/[lmdze]/trunk/phylmd/physiq.f
ViewVC logotype

Diff of /trunk/phylmd/physiq.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/physiq.f90 revision 6 by guez, Tue Mar 4 14:00:42 2008 UTC trunk/phylmd/physiq.f revision 311 by guez, Mon Dec 3 17:52:21 2018 UTC
# Line 1  Line 1 
1  module physiq_m  module physiq_m
2    
   ! This module is clean: no C preprocessor directive, no include line.  
   
3    IMPLICIT none    IMPLICIT none
4    
   private  
   public physiq  
   
5  contains  contains
6    
7    SUBROUTINE physiq (nq, debut, lafin, rjourvrai, gmtime, pdtphys, paprs, &    SUBROUTINE physiq(lafin, dayvrai, time, paprs, play, pphi, pphis, u, v, t, &
8         pplay, pphi, pphis, presnivs, clesphy0, u, v, t, qx, omega, d_u, d_v, &         qx, omega, d_u, d_v, d_t, d_qx)
        d_t, d_qx, d_ps, dudyn, PVteta)  
   
     ! From phylmd/physiq.F, v 1.22 2006/02/20 09:38:28  
   
     ! Author : Z.X. Li (LMD/CNRS), date: 1993/08/18  
   
     ! Objet: Moniteur general de la physique du modele  
     !AA      Modifications quant aux traceurs :  
     !AA                  -  uniformisation des parametrisations ds phytrac  
     !AA                  -  stockage des moyennes des champs necessaires  
     !AA                     en mode traceur off-line  
   
     USE ioipsl, only: ymds2ju, histwrite, histsync  
     use dimens_m, only: jjm, iim, llm  
     use indicesol, only: nbsrf, is_ter, is_lic, is_sic, is_oce, &  
          clnsurf, epsfra  
     use dimphy, only: klon, nbtr  
     use conf_gcm_m, only: raz_date, offline, iphysiq  
     use dimsoil, only: nsoilmx  
     use temps, only: itau_phy, day_ref, annee_ref, itaufin  
     use clesphys, only: ecrit_hf, ecrit_hf2mth, &  
          ecrit_ins, iflag_con, ok_orolf, ok_orodr, ecrit_mth, ecrit_day, &  
          nbapp_rad, cycle_diurne, cdmmax, cdhmax, &  
          co2_ppm, ecrit_reg, ecrit_tra, ksta, ksta_ter, new_oliq, &  
          ok_kzmin, soil_model  
     use iniprint, only: lunout, prt_level  
     use abort_gcm_m, only: abort_gcm  
     use YOMCST, only: rcpd, rtt, rlvtt, rg, ra, rsigma, retv, romega  
     use comgeomphy  
     use ctherm  
     use phytrac_m, only: phytrac  
     use oasis_m  
     use radepsi  
     use radopt  
     use yoethf  
     use ini_hist, only: ini_histhf, ini_histday, ini_histins  
     use orbite_m, only: orbite, zenang  
     use phyetat0_m, only: phyetat0, rlat, rlon  
     use hgardfou_m, only: hgardfou  
     use conf_phys_m, only: conf_phys  
   
     ! Declaration des constantes et des fonctions thermodynamiques :  
     use fcttre, only: thermcep, foeew, qsats, qsatl  
   
     ! Variables argument:  
   
     INTEGER nq ! input nombre de traceurs (y compris vapeur d'eau)  
     REAL rjourvrai ! input numero du jour de l'experience  
     REAL, intent(in):: gmtime ! heure de la journée en fraction de jour  
     REAL pdtphys ! input pas d'integration pour la physique (seconde)  
     LOGICAL, intent(in):: debut ! premier passage  
     logical, intent(in):: lafin ! dernier passage  
   
     REAL, intent(in):: paprs(klon, llm+1)  
     ! (pression pour chaque inter-couche, en Pa)  
       
     REAL pplay(klon, llm)  
     ! (input pression pour le mileu de chaque couche (en Pa))  
   
     REAL pphi(klon, llm)    
     ! (input geopotentiel de chaque couche (g z) (reference sol))  
   
     REAL pphis(klon) ! input geopotentiel du sol  
   
     REAL presnivs(llm)  
     ! (input pressions approximat. des milieux couches ( en PA))  
   
     REAL u(klon, llm)  ! input vitesse dans la direction X (de O a E) en m/s  
     REAL v(klon, llm)  ! input vitesse Y (de S a N) en m/s  
     REAL t(klon, llm)  ! input temperature (K)  
   
     REAL qx(klon, llm, nq)  
     ! (input humidite specifique (kg/kg) et d'autres traceurs)  
   
     REAL omega(klon, llm)  ! input vitesse verticale en Pa/s  
     REAL d_u(klon, llm)  ! output tendance physique de "u" (m/s/s)  
     REAL d_v(klon, llm)  ! output tendance physique de "v" (m/s/s)  
     REAL d_t(klon, llm)  ! output tendance physique de "t" (K/s)  
     REAL d_qx(klon, llm, nq)  ! output tendance physique de "qx" (kg/kg/s)  
     REAL d_ps(klon)  ! output tendance physique de la pression au sol  
   
     INTEGER nbteta  
     PARAMETER(nbteta=3)  
   
     REAL PVteta(klon, nbteta)  
     ! (output vorticite potentielle a des thetas constantes)  
   
     LOGICAL ok_cvl  ! pour activer le nouveau driver pour convection KE  
     PARAMETER (ok_cvl=.TRUE.)  
     LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface  
     PARAMETER (ok_gust=.FALSE.)  
   
     LOGICAL check ! Verifier la conservation du modele en eau  
     PARAMETER (check=.FALSE.)  
     LOGICAL ok_stratus ! Ajouter artificiellement les stratus  
     PARAMETER (ok_stratus=.FALSE.)  
   
     ! Parametres lies au coupleur OASIS:  
     INTEGER, SAVE :: npas, nexca  
     logical rnpb  
     parameter(rnpb=.true.)  
     !      ocean = type de modele ocean a utiliser: force, slab, couple  
     character(len=6) ocean  
     SAVE ocean  
   
     logical ok_ocean  
     SAVE ok_ocean  
   
     !IM "slab" ocean  
     REAL tslab(klon)    !Temperature du slab-ocean  
     SAVE tslab  
     REAL seaice(klon)   !glace de mer (kg/m2)  
     SAVE seaice  
     REAL fluxo(klon)    !flux turbulents ocean-glace de mer  
     REAL fluxg(klon)    !flux turbulents ocean-atmosphere  
   
     ! Modele thermique du sol, a activer pour le cycle diurne:  
     logical ok_veget  
     save ok_veget  
     LOGICAL ok_journe ! sortir le fichier journalier  
     save ok_journe  
   
     LOGICAL ok_mensuel ! sortir le fichier mensuel  
   
     LOGICAL ok_instan ! sortir le fichier instantane  
     save ok_instan  
9    
10      LOGICAL ok_region ! sortir le fichier regional      ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28
11      PARAMETER (ok_region=.FALSE.)      ! (subversion revision 678)
12    
13      !     pour phsystoke avec thermiques      ! Author: Z. X. Li (LMD/CNRS) 1993
     REAL fm_therm(klon, llm+1)  
     REAL entr_therm(klon, llm)  
     real q2(klon, llm+1, nbsrf)  
     save q2  
14    
15      INTEGER ivap          ! indice de traceurs pour vapeur d'eau      ! This is the main procedure for the "physics" part of the program.
16      PARAMETER (ivap=1)  
17      INTEGER iliq          ! indice de traceurs pour eau liquide      use aaam_bud_m, only: aaam_bud
18      PARAMETER (iliq=2)      USE abort_gcm_m, ONLY: abort_gcm
19        use ajsec_m, only: ajsec
20      REAL t_ancien(klon, llm), q_ancien(klon, llm)      use calltherm_m, only: calltherm
21      SAVE t_ancien, q_ancien      USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ok_instan
22      LOGICAL ancien_ok      USE clesphys2, ONLY: conv_emanuel, nbapp_rad, new_oliq, ok_orodr, ok_orolf
23      SAVE ancien_ok      USE conf_interface_m, ONLY: conf_interface
24        USE pbl_surface_m, ONLY: pbl_surface
25        use clouds_gno_m, only: clouds_gno
26        use comconst, only: dtphys
27        USE comgeomphy, ONLY: airephy
28        USE concvl_m, ONLY: concvl
29        USE conf_gcm_m, ONLY: lmt_pas
30        USE conf_phys_m, ONLY: conf_phys
31        use conflx_m, only: conflx
32        USE ctherm, ONLY: iflag_thermals, nsplit_thermals
33        use diagcld2_m, only: diagcld2
34        USE dimensions, ONLY: llm, nqmx
35        USE dimphy, ONLY: klon
36        USE dimsoil, ONLY: nsoilmx
37        use drag_noro_m, only: drag_noro
38        use dynetat0_m, only: day_ref, annee_ref
39        USE fcttre, ONLY: foeew
40        use fisrtilp_m, only: fisrtilp
41        USE hgardfou_m, ONLY: hgardfou
42        USE histsync_m, ONLY: histsync
43        USE histwrite_phy_m, ONLY: histwrite_phy
44        USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &
45             nbsrf
46        USE ini_histins_m, ONLY: ini_histins, nid_ins
47        use lift_noro_m, only: lift_noro
48        use netcdf95, only: NF95_CLOSE
49        use newmicro_m, only: newmicro
50        use nr_util, only: assert
51        use nuage_m, only: nuage
52        USE orbite_m, ONLY: orbite
53        USE ozonecm_m, ONLY: ozonecm
54        USE phyetat0_m, ONLY: phyetat0
55        USE phyredem_m, ONLY: phyredem
56        USE phyredem0_m, ONLY: phyredem0
57        USE phytrac_m, ONLY: phytrac
58        use radlwsw_m, only: radlwsw
59        use yoegwd, only: sugwd
60        USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt, rmo3, md
61        use time_phylmdz, only: itap, increment_itap
62        use transp_m, only: transp
63        use transp_lay_m, only: transp_lay
64        use unit_nml_m, only: unit_nml
65        USE ymds2ju_m, ONLY: ymds2ju
66        USE yoethf_m, ONLY: r2es, rvtmp2
67        use zenang_m, only: zenang
68    
69      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K/s)      logical, intent(in):: lafin ! dernier passage
     REAL d_q_dyn(klon, llm)  ! tendance dynamique pour "q" (kg/kg/s)  
70    
71      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)      integer, intent(in):: dayvrai
72        ! current day number, based at value 1 on January 1st of annee_ref
73    
74      !IM Amip2 PV a theta constante      REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour
75    
76      CHARACTER(LEN=3) ctetaSTD(nbteta)      REAL, intent(in):: paprs(:, :) ! (klon, llm + 1)
77      DATA ctetaSTD/'350', '380', '405'/      ! pression pour chaque inter-couche, en Pa
     REAL rtetaSTD(nbteta)  
     DATA rtetaSTD/350., 380., 405./  
   
     !MI Amip2 PV a theta constante  
   
     INTEGER klevp1  
     PARAMETER(klevp1=llm+1)  
   
     REAL swdn0(klon, klevp1), swdn(klon, klevp1)  
     REAL swup0(klon, klevp1), swup(klon, klevp1)  
     SAVE swdn0, swdn, swup0, swup  
   
     REAL SWdn200clr(klon), SWdn200(klon)  
     REAL SWup200clr(klon), SWup200(klon)  
     SAVE SWdn200clr, SWdn200, SWup200clr, SWup200  
   
     REAL lwdn0(klon, klevp1), lwdn(klon, klevp1)  
     REAL lwup0(klon, klevp1), lwup(klon, klevp1)  
     SAVE lwdn0, lwdn, lwup0, lwup  
   
     REAL LWdn200clr(klon), LWdn200(klon)  
     REAL LWup200clr(klon), LWup200(klon)  
     SAVE LWdn200clr, LWdn200, LWup200clr, LWup200  
   
     !IM Amip2  
     ! variables a une pression donnee  
   
     integer nlevSTD  
     PARAMETER(nlevSTD=17)  
     real rlevSTD(nlevSTD)  
     DATA rlevSTD/100000., 92500., 85000., 70000., &  
          60000., 50000., 40000., 30000., 25000., 20000., &  
          15000., 10000., 7000., 5000., 3000., 2000., 1000./  
     CHARACTER(LEN=4) clevSTD(nlevSTD)  
     DATA clevSTD/'1000', '925 ', '850 ', '700 ', '600 ', &  
          '500 ', '400 ', '300 ', '250 ', '200 ', '150 ', '100 ', &  
          '70  ', '50  ', '30  ', '20  ', '10  '/  
   
     real tlevSTD(klon, nlevSTD), qlevSTD(klon, nlevSTD)  
     real rhlevSTD(klon, nlevSTD), philevSTD(klon, nlevSTD)  
     real ulevSTD(klon, nlevSTD), vlevSTD(klon, nlevSTD)  
     real wlevSTD(klon, nlevSTD)  
   
     ! nout : niveau de output des variables a une pression donnee  
     INTEGER nout  
     PARAMETER(nout=3) !nout=1 : day; =2 : mth; =3 : NMC  
   
     REAL tsumSTD(klon, nlevSTD, nout)  
     REAL usumSTD(klon, nlevSTD, nout), vsumSTD(klon, nlevSTD, nout)  
     REAL wsumSTD(klon, nlevSTD, nout), phisumSTD(klon, nlevSTD, nout)  
     REAL qsumSTD(klon, nlevSTD, nout), rhsumSTD(klon, nlevSTD, nout)  
   
     SAVE tsumSTD, usumSTD, vsumSTD, wsumSTD, phisumSTD,  &  
          qsumSTD, rhsumSTD  
   
     logical oknondef(klon, nlevSTD, nout)  
     real tnondef(klon, nlevSTD, nout)  
     save tnondef  
   
     ! les produits uvSTD, vqSTD, .., T2STD sont calcules  
     ! a partir des valeurs instantannees toutes les 6 h  
     ! qui sont moyennees sur le mois  
   
     real uvSTD(klon, nlevSTD)  
     real vqSTD(klon, nlevSTD)  
     real vTSTD(klon, nlevSTD)  
     real wqSTD(klon, nlevSTD)  
   
     real uvsumSTD(klon, nlevSTD, nout)  
     real vqsumSTD(klon, nlevSTD, nout)  
     real vTsumSTD(klon, nlevSTD, nout)  
     real wqsumSTD(klon, nlevSTD, nout)  
   
     real vphiSTD(klon, nlevSTD)  
     real wTSTD(klon, nlevSTD)  
     real u2STD(klon, nlevSTD)  
     real v2STD(klon, nlevSTD)  
     real T2STD(klon, nlevSTD)  
   
     real vphisumSTD(klon, nlevSTD, nout)  
     real wTsumSTD(klon, nlevSTD, nout)  
     real u2sumSTD(klon, nlevSTD, nout)  
     real v2sumSTD(klon, nlevSTD, nout)  
     real T2sumSTD(klon, nlevSTD, nout)  
   
     SAVE uvsumSTD, vqsumSTD, vTsumSTD, wqsumSTD  
     SAVE vphisumSTD, wTsumSTD, u2sumSTD, v2sumSTD, T2sumSTD  
     !MI Amip2  
78    
79      ! prw: precipitable water      REAL, intent(in):: play(:, :) ! (klon, llm)
80      real prw(klon)      ! pression pour le mileu de chaque couche (en Pa)
81    
82      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg/m2)      REAL, intent(in):: pphi(:, :) ! (klon, llm)
83      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg/kg)      ! géopotentiel de chaque couche (référence sol)
     REAL flwp(klon), fiwp(klon)  
     REAL flwc(klon, llm), fiwc(klon, llm)  
84    
85      INTEGER l, kmax, lmax      REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol
     PARAMETER(kmax=8, lmax=8)  
     INTEGER kmaxm1, lmaxm1  
     PARAMETER(kmaxm1=kmax-1, lmaxm1=lmax-1)  
   
     REAL zx_tau(kmaxm1), zx_pc(lmaxm1)  
     DATA zx_tau/0.0, 0.3, 1.3, 3.6, 9.4, 23., 60./  
     DATA zx_pc/50., 180., 310., 440., 560., 680., 800./  
   
     ! cldtopres pression au sommet des nuages  
     REAL cldtopres(lmaxm1)  
     DATA cldtopres/50., 180., 310., 440., 560., 680., 800./  
   
     ! taulev: numero du niveau de tau dans les sorties ISCCP  
     CHARACTER(LEN=4) taulev(kmaxm1)  
   
     DATA taulev/'tau0', 'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'/  
     CHARACTER(LEN=3) pclev(lmaxm1)  
     DATA pclev/'pc1', 'pc2', 'pc3', 'pc4', 'pc5', 'pc6', 'pc7'/  
   
     CHARACTER(LEN=28) cnameisccp(lmaxm1, kmaxm1)  
     DATA cnameisccp/'pc< 50hPa, tau< 0.3', 'pc= 50-180hPa, tau< 0.3', &  
          'pc= 180-310hPa, tau< 0.3', 'pc= 310-440hPa, tau< 0.3', &  
          'pc= 440-560hPa, tau< 0.3', 'pc= 560-680hPa, tau< 0.3', &  
          'pc= 680-800hPa, tau< 0.3', 'pc< 50hPa, tau= 0.3-1.3', &  
          'pc= 50-180hPa, tau= 0.3-1.3', 'pc= 180-310hPa, tau= 0.3-1.3', &  
          'pc= 310-440hPa, tau= 0.3-1.3', 'pc= 440-560hPa, tau= 0.3-1.3', &  
          'pc= 560-680hPa, tau= 0.3-1.3', 'pc= 680-800hPa, tau= 0.3-1.3', &  
          'pc< 50hPa, tau= 1.3-3.6', 'pc= 50-180hPa, tau= 1.3-3.6', &  
          'pc= 180-310hPa, tau= 1.3-3.6', 'pc= 310-440hPa, tau= 1.3-3.6', &  
          'pc= 440-560hPa, tau= 1.3-3.6', 'pc= 560-680hPa, tau= 1.3-3.6', &  
          'pc= 680-800hPa, tau= 1.3-3.6', 'pc< 50hPa, tau= 3.6-9.4', &  
          'pc= 50-180hPa, tau= 3.6-9.4', 'pc= 180-310hPa, tau= 3.6-9.4', &  
          'pc= 310-440hPa, tau= 3.6-9.4', 'pc= 440-560hPa, tau= 3.6-9.4', &  
          'pc= 560-680hPa, tau= 3.6-9.4', 'pc= 680-800hPa, tau= 3.6-9.4', &  
          'pc< 50hPa, tau= 9.4-23', 'pc= 50-180hPa, tau= 9.4-23', &  
          'pc= 180-310hPa, tau= 9.4-23', 'pc= 310-440hPa, tau= 9.4-23', &  
          'pc= 440-560hPa, tau= 9.4-23', 'pc= 560-680hPa, tau= 9.4-23', &  
          'pc= 680-800hPa, tau= 9.4-23', 'pc< 50hPa, tau= 23-60', &  
          'pc= 50-180hPa, tau= 23-60', 'pc= 180-310hPa, tau= 23-60', &  
          'pc= 310-440hPa, tau= 23-60', 'pc= 440-560hPa, tau= 23-60', &  
          'pc= 560-680hPa, tau= 23-60', 'pc= 680-800hPa, tau= 23-60', &  
          'pc< 50hPa, tau> 60.', 'pc= 50-180hPa, tau> 60.', &  
          'pc= 180-310hPa, tau> 60.', 'pc= 310-440hPa, tau> 60.', &  
          'pc= 440-560hPa, tau> 60.', 'pc= 560-680hPa, tau> 60.', &  
          'pc= 680-800hPa, tau> 60.'/  
   
     !IM ISCCP simulator v3.4  
   
     integer nid_hf, nid_hf3d  
     save nid_hf, nid_hf3d  
   
     INTEGER        longcles  
     PARAMETER    ( longcles = 20 )  
     REAL clesphy0( longcles      )  
86    
87      ! Variables quasi-arguments      REAL, intent(in):: u(:, :) ! (klon, llm)
88        ! vitesse dans la direction X (de O a E) en m / s
89    
90      REAL xjour      REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m / s
91      SAVE xjour      REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)
   
     ! Variables propres a la physique  
92    
93      REAL, SAVE:: dtime ! pas temporel de la physique (s)      REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)
94        ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)
95    
96      INTEGER, save:: radpas      REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa / s
97      ! (Radiative transfer computations are made every "radpas" call to      REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)
98      ! "physiq".)      REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)
99        REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K / s)
100    
101      REAL radsol(klon)      REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)
102      SAVE radsol               ! bilan radiatif au sol calcule par code radiatif      ! tendance physique de "qx" (s-1)
103    
104      INTEGER, SAVE:: itap ! compteur pour la physique      ! Local:
     REAL co2_ppm_etat0  
     REAL solaire_etat0  
105    
106      REAL ftsol(klon, nbsrf)      LOGICAL:: firstcal = .true.
     SAVE ftsol                  ! temperature du sol  
107    
108      REAL ftsoil(klon, nsoilmx, nbsrf)      LOGICAL, PARAMETER:: ok_stratus = .FALSE.
109      SAVE ftsoil                 ! temperature dans le sol      ! Ajouter artificiellement les stratus
110    
111      REAL fevap(klon, nbsrf)      ! pour phystoke avec thermiques
112      SAVE fevap                 ! evaporation      REAL fm_therm(klon, llm + 1)
113      REAL fluxlat(klon, nbsrf)      REAL entr_therm(klon, llm)
114      SAVE fluxlat      real, save:: q2(klon, llm + 1, nbsrf)
115    
116      REAL fqsurf(klon, nbsrf)      INTEGER, PARAMETER:: ivap = 1 ! indice de traceur pour vapeur d'eau
117      SAVE fqsurf                 ! humidite de l'air au contact de la surface      INTEGER, PARAMETER:: iliq = 2 ! indice de traceur pour eau liquide
118    
119      REAL qsol(klon)      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)
120      SAVE qsol                  ! hauteur d'eau dans le sol      LOGICAL, save:: ancien_ok
121    
122      REAL fsnow(klon, nbsrf)      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K / s)
123      SAVE fsnow                  ! epaisseur neigeuse      REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg / kg / s)
124    
125      REAL falbe(klon, nbsrf)      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)
     SAVE falbe                  ! albedo par type de surface  
     REAL falblw(klon, nbsrf)  
     SAVE falblw                 ! albedo par type de surface  
126    
127      !  Parametres de l'Orographie a l'Echelle Sous-Maille (OESM):      REAL, save:: swdn0(klon, llm + 1), swdn(klon, llm + 1)
128        REAL, save:: swup0(klon, llm + 1), swup(klon, llm + 1)
129    
130      REAL zmea(klon)      REAL, save:: lwdn0(klon, llm + 1), lwdn(klon, llm + 1)
131      SAVE zmea                   ! orographie moyenne      REAL, save:: lwup0(klon, llm + 1), lwup(klon, llm + 1)
132    
133      REAL zstd(klon)      ! prw: precipitable water
134      SAVE zstd                   ! deviation standard de l'OESM      real prw(klon)
135    
136      REAL zsig(klon)      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg / m2)
137      SAVE zsig                   ! pente de l'OESM      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg / kg)
138        REAL flwp(klon), fiwp(klon)
139        REAL flwc(klon, llm), fiwc(klon, llm)
140    
141      REAL zgam(klon)      ! Variables propres a la physique
     save zgam                   ! anisotropie de l'OESM  
142    
143      REAL zthe(klon)      INTEGER, save:: radpas
144      SAVE zthe                   ! orientation de l'OESM      ! Radiative transfer computations are made every "radpas" call to
145        ! "physiq".
146    
147      REAL zpic(klon)      REAL, save:: radsol(klon)
148      SAVE zpic                   ! Maximum de l'OESM      ! bilan radiatif net au sol (W/m2), positif vers le bas
149        
150        REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction, in K
151    
152      REAL zval(klon)      REAL, save:: ftsoil(klon, nsoilmx, nbsrf)
153      SAVE zval                   ! Minimum de l'OESM      ! soil temperature of surface fraction
154    
155      REAL rugoro(klon)      REAL fluxlat(klon, nbsrf) ! flux de chaleur latente, en W m-2
     SAVE rugoro                 ! longueur de rugosite de l'OESM  
156    
157        REAL, save:: fqsurf(klon, nbsrf)
158        ! humidite de l'air au contact de la surface
159    
160        REAL, save:: qsol(klon) ! column-density of water in soil, in kg m-2
161        REAL, save:: fsnow(klon, nbsrf) ! \'epaisseur neigeuse
162        REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface
163    
164        ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :
165        REAL, save:: zmea(klon) ! orographie moyenne
166        REAL, save:: zstd(klon) ! deviation standard de l'OESM
167        REAL, save:: zsig(klon) ! pente de l'OESM
168        REAL, save:: zgam(klon) ! anisotropie de l'OESM
169        REAL, save:: zthe(klon) ! orientation de l'OESM
170        REAL, save:: zpic(klon) ! Maximum de l'OESM
171        REAL, save:: zval(klon) ! Minimum de l'OESM
172        REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM
173      REAL zulow(klon), zvlow(klon)      REAL zulow(klon), zvlow(klon)
174        INTEGER ktest(klon)
175    
176      INTEGER igwd, idx(klon), itest(klon)      REAL, save:: agesno(klon, nbsrf) ! age de la neige
177        REAL, save:: run_off_lic_0(klon)
178    
179      REAL agesno(klon, nbsrf)      ! Variables li\'ees \`a la convection d'Emanuel :
180      SAVE agesno                 ! age de la neige      REAL, save:: Ma(klon, llm) ! undilute upward mass flux
181        REAL, save:: sig1(klon, llm), w01(klon, llm)
182    
183      REAL run_off_lic_0(klon)      ! Variables pour la couche limite (Alain Lahellec) :
184      SAVE run_off_lic_0      REAL cdragh(klon) ! drag coefficient pour T and Q
185      !KE43      REAL cdragm(klon) ! drag coefficient pour vent
     ! Variables liees a la convection de K. Emanuel (sb):  
186    
187      REAL bas, top             ! cloud base and top levels      REAL coefh(klon, 2:llm) ! coef d'echange pour phytrac
     SAVE bas  
     SAVE top  
188    
189      REAL Ma(klon, llm)        ! undilute upward mass flux      REAL, save:: ffonte(klon, nbsrf)
190      SAVE Ma      ! flux thermique utilise pour fondre la neige
     REAL qcondc(klon, llm)    ! in-cld water content from convect  
     SAVE qcondc  
     REAL ema_work1(klon, llm), ema_work2(klon, llm)  
     SAVE ema_work1, ema_work2  
191    
192      REAL wd(klon) ! sb      REAL fqcalving(klon, nbsrf)
193      SAVE wd       ! sb      ! flux d'eau "perdue" par la surface et n\'ecessaire pour limiter
194        ! la hauteur de neige, en kg / m2 / s
195    
196      ! Variables locales pour la couche limite (al1):      REAL zxffonte(klon)
197    
198      ! Variables locales:      REAL, save:: pfrac_impa(klon, llm)! Produits des coefs lessivage impaction
199        REAL, save:: pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation
200    
201      REAL cdragh(klon) ! drag coefficient pour T and Q      REAL, save:: pfrac_1nucl(klon, llm)
202      REAL cdragm(klon) ! drag coefficient pour vent      ! Produits des coefs lessi nucl (alpha = 1)
203    
204      !AA  Pour phytrac      REAL frac_impa(klon, llm) ! fraction d'a\'erosols lessiv\'es (impaction)
     REAL ycoefh(klon, llm)    ! coef d'echange pour phytrac  
     REAL yu1(klon)            ! vents dans la premiere couche U  
     REAL yv1(klon)            ! vents dans la premiere couche V  
     REAL ffonte(klon, nbsrf)    !Flux thermique utilise pour fondre la neige  
     REAL fqcalving(klon, nbsrf) !Flux d'eau "perdue" par la surface  
     !                               !et necessaire pour limiter la  
     !                               !hauteur de neige, en kg/m2/s  
     REAL zxffonte(klon), zxfqcalving(klon)  
   
     REAL pfrac_impa(klon, llm)! Produits des coefs lessivage impaction  
     save pfrac_impa  
     REAL pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation  
     save pfrac_nucl  
     REAL pfrac_1nucl(klon, llm)! Produits des coefs lessi nucl (alpha = 1)  
     save pfrac_1nucl  
     REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction)  
205      REAL frac_nucl(klon, llm) ! idem (nucleation)      REAL frac_nucl(klon, llm) ! idem (nucleation)
206    
207      !AA      REAL, save:: rain_fall(klon)
208      REAL rain_fall(klon) ! pluie      ! liquid water mass flux (kg / m2 / s), positive down
209      REAL snow_fall(klon) ! neige  
210      save snow_fall, rain_fall      REAL, save:: snow_fall(klon)
211      !IM cf FH pour Tiedtke 080604      ! solid water mass flux (kg / m2 / s), positive down
     REAL rain_tiedtke(klon), snow_tiedtke(klon)  
212    
213      REAL total_rain(klon), nday_rain(klon)      REAL rain_tiedtke(klon), snow_tiedtke(klon)
     save nday_rain  
214    
215      REAL evap(klon), devap(klon) ! evaporation et sa derivee      REAL evap(klon) ! flux d'\'evaporation au sol
216      REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee      real dflux_q(klon) ! derivative of the evaporation flux at the surface
217      REAL dlw(klon)    ! derivee infra rouge      REAL sens(klon) ! flux de chaleur sensible au sol
218      SAVE dlw      real dflux_t(klon) ! derivee du flux de chaleur sensible au sol
219        REAL, save:: dlw(klon) ! derivative of infra-red flux
220      REAL bils(klon) ! bilan de chaleur au sol      REAL bils(klon) ! bilan de chaleur au sol
221      REAL fder(klon) ! Derive de flux (sensible et latente)      REAL fder(klon) ! Derive de flux (sensible et latente)
     save fder  
222      REAL ve(klon) ! integr. verticale du transport meri. de l'energie      REAL ve(klon) ! integr. verticale du transport meri. de l'energie
223      REAL vq(klon) ! integr. verticale du transport meri. de l'eau      REAL vq(klon) ! integr. verticale du transport meri. de l'eau
224      REAL ue(klon) ! integr. verticale du transport zonal de l'energie      REAL ue(klon) ! integr. verticale du transport zonal de l'energie
225      REAL uq(klon) ! integr. verticale du transport zonal de l'eau      REAL uq(klon) ! integr. verticale du transport zonal de l'eau
226    
227      REAL frugs(klon, nbsrf) ! longueur de rugosite      REAL, save:: frugs(klon, nbsrf) ! longueur de rugosite
     save frugs  
228      REAL zxrugs(klon) ! longueur de rugosite      REAL zxrugs(klon) ! longueur de rugosite
229    
230      ! Conditions aux limites      ! Conditions aux limites
231    
232      INTEGER julien      INTEGER julien
233        REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface
234      INTEGER, SAVE:: lmt_pas ! fréquence de mise à jour      REAL, save:: albsol(klon) ! albedo du sol total, visible, moyen par maille
235      REAL pctsrf(klon, nbsrf)      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU
236      !IM      real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2
237      REAL pctsrf_new(klon, nbsrf) !pourcentage surfaces issus d'ORCHIDEE  
238        real, save:: clwcon(klon, llm), rnebcon(klon, llm)
239      SAVE pctsrf                 ! sous-fraction du sol      real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)
240      REAL albsol(klon)  
241      SAVE albsol                 ! albedo du sol total      REAL rhcl(klon, llm) ! humidit\'e relative ciel clair
242      REAL albsollw(klon)      REAL dialiq(klon, llm) ! eau liquide nuageuse
243      SAVE albsollw                 ! albedo du sol total      REAL diafra(klon, llm) ! fraction nuageuse
244        REAL cldliq(klon, llm) ! eau liquide nuageuse
245      REAL, SAVE:: wo(klon, llm) ! ozone      REAL cldfra(klon, llm) ! fraction nuageuse
246        REAL cldtau(klon, llm) ! epaisseur optique
247      ! Declaration des procedures appelees      REAL cldemi(klon, llm) ! emissivite infrarouge
248    
249      EXTERNAL alboc     ! calculer l'albedo sur ocean      REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface
250      EXTERNAL ajsec     ! ajustement sec  
251      EXTERNAL clmain    ! couche limite      REAL flux_t(klon, nbsrf)
252      !KE43      ! flux de chaleur sensible (c_p T) (W / m2) (orientation positive
253      EXTERNAL conema3  ! convect4.3      ! vers le bas) à la surface
254      EXTERNAL fisrtilp  ! schema de condensation a grande echelle (pluie)  
255      EXTERNAL nuage     ! calculer les proprietes radiatives      REAL flux_u(klon, nbsrf), flux_v(klon, nbsrf)
256      EXTERNAL ozonecm   ! prescrire l'ozone      ! tension du vent (flux turbulent de vent) à la surface, en Pa
257      EXTERNAL phyredem  ! ecrire l'etat de redemarrage de la physique  
258      EXTERNAL radlwsw   ! rayonnements solaire et infrarouge      ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que
259      EXTERNAL transp    ! transport total de l'eau et de l'energie      ! les variables soient r\'emanentes.
260        REAL, save:: heat(klon, llm) ! chauffage solaire
261      EXTERNAL ini_undefSTD  !initialise a 0 une variable a 1 niveau de pression      REAL, save:: heat0(klon, llm) ! chauffage solaire ciel clair
262      EXTERNAL undefSTD !somme les valeurs definies d'1 var a 1 niveau de pression      REAL, save:: cool(klon, llm) ! refroidissement infrarouge
263        REAL, save:: cool0(klon, llm) ! refroidissement infrarouge ciel clair
264      ! Variables locales      REAL, save:: topsw(klon), toplw(klon), solsw(klon)
265    
266      real clwcon(klon, llm), rnebcon(klon, llm)      REAL, save:: sollw(klon) ! surface net downward longwave flux, in W m-2
267      real clwcon0(klon, llm), rnebcon0(klon, llm)      real, save:: sollwdown(klon) ! downward LW flux at surface
268        REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)
269      save rnebcon, clwcon      REAL, save:: albpla(klon)
270    
271      REAL rhcl(klon, llm)    ! humiditi relative ciel clair      REAL conv_q(klon, llm) ! convergence de l'humidite (kg / kg / s)
272      REAL dialiq(klon, llm)  ! eau liquide nuageuse      REAL conv_t(klon, llm) ! convergence of temperature (K / s)
273      REAL diafra(klon, llm)  ! fraction nuageuse  
274      REAL cldliq(klon, llm)  ! eau liquide nuageuse      REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut
275      REAL cldfra(klon, llm)  ! fraction nuageuse      REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree
276      REAL cldtau(klon, llm)  ! epaisseur optique  
277      REAL cldemi(klon, llm)  ! emissivite infrarouge      REAL zxfluxlat(klon)
278        REAL dist, mu0(klon), fract(klon)
279      REAL fluxq(klon, llm, nbsrf)   ! flux turbulent d'humidite      real longi
     REAL fluxt(klon, llm, nbsrf)   ! flux turbulent de chaleur  
     REAL fluxu(klon, llm, nbsrf)   ! flux turbulent de vitesse u  
     REAL fluxv(klon, llm, nbsrf)   ! flux turbulent de vitesse v  
   
     REAL zxfluxt(klon, llm)  
     REAL zxfluxq(klon, llm)  
     REAL zxfluxu(klon, llm)  
     REAL zxfluxv(klon, llm)  
   
     REAL heat(klon, llm)    ! chauffage solaire  
     REAL heat0(klon, llm)   ! chauffage solaire ciel clair  
     REAL cool(klon, llm)    ! refroidissement infrarouge  
     REAL cool0(klon, llm)   ! refroidissement infrarouge ciel clair  
     REAL topsw(klon), toplw(klon), solsw(klon), sollw(klon)  
     real sollwdown(klon)    ! downward LW flux at surface  
     REAL topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)  
     REAL albpla(klon)  
     REAL fsollw(klon, nbsrf)   ! bilan flux IR pour chaque sous surface  
     REAL fsolsw(klon, nbsrf)   ! flux solaire absorb. pour chaque sous surface  
     ! Le rayonnement n'est pas calcule tous les pas, il faut donc  
     !                      sauvegarder les sorties du rayonnement  
     SAVE  heat, cool, albpla, topsw, toplw, solsw, sollw, sollwdown  
     SAVE  topsw0, toplw0, solsw0, sollw0, heat0, cool0  
   
     INTEGER itaprad  
     SAVE itaprad  
   
     REAL conv_q(klon, llm) ! convergence de l'humidite (kg/kg/s)  
     REAL conv_t(klon, llm) ! convergence de la temperature(K/s)  
   
     REAL cldl(klon), cldm(klon), cldh(klon) !nuages bas, moyen et haut  
     REAL cldt(klon), cldq(klon) !nuage total, eau liquide integree  
   
     REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon)  
   
     REAL dist, rmu0(klon), fract(klon)  
     REAL zdtime ! pas de temps du rayonnement (s)  
     real zlongi  
   
280      REAL z_avant(klon), z_apres(klon), z_factor(klon)      REAL z_avant(klon), z_apres(klon), z_factor(klon)
281      LOGICAL zx_ajustq      REAL zb
282        REAL zx_t, zx_qs, zcor
     REAL za, zb  
     REAL zx_t, zx_qs, zdelta, zcor, zlvdcp, zlsdcp  
283      real zqsat(klon, llm)      real zqsat(klon, llm)
284      INTEGER i, k, iq, nsrf      INTEGER i, k, iq, nsrf
     REAL t_coup  
     PARAMETER (t_coup=234.0)  
   
285      REAL zphi(klon, llm)      REAL zphi(klon, llm)
286    
287      !IM cf. AM Variables locales pour la CLA (hbtm2)      ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm)
288    
289      REAL pblh(klon, nbsrf)           ! Hauteur de couche limite      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite
290      REAL plcl(klon, nbsrf)           ! Niveau de condensation de la CLA      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA
291      REAL capCL(klon, nbsrf)          ! CAPE de couche limite      REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite
292      REAL oliqCL(klon, nbsrf)          ! eau_liqu integree de couche limite      REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite
293      REAL cteiCL(klon, nbsrf)          ! cloud top instab. crit. couche limite      REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite
294      REAL pblt(klon, nbsrf)          ! T a la Hauteur de couche limite      REAL, SAVE:: pblt(klon, nbsrf) ! T \`a la hauteur de couche limite
295      REAL therm(klon, nbsrf)      REAL, SAVE:: therm(klon, nbsrf)
296      REAL trmb1(klon, nbsrf)          ! deep_cape      ! Grandeurs de sorties
     REAL trmb2(klon, nbsrf)          ! inhibition  
     REAL trmb3(klon, nbsrf)          ! Point Omega  
     ! Grdeurs de sorties  
297      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)
298      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)
299      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)      REAL s_therm(klon)
     REAL s_trmb3(klon)  
300    
301      ! Variables locales pour la convection de K. Emanuel (sb):      ! Variables pour la convection de K. Emanuel :
302    
303      REAL upwd(klon, llm)      ! saturated updraft mass flux      REAL upwd(klon, llm) ! saturated updraft mass flux
304      REAL dnwd(klon, llm)      ! saturated downdraft mass flux      REAL dnwd(klon, llm) ! saturated downdraft mass flux
305      REAL dnwd0(klon, llm)     ! unsaturated downdraft mass flux      REAL, save:: cape(klon)
306      REAL tvp(klon, llm)       ! virtual temp of lifted parcel  
307      REAL cape(klon)           ! CAPE      INTEGER iflagctrl(klon) ! flag fonctionnement de convect
     SAVE cape  
   
     REAL pbase(klon)          ! cloud base pressure  
     SAVE pbase  
     REAL bbase(klon)          ! cloud base buoyancy  
     SAVE bbase  
     REAL rflag(klon)          ! flag fonctionnement de convect  
     INTEGER iflagctrl(klon)          ! flag fonctionnement de convect  
     ! -- convect43:  
     INTEGER ntra              ! nb traceurs pour convect4.3  
     REAL dtvpdt1(klon, llm), dtvpdq1(klon, llm)  
     REAL dplcldt(klon), dplcldr(klon)  
308    
309      ! Variables du changement      ! Variables du changement
310    
311      ! con: convection      ! con: convection
312      ! lsc: condensation a grande echelle (Large-Scale-Condensation)      ! lsc: large scale condensation
313      ! ajs: ajustement sec      ! ajs: ajustement sec
314      ! eva: evaporation de l'eau liquide nuageuse      ! eva: \'evaporation de l'eau liquide nuageuse
315      ! vdf: couche limite (Vertical DiFfusion)      ! vdf: vertical diffusion in boundary layer
316      REAL d_t_con(klon, llm), d_q_con(klon, llm)      REAL d_t_con(klon, llm), d_q_con(klon, llm)
317      REAL d_u_con(klon, llm), d_v_con(klon, llm)      REAL, save:: d_u_con(klon, llm), d_v_con(klon, llm)
318      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)
319      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)
320      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)
321      REAL rneb(klon, llm)      REAL rneb(klon, llm)
322    
323      REAL pmfu(klon, llm), pmfd(klon, llm)      REAL mfu(klon, llm), mfd(klon, llm)
324      REAL pen_u(klon, llm), pen_d(klon, llm)      REAL pen_u(klon, llm), pen_d(klon, llm)
325      REAL pde_u(klon, llm), pde_d(klon, llm)      REAL pde_u(klon, llm), pde_d(klon, llm)
326      INTEGER kcbot(klon), kctop(klon), kdtop(klon)      INTEGER kcbot(klon), kctop(klon), kdtop(klon)
327      REAL pmflxr(klon, llm+1), pmflxs(klon, llm+1)      REAL pmflxr(klon, llm + 1), pmflxs(klon, llm + 1)
328      REAL prfl(klon, llm+1), psfl(klon, llm+1)      REAL prfl(klon, llm + 1), psfl(klon, llm + 1)
   
     INTEGER ibas_con(klon), itop_con(klon)  
329    
330      SAVE ibas_con, itop_con      INTEGER, save:: ibas_con(klon), itop_con(klon)
331        real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa
332    
333      REAL rain_con(klon), rain_lsc(klon)      REAL rain_con(klon)
334      REAL snow_con(klon), snow_lsc(klon)      real rain_lsc(klon)
335      REAL d_ts(klon, nbsrf)      REAL snow_con(klon) ! neige (mm / s)
336        real snow_lsc(klon)
337        REAL d_ts(klon, nbsrf) ! variation of ftsol
338    
339      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)
340      REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)      REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)
# Line 644  contains Line 344  contains
344      REAL d_u_lif(klon, llm), d_v_lif(klon, llm)      REAL d_u_lif(klon, llm), d_v_lif(klon, llm)
345      REAL d_t_lif(klon, llm)      REAL d_t_lif(klon, llm)
346    
347      REAL ratqs(klon, llm), ratqss(klon, llm), ratqsc(klon, llm)      REAL, save:: ratqs(klon, llm)
348      real ratqsbas, ratqshaut      real ratqss(klon, llm), ratqsc(klon, llm)
349      save ratqsbas, ratqshaut, ratqs      real:: ratqsbas = 0.01, ratqshaut = 0.3
350    
351      ! Parametres lies au nouveau schema de nuages (SB, PDF)      ! Parametres lies au nouveau schema de nuages (SB, PDF)
352      real fact_cldcon      real:: fact_cldcon = 0.375
353      real facttemps      real:: facttemps = 1.e-4
354      logical ok_newmicro      logical:: ok_newmicro = .true.
     save ok_newmicro  
     save fact_cldcon, facttemps  
355      real facteur      real facteur
356    
357      integer iflag_cldcon      integer:: iflag_cldcon = 1
     save iflag_cldcon  
   
358      logical ptconv(klon, llm)      logical ptconv(klon, llm)
359    
360      ! Variables liees a l'ecriture de la bande histoire physique      ! Variables pour effectuer les appels en s\'erie :
   
     integer itau_w   ! pas de temps ecriture = itap + itau_phy  
   
     ! Variables locales pour effectuer les appels en serie  
361    
362      REAL t_seri(klon, llm), q_seri(klon, llm)      REAL t_seri(klon, llm), q_seri(klon, llm)
363      REAL ql_seri(klon, llm), qs_seri(klon, llm)      REAL ql_seri(klon, llm)
364      REAL u_seri(klon, llm), v_seri(klon, llm)      REAL u_seri(klon, llm), v_seri(klon, llm)
365        REAL tr_seri(klon, llm, nqmx - 2)
     REAL tr_seri(klon, llm, nbtr)  
     REAL d_tr(klon, llm, nbtr)  
366    
367      REAL zx_rh(klon, llm)      REAL zx_rh(klon, llm)
368    
     INTEGER        length  
     PARAMETER    ( length = 100 )  
     REAL tabcntr0( length       )  
   
     INTEGER ndex2d(iim*(jjm + 1)), ndex3d(iim*(jjm + 1)*llm)  
   
369      REAL zustrdr(klon), zvstrdr(klon)      REAL zustrdr(klon), zvstrdr(klon)
370      REAL zustrli(klon), zvstrli(klon)      REAL zustrli(klon), zvstrli(klon)
     REAL zustrph(klon), zvstrph(klon)  
371      REAL aam, torsfc      REAL aam, torsfc
372    
     REAL dudyn(iim+1, jjm + 1, llm)  
   
     REAL zx_tmp_fi2d(klon)      ! variable temporaire grille physique  
     REAL zx_tmp_fi3d(klon, llm) ! variable temporaire pour champs 3D  
   
     REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm)  
   
     INTEGER nid_day, nid_ins  
     SAVE nid_day, nid_ins  
   
373      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.
374      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.
375      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.
376      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.
377    
378      REAL zsto      REAL tsol(klon)
   
     character(len=20) modname  
     character(len=80) abort_message  
     logical ok_sync  
     real date0  
   
     !     Variables liees au bilan d'energie et d'enthalpi  
     REAL ztsol(klon)  
     REAL      d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec  
     REAL      d_h_vcol_phy  
     REAL      fs_bound, fq_bound  
     SAVE      d_h_vcol_phy  
     REAL      zero_v(klon)  
     CHARACTER(LEN=15) ztit  
     INTEGER   ip_ebil  ! PRINT level for energy conserv. diag.  
     SAVE      ip_ebil  
     DATA      ip_ebil/0/  
     INTEGER   if_ebil ! level for energy conserv. dignostics  
     SAVE      if_ebil  
     !+jld ec_conser  
     REAL d_t_ec(klon, llm)    ! tendance du a la conersion Ec -> E thermique  
     REAL ZRCPD  
     !-jld ec_conser  
     !IM: t2m, q2m, u10m, v10m  
     REAL t2m(klon, nbsrf), q2m(klon, nbsrf)   !temperature, humidite a 2m  
     REAL u10m(klon, nbsrf), v10m(klon, nbsrf) !vents a 10m  
     REAL zt2m(klon), zq2m(klon)             !temp., hum. 2m moyenne s/ 1 maille  
     REAL zu10m(klon), zv10m(klon)           !vents a 10m moyennes s/1 maille  
     !jq   Aerosol effects (Johannes Quaas, 27/11/2003)  
     REAL sulfate(klon, llm) ! SO4 aerosol concentration [ug/m3]  
   
     REAL sulfate_pi(klon, llm)  
     ! (SO4 aerosol concentration [ug/m3] (pre-industrial value))  
     SAVE sulfate_pi  
   
     REAL cldtaupi(klon, llm)  
     ! (Cloud optical thickness for pre-industrial (pi) aerosols)  
   
     REAL re(klon, llm)       ! Cloud droplet effective radius  
     REAL fl(klon, llm)  ! denominator of re  
   
     ! Aerosol optical properties  
     REAL tau_ae(klon, llm, 2), piz_ae(klon, llm, 2)  
     REAL cg_ae(klon, llm, 2)  
   
     REAL topswad(klon), solswad(klon) ! Aerosol direct effect.  
     ! ok_ade=T -ADE=topswad-topsw  
   
     REAL topswai(klon), solswai(klon) ! Aerosol indirect effect.  
     ! ok_aie=T ->  
     !        ok_ade=T -AIE=topswai-topswad  
     !        ok_ade=F -AIE=topswai-topsw  
   
     REAL aerindex(klon)       ! POLDER aerosol index  
   
     ! Parameters  
     LOGICAL ok_ade, ok_aie    ! Apply aerosol (in)direct effects or not  
     REAL bl95_b0, bl95_b1   ! Parameter in Boucher and Lohmann (1995)  
   
     SAVE ok_ade, ok_aie, bl95_b0, bl95_b1  
     SAVE u10m  
     SAVE v10m  
     SAVE t2m  
     SAVE q2m  
     SAVE ffonte  
     SAVE fqcalving  
     SAVE piz_ae  
     SAVE tau_ae  
     SAVE cg_ae  
     SAVE rain_con  
     SAVE snow_con  
     SAVE topswai  
     SAVE topswad  
     SAVE solswai  
     SAVE solswad  
     SAVE d_u_con  
     SAVE d_v_con  
     SAVE rnebcon0  
     SAVE clwcon0  
     SAVE pblh  
     SAVE plcl  
     SAVE capCL  
     SAVE oliqCL  
     SAVE cteiCL  
     SAVE pblt  
     SAVE therm  
     SAVE trmb1  
     SAVE trmb2  
     SAVE trmb3  
   
     !----------------------------------------------------------------  
   
     modname = 'physiq'  
     IF (if_ebil >= 1) THEN  
        DO i=1, klon  
           zero_v(i)=0.  
        END DO  
     END IF  
     ok_sync=.TRUE.  
     IF (nq .LT. 2) THEN  
        abort_message = 'eaux vapeur et liquide sont indispensables'  
        CALL abort_gcm (modname, abort_message, 1)  
     ENDIF  
379    
380      xjour = rjourvrai      REAL d_t_ec(klon, llm)
381        ! tendance due \`a la conversion d'\'energie cin\'etique en
382        ! énergie thermique
383    
384      test_debut: IF (debut) THEN      REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf)
385         !  initialiser      ! temperature and humidity at 2 m
        u10m(:, :)=0.  
        v10m(:, :)=0.  
        t2m(:, :)=0.  
        q2m(:, :)=0.  
        ffonte(:, :)=0.  
        fqcalving(:, :)=0.  
        piz_ae(:, :, :)=0.  
        tau_ae(:, :, :)=0.  
        cg_ae(:, :, :)=0.  
        rain_con(:)=0.  
        snow_con(:)=0.  
        bl95_b0=0.  
        bl95_b1=0.  
        topswai(:)=0.  
        topswad(:)=0.  
        solswai(:)=0.  
        solswad(:)=0.  
   
        d_u_con(:, :) = 0.0  
        d_v_con(:, :) = 0.0  
        rnebcon0(:, :) = 0.0  
        clwcon0(:, :) = 0.0  
        rnebcon(:, :) = 0.0  
        clwcon(:, :) = 0.0  
   
        pblh(:, :)   =0.        ! Hauteur de couche limite  
        plcl(:, :)   =0.        ! Niveau de condensation de la CLA  
        capCL(:, :)  =0.        ! CAPE de couche limite  
        oliqCL(:, :) =0.        ! eau_liqu integree de couche limite  
        cteiCL(:, :) =0.        ! cloud top instab. crit. couche limite  
        pblt(:, :)   =0.        ! T a la Hauteur de couche limite  
        therm(:, :)  =0.  
        trmb1(:, :)  =0.        ! deep_cape  
        trmb2(:, :)  =0.        ! inhibition  
        trmb3(:, :)  =0.        ! Point Omega  
   
        IF (if_ebil >= 1) d_h_vcol_phy=0.  
   
        ! appel a la lecture du run.def physique  
   
        call conf_phys(ocean, ok_veget, ok_journe, ok_mensuel, &  
             ok_instan, fact_cldcon, facttemps, ok_newmicro, &  
             iflag_cldcon, ratqsbas, ratqshaut, if_ebil, &  
             ok_ade, ok_aie,  &  
             bl95_b0, bl95_b1, &  
             iflag_thermals, nsplit_thermals)  
   
        ! Initialiser les compteurs:  
386    
387         frugs = 0.      REAL, save:: u10m_srf(klon, nbsrf), v10m_srf(klon, nbsrf)
388         itap = 0      ! composantes du vent \`a 10 m
389         itaprad = 0      
390         CALL phyetat0("startphy.nc", dtime, co2_ppm_etat0, solaire_etat0, &      REAL zt2m(klon), zq2m(klon) ! température, humidité 2 m moyenne sur 1 maille
391              pctsrf, ftsol, ftsoil, &      REAL u10m(klon), v10m(klon) ! vent \`a 10 m moyenn\' sur les sous-surfaces
             ocean, tslab, seaice, & !IM "slab" ocean  
             fqsurf, qsol, fsnow, &  
             falbe, falblw, fevap, rain_fall, snow_fall, solsw, sollwdown, &  
             dlw, radsol, frugs, agesno, clesphy0, &  
             zmea, zstd, zsig, zgam, zthe, zpic, zval, rugoro, tabcntr0, &  
             t_ancien, q_ancien, ancien_ok, rnebcon, ratqs, clwcon,  &  
             run_off_lic_0)  
   
        !   ATTENTION : il faudra a terme relire q2 dans l'etat initial  
        q2(:, :, :)=1.e-8  
392    
393         radpas = NINT( 86400. / dtime / nbapp_rad)      ! Aerosol effects:
394    
395         ! on remet le calendrier a zero      REAL, save:: topswad(klon), solswad(klon) ! aerosol direct effect
396        LOGICAL:: ok_ade = .false. ! apply aerosol direct effect
397    
398         IF (raz_date == 1) THEN      REAL:: bl95_b0 = 2., bl95_b1 = 0.2
399            itau_phy = 0      ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus
400         ENDIF      ! B). They link cloud droplet number concentration to aerosol mass
401        ! concentration.
402    
403         PRINT*, 'cycle_diurne =', cycle_diurne      real zmasse(klon, llm)
404        ! (column-density of mass of air in a cell, in kg m-2)
405    
406         IF(ocean.NE.'force ') THEN      integer, save:: ncid_startphy
           ok_ocean=.TRUE.  
        ENDIF  
407    
408         CALL printflag( tabcntr0, radpas, ok_ocean, ok_oasis, ok_journe, &      namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, &
409              ok_instan, ok_region )           ratqsbas, ratqshaut, ok_ade, bl95_b0, bl95_b1, iflag_thermals, &
410             nsplit_thermals
411    
412         IF (ABS(dtime-pdtphys).GT.0.001) THEN      !----------------------------------------------------------------
           WRITE(lunout, *) 'Pas physique n est pas correct', dtime, &  
                pdtphys  
           abort_message='Pas physique n est pas correct '  
           call abort_gcm(modname, abort_message, 1)  
        ENDIF  
413    
414         IF (dtime*REAL(radpas).GT.21600..AND.cycle_diurne) THEN      IF (nqmx < 2) CALL abort_gcm('physiq', &
415            WRITE(lunout, *)'Nbre d appels au rayonnement insuffisant'           'eaux vapeur et liquide sont indispensables')
           WRITE(lunout, *)"Au minimum 4 appels par jour si cycle diurne"  
           abort_message='Nbre d appels au rayonnement insuffisant'  
           call abort_gcm(modname, abort_message, 1)  
        ENDIF  
        WRITE(lunout, *)"Clef pour la convection, iflag_con=", iflag_con  
        WRITE(lunout, *)"Clef pour le driver de la convection, ok_cvl=", &  
             ok_cvl  
416    
417         ! Initialisation pour la convection de K.E. (sb):      test_firstcal: IF (firstcal) THEN
418         IF (iflag_con >= 3) THEN         ! initialiser
419           u10m_srf = 0.
420           v10m_srf = 0.
421           t2m = 0.
422           q2m = 0.
423           ffonte = 0.
424           d_u_con = 0.
425           d_v_con = 0.
426           rnebcon0 = 0.
427           clwcon0 = 0.
428           rnebcon = 0.
429           clwcon = 0.
430           pblh =0. ! Hauteur de couche limite
431           plcl =0. ! Niveau de condensation de la CLA
432           capCL =0. ! CAPE de couche limite
433           oliqCL =0. ! eau_liqu integree de couche limite
434           cteiCL =0. ! cloud top instab. crit. couche limite
435           pblt =0.
436           therm =0.
437    
438           iflag_thermals = 0
439           nsplit_thermals = 1
440           print *, "Enter namelist 'physiq_nml'."
441           read(unit=*, nml=physiq_nml)
442           write(unit_nml, nml=physiq_nml)
443    
444            WRITE(lunout, *)"*** Convection de Kerry Emanuel 4.3  "         call conf_phys
445    
446            !IM15/11/02 rajout initialisation ibas_con, itop_con cf. SB =>BEG         ! Initialiser les compteurs:
           DO i = 1, klon  
              ibas_con(i) = 1  
              itop_con(i) = 1  
           ENDDO  
           !IM15/11/02 rajout initialisation ibas_con, itop_con cf. SB =>END  
447    
448           frugs = 0.
449           CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
450                rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, agesno, &
451                zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, &
452                ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01, &
453                ncid_startphy)
454    
455           ! ATTENTION : il faudra a terme relire q2 dans l'etat initial
456           q2 = 1e-8
457    
458           radpas = lmt_pas / nbapp_rad
459           print *, "radpas = ", radpas
460    
461           ! Initialisation pour le sch\'ema de convection d'Emanuel :
462           IF (conv_emanuel) THEN
463              ibas_con = 1
464              itop_con = 1
465         ENDIF         ENDIF
466    
467         IF (ok_orodr) THEN         IF (ok_orodr) THEN
468            DO i=1, klon            rugoro = MAX(1e-5, zstd * zsig / 2)
469               rugoro(i) = MAX(1.0e-05, zstd(i)*zsig(i)/2.0)            CALL SUGWD(paprs, play)
470            ENDDO         else
471            CALL SUGWD(klon, llm, paprs, pplay)            rugoro = 0.
472         ENDIF         ENDIF
473    
474         lmt_pas = NINT(86400. / dtime)  ! tous les jours         ! Initialisation des sorties
475         print *, 'La frequence de lecture surface est de ', lmt_pas         call ini_histins(ok_newmicro)
476           CALL phyredem0
477           call conf_interface
478        ENDIF test_firstcal
479    
480        ! We will modify variables *_seri and we will not touch variables
481        ! u, v, t, qx:
482        t_seri = t
483        u_seri = u
484        v_seri = v
485        q_seri = qx(:, :, ivap)
486        ql_seri = qx(:, :, iliq)
487        tr_seri = qx(:, :, 3:nqmx)
488    
489         ecrit_ins = NINT(ecrit_ins/dtime)      tsol = sum(ftsol * pctsrf, dim = 2)
        ecrit_hf = NINT(ecrit_hf/dtime)  
        ecrit_day = NINT(ecrit_day/dtime)  
        ecrit_mth = NINT(ecrit_mth/dtime)  
        ecrit_tra = NINT(86400.*ecrit_tra/dtime)  
        ecrit_reg = NINT(ecrit_reg/dtime)  
   
        ! Initialiser le couplage si necessaire  
   
        npas = 0  
        nexca = 0  
        if (ocean == 'couple') then  
           npas = itaufin/ iphysiq  
           nexca = 86400 / int(dtime)  
           write(lunout, *)' Ocean couple'  
           write(lunout, *)' Valeurs des pas de temps'  
           write(lunout, *)' npas = ', npas  
           write(lunout, *)' nexca = ', nexca  
        endif  
   
        write(lunout, *)'AVANT HIST IFLAG_CON=', iflag_con  
   
        !   Initialisation des sorties  
   
        call ini_histhf(dtime, presnivs, nid_hf, nid_hf3d)  
        call ini_histday(dtime, presnivs, ok_journe, nid_day)  
        call ini_histins(dtime, presnivs, ok_instan, nid_ins)  
        CALL ymds2ju(annee_ref, 1, int(day_ref), 0., date0)  
        !XXXPB Positionner date0 pour initialisation de ORCHIDEE  
        WRITE(*, *) 'physiq date0 : ', date0  
     ENDIF test_debut  
   
     ! Mettre a zero des variables de sortie (pour securite)  
   
     DO i = 1, klon  
        d_ps(i) = 0.0  
     ENDDO  
     DO k = 1, llm  
        DO i = 1, klon  
           d_t(i, k) = 0.0  
           d_u(i, k) = 0.0  
           d_v(i, k) = 0.0  
        ENDDO  
     ENDDO  
     DO iq = 1, nq  
        DO k = 1, llm  
           DO i = 1, klon  
              d_qx(i, k, iq) = 0.0  
           ENDDO  
        ENDDO  
     ENDDO  
     da(:, :)=0.  
     mp(:, :)=0.  
     phi(:, :, :)=0.  
   
     ! Ne pas affecter les valeurs entrees de u, v, h, et q  
   
     DO k = 1, llm  
        DO i = 1, klon  
           t_seri(i, k)  = t(i, k)  
           u_seri(i, k)  = u(i, k)  
           v_seri(i, k)  = v(i, k)  
           q_seri(i, k)  = qx(i, k, ivap)  
           ql_seri(i, k) = qx(i, k, iliq)  
           qs_seri(i, k) = 0.  
        ENDDO  
     ENDDO  
     IF (nq >= 3) THEN  
        tr_seri(:, :, :nq-2) = qx(:, :, 3:nq)  
     ELSE  
        tr_seri(:, :, 1) = 0.  
     ENDIF  
   
     DO i = 1, klon  
        ztsol(i) = 0.  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           ztsol(i) = ztsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     IF (if_ebil >= 1) THEN  
        ztit='after dynamic'  
        CALL diagetpq(airephy, ztit, ip_ebil, 1, 1, dtime &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
        !     Comme les tendances de la physique sont ajoute dans la dynamique,  
        !     on devrait avoir que la variation d'entalpie par la dynamique  
        !     est egale a la variation de la physique au pas de temps precedent.  
        !     Donc la somme de ces 2 variations devrait etre nulle.  
        call diagphy(airephy, ztit, ip_ebil &  
             , zero_v, zero_v, zero_v, zero_v, zero_v &  
             , zero_v, zero_v, zero_v, ztsol &  
             , d_h_vcol+d_h_vcol_phy, d_qt, 0. &  
             , fs_bound, fq_bound )  
     END IF  
   
     ! Diagnostiquer la tendance dynamique  
490    
491        ! Diagnostic de la tendance dynamique :
492      IF (ancien_ok) THEN      IF (ancien_ok) THEN
493         DO k = 1, llm         DO k = 1, llm
494            DO i = 1, klon            DO i = 1, klon
495               d_t_dyn(i, k) = (t_seri(i, k)-t_ancien(i, k))/dtime               d_t_dyn(i, k) = (t_seri(i, k) - t_ancien(i, k)) / dtphys
496               d_q_dyn(i, k) = (q_seri(i, k)-q_ancien(i, k))/dtime               d_q_dyn(i, k) = (q_seri(i, k) - q_ancien(i, k)) / dtphys
497            ENDDO            ENDDO
498         ENDDO         ENDDO
499      ELSE      ELSE
500         DO k = 1, llm         DO k = 1, llm
501            DO i = 1, klon            DO i = 1, klon
502               d_t_dyn(i, k) = 0.0               d_t_dyn(i, k) = 0.
503               d_q_dyn(i, k) = 0.0               d_q_dyn(i, k) = 0.
504            ENDDO            ENDDO
505         ENDDO         ENDDO
506         ancien_ok = .TRUE.         ancien_ok = .TRUE.
507      ENDIF      ENDIF
508    
509      ! Ajouter le geopotentiel du sol:      ! Ajouter le geopotentiel du sol:
   
510      DO k = 1, llm      DO k = 1, llm
511         DO i = 1, klon         DO i = 1, klon
512            zphi(i, k) = pphi(i, k) + pphis(i)            zphi(i, k) = pphi(i, k) + pphis(i)
513         ENDDO         ENDDO
514      ENDDO      ENDDO
515    
516      ! Verifier les temperatures      ! Check temperatures:
   
517      CALL hgardfou(t_seri, ftsol)      CALL hgardfou(t_seri, ftsol)
518    
519      ! Incrementer le compteur de la physique      call increment_itap
520        julien = MOD(dayvrai, 360)
     itap   = itap + 1  
     julien = MOD(NINT(xjour), 360)  
521      if (julien == 0) julien = 360      if (julien == 0) julien = 360
522    
523      ! Mettre en action les conditions aux limites (albedo, sst, etc.).      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg
     ! Prescrire l'ozone et calculer l'albedo sur l'ocean.  
   
     IF (MOD(itap - 1, lmt_pas) == 0) THEN  
        CALL ozonecm(REAL(julien), rlat, paprs, wo)  
     ENDIF  
524    
525      ! Re-evaporer l'eau liquide nuageuse      ! \'Evaporation de l'eau liquide nuageuse :
526        DO k = 1, llm
     DO k = 1, llm  ! re-evaporation de l'eau liquide nuageuse  
527         DO i = 1, klon         DO i = 1, klon
528            zlvdcp=RLVTT/RCPD/(1.0+RVTMP2*q_seri(i, k))            zb = MAX(0., ql_seri(i, k))
529            zlsdcp=RLVTT/RCPD/(1.0+RVTMP2*q_seri(i, k))            t_seri(i, k) = t_seri(i, k) &
530            zdelta = MAX(0., SIGN(1., RTT-t_seri(i, k)))                 - zb * RLVTT / RCPD / (1. + RVTMP2 * q_seri(i, k))
           zb = MAX(0.0, ql_seri(i, k))  
           za = - MAX(0.0, ql_seri(i, k)) &  
                * (zlvdcp*(1.-zdelta)+zlsdcp*zdelta)  
           t_seri(i, k) = t_seri(i, k) + za  
531            q_seri(i, k) = q_seri(i, k) + zb            q_seri(i, k) = q_seri(i, k) + zb
           ql_seri(i, k) = 0.0  
        ENDDO  
     ENDDO  
   
     IF (if_ebil >= 2) THEN  
        ztit='after reevap'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 1, dtime &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil &  
             , zero_v, zero_v, zero_v, zero_v, zero_v &  
             , zero_v, zero_v, zero_v, ztsol &  
             , d_h_vcol, d_qt, d_ec &  
             , fs_bound, fq_bound )  
   
     END IF  
   
     ! Appeler la diffusion verticale (programme de couche limite)  
   
     DO i = 1, klon  
        zxrugs(i) = 0.0  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           frugs(i, nsrf) = MAX(frugs(i, nsrf), 0.000015)  
        ENDDO  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxrugs(i) = zxrugs(i) + frugs(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     ! calculs necessaires au calcul de l'albedo dans l'interface  
   
     CALL orbite(REAL(julien), zlongi, dist)  
     IF (cycle_diurne) THEN  
        zdtime = dtime * REAL(radpas)  
        CALL zenang(zlongi, gmtime, zdtime, rmu0, fract)  
     ELSE  
        rmu0 = -999.999  
     ENDIF  
   
     !     Calcul de l'abedo moyen par maille  
     albsol(:)=0.  
     albsollw(:)=0.  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           albsol(i) = albsol(i) + falbe(i, nsrf) * pctsrf(i, nsrf)  
           albsollw(i) = albsollw(i) + falblw(i, nsrf) * pctsrf(i, nsrf)  
532         ENDDO         ENDDO
533      ENDDO      ENDDO
534        ql_seri = 0.
535    
536      !     Repartition sous maille des flux LW et SW      frugs = MAX(frugs, 0.000015)
537      ! Repartition du longwave par sous-surface linearisee      zxrugs = sum(frugs * pctsrf, dim = 2)
538    
539      DO nsrf = 1, nbsrf      ! Calculs n\'ecessaires au calcul de l'albedo dans l'interface avec
540         DO i = 1, klon      ! la surface.
           fsollw(i, nsrf) = sollw(i) &  
                + 4.0*RSIGMA*ztsol(i)**3 * (ztsol(i)-ftsol(i, nsrf))  
           fsolsw(i, nsrf) = solsw(i)*(1.-falbe(i, nsrf))/(1.-albsol(i))  
        ENDDO  
     ENDDO  
   
     fder = dlw  
541    
542      CALL clmain(dtime, itap, date0, pctsrf, pctsrf_new, &      CALL orbite(REAL(julien), longi, dist)
543           t_seri, q_seri, u_seri, v_seri, &      CALL zenang(longi, time, dtphys * radpas, mu0, fract)
544           julien, rmu0, co2_ppm,  &  
545           ok_veget, ocean, npas, nexca, ftsol, &      CALL pbl_surface(pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, &
546           soil_model, cdmmax, cdhmax, &           ftsol, cdmmax, cdhmax, ftsoil, qsol, paprs, play, fsnow, fqsurf, &
547           ksta, ksta_ter, ok_kzmin, ftsoil, qsol,  &           falbe, fluxlat, rain_fall, snow_fall, frugs, agesno, rugoro, d_t_vdf, &
548           paprs, pplay, fsnow, fqsurf, fevap, falbe, falblw, &           d_q_vdf, d_u_vdf, d_v_vdf, d_ts, flux_t, flux_q, flux_u, flux_v, &
549           fluxlat, rain_fall, snow_fall, &           cdragh, cdragm, q2, dflux_t, dflux_q, coefh, t2m, q2m, u10m_srf, &
550           fsolsw, fsollw, sollwdown, fder, &           v10m_srf, pblh, capCL, oliqCL, cteiCL, pblT, therm, plcl, fqcalving, &
551           rlon, rlat, cuphy, cvphy, frugs, &           ffonte, run_off_lic_0, albsol, sollw, solsw, tsol)
552           debut, lafin, agesno, rugoro, &  
553           d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, &      ! Incr\'ementation des flux
554           fluxt, fluxq, fluxu, fluxv, cdragh, cdragm, &  
555           q2, dsens, devap, &      sens = sum(flux_t * pctsrf, dim = 2)
556           ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, &      evap = - sum(flux_q * pctsrf, dim = 2)
557           pblh, capCL, oliqCL, cteiCL, pblT, &      fder = dlw + dflux_t + dflux_q
          therm, trmb1, trmb2, trmb3, plcl, &  
          fqcalving, ffonte, run_off_lic_0, &  
          fluxo, fluxg, tslab, seaice)  
   
     !XXX Incrementation des flux  
   
     zxfluxt=0.  
     zxfluxq=0.  
     zxfluxu=0.  
     zxfluxv=0.  
     DO nsrf = 1, nbsrf  
        DO k = 1, llm  
           DO i = 1, klon  
              zxfluxt(i, k) = zxfluxt(i, k) +  &  
                   fluxt(i, k, nsrf) * pctsrf( i, nsrf)  
              zxfluxq(i, k) = zxfluxq(i, k) +  &  
                   fluxq(i, k, nsrf) * pctsrf( i, nsrf)  
              zxfluxu(i, k) = zxfluxu(i, k) +  &  
                   fluxu(i, k, nsrf) * pctsrf( i, nsrf)  
              zxfluxv(i, k) = zxfluxv(i, k) +  &  
                   fluxv(i, k, nsrf) * pctsrf( i, nsrf)  
           END DO  
        END DO  
     END DO  
     DO i = 1, klon  
        sens(i) = - zxfluxt(i, 1) ! flux de chaleur sensible au sol  
        evap(i) = - zxfluxq(i, 1) ! flux d'evaporation au sol  
        fder(i) = dlw(i) + dsens(i) + devap(i)  
     ENDDO  
558    
559      DO k = 1, llm      DO k = 1, llm
560         DO i = 1, klon         DO i = 1, klon
# Line 1209  contains Line 565  contains
565         ENDDO         ENDDO
566      ENDDO      ENDDO
567    
568      IF (if_ebil >= 2) THEN      call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf')
569         ztit='after clmain'      ftsol = ftsol + d_ts ! update surface temperature
570         CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtime &      tsol = sum(ftsol * pctsrf, dim = 2)
571              , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay &      zxfluxlat = sum(fluxlat * pctsrf, dim = 2)
572              , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)      zt2m = sum(t2m * pctsrf, dim = 2)
573         call diagphy(airephy, ztit, ip_ebil &      zq2m = sum(q2m * pctsrf, dim = 2)
574              , zero_v, zero_v, zero_v, zero_v, sens &      u10m = sum(u10m_srf * pctsrf, dim = 2)
575              , evap, zero_v, zero_v, ztsol &      v10m = sum(v10m_srf * pctsrf, dim = 2)
576              , d_h_vcol, d_qt, d_ec &      zxffonte = sum(ffonte * pctsrf, dim = 2)
577              , fs_bound, fq_bound )      s_pblh = sum(pblh * pctsrf, dim = 2)
578      END IF      s_lcl = sum(plcl * pctsrf, dim = 2)
579        s_capCL = sum(capCL * pctsrf, dim = 2)
580      ! Incrementer la temperature du sol      s_oliqCL = sum(oliqCL * pctsrf, dim = 2)
581        s_cteiCL = sum(cteiCL * pctsrf, dim = 2)
582      DO i = 1, klon      s_pblT = sum(pblT * pctsrf, dim = 2)
583         zxtsol(i) = 0.0      s_therm = sum(therm * pctsrf, dim = 2)
        zxfluxlat(i) = 0.0  
   
        zt2m(i) = 0.0  
        zq2m(i) = 0.0  
        zu10m(i) = 0.0  
        zv10m(i) = 0.0  
        zxffonte(i) = 0.0  
        zxfqcalving(i) = 0.0  
   
        s_pblh(i) = 0.0  
        s_lcl(i) = 0.0  
        s_capCL(i) = 0.0  
        s_oliqCL(i) = 0.0  
        s_cteiCL(i) = 0.0  
        s_pblT(i) = 0.0  
        s_therm(i) = 0.0  
        s_trmb1(i) = 0.0  
        s_trmb2(i) = 0.0  
        s_trmb3(i) = 0.0  
   
        IF ( abs( pctsrf(i, is_ter) + pctsrf(i, is_lic) +  &  
             pctsrf(i, is_oce) + pctsrf(i, is_sic)  - 1.) .GT. EPSFRA)  &  
             THEN  
           WRITE(*, *) 'physiq : pb sous surface au point ', i,  &  
                pctsrf(i, 1 : nbsrf)  
        ENDIF  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           ftsol(i, nsrf) = ftsol(i, nsrf) + d_ts(i, nsrf)  
           zxtsol(i) = zxtsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)  
           zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf)*pctsrf(i, nsrf)  
   
           zt2m(i) = zt2m(i) + t2m(i, nsrf)*pctsrf(i, nsrf)  
           zq2m(i) = zq2m(i) + q2m(i, nsrf)*pctsrf(i, nsrf)  
           zu10m(i) = zu10m(i) + u10m(i, nsrf)*pctsrf(i, nsrf)  
           zv10m(i) = zv10m(i) + v10m(i, nsrf)*pctsrf(i, nsrf)  
           zxffonte(i) = zxffonte(i) + ffonte(i, nsrf)*pctsrf(i, nsrf)  
           zxfqcalving(i) = zxfqcalving(i) +  &  
                fqcalving(i, nsrf)*pctsrf(i, nsrf)  
           s_pblh(i) = s_pblh(i) + pblh(i, nsrf)*pctsrf(i, nsrf)  
           s_lcl(i) = s_lcl(i) + plcl(i, nsrf)*pctsrf(i, nsrf)  
           s_capCL(i) = s_capCL(i) + capCL(i, nsrf) *pctsrf(i, nsrf)  
           s_oliqCL(i) = s_oliqCL(i) + oliqCL(i, nsrf) *pctsrf(i, nsrf)  
           s_cteiCL(i) = s_cteiCL(i) + cteiCL(i, nsrf) *pctsrf(i, nsrf)  
           s_pblT(i) = s_pblT(i) + pblT(i, nsrf) *pctsrf(i, nsrf)  
           s_therm(i) = s_therm(i) + therm(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb1(i) = s_trmb1(i) + trmb1(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb2(i) = s_trmb2(i) + trmb2(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb3(i) = s_trmb3(i) + trmb3(i, nsrf) *pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     ! Si une sous-fraction n'existe pas, elle prend la temp. moyenne  
584    
585        ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne :
586      DO nsrf = 1, nbsrf      DO nsrf = 1, nbsrf
587         DO i = 1, klon         DO i = 1, klon
588            IF (pctsrf(i, nsrf) .LT. epsfra) ftsol(i, nsrf) = zxtsol(i)            IF (pctsrf(i, nsrf) < epsfra) then
589                 ftsol(i, nsrf) = tsol(i)
590            IF (pctsrf(i, nsrf) .LT. epsfra) t2m(i, nsrf) = zt2m(i)               t2m(i, nsrf) = zt2m(i)
591            IF (pctsrf(i, nsrf) .LT. epsfra) q2m(i, nsrf) = zq2m(i)               q2m(i, nsrf) = zq2m(i)
592            IF (pctsrf(i, nsrf) .LT. epsfra) u10m(i, nsrf) = zu10m(i)               u10m_srf(i, nsrf) = u10m(i)
593            IF (pctsrf(i, nsrf) .LT. epsfra) v10m(i, nsrf) = zv10m(i)               v10m_srf(i, nsrf) = v10m(i)
594            IF (pctsrf(i, nsrf) .LT. epsfra) ffonte(i, nsrf) = zxffonte(i)               ffonte(i, nsrf) = zxffonte(i)
595            IF (pctsrf(i, nsrf) .LT. epsfra)  &               pblh(i, nsrf) = s_pblh(i)
596                 fqcalving(i, nsrf) = zxfqcalving(i)               plcl(i, nsrf) = s_lcl(i)
597            IF (pctsrf(i, nsrf) .LT. epsfra) pblh(i, nsrf)=s_pblh(i)               capCL(i, nsrf) = s_capCL(i)
598            IF (pctsrf(i, nsrf) .LT. epsfra) plcl(i, nsrf)=s_lcl(i)               oliqCL(i, nsrf) = s_oliqCL(i)
599            IF (pctsrf(i, nsrf) .LT. epsfra) capCL(i, nsrf)=s_capCL(i)               cteiCL(i, nsrf) = s_cteiCL(i)
600            IF (pctsrf(i, nsrf) .LT. epsfra) oliqCL(i, nsrf)=s_oliqCL(i)               pblT(i, nsrf) = s_pblT(i)
601            IF (pctsrf(i, nsrf) .LT. epsfra) cteiCL(i, nsrf)=s_cteiCL(i)               therm(i, nsrf) = s_therm(i)
602            IF (pctsrf(i, nsrf) .LT. epsfra) pblT(i, nsrf)=s_pblT(i)            end IF
           IF (pctsrf(i, nsrf) .LT. epsfra) therm(i, nsrf)=s_therm(i)  
           IF (pctsrf(i, nsrf) .LT. epsfra) trmb1(i, nsrf)=s_trmb1(i)  
           IF (pctsrf(i, nsrf) .LT. epsfra) trmb2(i, nsrf)=s_trmb2(i)  
           IF (pctsrf(i, nsrf) .LT. epsfra) trmb3(i, nsrf)=s_trmb3(i)  
603         ENDDO         ENDDO
604      ENDDO      ENDDO
605    
606      ! Calculer la derive du flux infrarouge      dlw = - 4. * RSIGMA * tsol**3
607    
608      DO i = 1, klon      ! Appeler la convection
609         dlw(i) = - 4.0*RSIGMA*zxtsol(i)**3  
610      ENDDO      if (conv_emanuel) then
611           CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, &
612      ! Appeler la convection (au choix)              d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, &
613                upwd, dnwd, Ma, cape, iflagctrl, clwcon0, pmflxr, da, phi, mp)
614      DO k = 1, llm         snow_con = 0.
615         DO i = 1, klon         mfu = upwd + dnwd
616            conv_q(i, k) = d_q_dyn(i, k)  &  
617                 + d_q_vdf(i, k)/dtime         zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play)
618            conv_t(i, k) = d_t_dyn(i, k)  &         zqsat = zqsat / (1. - retv * zqsat)
619                 + d_t_vdf(i, k)/dtime  
620         ENDDO         ! Properties of convective clouds
621      ENDDO         clwcon0 = fact_cldcon * clwcon0
622      IF (check) THEN         call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &
623         za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)              rnebcon0)
624         WRITE(lunout, *) "avantcon=", za  
625      ENDIF         forall (i = 1:klon) ema_pct(i) = paprs(i, itop_con(i) + 1)
626      zx_ajustq = .FALSE.         mfd = 0.
627      IF (iflag_con == 2) zx_ajustq=.TRUE.         pen_u = 0.
628      IF (zx_ajustq) THEN         pen_d = 0.
629         DO i = 1, klon         pde_d = 0.
630            z_avant(i) = 0.0         pde_u = 0.
631         ENDDO      else
632         DO k = 1, llm         conv_q = d_q_dyn + d_q_vdf / dtphys
633            DO i = 1, klon         conv_t = d_t_dyn + d_t_vdf / dtphys
634               z_avant(i) = z_avant(i) + (q_seri(i, k)+ql_seri(i, k)) &         z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)
635                    *(paprs(i, k)-paprs(i, k+1))/RG         CALL conflx(paprs, play, t_seri(:, llm:1:- 1), q_seri(:, llm:1:- 1), &
636            ENDDO              conv_t, conv_q, - evap, omega, d_t_con, d_q_con, rain_con, &
637         ENDDO              snow_con, mfu(:, llm:1:- 1), mfd(:, llm:1:- 1), pen_u, pde_u, &
638      ENDIF              pen_d, pde_d, kcbot, kctop, kdtop, pmflxr, pmflxs)
     IF (iflag_con == 1) THEN  
        stop 'reactiver le call conlmd dans physiq.F'  
     ELSE IF (iflag_con == 2) THEN  
        CALL conflx(dtime, paprs, pplay, t_seri, q_seri, &  
             conv_t, conv_q, zxfluxq(1, 1), omega, &  
             d_t_con, d_q_con, rain_con, snow_con, &  
             pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, &  
             kcbot, kctop, kdtop, pmflxr, pmflxs)  
639         WHERE (rain_con < 0.) rain_con = 0.         WHERE (rain_con < 0.) rain_con = 0.
640         WHERE (snow_con < 0.) snow_con = 0.         WHERE (snow_con < 0.) snow_con = 0.
641         DO i = 1, klon         ibas_con = llm + 1 - kcbot
642            ibas_con(i) = llm+1 - kcbot(i)         itop_con = llm + 1 - kctop
643            itop_con(i) = llm+1 - kctop(i)      END if
        ENDDO  
     ELSE IF (iflag_con >= 3) THEN  
        ! nb of tracers for the KE convection:  
        ! MAF la partie traceurs est faite dans phytrac  
        ! on met ntra=1 pour limiter les appels mais on peut  
        ! supprimer les calculs / ftra.  
        ntra = 1  
        ! Schema de convection modularise et vectorise:  
        ! (driver commun aux versions 3 et 4)  
   
        IF (ok_cvl) THEN ! new driver for convectL  
   
           CALL concvl (iflag_con, &  
                dtime, paprs, pplay, t_seri, q_seri, &  
                u_seri, v_seri, tr_seri, ntra, &  
                ema_work1, ema_work2, &  
                d_t_con, d_q_con, d_u_con, d_v_con, d_tr, &  
                rain_con, snow_con, ibas_con, itop_con, &  
                upwd, dnwd, dnwd0, &  
                Ma, cape, tvp, iflagctrl, &  
                pbase, bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr, qcondc, wd, &  
                pmflxr, pmflxs, &  
                da, phi, mp)  
   
           clwcon0=qcondc  
           pmfu(:, :)=upwd(:, :)+dnwd(:, :)  
   
        ELSE ! ok_cvl  
           ! MAF conema3 ne contient pas les traceurs  
           CALL conema3 (dtime, &  
                paprs, pplay, t_seri, q_seri, &  
                u_seri, v_seri, tr_seri, ntra, &  
                ema_work1, ema_work2, &  
                d_t_con, d_q_con, d_u_con, d_v_con, d_tr, &  
                rain_con, snow_con, ibas_con, itop_con, &  
                upwd, dnwd, dnwd0, bas, top, &  
                Ma, cape, tvp, rflag, &  
                pbase &  
                , bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr &  
                , clwcon0)  
   
        ENDIF ! ok_cvl  
   
        IF (.NOT. ok_gust) THEN  
           do i = 1, klon  
              wd(i)=0.0  
           enddo  
        ENDIF  
   
        ! Calcul des proprietes des nuages convectifs  
   
        DO k = 1, llm  
           DO i = 1, klon  
              zx_t = t_seri(i, k)  
              IF (thermcep) THEN  
                 zdelta = MAX(0., SIGN(1., rtt-zx_t))  
                 zx_qs  = r2es * FOEEW(zx_t, zdelta)/pplay(i, k)  
                 zx_qs  = MIN(0.5, zx_qs)  
                 zcor   = 1./(1.-retv*zx_qs)  
                 zx_qs  = zx_qs*zcor  
              ELSE  
                 IF (zx_t.LT.t_coup) THEN  
                    zx_qs = qsats(zx_t)/pplay(i, k)  
                 ELSE  
                    zx_qs = qsatl(zx_t)/pplay(i, k)  
                 ENDIF  
              ENDIF  
              zqsat(i, k)=zx_qs  
           ENDDO  
        ENDDO  
   
        !   calcul des proprietes des nuages convectifs  
        clwcon0(:, :)=fact_cldcon*clwcon0(:, :)  
        call clouds_gno &  
             (klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, rnebcon0)  
     ELSE  
        WRITE(lunout, *) "iflag_con non-prevu", iflag_con  
        stop 1  
     ENDIF  
644    
645      DO k = 1, llm      DO k = 1, llm
646         DO i = 1, klon         DO i = 1, klon
# Line 1439  contains Line 651  contains
651         ENDDO         ENDDO
652      ENDDO      ENDDO
653    
654      IF (if_ebil >= 2) THEN      IF (.not. conv_emanuel) THEN
655         ztit='after convect'         z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)
656         CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtime &         z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil &  
             , zero_v, zero_v, zero_v, zero_v, zero_v &  
             , zero_v, rain_con, snow_con, ztsol &  
             , d_h_vcol, d_qt, d_ec &  
             , fs_bound, fq_bound )  
     END IF  
   
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        WRITE(lunout, *)"aprescon=", za  
        zx_t = 0.0  
        za = 0.0  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_con(i)+ &  
                snow_con(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtime  
        WRITE(lunout, *)"Precip=", zx_t  
     ENDIF  
     IF (zx_ajustq) THEN  
        DO i = 1, klon  
           z_apres(i) = 0.0  
        ENDDO  
        DO k = 1, llm  
           DO i = 1, klon  
              z_apres(i) = z_apres(i) + (q_seri(i, k)+ql_seri(i, k)) &  
                   *(paprs(i, k)-paprs(i, k+1))/RG  
           ENDDO  
        ENDDO  
        DO i = 1, klon  
           z_factor(i) = (z_avant(i)-(rain_con(i)+snow_con(i))*dtime) &  
                /z_apres(i)  
        ENDDO  
657         DO k = 1, llm         DO k = 1, llm
658            DO i = 1, klon            DO i = 1, klon
659               IF (z_factor(i).GT.(1.0+1.0E-08) .OR. &               IF (z_factor(i) > 1. + 1E-8 .OR. z_factor(i) < 1. - 1E-8) THEN
                   z_factor(i).LT.(1.0-1.0E-08)) THEN  
660                  q_seri(i, k) = q_seri(i, k) * z_factor(i)                  q_seri(i, k) = q_seri(i, k) * z_factor(i)
661               ENDIF               ENDIF
662            ENDDO            ENDDO
663         ENDDO         ENDDO
664      ENDIF      ENDIF
     zx_ajustq=.FALSE.  
665    
666      ! Convection seche (thermiques ou ajustement)      ! Convection s\`eche (thermiques ou ajustement)
667    
668      d_t_ajs(:, :)=0.      d_t_ajs = 0.
669      d_u_ajs(:, :)=0.      d_u_ajs = 0.
670      d_v_ajs(:, :)=0.      d_v_ajs = 0.
671      d_q_ajs(:, :)=0.      d_q_ajs = 0.
672      fm_therm(:, :)=0.      fm_therm = 0.
673      entr_therm(:, :)=0.      entr_therm = 0.
674    
675      IF(prt_level>9)WRITE(lunout, *) &      if (iflag_thermals == 0) then
676           'AVANT LA CONVECTION SECHE, iflag_thermals=' &         ! Ajustement sec
677           , iflag_thermals, '   nsplit_thermals=', nsplit_thermals         CALL ajsec(paprs, play, t_seri, q_seri, d_t_ajs, d_q_ajs)
678      if(iflag_thermals.lt.0) then         t_seri = t_seri + d_t_ajs
679         !  Rien         q_seri = q_seri + d_q_ajs
        IF(prt_level>9)WRITE(lunout, *)'pas de convection'  
     else if(iflag_thermals == 0) then  
        !  Ajustement sec  
        IF(prt_level>9)WRITE(lunout, *)'ajsec'  
        CALL ajsec(paprs, pplay, t_seri, q_seri, d_t_ajs, d_q_ajs)  
        t_seri(:, :) = t_seri(:, :) + d_t_ajs(:, :)  
        q_seri(:, :) = q_seri(:, :) + d_q_ajs(:, :)  
680      else      else
681         !  Thermiques         call calltherm(play, paprs, pphi, u_seri, v_seri, t_seri, q_seri, &
682         IF(prt_level>9)WRITE(lunout, *)'JUSTE AVANT, iflag_thermals=' &              d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)
             , iflag_thermals, '   nsplit_thermals=', nsplit_thermals  
        call calltherm(pdtphys &  
             , pplay, paprs, pphi &  
             , u_seri, v_seri, t_seri, q_seri &  
             , d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs &  
             , fm_therm, entr_therm)  
683      endif      endif
684    
685      IF (if_ebil >= 2) THEN      ! Caclul des ratqs
        ztit='after dry_adjust'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtime &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
     END IF  
686    
     !  Caclul des ratqs  
   
     !   ratqs convectifs a l'ancienne en fonction de q(z=0)-q / q  
     !   on ecrase le tableau ratqsc calcule par clouds_gno  
687      if (iflag_cldcon == 1) then      if (iflag_cldcon == 1) then
688         do k=1, llm         ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q
689            do i=1, klon         ! on \'ecrase le tableau ratqsc calcul\'e par clouds_gno
690           do k = 1, llm
691              do i = 1, klon
692               if(ptconv(i, k)) then               if(ptconv(i, k)) then
693                  ratqsc(i, k)=ratqsbas &                  ratqsc(i, k) = ratqsbas + fact_cldcon &
694                       +fact_cldcon*(q_seri(i, 1)-q_seri(i, k))/q_seri(i, k)                       * (q_seri(i, 1) - q_seri(i, k)) / q_seri(i, k)
695               else               else
696                  ratqsc(i, k)=0.                  ratqsc(i, k) = 0.
697               endif               endif
698            enddo            enddo
699         enddo         enddo
700      endif      endif
701    
702      !   ratqs stables      ! ratqs stables
703      do k=1, llm      do k = 1, llm
704         do i=1, klon         do i = 1, klon
705            ratqss(i, k)=ratqsbas+(ratqshaut-ratqsbas)* &            ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &
706                 min((paprs(i, 1)-pplay(i, k))/(paprs(i, 1)-30000.), 1.)                 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)
707         enddo         enddo
708      enddo      enddo
709    
710      !  ratqs final      ! ratqs final
711      if (iflag_cldcon == 1 .or.iflag_cldcon == 2) then      if (iflag_cldcon == 1 .or. iflag_cldcon == 2) then
712         !   les ratqs sont une conbinaison de ratqss et ratqsc         ! les ratqs sont une conbinaison de ratqss et ratqsc
713         !   ratqs final         ! ratqs final
714         !   1e4 (en gros 3 heures), en dur pour le moment, est le temps de         ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de
715         !   relaxation des ratqs         ! relaxation des ratqs
716         facteur=exp(-pdtphys*facttemps)         ratqs = max(ratqs * exp(- dtphys * facttemps), ratqss)
717         ratqs(:, :)=max(ratqs(:, :)*facteur, ratqss(:, :))         ratqs = max(ratqs, ratqsc)
        ratqs(:, :)=max(ratqs(:, :), ratqsc(:, :))  
718      else      else
719         !   on ne prend que le ratqs stable pour fisrtilp         ! on ne prend que le ratqs stable pour fisrtilp
720         ratqs(:, :)=ratqss(:, :)         ratqs = ratqss
721      endif      endif
722    
723      ! Appeler le processus de condensation a grande echelle      CALL fisrtilp(paprs, play, t_seri, q_seri, ptconv, ratqs, d_t_lsc, &
724      ! et le processus de precipitation           d_q_lsc, d_ql_lsc, rneb, cldliq, rain_lsc, snow_lsc, pfrac_impa, &
725      CALL fisrtilp(dtime, paprs, pplay, &           pfrac_nucl, pfrac_1nucl, frac_impa, frac_nucl, prfl, psfl, rhcl)
          t_seri, q_seri, ptconv, ratqs, &  
          d_t_lsc, d_q_lsc, d_ql_lsc, rneb, cldliq, &  
          rain_lsc, snow_lsc, &  
          pfrac_impa, pfrac_nucl, pfrac_1nucl, &  
          frac_impa, frac_nucl, &  
          prfl, psfl, rhcl)  
726    
727      WHERE (rain_lsc < 0) rain_lsc = 0.      WHERE (rain_lsc < 0) rain_lsc = 0.
728      WHERE (snow_lsc < 0) snow_lsc = 0.      WHERE (snow_lsc < 0) snow_lsc = 0.
# Line 1588  contains Line 735  contains
735            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)
736         ENDDO         ENDDO
737      ENDDO      ENDDO
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        WRITE(lunout, *)"apresilp=", za  
        zx_t = 0.0  
        za = 0.0  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_lsc(i) &  
                + snow_lsc(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtime  
        WRITE(lunout, *)"Precip=", zx_t  
     ENDIF  
738    
739      IF (if_ebil >= 2) THEN      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
        ztit='after fisrt'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtime &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil &  
             , zero_v, zero_v, zero_v, zero_v, zero_v &  
             , zero_v, rain_lsc, snow_lsc, ztsol &  
             , d_h_vcol, d_qt, d_ec &  
             , fs_bound, fq_bound )  
     END IF  
   
     !  PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT  
740    
741      ! 1. NUAGES CONVECTIFS      ! 1. NUAGES CONVECTIFS
742    
743      IF (iflag_cldcon.le.-1) THEN ! seulement pour Tiedtke      IF (iflag_cldcon <= - 1) THEN
744         snow_tiedtke=0.         ! seulement pour Tiedtke
745         if (iflag_cldcon == -1) then         snow_tiedtke = 0.
746            rain_tiedtke=rain_con         if (iflag_cldcon == - 1) then
747              rain_tiedtke = rain_con
748         else         else
749            rain_tiedtke=0.            rain_tiedtke = 0.
750            do k=1, llm            do k = 1, llm
751               do i=1, klon               do i = 1, klon
752                  if (d_q_con(i, k).lt.0.) then                  if (d_q_con(i, k) < 0.) then
753                     rain_tiedtke(i)=rain_tiedtke(i)-d_q_con(i, k)/pdtphys &                     rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k) / dtphys &
754                          *(paprs(i, k)-paprs(i, k+1))/rg                          * zmasse(i, k)
755                  endif                  endif
756               enddo               enddo
757            enddo            enddo
758         endif         endif
759    
760         ! Nuages diagnostiques pour Tiedtke         ! Nuages diagnostiques pour Tiedtke
761         CALL diagcld1(paprs, pplay, &         CALL diagcld1(paprs, play, rain_tiedtke, snow_tiedtke, ibas_con, &
762              rain_tiedtke, snow_tiedtke, ibas_con, itop_con, &              itop_con, diafra, dialiq)
             diafra, dialiq)  
763         DO k = 1, llm         DO k = 1, llm
764            DO i = 1, klon            DO i = 1, klon
765               IF (diafra(i, k).GT.cldfra(i, k)) THEN               IF (diafra(i, k) > cldfra(i, k)) THEN
766                  cldliq(i, k) = dialiq(i, k)                  cldliq(i, k) = dialiq(i, k)
767                  cldfra(i, k) = diafra(i, k)                  cldfra(i, k) = diafra(i, k)
768               ENDIF               ENDIF
769            ENDDO            ENDDO
770         ENDDO         ENDDO
   
771      ELSE IF (iflag_cldcon == 3) THEN      ELSE IF (iflag_cldcon == 3) THEN
772         !  On prend pour les nuages convectifs le max du calcul de la         ! On prend pour les nuages convectifs le maximum du calcul de
773         !  convection et du calcul du pas de temps précédent diminué d'un facteur         ! la convection et du calcul du pas de temps pr\'ec\'edent diminu\'e
774         !  facttemps         ! d'un facteur facttemps.
775         facteur = pdtphys *facttemps         facteur = dtphys * facttemps
776         do k=1, llm         do k = 1, llm
777            do i=1, klon            do i = 1, klon
778               rnebcon(i, k)=rnebcon(i, k)*facteur               rnebcon(i, k) = rnebcon(i, k) * facteur
779               if (rnebcon0(i, k)*clwcon0(i, k).gt.rnebcon(i, k)*clwcon(i, k)) &               if (rnebcon0(i, k) * clwcon0(i, k) &
780                    then                    > rnebcon(i, k) * clwcon(i, k)) then
781                  rnebcon(i, k)=rnebcon0(i, k)                  rnebcon(i, k) = rnebcon0(i, k)
782                  clwcon(i, k)=clwcon0(i, k)                  clwcon(i, k) = clwcon0(i, k)
783               endif               endif
784            enddo            enddo
785         enddo         enddo
786    
787         !   On prend la somme des fractions nuageuses et des contenus en eau         ! On prend la somme des fractions nuageuses et des contenus en eau
788         cldfra(:, :)=min(max(cldfra(:, :), rnebcon(:, :)), 1.)         cldfra = min(max(cldfra, rnebcon), 1.)
789         cldliq(:, :)=cldliq(:, :)+rnebcon(:, :)*clwcon(:, :)         cldliq = cldliq + rnebcon * clwcon
   
790      ENDIF      ENDIF
791    
792      ! 2. NUAGES STARTIFORMES      ! 2. Nuages stratiformes
793    
794      IF (ok_stratus) THEN      IF (ok_stratus) THEN
795         CALL diagcld2(paprs, pplay, t_seri, q_seri, diafra, dialiq)         CALL diagcld2(paprs, play, t_seri, q_seri, diafra, dialiq)
796         DO k = 1, llm         DO k = 1, llm
797            DO i = 1, klon            DO i = 1, klon
798               IF (diafra(i, k).GT.cldfra(i, k)) THEN               IF (diafra(i, k) > cldfra(i, k)) THEN
799                  cldliq(i, k) = dialiq(i, k)                  cldliq(i, k) = dialiq(i, k)
800                  cldfra(i, k) = diafra(i, k)                  cldfra(i, k) = diafra(i, k)
801               ENDIF               ENDIF
# Line 1684  contains Line 804  contains
804      ENDIF      ENDIF
805    
806      ! Precipitation totale      ! Precipitation totale
   
807      DO i = 1, klon      DO i = 1, klon
808         rain_fall(i) = rain_con(i) + rain_lsc(i)         rain_fall(i) = rain_con(i) + rain_lsc(i)
809         snow_fall(i) = snow_con(i) + snow_lsc(i)         snow_fall(i) = snow_con(i) + snow_lsc(i)
810      ENDDO      ENDDO
811    
812      IF (if_ebil >= 2) THEN      ! Humidit\'e relative pour diagnostic :
        ztit="after diagcld"  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtime &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
     END IF  
   
     ! Calculer l'humidite relative pour diagnostique  
   
813      DO k = 1, llm      DO k = 1, llm
814         DO i = 1, klon         DO i = 1, klon
815            zx_t = t_seri(i, k)            zx_t = t_seri(i, k)
816            IF (thermcep) THEN            zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t) / play(i, k)
817               zdelta = MAX(0., SIGN(1., rtt-zx_t))            zx_qs = MIN(0.5, zx_qs)
818               zx_qs  = r2es * FOEEW(zx_t, zdelta)/pplay(i, k)            zcor = 1. / (1. - retv * zx_qs)
819               zx_qs  = MIN(0.5, zx_qs)            zx_qs = zx_qs * zcor
820               zcor   = 1./(1.-retv*zx_qs)            zx_rh(i, k) = q_seri(i, k) / zx_qs
821               zx_qs  = zx_qs*zcor            zqsat(i, k) = zx_qs
           ELSE  
              IF (zx_t.LT.t_coup) THEN  
                 zx_qs = qsats(zx_t)/pplay(i, k)  
              ELSE  
                 zx_qs = qsatl(zx_t)/pplay(i, k)  
              ENDIF  
           ENDIF  
           zx_rh(i, k) = q_seri(i, k)/zx_qs  
           zqsat(i, k)=zx_qs  
822         ENDDO         ENDDO
823      ENDDO      ENDDO
     !jq - introduce the aerosol direct and first indirect radiative forcings  
     !jq - Johannes Quaas, 27/11/2003 (quaas@lmd.jussieu.fr)  
     IF (ok_ade.OR.ok_aie) THEN  
        ! Get sulfate aerosol distribution  
        CALL readsulfate(rjourvrai, debut, sulfate)  
        CALL readsulfate_preind(rjourvrai, debut, sulfate_pi)  
   
        ! Calculate aerosol optical properties (Olivier Boucher)  
        CALL aeropt(pplay, paprs, t_seri, sulfate, rhcl, &  
             tau_ae, piz_ae, cg_ae, aerindex)  
     ELSE  
        tau_ae(:, :, :)=0.0  
        piz_ae(:, :, :)=0.0  
        cg_ae(:, :, :)=0.0  
     ENDIF  
   
     ! Calculer les parametres optiques des nuages et quelques  
     ! parametres pour diagnostiques:  
824    
825        ! Param\`etres optiques des nuages et quelques param\`etres pour
826        ! diagnostics :
827      if (ok_newmicro) then      if (ok_newmicro) then
828         CALL newmicro (paprs, pplay, ok_newmicro, &         CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &
829              t_seri, cldliq, cldfra, cldtau, cldemi, &              cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc)
             cldh, cldl, cldm, cldt, cldq, &  
             flwp, fiwp, flwc, fiwc, &  
             ok_aie, &  
             sulfate, sulfate_pi, &  
             bl95_b0, bl95_b1, &  
             cldtaupi, re, fl)  
830      else      else
831         CALL nuage (paprs, pplay, &         CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &
832              t_seri, cldliq, cldfra, cldtau, cldemi, &              cldl, cldm, cldt, cldq)
             cldh, cldl, cldm, cldt, cldq, &  
             ok_aie, &  
             sulfate, sulfate_pi, &  
             bl95_b0, bl95_b1, &  
             cldtaupi, re, fl)  
   
833      endif      endif
834    
835      ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.      IF (MOD(itap - 1, radpas) == 0) THEN
836           wo = ozonecm(REAL(julien), paprs)
837      IF (MOD(itaprad, radpas) == 0) THEN         albsol = sum(falbe * pctsrf, dim = 2)
838         DO i = 1, klon         CALL radlwsw(dist, mu0, fract, paprs, play, tsol, albsol, t_seri, &
839            albsol(i) = falbe(i, is_oce) * pctsrf(i, is_oce) &              q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, &
840                 + falbe(i, is_lic) * pctsrf(i, is_lic) &              radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, &
841                 + falbe(i, is_ter) * pctsrf(i, is_ter) &              toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, &
842                 + falbe(i, is_sic) * pctsrf(i, is_sic)              swup0, swup, ok_ade, topswad, solswad)
           albsollw(i) = falblw(i, is_oce) * pctsrf(i, is_oce) &  
                + falblw(i, is_lic) * pctsrf(i, is_lic) &  
                + falblw(i, is_ter) * pctsrf(i, is_ter) &  
                + falblw(i, is_sic) * pctsrf(i, is_sic)  
        ENDDO  
        ! nouveau rayonnement (compatible Arpege-IFS):  
        CALL radlwsw(dist, rmu0, fract,  &  
             paprs, pplay, zxtsol, albsol, albsollw, t_seri, q_seri, &  
             wo, &  
             cldfra, cldemi, cldtau, &  
             heat, heat0, cool, cool0, radsol, albpla, &  
             topsw, toplw, solsw, sollw, &  
             sollwdown, &  
             topsw0, toplw0, solsw0, sollw0, &  
             lwdn0, lwdn, lwup0, lwup,  &  
             swdn0, swdn, swup0, swup, &  
             ok_ade, ok_aie, & ! new for aerosol radiative effects  
             tau_ae, piz_ae, cg_ae, &  
             topswad, solswad, &  
             cldtaupi, &  
             topswai, solswai)  
        itaprad = 0  
843      ENDIF      ENDIF
     itaprad = itaprad + 1  
844    
845      ! Ajouter la tendance des rayonnements (tous les pas)      ! Ajouter la tendance des rayonnements (tous les pas)
   
846      DO k = 1, llm      DO k = 1, llm
847         DO i = 1, klon         DO i = 1, klon
848            t_seri(i, k) = t_seri(i, k) &            t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys &
849                 + (heat(i, k)-cool(i, k)) * dtime/86400.                 / 86400.
        ENDDO  
     ENDDO  
   
     IF (if_ebil >= 2) THEN  
        ztit='after rad'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtime &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil &  
             , topsw, toplw, solsw, sollw, zero_v &  
             , zero_v, zero_v, zero_v, ztsol &  
             , d_h_vcol, d_qt, d_ec &  
             , fs_bound, fq_bound )  
     END IF  
   
     ! Calculer l'hydrologie de la surface  
   
     DO i = 1, klon  
        zxqsurf(i) = 0.0  
        zxsnow(i) = 0.0  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxqsurf(i) = zxqsurf(i) + fqsurf(i, nsrf)*pctsrf(i, nsrf)  
           zxsnow(i) = zxsnow(i) + fsnow(i, nsrf)*pctsrf(i, nsrf)  
850         ENDDO         ENDDO
851      ENDDO      ENDDO
852    
853      ! Calculer le bilan du sol et la derive de temperature (couplage)      ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage)
   
854      DO i = 1, klon      DO i = 1, klon
855         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)         bils(i) = radsol(i) + sens(i) + zxfluxlat(i)
856      ENDDO      ENDDO
857    
858      !moddeblott(jan95)      ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille :
     ! Appeler le programme de parametrisation de l'orographie  
     ! a l'echelle sous-maille:  
859    
860      IF (ok_orodr) THEN      IF (ok_orodr) THEN
861           ! S\'election des points pour lesquels le sch\'ema est actif :
862         !  selection des points pour lesquels le shema est actif:         DO i = 1, klon
863         igwd=0            ktest(i) = 0
864         DO i=1, klon            IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN
865            itest(i)=0               ktest(i) = 1
           IF (((zpic(i)-zmea(i)).GT.100.).AND.(zstd(i).GT.10.0)) THEN  
              itest(i)=1  
              igwd=igwd+1  
              idx(igwd)=i  
866            ENDIF            ENDIF
867         ENDDO         ENDDO
868    
869         CALL drag_noro(klon, llm, dtime, paprs, pplay, &         CALL drag_noro(paprs, play, zmea, zstd, zsig, zgam, zthe, zpic, zval, &
870              zmea, zstd, zsig, zgam, zthe, zpic, zval, &              ktest, t_seri, u_seri, v_seri, zulow, zvlow, zustrdr, zvstrdr, &
             igwd, idx, itest, &  
             t_seri, u_seri, v_seri, &  
             zulow, zvlow, zustrdr, zvstrdr, &  
871              d_t_oro, d_u_oro, d_v_oro)              d_t_oro, d_u_oro, d_v_oro)
872    
873         !  ajout des tendances         ! ajout des tendances
874         DO k = 1, llm         DO k = 1, llm
875            DO i = 1, klon            DO i = 1, klon
876               t_seri(i, k) = t_seri(i, k) + d_t_oro(i, k)               t_seri(i, k) = t_seri(i, k) + d_t_oro(i, k)
# Line 1863  contains Line 878  contains
878               v_seri(i, k) = v_seri(i, k) + d_v_oro(i, k)               v_seri(i, k) = v_seri(i, k) + d_v_oro(i, k)
879            ENDDO            ENDDO
880         ENDDO         ENDDO
881        ENDIF
     ENDIF ! fin de test sur ok_orodr  
882    
883      IF (ok_orolf) THEN      IF (ok_orolf) THEN
884           ! S\'election des points pour lesquels le sch\'ema est actif :
885         !  selection des points pour lesquels le shema est actif:         DO i = 1, klon
886         igwd=0            ktest(i) = 0
887         DO i=1, klon            IF (zpic(i) - zmea(i) > 100.) THEN
888            itest(i)=0               ktest(i) = 1
           IF ((zpic(i)-zmea(i)).GT.100.) THEN  
              itest(i)=1  
              igwd=igwd+1  
              idx(igwd)=i  
889            ENDIF            ENDIF
890         ENDDO         ENDDO
891    
892         CALL lift_noro(klon, llm, dtime, paprs, pplay, &         CALL lift_noro(paprs, play, zmea, zstd, zpic, ktest, t_seri, u_seri, &
893              rlat, zmea, zstd, zpic, &              v_seri, zulow, zvlow, zustrli, zvstrli, d_t_lif, d_u_lif, d_v_lif)
             itest, &  
             t_seri, u_seri, v_seri, &  
             zulow, zvlow, zustrli, zvstrli, &  
             d_t_lif, d_u_lif, d_v_lif)  
894    
895         !  ajout des tendances         ! Ajout des tendances :
896         DO k = 1, llm         DO k = 1, llm
897            DO i = 1, klon            DO i = 1, klon
898               t_seri(i, k) = t_seri(i, k) + d_t_lif(i, k)               t_seri(i, k) = t_seri(i, k) + d_t_lif(i, k)
# Line 1894  contains Line 900  contains
900               v_seri(i, k) = v_seri(i, k) + d_v_lif(i, k)               v_seri(i, k) = v_seri(i, k) + d_v_lif(i, k)
901            ENDDO            ENDDO
902         ENDDO         ENDDO
903        ENDIF
904    
905      ENDIF ! fin de test sur ok_orolf      CALL aaam_bud(rg, romega, pphis, zustrdr, zustrli, &
906             sum((u_seri - u) / dtphys * zmasse, dim = 2), zvstrdr, &
907      ! STRESS NECESSAIRES: TOUTE LA PHYSIQUE           zvstrli, sum((v_seri - v) / dtphys * zmasse, dim = 2), paprs, u, v, &
   
     DO i = 1, klon  
        zustrph(i)=0.  
        zvstrph(i)=0.  
     ENDDO  
     DO k = 1, llm  
        DO i = 1, klon  
           zustrph(i)=zustrph(i)+(u_seri(i, k)-u(i, k))/dtime* &  
                (paprs(i, k)-paprs(i, k+1))/rg  
           zvstrph(i)=zvstrph(i)+(v_seri(i, k)-v(i, k))/dtime* &  
                (paprs(i, k)-paprs(i, k+1))/rg  
        ENDDO  
     ENDDO  
   
     !IM calcul composantes axiales du moment angulaire et couple des montagnes  
   
     CALL aaam_bud (27, klon, llm, rjourvrai, gmtime, &  
          ra, rg, romega, &  
          rlat, rlon, pphis, &  
          zustrdr, zustrli, zustrph, &  
          zvstrdr, zvstrli, zvstrph, &  
          paprs, u, v, &  
908           aam, torsfc)           aam, torsfc)
909    
910      IF (if_ebil >= 2) THEN      ! Calcul des tendances traceurs
911         ztit='after orography'      call phytrac(julien, time, firstcal, lafin, t, paprs, play, mfu, mfd, &
912         CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtime &           pde_u, pen_d, coefh, cdragh, fm_therm, entr_therm, u(:, 1), v(:, 1), &
913              , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay &           ftsol, pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, dnwd, &
914              , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)           tr_seri, zmasse, ncid_startphy)
     END IF  
   
     !AA Installation de l'interface online-offline pour traceurs  
   
     !   Calcul  des tendances traceurs  
   
     call phytrac(rnpb, itap,  julien,  gmtime, debut, lafin, nq-2, &  
          dtime, u, v, t, paprs, pplay, &  
          pmfu,  pmfd,  pen_u,  pde_u,  pen_d,  pde_d, &  
          ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, &  
          pctsrf, frac_impa,  frac_nucl, &  
          presnivs, pphis, pphi, albsol, qx(1, 1, 1),  &  
          rhcl, cldfra,  rneb,  diafra,  cldliq,  &  
          itop_con, ibas_con, pmflxr, pmflxs, &  
          prfl, psfl, da, phi, mp, upwd, dnwd, &  
          tr_seri)  
   
     IF (offline) THEN  
   
        print*, 'Attention on met a 0 les thermiques pour phystoke'  
        call phystokenc(pdtphys, rlon, rlat, &  
             t, pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, &  
             fm_therm, entr_therm, &  
             ycoefh, yu1, yv1, ftsol, pctsrf, &  
             frac_impa, frac_nucl, &  
             pphis, airephy, dtime, itap)  
   
     ENDIF  
915    
916      ! Calculer le transport de l'eau et de l'energie (diagnostique)      ! Calculer le transport de l'eau et de l'energie (diagnostique)
917        CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq)
918    
919      CALL transp (paprs, zxtsol, &      ! diag. bilKP
          t_seri, q_seri, u_seri, v_seri, zphi, &  
          ve, vq, ue, uq)  
   
     !IM diag. bilKP  
920    
921      CALL transp_lay (paprs, zxtsol, &      CALL transp_lay(paprs, t_seri, q_seri, u_seri, v_seri, zphi, &
          t_seri, q_seri, u_seri, v_seri, zphi, &  
922           ve_lay, vq_lay, ue_lay, uq_lay)           ve_lay, vq_lay, ue_lay, uq_lay)
923    
924      ! Accumuler les variables a stocker dans les fichiers histoire:      ! Accumuler les variables a stocker dans les fichiers histoire:
925    
926      !+jld ec_conser      ! conversion Ec en énergie thermique
927      DO k = 1, llm      DO k = 1, llm
928         DO i = 1, klon         DO i = 1, klon
929            ZRCPD = RCPD*(1.0+RVTMP2*q_seri(i, k))            d_t_ec(i, k) = 0.5 / (RCPD * (1. + RVTMP2 * q_seri(i, k))) &
930            d_t_ec(i, k)=0.5/ZRCPD &                 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)
931                 *(u(i, k)**2+v(i, k)**2-u_seri(i, k)**2-v_seri(i, k)**2)            t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)
932            t_seri(i, k)=t_seri(i, k)+d_t_ec(i, k)            d_t_ec(i, k) = d_t_ec(i, k) / dtphys
           d_t_ec(i, k) = d_t_ec(i, k)/dtime  
933         END DO         END DO
934      END DO      END DO
     !-jld ec_conser  
     IF (if_ebil >= 1) THEN  
        ztit='after physic'  
        CALL diagetpq(airephy, ztit, ip_ebil, 1, 1, dtime &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
        !     Comme les tendances de la physique sont ajoute dans la dynamique,  
        !     on devrait avoir que la variation d'entalpie par la dynamique  
        !     est egale a la variation de la physique au pas de temps precedent.  
        !     Donc la somme de ces 2 variations devrait etre nulle.  
        call diagphy(airephy, ztit, ip_ebil &  
             , topsw, toplw, solsw, sollw, sens &  
             , evap, rain_fall, snow_fall, ztsol &  
             , d_h_vcol, d_qt, d_ec &  
             , fs_bound, fq_bound )  
   
        d_h_vcol_phy=d_h_vcol  
   
     END IF  
   
     !   SORTIES  
935    
936      !IM Interpolation sur les niveaux de pression du NMC      ! SORTIES
     call calcul_STDlev  
937    
938      !cc prw = eau precipitable      ! prw = eau precipitable
939      DO i = 1, klon      DO i = 1, klon
940         prw(i) = 0.         prw(i) = 0.
941         DO k = 1, llm         DO k = 1, llm
942            prw(i) = prw(i) + &            prw(i) = prw(i) + q_seri(i, k) * zmasse(i, k)
                q_seri(i, k)*(paprs(i, k)-paprs(i, k+1))/RG  
943         ENDDO         ENDDO
944      ENDDO      ENDDO
945    
     !IM initialisation + calculs divers diag AMIP2  
     call calcul_divers  
   
946      ! Convertir les incrementations en tendances      ! Convertir les incrementations en tendances
947    
948      DO k = 1, llm      DO k = 1, llm
949         DO i = 1, klon         DO i = 1, klon
950            d_u(i, k) = ( u_seri(i, k) - u(i, k) ) / dtime            d_u(i, k) = (u_seri(i, k) - u(i, k)) / dtphys
951            d_v(i, k) = ( v_seri(i, k) - v(i, k) ) / dtime            d_v(i, k) = (v_seri(i, k) - v(i, k)) / dtphys
952            d_t(i, k) = ( t_seri(i, k)-t(i, k) ) / dtime            d_t(i, k) = (t_seri(i, k) - t(i, k)) / dtphys
953            d_qx(i, k, ivap) = ( q_seri(i, k) - qx(i, k, ivap) ) / dtime            d_qx(i, k, ivap) = (q_seri(i, k) - qx(i, k, ivap)) / dtphys
954            d_qx(i, k, iliq) = ( ql_seri(i, k) - qx(i, k, iliq) ) / dtime            d_qx(i, k, iliq) = (ql_seri(i, k) - qx(i, k, iliq)) / dtphys
955         ENDDO         ENDDO
956      ENDDO      ENDDO
957    
958      IF (nq >= 3) THEN      DO iq = 3, nqmx
959         DO iq = 3, nq         DO k = 1, llm
960            DO  k = 1, llm            DO i = 1, klon
961               DO  i = 1, klon               d_qx(i, k, iq) = (tr_seri(i, k, iq - 2) - qx(i, k, iq)) / dtphys
                 d_qx(i, k, iq) = ( tr_seri(i, k, iq-2) - qx(i, k, iq) ) / dtime  
              ENDDO  
962            ENDDO            ENDDO
963         ENDDO         ENDDO
964      ENDIF      ENDDO
965    
966      ! Sauvegarder les valeurs de t et q a la fin de la physique:      ! Sauvegarder les valeurs de t et q a la fin de la physique:
   
967      DO k = 1, llm      DO k = 1, llm
968         DO i = 1, klon         DO i = 1, klon
969            t_ancien(i, k) = t_seri(i, k)            t_ancien(i, k) = t_seri(i, k)
# Line 2048  contains Line 971  contains
971         ENDDO         ENDDO
972      ENDDO      ENDDO
973    
974      !   Ecriture des sorties      CALL histwrite_phy("phis", pphis)
975        CALL histwrite_phy("aire", airephy)
976      call write_histhf      CALL histwrite_phy("psol", paprs(:, 1))
977      call write_histday      CALL histwrite_phy("precip", rain_fall + snow_fall)
978      call write_histins      CALL histwrite_phy("plul", rain_lsc + snow_lsc)
979        CALL histwrite_phy("pluc", rain_con + snow_con)
980      ! Si c'est la fin, il faut conserver l'etat de redemarrage      CALL histwrite_phy("tsol", tsol)
981        CALL histwrite_phy("t2m", zt2m)
982      IF (lafin) THEN      CALL histwrite_phy("q2m", zq2m)
983         itau_phy = itau_phy + itap      CALL histwrite_phy("u10m", u10m)
984         CALL phyredem ("restartphy.nc", dtime, radpas, &      CALL histwrite_phy("v10m", v10m)
985              rlat, rlon, pctsrf, ftsol, ftsoil, &      CALL histwrite_phy("snow", snow_fall)
986              tslab, seaice,  & !IM "slab" ocean      CALL histwrite_phy("cdrm", cdragm)
987              fqsurf, qsol, &      CALL histwrite_phy("cdrh", cdragh)
988              fsnow, falbe, falblw, fevap, rain_fall, snow_fall, &      CALL histwrite_phy("topl", toplw)
989              solsw, sollwdown, dlw, &      CALL histwrite_phy("evap", evap)
990              radsol, frugs, agesno, &      CALL histwrite_phy("sols", solsw)
991              zmea, zstd, zsig, zgam, zthe, zpic, zval, rugoro, &      CALL histwrite_phy("rls", sollw)
992              t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0)      CALL histwrite_phy("solldown", sollwdown)
993      ENDIF      CALL histwrite_phy("bils", bils)
994        CALL histwrite_phy("sens", sens)
995    contains      CALL histwrite_phy("fder", fder)
996        CALL histwrite_phy("dtsvdfo", d_ts(:, is_oce))
997        CALL histwrite_phy("dtsvdft", d_ts(:, is_ter))
998        CALL histwrite_phy("dtsvdfg", d_ts(:, is_lic))
999        CALL histwrite_phy("dtsvdfi", d_ts(:, is_sic))
1000        CALL histwrite_phy("zxfqcalving", sum(fqcalving * pctsrf, dim = 2))
1001        CALL histwrite_phy("albs", albsol)
1002        CALL histwrite_phy("tro3", wo * dobson_u * 1e3 / zmasse / rmo3 * md)
1003        CALL histwrite_phy("rugs", zxrugs)
1004        CALL histwrite_phy("s_pblh", s_pblh)
1005        CALL histwrite_phy("s_pblt", s_pblt)
1006        CALL histwrite_phy("s_lcl", s_lcl)
1007        CALL histwrite_phy("s_capCL", s_capCL)
1008        CALL histwrite_phy("s_oliqCL", s_oliqCL)
1009        CALL histwrite_phy("s_cteiCL", s_cteiCL)
1010        CALL histwrite_phy("s_therm", s_therm)
1011        CALL histwrite_phy("temp", t_seri)
1012        CALL histwrite_phy("vitu", u_seri)
1013        CALL histwrite_phy("vitv", v_seri)
1014        CALL histwrite_phy("geop", zphi)
1015        CALL histwrite_phy("pres", play)
1016        CALL histwrite_phy("dtvdf", d_t_vdf)
1017        CALL histwrite_phy("dqvdf", d_q_vdf)
1018        CALL histwrite_phy("rhum", zx_rh)
1019        CALL histwrite_phy("d_t_ec", d_t_ec)
1020        CALL histwrite_phy("dtsw0", heat0 / 86400.)
1021        CALL histwrite_phy("dtlw0", - cool0 / 86400.)
1022        CALL histwrite_phy("msnow", sum(fsnow * pctsrf, dim = 2))
1023        call histwrite_phy("qsurf", sum(fqsurf * pctsrf, dim = 2))
1024        call histwrite_phy("flat", zxfluxlat)
1025    
1026      subroutine calcul_STDlev      DO nsrf = 1, nbsrf
1027           CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf))
1028        !     From phylmd/calcul_STDlev.h, v 1.1 2005/05/25 13:10:09         CALL histwrite_phy("sens_"//clnsurf(nsrf), flux_t(:, nsrf))
1029           CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf))
1030        !IM on initialise les champs en debut du jour ou du mois         CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf))
1031           CALL histwrite_phy("taux_"//clnsurf(nsrf), flux_u(:, nsrf))
1032           CALL histwrite_phy("tauy_"//clnsurf(nsrf), flux_v(:, nsrf))
1033           CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf))
1034           CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf))
1035           CALL histwrite_phy("u10m_"//clnsurf(nsrf), u10m_srf(:, nsrf))
1036           CALL histwrite_phy("v10m_"//clnsurf(nsrf), v10m_srf(:, nsrf))
1037        END DO
1038    
1039        CALL ini_undefSTD(nlevSTD, itap, &      if (conv_emanuel) then
1040             ecrit_day, ecrit_mth, &         CALL histwrite_phy("ptop", ema_pct)
1041             tnondef, tsumSTD)         CALL histwrite_phy("dnwd0", - mp)
1042        CALL ini_undefSTD(nlevSTD, itap, &      end if
1043             ecrit_day, ecrit_mth, &  
1044             tnondef, usumSTD)      if (ok_instan) call histsync(nid_ins)
1045        CALL ini_undefSTD(nlevSTD, itap, &  
1046             ecrit_day, ecrit_mth, &      IF (lafin) then
1047             tnondef, vsumSTD)         call NF95_CLOSE(ncid_startphy)
1048        CALL ini_undefSTD(nlevSTD, itap, &         CALL phyredem(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
1049             ecrit_day, ecrit_mth, &              rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, agesno, &
1050             tnondef, wsumSTD)              zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, &
1051        CALL ini_undefSTD(nlevSTD, itap, &              rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01)
1052             ecrit_day, ecrit_mth, &      end IF
            tnondef, phisumSTD)  
       CALL ini_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, &  
            tnondef, qsumSTD)  
       CALL ini_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, &  
            tnondef, rhsumSTD)  
       CALL ini_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, &  
            tnondef, uvsumSTD)  
       CALL ini_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, &  
            tnondef, vqsumSTD)  
       CALL ini_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, &  
            tnondef, vTsumSTD)  
       CALL ini_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, &  
            tnondef, wqsumSTD)  
       CALL ini_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, &  
            tnondef, vphisumSTD)  
       CALL ini_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, &  
            tnondef, wTsumSTD)  
       CALL ini_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, &  
            tnondef, u2sumSTD)  
       CALL ini_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, &  
            tnondef, v2sumSTD)  
       CALL ini_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, &  
            tnondef, T2sumSTD)  
   
       !IM on interpole sur les niveaux STD de pression a chaque pas de  
       !temps de la physique  
   
       DO k=1, nlevSTD  
   
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               t_seri, tlevSTD(:, k))  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               u_seri, ulevSTD(:, k))  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               v_seri, vlevSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=paprs(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., zx_tmp_fi3d, rlevSTD(k), &  
               omega, wlevSTD(:, k))  
   
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zphi/RG, philevSTD(:, k))  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               qx(:, :, ivap), qlevSTD(:, k))  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_rh*100., rhlevSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=u_seri(i, l)*v_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, uvSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=v_seri(i, l)*q_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, vqSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=v_seri(i, l)*t_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, vTSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=omega(i, l)*qx(i, l, ivap)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, wqSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=v_seri(i, l)*zphi(i, l)/RG  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, vphiSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=omega(i, l)*t_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, wTSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=u_seri(i, l)*u_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, u2STD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=v_seri(i, l)*v_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, v2STD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=t_seri(i, l)*t_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, T2STD(:, k))  
   
       ENDDO !k=1, nlevSTD  
   
       !IM on somme les valeurs definies a chaque pas de temps de la physique ou  
       !IM toutes les 6 heures  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.TRUE.  
       CALL undefSTD(nlevSTD, itap, tlevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, tsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, ulevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, usumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, vlevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, vsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, wlevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, wsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, philevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, phisumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, qlevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, qsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, rhlevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, rhsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, uvSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, uvsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, vqSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, vqsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, vTSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, vTsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, wqSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, wqsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, vphiSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, vphisumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, wTSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, wTsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, u2STD, &  
            ecrit_hf, &  
            oknondef, tnondef, u2sumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, v2STD, &  
            ecrit_hf, &  
            oknondef, tnondef, v2sumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, T2STD, &  
            ecrit_hf, &  
            oknondef, tnondef, T2sumSTD)  
   
       !IM on moyenne a la fin du jour ou du mois  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, tsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, usumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, vsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, wsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, phisumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, qsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, rhsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, uvsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, vqsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, vTsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, wqsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, vphisumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, wTsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, u2sumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, v2sumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, T2sumSTD)  
   
       !IM interpolation a chaque pas de temps du SWup(clr) et  
       !SWdn(clr) a 200 hPa  
   
       CALL plevel(klon, klevp1, .true., paprs, 20000., &  
            swdn0, SWdn200clr)  
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            swdn, SWdn200)  
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            swup0, SWup200clr)  
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            swup, SWup200)  
   
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            lwdn0, LWdn200clr)  
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            lwdn, LWdn200)  
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            lwup0, LWup200clr)  
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            lwup, LWup200)  
   
     end SUBROUTINE calcul_STDlev  
   
     !****************************************************  
   
     SUBROUTINE calcul_divers  
   
       ! From phylmd/calcul_divers.h, v 1.1 2005/05/25 13:10:09  
   
       ! initialisations diverses au "debut" du mois  
   
       IF(MOD(itap, ecrit_mth) == 1) THEN  
          DO i=1, klon  
             nday_rain(i)=0.  
          ENDDO  
       ENDIF  
   
       IF(MOD(itap, ecrit_day) == 0) THEN  
          !IM calcul total_rain, nday_rain  
          DO i = 1, klon  
             total_rain(i)=rain_fall(i)+snow_fall(i)    
             IF(total_rain(i).GT.0.) nday_rain(i)=nday_rain(i)+1.  
          ENDDO  
       ENDIF  
   
     End SUBROUTINE calcul_divers  
   
     !***********************************************  
   
     subroutine write_histday  
   
       !     From phylmd/write_histday.h, v 1.3 2005/05/25 13:10:09  
   
       if (ok_journe) THEN  
   
          ndex2d = 0  
          ndex3d = 0  
   
          ! Champs 2D:  
   
          itau_w = itau_phy + itap  
   
          !   FIN ECRITURE DES CHAMPS 3D  
   
          if (ok_sync) then  
             call histsync(nid_day)  
          endif  
   
       ENDIF  
   
     End subroutine write_histday  
   
     !****************************  
   
     subroutine write_histhf  
   
       ! From phylmd/write_histhf.h, v 1.5 2005/05/25 13:10:09  
   
       ndex2d = 0  
       ndex3d = 0  
   
       itau_w = itau_phy + itap  
   
       call write_histhf3d  
   
       IF (ok_sync) THEN  
          call histsync(nid_hf)  
       ENDIF  
   
     end subroutine write_histhf  
   
     !***************************************************************  
   
     subroutine write_histins  
   
       ! From phylmd/write_histins.h, v 1.2 2005/05/25 13:10:09  
   
       real zout  
   
       !--------------------------------------------------  
   
       IF (ok_instan) THEN  
   
          ndex2d = 0  
          ndex3d = 0  
   
          ! Champs 2D:  
   
          zsto = dtime * ecrit_ins  
          zout = dtime * ecrit_ins  
          itau_w = itau_phy + itap  
   
          i = NINT(zout/zsto)  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), pphis, zx_tmp_2d)  
          CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          i = NINT(zout/zsto)  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), airephy, zx_tmp_2d)  
          CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = paprs(i, 1)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "psol", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_fall(i) + snow_fall(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "precip", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_lsc(i) + snow_lsc(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "plul", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_con(i) + snow_con(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "pluc", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zxtsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "tsol", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
          !ccIM  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zt2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "t2m", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zq2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "q2m", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zu10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "u10m", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zv10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "v10m", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), snow_fall, zx_tmp_2d)  
          CALL histwrite(nid_ins, "snow", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), cdragm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrm", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), cdragh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrh", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), toplw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "topl", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), evap, zx_tmp_2d)  
          CALL histwrite(nid_ins, "evap", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), solsw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sols", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "soll", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sollwdown, zx_tmp_2d)  
          CALL histwrite(nid_ins, "solldown", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), bils, zx_tmp_2d)  
          CALL histwrite(nid_ins, "bils", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          zx_tmp_fi2d(1:klon)=-1*sens(1:klon)  
          !     CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sens, zx_tmp_2d)  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sens", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), fder, zx_tmp_2d)  
          CALL histwrite(nid_ins, "fder", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_oce), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfo", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_ter), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdft", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_lic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfg", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_sic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfi", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          DO nsrf = 1, nbsrf  
             !XXX  
             zx_tmp_fi2d(1 : klon) = pctsrf( 1 : klon, nsrf)*100.  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "pourc_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = pctsrf( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "fract_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxt( 1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "sens_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxlat( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "lat_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = ftsol( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tsol_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxu( 1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "taux_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxv( 1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tauy_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = frugs( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "rugs_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = falbe( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "albe_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          END DO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), albsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albs", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), albsollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albslw", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zxrugs, zx_tmp_2d)  
          CALL histwrite(nid_ins, "rugs", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          !IM cf. AM 081204 BEG  
   
          !HBTM2  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_pblh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblh", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_pblt, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblt", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_lcl, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_lcl", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_capCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_capCL", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_oliqCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_oliqCL", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_cteiCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_cteiCL", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_therm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_therm", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb1, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb1", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb2, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb2", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb3, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb3", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          !IM cf. AM 081204 END  
   
          ! Champs 3D:  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), t_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "temp", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), u_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitu", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), v_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitv", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), zphi, zx_tmp_3d)  
          CALL histwrite(nid_ins, "geop", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), pplay, zx_tmp_3d)  
          CALL histwrite(nid_ins, "pres", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), d_t_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dtvdf", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), d_q_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          if (ok_sync) then  
             call histsync(nid_ins)  
          endif  
       ENDIF  
   
     end subroutine write_histins  
   
     !****************************************************  
   
     subroutine write_histhf3d  
   
       ! From phylmd/write_histhf3d.h, v 1.2 2005/05/25 13:10:09  
   
       ndex2d = 0  
       ndex3d = 0  
   
       itau_w = itau_phy + itap  
   
       ! Champs 3D:  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), t_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "temp", itau_w, zx_tmp_3d, &  
            iim*(jjm + 1)*llm, ndex3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), qx(1, 1, ivap), zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "ovap", itau_w, zx_tmp_3d, &  
            iim*(jjm + 1)*llm, ndex3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), u_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitu", itau_w, zx_tmp_3d, &  
            iim*(jjm + 1)*llm, ndex3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), v_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitv", itau_w, zx_tmp_3d, &  
            iim*(jjm + 1)*llm, ndex3d)  
   
       if (nbtr >= 3) then  
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), tr_seri(1, 1, 3), &  
               zx_tmp_3d)  
          CALL histwrite(nid_hf3d, "O3", itau_w, zx_tmp_3d, iim*(jjm + 1)*llm, &  
               ndex3d)  
       end if  
   
       if (ok_sync) then  
          call histsync(nid_hf3d)  
       endif  
1053    
1054      end subroutine write_histhf3d      firstcal = .FALSE.
1055    
1056    END SUBROUTINE physiq    END SUBROUTINE physiq
1057    
   !****************************************************  
   
   FUNCTION qcheck(klon, klev, paprs, q, ql, aire)  
   
     ! From phylmd/physiq.F, v 1.22 2006/02/20 09:38:28  
   
     use YOMCST  
     IMPLICIT none  
   
     ! Calculer et imprimer l'eau totale. A utiliser pour verifier  
     ! la conservation de l'eau  
   
     INTEGER klon, klev  
     REAL, intent(in):: paprs(klon, klev+1)  
     real q(klon, klev), ql(klon, klev)  
     REAL aire(klon)  
     REAL qtotal, zx, qcheck  
     INTEGER i, k  
   
     zx = 0.0  
     DO i = 1, klon  
        zx = zx + aire(i)  
     ENDDO  
     qtotal = 0.0  
     DO k = 1, klev  
        DO i = 1, klon  
           qtotal = qtotal + (q(i, k)+ql(i, k)) * aire(i) &  
                *(paprs(i, k)-paprs(i, k+1))/RG  
        ENDDO  
     ENDDO  
   
     qcheck = qtotal/zx  
   
   END FUNCTION qcheck  
   
1058  end module physiq_m  end module physiq_m

Legend:
Removed from v.6  
changed lines
  Added in v.311

  ViewVC Help
Powered by ViewVC 1.1.21