSIGMA * tsol**3 ! Appeler la convection @@ -708,10 +654,9 @@ conv_t = d_t_dyn + d_t_vdf / dtphys z_avant = sum((q_seri + ql_seri) * zmasse, dim=2) CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:- 1), & - q_seri(:, llm:1:- 1), conv_t, conv_q, - evap, omega, & - d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:- 1), & - mfd(:, llm:1:- 1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, & - kdtop, pmflxr, pmflxs) + q_seri(:, llm:1:- 1), conv_t, conv_q, - evap, omega, d_t_con, & + d_q_con, rain_con, snow_con, mfu(:, llm:1:- 1), mfd(:, llm:1:- 1), & + pen_u, pde_u, pen_d, pde_d, kcbot, kctop, kdtop, pmflxr, pmflxs) WHERE (rain_con < 0.) rain_con = 0. WHERE (snow_con < 0.) snow_con = 0. ibas_con = llm + 1 - kcbot @@ -899,38 +844,24 @@ ENDDO ENDDO - ! Introduce the aerosol direct and first indirect radiative forcings: - tau_ae = 0. - piz_ae = 0. - cg_ae = 0. - ! Param\`etres optiques des nuages et quelques param\`etres pour ! diagnostics : if (ok_newmicro) then CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, & - cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc, ok_aie, & - sulfate, sulfate_pi, bl95_b0, bl95_b1, cldtaupi, re, fl) + cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc) else CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, & - cldl, cldm, cldt, cldq, ok_aie, sulfate, sulfate_pi, bl95_b0, & - bl95_b1, cldtaupi, re, fl) + cldl, cldm, cldt, cldq) endif IF (MOD(itap - 1, radpas) == 0) THEN - ! Prescrire l'ozone : wo = ozonecm(REAL(julien), paprs) - - ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol. - ! Calcul de l'abedo moyen par maille albsol = sum(falbe * pctsrf, dim = 2) - - ! Rayonnement (compatible Arpege-IFS) : - CALL radlwsw(dist, mu0, fract, paprs, play, ztsol, albsol, t_seri, & + CALL radlwsw(dist, mu0, fract, paprs, play, tsol, albsol, t_seri, & q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, & radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, & toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, & - swup0, swup, ok_ade, ok_aie, tau_ae, piz_ae, cg_ae, topswad, & - solswad, cldtaupi, topswai, solswai) + swup0, swup, ok_ade, topswad, solswad) ENDIF ! Ajouter la tendance des rayonnements (tous les pas) @@ -941,10 +872,6 @@ ENDDO ENDDO - ! Calculer l'hydrologie de la surface - zxqsurf = sum(fqsurf * pctsrf, dim = 2) - zxsnow = sum(fsnow * pctsrf, dim = 2) - ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage) DO i = 1, klon bils(i) = radsol(i) - sens(i) + zxfluxlat(i) @@ -954,18 +881,16 @@ IF (ok_orodr) THEN ! S\'election des points pour lesquels le sch\'ema est actif : - igwd = 0 DO i = 1, klon - itest(i) = 0 + ktest(i) = 0 IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN - itest(i) = 1 - igwd = igwd + 1 + ktest(i) = 1 ENDIF ENDDO - CALL drag_noro(klon, llm, dtphys, paprs, play, zmea, zstd, zsig, zgam, & - zthe, zpic, zval, itest, t_seri, u_seri, v_seri, zulow, zvlow, & - zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro) + CALL drag_noro(dtphys, paprs, play, zmea, zstd, zsig, zgam, zthe, & + zpic, zval, ktest, t_seri, u_seri, v_seri, zulow, zvlow, zustrdr, & + zvstrdr, d_t_oro, d_u_oro, d_v_oro) ! ajout des tendances DO k = 1, llm @@ -979,18 +904,16 @@ IF (ok_orolf) THEN ! S\'election des points pour lesquels le sch\'ema est actif : - igwd = 0 DO i = 1, klon - itest(i) = 0 + ktest(i) = 0 IF (zpic(i) - zmea(i) > 100.) THEN - itest(i) = 1 - igwd = igwd + 1 + ktest(i) = 1 ENDIF ENDDO - CALL lift_noro(klon, llm, dtphys, paprs, play, rlat, zmea, zstd, zpic, & - itest, t_seri, u_seri, v_seri, zulow, zvlow, zustrli, zvstrli, & - d_t_lif, d_u_lif, d_v_lif) + CALL lift_noro(dtphys, paprs, play, zmea, zstd, zpic, ktest, t_seri, & + u_seri, v_seri, zulow, zvlow, zustrli, zvstrli, d_t_lif, & + d_u_lif, d_v_lif) ! Ajout des tendances : DO k = 1, llm @@ -1002,33 +925,16 @@ ENDDO ENDIF - ! Stress n\'ecessaires : toute la physique - - DO i = 1, klon - zustrph(i) = 0. - zvstrph(i) = 0. - ENDDO - DO k = 1, llm - DO i = 1, klon - zustrph(i) = zustrph(i) + (u_seri(i, k) - u(i, k)) / dtphys & - * zmasse(i, k) - zvstrph(i) = zvstrph(i) + (v_seri(i, k) - v(i, k)) / dtphys & - * zmasse(i, k) - ENDDO - ENDDO - - CALL aaam_bud(rg, romega, rlat, rlon, pphis, zustrdr, zustrli, zustrph, & - zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc) + CALL aaam_bud(rg, romega, pphis, zustrdr, zustrli, & + sum((u_seri - u) / dtphys * zmasse, dim = 2), zvstrdr, & + zvstrli, sum((v_seri - v) / dtphys * zmasse, dim = 2), paprs, u, v, & + aam, torsfc) ! Calcul des tendances traceurs call phytrac(julien, time, firstcal, lafin, dtphys, t, paprs, play, mfu, & - mfd, pde_u, pen_d, ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, & - pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, dnwd, tr_seri, & - zmasse, ncid_startphy) - - IF (offline) call phystokenc(dtphys, t, mfu, mfd, pen_u, pde_u, pen_d, & - pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, pctsrf, & - frac_impa, frac_nucl, pphis, airephy, dtphys) + mfd, pde_u, pen_d, coefh, cdragh, fm_therm, entr_therm, u(:, 1), & + v(:, 1), ftsol, pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, & + dnwd, tr_seri, zmasse, ncid_startphy) ! Calculer le transport de l'eau et de l'energie (diagnostique) CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq) @@ -1094,11 +1000,11 @@ CALL histwrite_phy("precip", rain_fall + snow_fall) CALL histwrite_phy("plul", rain_lsc + snow_lsc) CALL histwrite_phy("pluc", rain_con + snow_con) - CALL histwrite_phy("tsol", ztsol) + CALL histwrite_phy("tsol", tsol) CALL histwrite_phy("t2m", zt2m) CALL histwrite_phy("q2m", zq2m) - CALL histwrite_phy("u10m", zu10m) - CALL histwrite_phy("v10m", zv10m) + CALL histwrite_phy("u10m", u10m) + CALL histwrite_phy("v10m", v10m) CALL histwrite_phy("snow", snow_fall) CALL histwrite_phy("cdrm", cdragm) CALL histwrite_phy("cdrh", cdragh) @@ -1125,6 +1031,8 @@ CALL histwrite_phy("tauy_"//clnsurf(nsrf), flux_v(:, nsrf)) CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf)) CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf)) + CALL histwrite_phy("u10m_"//clnsurf(nsrf), u10m_srf(:, nsrf)) + CALL histwrite_phy("v10m_"//clnsurf(nsrf), v10m_srf(:, nsrf)) END DO CALL histwrite_phy("albs", albsol) @@ -1137,9 +1045,6 @@ CALL histwrite_phy("s_oliqCL", s_oliqCL) CALL histwrite_phy("s_cteiCL", s_cteiCL) CALL histwrite_phy("s_therm", s_therm) - CALL histwrite_phy("s_trmb1", s_trmb1) - CALL histwrite_phy("s_trmb2", s_trmb2) - CALL histwrite_phy("s_trmb3", s_trmb3) if (conv_emanuel) then CALL histwrite_phy("ptop", ema_pct) @@ -1157,6 +1062,8 @@ CALL histwrite_phy("d_t_ec", d_t_ec) CALL histwrite_phy("dtsw0", heat0 / 86400.) CALL histwrite_phy("dtlw0", - cool0 / 86400.) + CALL histwrite_phy("msnow", sum(fsnow * pctsrf, dim = 2)) + call histwrite_phy("qsurf", sum(fqsurf * pctsrf, dim = 2)) if (ok_instan) call histsync(nid_ins)