--- trunk/Sources/phylmd/physiq.f 2015/09/29 19:48:59 171 +++ trunk/Sources/phylmd/physiq.f 2016/03/29 15:20:23 189 @@ -19,9 +19,9 @@ use aeropt_m, only: aeropt use ajsec_m, only: ajsec use calltherm_m, only: calltherm - USE clesphys, ONLY: cdhmax, cdmmax, co2_ppm, ecrit_hf, ecrit_ins, & - ecrit_mth, ecrit_reg, ecrit_tra, ksta, ksta_ter, ok_kzmin - USE clesphys2, ONLY: cycle_diurne, iflag_con, nbapp_rad, new_oliq, & + USE clesphys, ONLY: cdhmax, cdmmax, ecrit_hf, ecrit_ins, ecrit_mth, & + ecrit_reg, ecrit_tra, ksta, ksta_ter, ok_kzmin + USE clesphys2, ONLY: cycle_diurne, conv_emanuel, nbapp_rad, new_oliq, & ok_orodr, ok_orolf USE clmain_m, ONLY: clmain use clouds_gno_m, only: clouds_gno @@ -48,6 +48,7 @@ USE ini_histins_m, ONLY: ini_histins use netcdf95, only: NF95_CLOSE use newmicro_m, only: newmicro + use nuage_m, only: nuage USE orbite_m, ONLY: orbite USE ozonecm_m, ONLY: ozonecm USE phyetat0_m, ONLY: phyetat0, rlat, rlon @@ -61,8 +62,8 @@ use readsulfate_preind_m, only: readsulfate_preind use yoegwd, only: sugwd USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt - USE temps, ONLY: itau_phy use transp_m, only: transp + use transp_lay_m, only: transp_lay use unit_nml_m, only: unit_nml USE ymds2ju_m, ONLY: ymds2ju USE yoethf_m, ONLY: r2es, rvtmp2 @@ -107,21 +108,12 @@ LOGICAL:: firstcal = .true. - LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface - PARAMETER (ok_gust = .FALSE.) - LOGICAL, PARAMETER:: check = .FALSE. ! Verifier la conservation du modele en eau LOGICAL, PARAMETER:: ok_stratus = .FALSE. ! Ajouter artificiellement les stratus - ! "slab" ocean - REAL, save:: tslab(klon) ! temperature of ocean slab - REAL, save:: seaice(klon) ! glace de mer (kg/m2) - REAL fluxo(klon) ! flux turbulents ocean-glace de mer - REAL fluxg(klon) ! flux turbulents ocean-atmosphere - logical:: ok_journe = .false., ok_mensuel = .true., ok_instan = .false. ! sorties journalieres, mensuelles et instantanees dans les ! fichiers histday, histmth et histins @@ -153,12 +145,6 @@ REAL lwup0(klon, llm + 1), lwup(klon, llm + 1) SAVE lwdn0, lwdn, lwup0, lwup - ! Amip2 - ! variables a une pression donnee - - integer nlevSTD - PARAMETER(nlevSTD = 17) - ! prw: precipitable water real prw(klon) @@ -167,11 +153,6 @@ REAL flwp(klon), fiwp(klon) REAL flwc(klon, llm), fiwc(klon, llm) - INTEGER kmax, lmax - PARAMETER(kmax = 8, lmax = 8) - INTEGER kmaxm1, lmaxm1 - PARAMETER(kmaxm1 = kmax-1, lmaxm1 = lmax-1) - ! Variables propres a la physique INTEGER, save:: radpas @@ -210,30 +191,18 @@ REAL, save:: zpic(klon) ! Maximum de l'OESM REAL, save:: zval(klon) ! Minimum de l'OESM REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM - REAL zulow(klon), zvlow(klon) + INTEGER igwd, itest(klon) - INTEGER igwd, idx(klon), itest(klon) - - REAL agesno(klon, nbsrf) - SAVE agesno ! age de la neige + REAL, save:: agesno(klon, nbsrf) ! age de la neige + REAL, save:: run_off_lic_0(klon) - REAL run_off_lic_0(klon) - SAVE run_off_lic_0 - !KE43 - ! Variables liees a la convection de K. Emanuel (sb): - - REAL Ma(klon, llm) ! undilute upward mass flux - SAVE Ma - REAL qcondc(klon, llm) ! in-cld water content from convect - SAVE qcondc + ! Variables li\'ees \`a la convection d'Emanuel : + REAL, save:: Ma(klon, llm) ! undilute upward mass flux + REAL, save:: qcondc(klon, llm) ! in-cld water content from convect REAL, save:: sig1(klon, llm), w01(klon, llm) - REAL, save:: wd(klon) - - ! Variables locales pour la couche limite (al1): - - ! Variables locales: + ! Variables pour la couche limite (Alain Lahellec) : REAL cdragh(klon) ! drag coefficient pour T and Q REAL cdragm(klon) ! drag coefficient pour vent @@ -287,12 +256,6 @@ REAL, save:: albsol(klon) ! albedo du sol total visible REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU - ! Declaration des procedures appelees - - EXTERNAL nuage ! calculer les proprietes radiatives - - ! Variables locales - real, save:: clwcon(klon, llm), rnebcon(klon, llm) real, save:: clwcon0(klon, llm), rnebcon0(klon, llm) @@ -346,7 +309,7 @@ REAL, PARAMETER:: t_coup = 234. REAL zphi(klon, llm) - ! cf. AM Variables locales pour la CLA (hbtm2) + ! cf. Anne Mathieu variables pour la couche limite atmosphérique (hbtm) REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA @@ -358,13 +321,13 @@ REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition REAL, SAVE:: trmb3(klon, nbsrf) ! Point Omega - ! Grdeurs de sorties + ! Grandeurs de sorties REAL s_pblh(klon), s_lcl(klon), s_capCL(klon) REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon) REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon) REAL s_trmb3(klon) - ! Variables locales pour la convection de K. Emanuel : + ! Variables pour la convection de K. Emanuel : REAL upwd(klon, llm) ! saturated updraft mass flux REAL dnwd(klon, llm) ! saturated downdraft mass flux @@ -396,9 +359,11 @@ REAL prfl(klon, llm + 1), psfl(klon, llm + 1) INTEGER, save:: ibas_con(klon), itop_con(klon) + real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa REAL rain_con(klon), rain_lsc(klon) - REAL snow_con(klon), snow_lsc(klon) + REAL, save:: snow_con(klon) ! neige (mm / s) + real snow_lsc(klon) REAL d_ts(klon, nbsrf) REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm) @@ -422,7 +387,7 @@ integer:: iflag_cldcon = 1 logical ptconv(klon, llm) - ! Variables locales pour effectuer les appels en s\'erie : + ! Variables pour effectuer les appels en s\'erie : REAL t_seri(klon, llm), q_seri(klon, llm) REAL ql_seri(klon, llm) @@ -469,7 +434,7 @@ REAL sulfate(klon, llm) ! SO4 aerosol concentration (micro g/m3) REAL, save:: sulfate_pi(klon, llm) - ! SO4 aerosol concentration, in micro g/m3, pre-industrial value + ! SO4 aerosol concentration, in \mu g/m3, pre-industrial value REAL cldtaupi(klon, llm) ! cloud optical thickness for pre-industrial (pi) aerosols @@ -501,7 +466,6 @@ SAVE ffonte SAVE fqcalving SAVE rain_con - SAVE snow_con SAVE topswai SAVE topswad SAVE solswai @@ -512,8 +476,7 @@ real zmasse(klon, llm) ! (column-density of mass of air in a cell, in kg m-2) - real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2 - integer, save:: ncid_startphy + integer, save:: ncid_startphy, itau_phy namelist /physiq_nml/ ok_journe, ok_mensuel, ok_instan, fact_cldcon, & facttemps, ok_newmicro, iflag_cldcon, ratqsbas, ratqshaut, if_ebil, & @@ -574,11 +537,11 @@ ! Initialiser les compteurs: frugs = 0. - CALL phyetat0(pctsrf, ftsol, ftsoil, tslab, seaice, fqsurf, qsol, & + CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, & fsnow, falbe, fevap, rain_fall, snow_fall, solsw, sollw, dlw, & radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, & t_ancien, q_ancien, ancien_ok, rnebcon, ratqs, clwcon, & - run_off_lic_0, sig1, w01, ncid_startphy) + run_off_lic_0, sig1, w01, ncid_startphy, itau_phy) ! ATTENTION : il faudra a terme relire q2 dans l'etat initial q2 = 1e-8 @@ -594,7 +557,7 @@ CALL printflag(radpas, ok_journe, ok_instan, ok_region) ! Initialisation pour le sch\'ema de convection d'Emanuel : - IF (iflag_con >= 3) THEN + IF (conv_emanuel) THEN ibas_con = 1 itop_con = 1 ENDIF @@ -614,11 +577,11 @@ ! Initialisation des sorties - call ini_histins(dtphys, ok_instan, nid_ins) + call ini_histins(dtphys, ok_instan, nid_ins, itau_phy) CALL ymds2ju(annee_ref, 1, day_ref, 0., date0) ! Positionner date0 pour initialisation de ORCHIDEE print *, 'physiq date0: ', date0 - CALL phyredem0(lmt_pas) + CALL phyredem0(lmt_pas, itau_phy) ENDIF test_firstcal ! We will modify variables *_seri and we will not touch variables @@ -713,7 +676,7 @@ IF (cycle_diurne) THEN CALL zenang(longi, time, dtphys * radpas, mu0, fract) ELSE - mu0 = -999.999 + mu0 = - 999.999 ENDIF ! Calcul de l'abedo moyen par maille @@ -733,14 +696,14 @@ ! Couche limite: CALL clmain(dtphys, itap, pctsrf, pctsrf_new, t_seri, q_seri, u_seri, & - v_seri, julien, mu0, co2_ppm, ftsol, cdmmax, cdhmax, ksta, ksta_ter, & + v_seri, julien, mu0, ftsol, cdmmax, cdhmax, ksta, ksta_ter, & ok_kzmin, ftsoil, qsol, paprs, play, fsnow, fqsurf, fevap, falbe, & fluxlat, rain_fall, snow_fall, fsolsw, fsollw, fder, rlat, frugs, & firstcal, agesno, rugoro, d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, & fluxt, fluxq, fluxu, fluxv, cdragh, cdragm, q2, dsens, devap, & ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, pblh, capCL, oliqCL, cteiCL, & pblT, therm, trmb1, trmb2, trmb3, plcl, fqcalving, ffonte, & - run_off_lic_0, fluxo, fluxg, tslab) + run_off_lic_0) ! Incr\'ementation des flux @@ -871,32 +834,17 @@ ! Appeler la convection (au choix) - if (iflag_con == 2) then - conv_q = d_q_dyn + d_q_vdf / dtphys - conv_t = d_t_dyn + d_t_vdf / dtphys - z_avant = sum((q_seri + ql_seri) * zmasse, dim=2) - CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:-1), & - q_seri(:, llm:1:-1), conv_t, conv_q, zxfluxq(:, 1), omega, & - d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:-1), & - mfd(:, llm:1:-1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, & - kdtop, pmflxr, pmflxs) - WHERE (rain_con < 0.) rain_con = 0. - WHERE (snow_con < 0.) snow_con = 0. - ibas_con = llm + 1 - kcbot - itop_con = llm + 1 - kctop - else - ! iflag_con >= 3 - + if (conv_emanuel) then da = 0. mp = 0. phi = 0. CALL concvl(dtphys, paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, & - w01, d_t_con, d_q_con, d_u_con, d_v_con, rain_con, snow_con, & - ibas_con, itop_con, upwd, dnwd, dnwd0, Ma, cape, iflagctrl, & - qcondc, wd, pmflxr, pmflxs, da, phi, mp) + w01, d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, & + itop_con, upwd, dnwd, dnwd0, Ma, cape, iflagctrl, qcondc, pmflxr, & + da, phi, mp) + snow_con = 0. clwcon0 = qcondc mfu = upwd + dnwd - IF (.NOT. ok_gust) wd = 0. IF (thermcep) THEN zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play) @@ -910,11 +858,25 @@ call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, & rnebcon0) + forall (i = 1:klon) ema_pct(i) = paprs(i,itop_con(i) + 1) mfd = 0. pen_u = 0. pen_d = 0. pde_d = 0. pde_u = 0. + else + conv_q = d_q_dyn + d_q_vdf / dtphys + conv_t = d_t_dyn + d_t_vdf / dtphys + z_avant = sum((q_seri + ql_seri) * zmasse, dim=2) + CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:- 1), & + q_seri(:, llm:1:- 1), conv_t, conv_q, zxfluxq(:, 1), omega, & + d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:- 1), & + mfd(:, llm:1:- 1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, & + kdtop, pmflxr, pmflxs) + WHERE (rain_con < 0.) rain_con = 0. + WHERE (snow_con < 0.) snow_con = 0. + ibas_con = llm + 1 - kcbot + itop_con = llm + 1 - kctop END if DO k = 1, llm @@ -948,7 +910,7 @@ print *, "Precip = ", zx_t ENDIF - IF (iflag_con == 2) THEN + IF (.not. conv_emanuel) THEN z_apres = sum((q_seri + ql_seri) * zmasse, dim=2) z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres DO k = 1, llm @@ -1066,17 +1028,17 @@ ! 1. NUAGES CONVECTIFS - IF (iflag_cldcon <= -1) THEN + IF (iflag_cldcon <= - 1) THEN ! seulement pour Tiedtke snow_tiedtke = 0. - if (iflag_cldcon == -1) then + if (iflag_cldcon == - 1) then rain_tiedtke = rain_con else rain_tiedtke = 0. do k = 1, llm do i = 1, klon if (d_q_con(i, k) < 0.) then - rain_tiedtke(i) = rain_tiedtke(i)-d_q_con(i, k)/dtphys & + rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k)/dtphys & *zmasse(i, k) endif enddo @@ -1146,7 +1108,7 @@ IF (thermcep) THEN zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t)/play(i, k) zx_qs = MIN(0.5, zx_qs) - zcor = 1./(1.-retv*zx_qs) + zcor = 1./(1. - retv*zx_qs) zx_qs = zx_qs*zcor ELSE IF (zx_t < t_coup) THEN @@ -1204,7 +1166,7 @@ DO k = 1, llm DO i = 1, klon - t_seri(i, k) = t_seri(i, k) + (heat(i, k)-cool(i, k)) * dtphys/86400. + t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys/86400. ENDDO ENDDO @@ -1237,14 +1199,13 @@ ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille : IF (ok_orodr) THEN - ! selection des points pour lesquels le shema est actif: + ! S\'election des points pour lesquels le sch\'ema est actif : igwd = 0 DO i = 1, klon itest(i) = 0 - IF (((zpic(i)-zmea(i)) > 100.).AND.(zstd(i) > 10.)) THEN + IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN itest(i) = 1 igwd = igwd + 1 - idx(igwd) = i ENDIF ENDDO @@ -1267,10 +1228,9 @@ igwd = 0 DO i = 1, klon itest(i) = 0 - IF ((zpic(i) - zmea(i)) > 100.) THEN + IF (zpic(i) - zmea(i) > 100.) THEN itest(i) = 1 igwd = igwd + 1 - idx(igwd) = i ENDIF ENDDO @@ -1314,7 +1274,7 @@ call phytrac(itap, lmt_pas, julien, time, firstcal, lafin, dtphys, t, & paprs, play, mfu, mfd, pde_u, pen_d, ycoefh, fm_therm, entr_therm, & yu1, yv1, ftsol, pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, & - dnwd, tr_seri, zmasse, ncid_startphy, nid_ins) + dnwd, tr_seri, zmasse, ncid_startphy, nid_ins, itau_phy) IF (offline) call phystokenc(dtphys, rlon, rlat, t, mfu, mfd, pen_u, & pde_u, pen_d, pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, & @@ -1325,7 +1285,7 @@ ! diag. bilKP - CALL transp_lay(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, & + CALL transp_lay(paprs, t_seri, q_seri, u_seri, v_seri, zphi, & ve_lay, vq_lay, ue_lay, uq_lay) ! Accumuler les variables a stocker dans les fichiers histoire: @@ -1379,7 +1339,7 @@ DO iq = 3, nqmx DO k = 1, llm DO i = 1, klon - d_qx(i, k, iq) = (tr_seri(i, k, iq-2) - qx(i, k, iq)) / dtphys + d_qx(i, k, iq) = (tr_seri(i, k, iq - 2) - qx(i, k, iq)) / dtphys ENDDO ENDDO ENDDO @@ -1396,7 +1356,7 @@ IF (lafin) then call NF95_CLOSE(ncid_startphy) - CALL phyredem(pctsrf, ftsol, ftsoil, tslab, seaice, fqsurf, qsol, & + CALL phyredem(pctsrf, ftsol, ftsoil, fqsurf, qsol, & fsnow, falbe, fevap, rain_fall, snow_fall, solsw, sollw, dlw, & radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, & t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, & @@ -1414,6 +1374,7 @@ ! Ecriture des sorties use dimens_m, only: iim, jjm + use gr_phy_write_m, only: gr_phy_write USE histsync_m, ONLY: histsync USE histwrite_m, ONLY: histwrite @@ -1427,207 +1388,215 @@ itau_w = itau_phy + itap - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, pphis, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(pphis) CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, airephy, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(airephy) CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d) DO i = 1, klon zx_tmp_fi2d(i) = paprs(i, 1) ENDDO - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(zx_tmp_fi2d) CALL histwrite(nid_ins, "psol", itau_w, zx_tmp_2d) DO i = 1, klon zx_tmp_fi2d(i) = rain_fall(i) + snow_fall(i) ENDDO - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(zx_tmp_fi2d) CALL histwrite(nid_ins, "precip", itau_w, zx_tmp_2d) DO i = 1, klon zx_tmp_fi2d(i) = rain_lsc(i) + snow_lsc(i) ENDDO - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(zx_tmp_fi2d) CALL histwrite(nid_ins, "plul", itau_w, zx_tmp_2d) DO i = 1, klon zx_tmp_fi2d(i) = rain_con(i) + snow_con(i) ENDDO - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(zx_tmp_fi2d) CALL histwrite(nid_ins, "pluc", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxtsol, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(zxtsol) CALL histwrite(nid_ins, "tsol", itau_w, zx_tmp_2d) !ccIM - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zt2m, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(zt2m) CALL histwrite(nid_ins, "t2m", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zq2m, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(zq2m) CALL histwrite(nid_ins, "q2m", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zu10m, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(zu10m) CALL histwrite(nid_ins, "u10m", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zv10m, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(zv10m) CALL histwrite(nid_ins, "v10m", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, snow_fall, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(snow_fall) CALL histwrite(nid_ins, "snow", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragm, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(cdragm) CALL histwrite(nid_ins, "cdrm", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, cdragh, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(cdragh) CALL histwrite(nid_ins, "cdrh", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, toplw, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(toplw) CALL histwrite(nid_ins, "topl", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, evap, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(evap) CALL histwrite(nid_ins, "evap", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, solsw, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(solsw) CALL histwrite(nid_ins, "sols", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollw, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(sollw) CALL histwrite(nid_ins, "soll", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sollwdown, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(sollwdown) CALL histwrite(nid_ins, "solldown", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, bils, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(bils) CALL histwrite(nid_ins, "bils", itau_w, zx_tmp_2d) - zx_tmp_fi2d(1:klon) = -1*sens(1:klon) - ! CALL gr_fi_ecrit(1, klon, iim, jjm + 1, sens, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) + zx_tmp_fi2d(1:klon) = - sens(1:klon) + ! zx_tmp_2d = gr_phy_write(sens) + zx_tmp_2d = gr_phy_write(zx_tmp_fi2d) CALL histwrite(nid_ins, "sens", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, fder, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(fder) CALL histwrite(nid_ins, "fder", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_oce), zx_tmp_2d) + zx_tmp_2d = gr_phy_write(d_ts(:, is_oce)) CALL histwrite(nid_ins, "dtsvdfo", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_ter), zx_tmp_2d) + zx_tmp_2d = gr_phy_write(d_ts(:, is_ter)) CALL histwrite(nid_ins, "dtsvdft", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_lic), zx_tmp_2d) + zx_tmp_2d = gr_phy_write(d_ts(:, is_lic)) CALL histwrite(nid_ins, "dtsvdfg", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, d_ts(1, is_sic), zx_tmp_2d) + zx_tmp_2d = gr_phy_write(d_ts(:, is_sic)) CALL histwrite(nid_ins, "dtsvdfi", itau_w, zx_tmp_2d) DO nsrf = 1, nbsrf !XXX zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf)*100. - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(zx_tmp_fi2d) CALL histwrite(nid_ins, "pourc_"//clnsurf(nsrf), itau_w, & zx_tmp_2d) zx_tmp_fi2d(1 : klon) = pctsrf(1 : klon, nsrf) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(zx_tmp_fi2d) CALL histwrite(nid_ins, "fract_"//clnsurf(nsrf), itau_w, & zx_tmp_2d) zx_tmp_fi2d(1 : klon) = fluxt(1 : klon, 1, nsrf) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(zx_tmp_fi2d) CALL histwrite(nid_ins, "sens_"//clnsurf(nsrf), itau_w, & zx_tmp_2d) zx_tmp_fi2d(1 : klon) = fluxlat(1 : klon, nsrf) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(zx_tmp_fi2d) CALL histwrite(nid_ins, "lat_"//clnsurf(nsrf), itau_w, & zx_tmp_2d) zx_tmp_fi2d(1 : klon) = ftsol(1 : klon, nsrf) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(zx_tmp_fi2d) CALL histwrite(nid_ins, "tsol_"//clnsurf(nsrf), itau_w, & zx_tmp_2d) zx_tmp_fi2d(1 : klon) = fluxu(1 : klon, 1, nsrf) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(zx_tmp_fi2d) CALL histwrite(nid_ins, "taux_"//clnsurf(nsrf), itau_w, & zx_tmp_2d) zx_tmp_fi2d(1 : klon) = fluxv(1 : klon, 1, nsrf) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(zx_tmp_fi2d) CALL histwrite(nid_ins, "tauy_"//clnsurf(nsrf), itau_w, & zx_tmp_2d) zx_tmp_fi2d(1 : klon) = frugs(1 : klon, nsrf) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(zx_tmp_fi2d) CALL histwrite(nid_ins, "rugs_"//clnsurf(nsrf), itau_w, & zx_tmp_2d) zx_tmp_fi2d(1 : klon) = falbe(:, nsrf) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zx_tmp_fi2d, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(zx_tmp_fi2d) CALL histwrite(nid_ins, "albe_"//clnsurf(nsrf), itau_w, & zx_tmp_2d) END DO - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, albsol, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(albsol) CALL histwrite(nid_ins, "albs", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, zxrugs, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(zxrugs) CALL histwrite(nid_ins, "rugs", itau_w, zx_tmp_2d) !HBTM2 - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblh, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(s_pblh) CALL histwrite(nid_ins, "s_pblh", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_pblt, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(s_pblt) CALL histwrite(nid_ins, "s_pblt", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_lcl, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(s_lcl) CALL histwrite(nid_ins, "s_lcl", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_capCL, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(s_capCL) CALL histwrite(nid_ins, "s_capCL", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_oliqCL, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(s_oliqCL) CALL histwrite(nid_ins, "s_oliqCL", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_cteiCL, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(s_cteiCL) CALL histwrite(nid_ins, "s_cteiCL", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_therm, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(s_therm) CALL histwrite(nid_ins, "s_therm", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb1, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(s_trmb1) CALL histwrite(nid_ins, "s_trmb1", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb2, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(s_trmb2) CALL histwrite(nid_ins, "s_trmb2", itau_w, zx_tmp_2d) - CALL gr_fi_ecrit(1, klon, iim, jjm + 1, s_trmb3, zx_tmp_2d) + zx_tmp_2d = gr_phy_write(s_trmb3) CALL histwrite(nid_ins, "s_trmb3", itau_w, zx_tmp_2d) + if (conv_emanuel) then + zx_tmp_2d = gr_phy_write(ema_pct) + CALL histwrite(nid_ins, "ptop", itau_w, zx_tmp_2d) + end if + ! Champs 3D: - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, t_seri, zx_tmp_3d) + zx_tmp_3d = gr_phy_write(t_seri) CALL histwrite(nid_ins, "temp", itau_w, zx_tmp_3d) - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, u_seri, zx_tmp_3d) + zx_tmp_3d = gr_phy_write(u_seri) CALL histwrite(nid_ins, "vitu", itau_w, zx_tmp_3d) - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, v_seri, zx_tmp_3d) + zx_tmp_3d = gr_phy_write(v_seri) CALL histwrite(nid_ins, "vitv", itau_w, zx_tmp_3d) - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, zphi, zx_tmp_3d) + zx_tmp_3d = gr_phy_write(zphi) CALL histwrite(nid_ins, "geop", itau_w, zx_tmp_3d) - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, play, zx_tmp_3d) + zx_tmp_3d = gr_phy_write(play) CALL histwrite(nid_ins, "pres", itau_w, zx_tmp_3d) - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_t_vdf, zx_tmp_3d) + zx_tmp_3d = gr_phy_write(d_t_vdf) CALL histwrite(nid_ins, "dtvdf", itau_w, zx_tmp_3d) - CALL gr_fi_ecrit(llm, klon, iim, jjm + 1, d_q_vdf, zx_tmp_3d) + zx_tmp_3d = gr_phy_write(d_q_vdf) CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d) + zx_tmp_3d = gr_phy_write(zx_rh) + CALL histwrite(nid_ins, "rhum", itau_w, zx_tmp_3d) + call histsync(nid_ins) ENDIF