/[lmdze]/trunk/phylmd/physiq.f
ViewVC logotype

Diff of /trunk/phylmd/physiq.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/physiq.f90 revision 47 by guez, Fri Jul 1 15:00:48 2011 UTC trunk/phylmd/physiq.f revision 305 by guez, Tue Sep 11 11:08:38 2018 UTC
# Line 4  module physiq_m Line 4  module physiq_m
4    
5  contains  contains
6    
7    SUBROUTINE physiq(lafin, rdayvrai, time, dtphys, paprs, play, pphi, pphis, &    SUBROUTINE physiq(lafin, dayvrai, time, paprs, play, pphi, pphis, u, v, t, &
8         u, v, t, qx, omega, d_u, d_v, d_t, d_qx, d_ps, dudyn, PVteta)         qx, omega, d_u, d_v, d_t, d_qx)
9    
10      ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28 (SVN revision 678)      ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28
11      ! Author: Z.X. Li (LMD/CNRS) 1993      ! (subversion revision 678)
12    
13      ! Objet : moniteur général de la physique du modèle      ! Author: Z. X. Li (LMD/CNRS) 1993
14    
15      use abort_gcm_m, only: abort_gcm      ! This is the main procedure for the "physics" part of the program.
16      USE calendar, only: ymds2ju  
17      use clesphys, only: ecrit_hf, ecrit_ins, ecrit_mth, cdmmax, cdhmax, &      use aaam_bud_m, only: aaam_bud
18           co2_ppm, ecrit_reg, ecrit_tra, ksta, ksta_ter, ok_kzmin      USE abort_gcm_m, ONLY: abort_gcm
19      use clesphys2, only: iflag_con, ok_orolf, ok_orodr, nbapp_rad, &      use ajsec_m, only: ajsec
20           cycle_diurne, new_oliq, soil_model      use calltherm_m, only: calltherm
21      use clmain_m, only: clmain      USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ok_instan
22      use comgeomphy      USE clesphys2, ONLY: conv_emanuel, nbapp_rad, new_oliq, ok_orodr, ok_orolf
23      use concvl_m, only: concvl      USE conf_interface_m, ONLY: conf_interface
24      use conf_gcm_m, only: raz_date, offline      USE pbl_surface_m, ONLY: pbl_surface
25      use conf_phys_m, only: conf_phys      use clouds_gno_m, only: clouds_gno
26      use ctherm      use comconst, only: dtphys
27      use dimens_m, only: jjm, iim, llm, nqmx      USE comgeomphy, ONLY: airephy
28      use dimphy, only: klon, nbtr      USE concvl_m, ONLY: concvl
29      use dimsoil, only: nsoilmx      USE conf_gcm_m, ONLY: lmt_pas
30      use hgardfou_m, only: hgardfou      USE conf_phys_m, ONLY: conf_phys
31      USE histcom, only: histsync      use conflx_m, only: conflx
32      USE histwrite_m, only: histwrite      USE ctherm, ONLY: iflag_thermals, nsplit_thermals
33      use indicesol, only: nbsrf, is_ter, is_lic, is_sic, is_oce, clnsurf, epsfra      use diagcld2_m, only: diagcld2
34      use ini_histhf_m, only: ini_histhf      USE dimensions, ONLY: llm, nqmx
35      use ini_histday_m, only: ini_histday      USE dimphy, ONLY: klon
36      use ini_histins_m, only: ini_histins      USE dimsoil, ONLY: nsoilmx
37      use iniprint, only: prt_level      use drag_noro_m, only: drag_noro
38      use oasis_m      use dynetat0_m, only: day_ref, annee_ref
39      use orbite_m, only: orbite, zenang      USE fcttre, ONLY: foeew
40      use ozonecm_m, only: ozonecm      use fisrtilp_m, only: fisrtilp
41      use phyetat0_m, only: phyetat0, rlat, rlon      USE hgardfou_m, ONLY: hgardfou
42      use phyredem_m, only: phyredem      USE histsync_m, ONLY: histsync
43      use phystokenc_m, only: phystokenc      USE histwrite_phy_m, ONLY: histwrite_phy
44      use phytrac_m, only: phytrac      USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &
45      use qcheck_m, only: qcheck           nbsrf
46      use radepsi      USE ini_histins_m, ONLY: ini_histins, nid_ins
47      use radopt      use lift_noro_m, only: lift_noro
48      use temps, only: itau_phy, day_ref, annee_ref      use netcdf95, only: NF95_CLOSE
49      use yoethf_m      use newmicro_m, only: newmicro
50      use SUPHEC_M, only: rcpd, rtt, rlvtt, rg, ra, rsigma, retv, romega      use nr_util, only: assert
51        use nuage_m, only: nuage
52      ! Declaration des constantes et des fonctions thermodynamiques :      USE orbite_m, ONLY: orbite
53      use fcttre, only: thermcep, foeew, qsats, qsatl      USE ozonecm_m, ONLY: ozonecm
54        USE phyetat0_m, ONLY: phyetat0
55        USE phyredem_m, ONLY: phyredem
56        USE phyredem0_m, ONLY: phyredem0
57        USE phytrac_m, ONLY: phytrac
58        use radlwsw_m, only: radlwsw
59        use yoegwd, only: sugwd
60        USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt, rmo3, md
61        use time_phylmdz, only: itap, increment_itap
62        use transp_m, only: transp
63        use transp_lay_m, only: transp_lay
64        use unit_nml_m, only: unit_nml
65        USE ymds2ju_m, ONLY: ymds2ju
66        USE yoethf_m, ONLY: r2es, rvtmp2
67        use zenang_m, only: zenang
68    
     ! Variables argument:  
   
     REAL, intent(in):: rdayvrai  
     ! (elapsed time since January 1st 0h of the starting year, in days)  
   
     REAL, intent(in):: time ! heure de la journée en fraction de jour  
     REAL, intent(in):: dtphys ! pas d'integration pour la physique (seconde)  
69      logical, intent(in):: lafin ! dernier passage      logical, intent(in):: lafin ! dernier passage
70    
71      REAL, intent(in):: paprs(klon, llm+1)      integer, intent(in):: dayvrai
72      ! (pression pour chaque inter-couche, en Pa)      ! current day number, based at value 1 on January 1st of annee_ref
73    
74      REAL, intent(in):: play(klon, llm)      REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour
     ! (input pression pour le mileu de chaque couche (en Pa))  
75    
76      REAL, intent(in):: pphi(klon, llm)      REAL, intent(in):: paprs(:, :) ! (klon, llm + 1)
77      ! (input geopotentiel de chaque couche (g z) (reference sol))      ! pression pour chaque inter-couche, en Pa
78    
79      REAL pphis(klon) ! input geopotentiel du sol      REAL, intent(in):: play(:, :) ! (klon, llm)
80        ! pression pour le mileu de chaque couche (en Pa)
81    
82      REAL, intent(in):: u(klon, llm)      REAL, intent(in):: pphi(:, :) ! (klon, llm)
83      ! vitesse dans la direction X (de O a E) en m/s      ! géopotentiel de chaque couche (référence sol)
       
     REAL, intent(in):: v(klon, llm) ! vitesse Y (de S a N) en m/s  
     REAL t(klon, llm) ! input temperature (K)  
84    
85      REAL, intent(in):: qx(klon, llm, nqmx)      REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol
     ! (humidité spécifique et fractions massiques des autres traceurs)  
86    
87      REAL omega(klon, llm) ! input vitesse verticale en Pa/s      REAL, intent(in):: u(:, :) ! (klon, llm)
88      REAL, intent(out):: d_u(klon, llm) ! tendance physique de "u" (m/s/s)      ! vitesse dans la direction X (de O a E) en m / s
     REAL, intent(out):: d_v(klon, llm) ! tendance physique de "v" (m/s/s)  
     REAL d_t(klon, llm) ! output tendance physique de "t" (K/s)  
     REAL d_qx(klon, llm, nqmx) ! output tendance physique de "qx" (kg/kg/s)  
     REAL d_ps(klon) ! output tendance physique de la pression au sol  
89    
90      LOGICAL:: firstcal = .true.      REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m / s
91        REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)
92    
93        REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)
94        ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)
95    
96      INTEGER nbteta      REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa / s
97      PARAMETER(nbteta=3)      REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)
98        REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)
99        REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K / s)
100    
101      REAL PVteta(klon, nbteta)      REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)
102      ! (output vorticite potentielle a des thetas constantes)      ! tendance physique de "qx" (s-1)
103    
104      LOGICAL ok_cvl ! pour activer le nouveau driver pour convection KE      ! Local:
     PARAMETER (ok_cvl=.TRUE.)  
     LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface  
     PARAMETER (ok_gust=.FALSE.)  
   
     LOGICAL check ! Verifier la conservation du modele en eau  
     PARAMETER (check=.FALSE.)  
     LOGICAL ok_stratus ! Ajouter artificiellement les stratus  
     PARAMETER (ok_stratus=.FALSE.)  
   
     ! Parametres lies au coupleur OASIS:  
     INTEGER, SAVE :: npas, nexca  
     logical rnpb  
     parameter(rnpb=.true.)  
   
     character(len=6), save:: ocean  
     ! (type de modèle océan à utiliser: "force" ou "slab" mais pas "couple")  
   
     logical ok_ocean  
     SAVE ok_ocean  
   
     !IM "slab" ocean  
     REAL tslab(klon) !Temperature du slab-ocean  
     SAVE tslab  
     REAL seaice(klon) !glace de mer (kg/m2)  
     SAVE seaice  
     REAL fluxo(klon) !flux turbulents ocean-glace de mer  
     REAL fluxg(klon) !flux turbulents ocean-atmosphere  
   
     ! Modele thermique du sol, a activer pour le cycle diurne:  
     logical, save:: ok_veget  
     LOGICAL, save:: ok_journe ! sortir le fichier journalier  
   
     LOGICAL ok_mensuel ! sortir le fichier mensuel  
105    
106      LOGICAL ok_instan ! sortir le fichier instantane      LOGICAL:: firstcal = .true.
     save ok_instan  
107    
108      LOGICAL ok_region ! sortir le fichier regional      LOGICAL, PARAMETER:: ok_stratus = .FALSE.
109      PARAMETER (ok_region=.FALSE.)      ! Ajouter artificiellement les stratus
110    
111      ! pour phsystoke avec thermiques      ! pour phystoke avec thermiques
112      REAL fm_therm(klon, llm+1)      REAL fm_therm(klon, llm + 1)
113      REAL entr_therm(klon, llm)      REAL entr_therm(klon, llm)
114      real, save:: q2(klon, llm+1, nbsrf)      real, save:: q2(klon, llm + 1, nbsrf)
115    
116      INTEGER ivap ! indice de traceurs pour vapeur d'eau      INTEGER, PARAMETER:: ivap = 1 ! indice de traceur pour vapeur d'eau
117      PARAMETER (ivap=1)      INTEGER, PARAMETER:: iliq = 2 ! indice de traceur pour eau liquide
     INTEGER iliq ! indice de traceurs pour eau liquide  
     PARAMETER (iliq=2)  
   
     REAL t_ancien(klon, llm), q_ancien(klon, llm)  
     SAVE t_ancien, q_ancien  
     LOGICAL ancien_ok  
     SAVE ancien_ok  
118    
119      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K/s)      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)
120      REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg/kg/s)      LOGICAL, save:: ancien_ok
121    
122        REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K / s)
123        REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg / kg / s)
124    
125      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)
126    
127      !IM Amip2 PV a theta constante      REAL, save:: swdn0(klon, llm + 1), swdn(klon, llm + 1)
128        REAL, save:: swup0(klon, llm + 1), swup(klon, llm + 1)
129    
130      CHARACTER(LEN=3) ctetaSTD(nbteta)      REAL, save:: lwdn0(klon, llm + 1), lwdn(klon, llm + 1)
131      DATA ctetaSTD/'350', '380', '405'/      REAL, save:: lwup0(klon, llm + 1), lwup(klon, llm + 1)
     REAL rtetaSTD(nbteta)  
     DATA rtetaSTD/350., 380., 405./  
   
     !MI Amip2 PV a theta constante  
   
     INTEGER klevp1  
     PARAMETER(klevp1=llm+1)  
   
     REAL swdn0(klon, klevp1), swdn(klon, klevp1)  
     REAL swup0(klon, klevp1), swup(klon, klevp1)  
     SAVE swdn0, swdn, swup0, swup  
   
     REAL lwdn0(klon, klevp1), lwdn(klon, klevp1)  
     REAL lwup0(klon, klevp1), lwup(klon, klevp1)  
     SAVE lwdn0, lwdn, lwup0, lwup  
   
     !IM Amip2  
     ! variables a une pression donnee  
   
     integer nlevSTD  
     PARAMETER(nlevSTD=17)  
     real rlevSTD(nlevSTD)  
     DATA rlevSTD/100000., 92500., 85000., 70000., &  
          60000., 50000., 40000., 30000., 25000., 20000., &  
          15000., 10000., 7000., 5000., 3000., 2000., 1000./  
     CHARACTER(LEN=4) clevSTD(nlevSTD)  
     DATA clevSTD/'1000', '925 ', '850 ', '700 ', '600 ', &  
          '500 ', '400 ', '300 ', '250 ', '200 ', '150 ', '100 ', &  
          '70 ', '50 ', '30 ', '20 ', '10 '/  
132    
133      ! prw: precipitable water      ! prw: precipitable water
134      real prw(klon)      real prw(klon)
135    
136      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg/m2)      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg / m2)
137      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg/kg)      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg / kg)
138      REAL flwp(klon), fiwp(klon)      REAL flwp(klon), fiwp(klon)
139      REAL flwc(klon, llm), fiwc(klon, llm)      REAL flwc(klon, llm), fiwc(klon, llm)
140    
     INTEGER kmax, lmax  
     PARAMETER(kmax=8, lmax=8)  
     INTEGER kmaxm1, lmaxm1  
     PARAMETER(kmaxm1=kmax-1, lmaxm1=lmax-1)  
   
     REAL zx_tau(kmaxm1), zx_pc(lmaxm1)  
     DATA zx_tau/0.0, 0.3, 1.3, 3.6, 9.4, 23., 60./  
     DATA zx_pc/50., 180., 310., 440., 560., 680., 800./  
   
     ! cldtopres pression au sommet des nuages  
     REAL cldtopres(lmaxm1)  
     DATA cldtopres/50., 180., 310., 440., 560., 680., 800./  
   
     ! taulev: numero du niveau de tau dans les sorties ISCCP  
     CHARACTER(LEN=4) taulev(kmaxm1)  
   
     DATA taulev/'tau0', 'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'/  
     CHARACTER(LEN=3) pclev(lmaxm1)  
     DATA pclev/'pc1', 'pc2', 'pc3', 'pc4', 'pc5', 'pc6', 'pc7'/  
   
     CHARACTER(LEN=28) cnameisccp(lmaxm1, kmaxm1)  
     DATA cnameisccp/'pc< 50hPa, tau< 0.3', 'pc= 50-180hPa, tau< 0.3', &  
          'pc= 180-310hPa, tau< 0.3', 'pc= 310-440hPa, tau< 0.3', &  
          'pc= 440-560hPa, tau< 0.3', 'pc= 560-680hPa, tau< 0.3', &  
          'pc= 680-800hPa, tau< 0.3', 'pc< 50hPa, tau= 0.3-1.3', &  
          'pc= 50-180hPa, tau= 0.3-1.3', 'pc= 180-310hPa, tau= 0.3-1.3', &  
          'pc= 310-440hPa, tau= 0.3-1.3', 'pc= 440-560hPa, tau= 0.3-1.3', &  
          'pc= 560-680hPa, tau= 0.3-1.3', 'pc= 680-800hPa, tau= 0.3-1.3', &  
          'pc< 50hPa, tau= 1.3-3.6', 'pc= 50-180hPa, tau= 1.3-3.6', &  
          'pc= 180-310hPa, tau= 1.3-3.6', 'pc= 310-440hPa, tau= 1.3-3.6', &  
          'pc= 440-560hPa, tau= 1.3-3.6', 'pc= 560-680hPa, tau= 1.3-3.6', &  
          'pc= 680-800hPa, tau= 1.3-3.6', 'pc< 50hPa, tau= 3.6-9.4', &  
          'pc= 50-180hPa, tau= 3.6-9.4', 'pc= 180-310hPa, tau= 3.6-9.4', &  
          'pc= 310-440hPa, tau= 3.6-9.4', 'pc= 440-560hPa, tau= 3.6-9.4', &  
          'pc= 560-680hPa, tau= 3.6-9.4', 'pc= 680-800hPa, tau= 3.6-9.4', &  
          'pc< 50hPa, tau= 9.4-23', 'pc= 50-180hPa, tau= 9.4-23', &  
          'pc= 180-310hPa, tau= 9.4-23', 'pc= 310-440hPa, tau= 9.4-23', &  
          'pc= 440-560hPa, tau= 9.4-23', 'pc= 560-680hPa, tau= 9.4-23', &  
          'pc= 680-800hPa, tau= 9.4-23', 'pc< 50hPa, tau= 23-60', &  
          'pc= 50-180hPa, tau= 23-60', 'pc= 180-310hPa, tau= 23-60', &  
          'pc= 310-440hPa, tau= 23-60', 'pc= 440-560hPa, tau= 23-60', &  
          'pc= 560-680hPa, tau= 23-60', 'pc= 680-800hPa, tau= 23-60', &  
          'pc< 50hPa, tau> 60.', 'pc= 50-180hPa, tau> 60.', &  
          'pc= 180-310hPa, tau> 60.', 'pc= 310-440hPa, tau> 60.', &  
          'pc= 440-560hPa, tau> 60.', 'pc= 560-680hPa, tau> 60.', &  
          'pc= 680-800hPa, tau> 60.'/  
   
     !IM ISCCP simulator v3.4  
   
     integer nid_hf, nid_hf3d  
     save nid_hf, nid_hf3d  
   
141      ! Variables propres a la physique      ! Variables propres a la physique
142    
143      INTEGER, save:: radpas      INTEGER, save:: radpas
144      ! (Radiative transfer computations are made every "radpas" call to      ! Radiative transfer computations are made every "radpas" call to
145      ! "physiq".)      ! "physiq".
   
     REAL radsol(klon)  
     SAVE radsol ! bilan radiatif au sol calcule par code radiatif  
146    
147      INTEGER, SAVE:: itap ! number of calls to "physiq"      REAL, save:: radsol(klon) ! bilan radiatif au sol calcule par code radiatif
148        REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction
149    
150      REAL ftsol(klon, nbsrf)      REAL, save:: ftsoil(klon, nsoilmx, nbsrf)
151      SAVE ftsol ! temperature du sol      ! soil temperature of surface fraction
152    
     REAL ftsoil(klon, nsoilmx, nbsrf)  
     SAVE ftsoil ! temperature dans le sol  
   
     REAL fevap(klon, nbsrf)  
     SAVE fevap ! evaporation  
153      REAL fluxlat(klon, nbsrf)      REAL fluxlat(klon, nbsrf)
     SAVE fluxlat  
   
     REAL fqsurf(klon, nbsrf)  
     SAVE fqsurf ! humidite de l'air au contact de la surface  
   
     REAL qsol(klon)  
     SAVE qsol ! hauteur d'eau dans le sol  
154    
155      REAL fsnow(klon, nbsrf)      REAL, save:: fqsurf(klon, nbsrf)
156      SAVE fsnow ! epaisseur neigeuse      ! humidite de l'air au contact de la surface
157    
158      REAL falbe(klon, nbsrf)      REAL, save:: qsol(klon) ! column-density of water in soil, in kg m-2
159      SAVE falbe ! albedo par type de surface      REAL, save:: fsnow(klon, nbsrf) ! \'epaisseur neigeuse
160      REAL falblw(klon, nbsrf)      REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface
     SAVE falblw ! albedo par type de surface  
161    
162      ! Paramètres de l'orographie à l'échelle sous-maille (OESM) :      ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :
163      REAL, save:: zmea(klon) ! orographie moyenne      REAL, save:: zmea(klon) ! orographie moyenne
164      REAL, save:: zstd(klon) ! deviation standard de l'OESM      REAL, save:: zstd(klon) ! deviation standard de l'OESM
165      REAL, save:: zsig(klon) ! pente de l'OESM      REAL, save:: zsig(klon) ! pente de l'OESM
# Line 296  contains Line 168  contains
168      REAL, save:: zpic(klon) ! Maximum de l'OESM      REAL, save:: zpic(klon) ! Maximum de l'OESM
169      REAL, save:: zval(klon) ! Minimum de l'OESM      REAL, save:: zval(klon) ! Minimum de l'OESM
170      REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM      REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM
   
171      REAL zulow(klon), zvlow(klon)      REAL zulow(klon), zvlow(klon)
172        INTEGER ktest(klon)
173    
174      INTEGER igwd, idx(klon), itest(klon)      REAL, save:: agesno(klon, nbsrf) ! age de la neige
175        REAL, save:: run_off_lic_0(klon)
176    
177      REAL agesno(klon, nbsrf)      ! Variables li\'ees \`a la convection d'Emanuel :
178      SAVE agesno ! age de la neige      REAL, save:: Ma(klon, llm) ! undilute upward mass flux
179        REAL, save:: sig1(klon, llm), w01(klon, llm)
180    
181      REAL run_off_lic_0(klon)      ! Variables pour la couche limite (Alain Lahellec) :
182      SAVE run_off_lic_0      REAL cdragh(klon) ! drag coefficient pour T and Q
183      !KE43      REAL cdragm(klon) ! drag coefficient pour vent
     ! Variables liees a la convection de K. Emanuel (sb):  
184    
185      REAL bas, top ! cloud base and top levels      REAL coefh(klon, 2:llm) ! coef d'echange pour phytrac
     SAVE bas  
     SAVE top  
186    
187      REAL Ma(klon, llm) ! undilute upward mass flux      REAL, save:: ffonte(klon, nbsrf)
188      SAVE Ma      ! flux thermique utilise pour fondre la neige
     REAL qcondc(klon, llm) ! in-cld water content from convect  
     SAVE qcondc  
     REAL ema_work1(klon, llm), ema_work2(klon, llm)  
     SAVE ema_work1, ema_work2  
189    
190      REAL wd(klon) ! sb      REAL fqcalving(klon, nbsrf)
191      SAVE wd ! sb      ! flux d'eau "perdue" par la surface et n\'ecessaire pour limiter
192        ! la hauteur de neige, en kg / m2 / s
193    
194      ! Variables locales pour la couche limite (al1):      REAL zxffonte(klon)
195    
196      ! Variables locales:      REAL, save:: pfrac_impa(klon, llm)! Produits des coefs lessivage impaction
197        REAL, save:: pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation
198    
199      REAL cdragh(klon) ! drag coefficient pour T and Q      REAL, save:: pfrac_1nucl(klon, llm)
200      REAL cdragm(klon) ! drag coefficient pour vent      ! Produits des coefs lessi nucl (alpha = 1)
201    
202      !AA Pour phytrac      REAL frac_impa(klon, llm) ! fraction d'a\'erosols lessiv\'es (impaction)
     REAL ycoefh(klon, llm) ! coef d'echange pour phytrac  
     REAL yu1(klon) ! vents dans la premiere couche U  
     REAL yv1(klon) ! vents dans la premiere couche V  
     REAL ffonte(klon, nbsrf) !Flux thermique utilise pour fondre la neige  
     REAL fqcalving(klon, nbsrf) !Flux d'eau "perdue" par la surface  
     ! !et necessaire pour limiter la  
     ! !hauteur de neige, en kg/m2/s  
     REAL zxffonte(klon), zxfqcalving(klon)  
   
     REAL pfrac_impa(klon, llm)! Produits des coefs lessivage impaction  
     save pfrac_impa  
     REAL pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation  
     save pfrac_nucl  
     REAL pfrac_1nucl(klon, llm)! Produits des coefs lessi nucl (alpha = 1)  
     save pfrac_1nucl  
     REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction)  
203      REAL frac_nucl(klon, llm) ! idem (nucleation)      REAL frac_nucl(klon, llm) ! idem (nucleation)
204    
205      !AA      REAL, save:: rain_fall(klon)
206      REAL rain_fall(klon) ! pluie      ! liquid water mass flux (kg / m2 / s), positive down
207      REAL snow_fall(klon) ! neige  
208      save snow_fall, rain_fall      REAL, save:: snow_fall(klon)
209      !IM cf FH pour Tiedtke 080604      ! solid water mass flux (kg / m2 / s), positive down
210    
211      REAL rain_tiedtke(klon), snow_tiedtke(klon)      REAL rain_tiedtke(klon), snow_tiedtke(klon)
212    
213      REAL evap(klon), devap(klon) ! evaporation et sa derivee      REAL evap(klon) ! flux d'\'evaporation au sol
214      REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee      real dflux_q(klon) ! derivative of the evaporation flux at the surface
215      REAL dlw(klon) ! derivee infra rouge      REAL sens(klon) ! flux de chaleur sensible au sol
216      SAVE dlw      real dflux_t(klon) ! derivee du flux de chaleur sensible au sol
217        REAL, save:: dlw(klon) ! derivative of infra-red flux
218      REAL bils(klon) ! bilan de chaleur au sol      REAL bils(klon) ! bilan de chaleur au sol
219      REAL fder(klon) ! Derive de flux (sensible et latente)      REAL fder(klon) ! Derive de flux (sensible et latente)
     save fder  
220      REAL ve(klon) ! integr. verticale du transport meri. de l'energie      REAL ve(klon) ! integr. verticale du transport meri. de l'energie
221      REAL vq(klon) ! integr. verticale du transport meri. de l'eau      REAL vq(klon) ! integr. verticale du transport meri. de l'eau
222      REAL ue(klon) ! integr. verticale du transport zonal de l'energie      REAL ue(klon) ! integr. verticale du transport zonal de l'energie
223      REAL uq(klon) ! integr. verticale du transport zonal de l'eau      REAL uq(klon) ! integr. verticale du transport zonal de l'eau
224    
225      REAL frugs(klon, nbsrf) ! longueur de rugosite      REAL, save:: frugs(klon, nbsrf) ! longueur de rugosite
     save frugs  
226      REAL zxrugs(klon) ! longueur de rugosite      REAL zxrugs(klon) ! longueur de rugosite
227    
228      ! Conditions aux limites      ! Conditions aux limites
229    
230      INTEGER julien      INTEGER julien
231        REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface
232      INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day      REAL, save:: albsol(klon) ! albedo du sol total, visible, moyen par maille
     REAL pctsrf(klon, nbsrf)  
     !IM  
     REAL pctsrf_new(klon, nbsrf) !pourcentage surfaces issus d'ORCHIDEE  
   
     SAVE pctsrf ! sous-fraction du sol  
     REAL albsol(klon)  
     SAVE albsol ! albedo du sol total  
     REAL albsollw(klon)  
     SAVE albsollw ! albedo du sol total  
   
233      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU
234        real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2
235    
236      ! Declaration des procedures appelees      real, save:: clwcon(klon, llm), rnebcon(klon, llm)
237        real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)
     EXTERNAL alboc ! calculer l'albedo sur ocean  
     EXTERNAL ajsec ! ajustement sec  
     !KE43  
     EXTERNAL conema3 ! convect4.3  
     EXTERNAL fisrtilp ! schema de condensation a grande echelle (pluie)  
     EXTERNAL nuage ! calculer les proprietes radiatives  
     EXTERNAL radlwsw ! rayonnements solaire et infrarouge  
     EXTERNAL transp ! transport total de l'eau et de l'energie  
   
     ! Variables locales  
   
     real clwcon(klon, llm), rnebcon(klon, llm)  
     real clwcon0(klon, llm), rnebcon0(klon, llm)  
   
     save rnebcon, clwcon  
238    
239      REAL rhcl(klon, llm) ! humiditi relative ciel clair      REAL rhcl(klon, llm) ! humidit\'e relative ciel clair
240      REAL dialiq(klon, llm) ! eau liquide nuageuse      REAL dialiq(klon, llm) ! eau liquide nuageuse
241      REAL diafra(klon, llm) ! fraction nuageuse      REAL diafra(klon, llm) ! fraction nuageuse
242      REAL cldliq(klon, llm) ! eau liquide nuageuse      REAL cldliq(klon, llm) ! eau liquide nuageuse
# Line 415  contains Line 244  contains
244      REAL cldtau(klon, llm) ! epaisseur optique      REAL cldtau(klon, llm) ! epaisseur optique
245      REAL cldemi(klon, llm) ! emissivite infrarouge      REAL cldemi(klon, llm) ! emissivite infrarouge
246    
247      REAL fluxq(klon, llm, nbsrf) ! flux turbulent d'humidite      REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface
248      REAL fluxt(klon, llm, nbsrf) ! flux turbulent de chaleur      REAL flux_t(klon, nbsrf) ! flux turbulent de chaleur à la surface
     REAL fluxu(klon, llm, nbsrf) ! flux turbulent de vitesse u  
     REAL fluxv(klon, llm, nbsrf) ! flux turbulent de vitesse v  
   
     REAL zxfluxt(klon, llm)  
     REAL zxfluxq(klon, llm)  
     REAL zxfluxu(klon, llm)  
     REAL zxfluxv(klon, llm)  
   
     REAL heat(klon, llm) ! chauffage solaire  
     REAL heat0(klon, llm) ! chauffage solaire ciel clair  
     REAL cool(klon, llm) ! refroidissement infrarouge  
     REAL cool0(klon, llm) ! refroidissement infrarouge ciel clair  
     REAL topsw(klon), toplw(klon), solsw(klon), sollw(klon)  
     real sollwdown(klon) ! downward LW flux at surface  
     REAL topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)  
     REAL albpla(klon)  
     REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous surface  
     REAL fsolsw(klon, nbsrf) ! flux solaire absorb. pour chaque sous surface  
     ! Le rayonnement n'est pas calcule tous les pas, il faut donc  
     ! sauvegarder les sorties du rayonnement  
     SAVE heat, cool, albpla, topsw, toplw, solsw, sollw, sollwdown  
     SAVE topsw0, toplw0, solsw0, sollw0, heat0, cool0  
   
     INTEGER itaprad  
     SAVE itaprad  
   
     REAL conv_q(klon, llm) ! convergence de l'humidite (kg/kg/s)  
     REAL conv_t(klon, llm) ! convergence de la temperature(K/s)  
   
     REAL cldl(klon), cldm(klon), cldh(klon) !nuages bas, moyen et haut  
     REAL cldt(klon), cldq(klon) !nuage total, eau liquide integree  
   
     REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon)  
   
     REAL dist, rmu0(klon), fract(klon)  
     REAL zdtime ! pas de temps du rayonnement (s)  
     real zlongi  
249    
250      REAL z_avant(klon), z_apres(klon), z_factor(klon)      REAL flux_u(klon, nbsrf), flux_v(klon, nbsrf)
251      LOGICAL zx_ajustq      ! tension du vent (flux turbulent de vent) à la surface, en Pa
252    
253      REAL za, zb      ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que
254      REAL zx_t, zx_qs, zdelta, zcor, zlvdcp, zlsdcp      ! les variables soient r\'emanentes.
255        REAL, save:: heat(klon, llm) ! chauffage solaire
256        REAL, save:: heat0(klon, llm) ! chauffage solaire ciel clair
257        REAL, save:: cool(klon, llm) ! refroidissement infrarouge
258        REAL, save:: cool0(klon, llm) ! refroidissement infrarouge ciel clair
259        REAL, save:: topsw(klon), toplw(klon), solsw(klon)
260        REAL, save:: sollw(klon) ! rayonnement infrarouge montant \`a la surface
261        real, save:: sollwdown(klon) ! downward LW flux at surface
262        REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)
263        REAL, save:: albpla(klon)
264        REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous-surface
265        REAL fsolsw(klon, nbsrf) ! flux solaire absorb\'e pour chaque sous-surface
266    
267        REAL conv_q(klon, llm) ! convergence de l'humidite (kg / kg / s)
268        REAL conv_t(klon, llm) ! convergence of temperature (K / s)
269    
270        REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut
271        REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree
272    
273        REAL zxfluxlat(klon)
274        REAL dist, mu0(klon), fract(klon)
275        real longi
276        REAL z_avant(klon), z_apres(klon), z_factor(klon)
277        REAL zb
278        REAL zx_t, zx_qs, zcor
279      real zqsat(klon, llm)      real zqsat(klon, llm)
280      INTEGER i, k, iq, nsrf      INTEGER i, k, iq, nsrf
     REAL t_coup  
     PARAMETER (t_coup=234.0)  
   
281      REAL zphi(klon, llm)      REAL zphi(klon, llm)
282    
283      !IM cf. AM Variables locales pour la CLA (hbtm2)      ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm)
284    
285      REAL pblh(klon, nbsrf) ! Hauteur de couche limite      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite
286      REAL plcl(klon, nbsrf) ! Niveau de condensation de la CLA      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA
287      REAL capCL(klon, nbsrf) ! CAPE de couche limite      REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite
288      REAL oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite      REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite
289      REAL cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite      REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite
290      REAL pblt(klon, nbsrf) ! T a la Hauteur de couche limite      REAL, SAVE:: pblt(klon, nbsrf) ! T \`a la hauteur de couche limite
291      REAL therm(klon, nbsrf)      REAL, SAVE:: therm(klon, nbsrf)
292      REAL trmb1(klon, nbsrf) ! deep_cape      ! Grandeurs de sorties
     REAL trmb2(klon, nbsrf) ! inhibition  
     REAL trmb3(klon, nbsrf) ! Point Omega  
     ! Grdeurs de sorties  
293      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)
294      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)
295      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)      REAL s_therm(klon)
     REAL s_trmb3(klon)  
296    
297      ! Variables locales pour la convection de K. Emanuel (sb):      ! Variables pour la convection de K. Emanuel :
298    
299      REAL upwd(klon, llm) ! saturated updraft mass flux      REAL upwd(klon, llm) ! saturated updraft mass flux
300      REAL dnwd(klon, llm) ! saturated downdraft mass flux      REAL dnwd(klon, llm) ! saturated downdraft mass flux
301      REAL dnwd0(klon, llm) ! unsaturated downdraft mass flux      REAL, save:: cape(klon)
302      REAL tvp(klon, llm) ! virtual temp of lifted parcel  
     REAL cape(klon) ! CAPE  
     SAVE cape  
   
     REAL pbase(klon) ! cloud base pressure  
     SAVE pbase  
     REAL bbase(klon) ! cloud base buoyancy  
     SAVE bbase  
     REAL rflag(klon) ! flag fonctionnement de convect  
303      INTEGER iflagctrl(klon) ! flag fonctionnement de convect      INTEGER iflagctrl(klon) ! flag fonctionnement de convect
     ! -- convect43:  
     INTEGER ntra ! nb traceurs pour convect4.3  
     REAL dtvpdt1(klon, llm), dtvpdq1(klon, llm)  
     REAL dplcldt(klon), dplcldr(klon)  
304    
305      ! Variables du changement      ! Variables du changement
306    
307      ! con: convection      ! con: convection
308      ! lsc: condensation a grande echelle (Large-Scale-Condensation)      ! lsc: large scale condensation
309      ! ajs: ajustement sec      ! ajs: ajustement sec
310      ! eva: evaporation de l'eau liquide nuageuse      ! eva: \'evaporation de l'eau liquide nuageuse
311      ! vdf: couche limite (Vertical DiFfusion)      ! vdf: vertical diffusion in boundary layer
312      REAL d_t_con(klon, llm), d_q_con(klon, llm)      REAL d_t_con(klon, llm), d_q_con(klon, llm)
313      REAL d_u_con(klon, llm), d_v_con(klon, llm)      REAL, save:: d_u_con(klon, llm), d_v_con(klon, llm)
314      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)
315      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)
316      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)
317      REAL rneb(klon, llm)      REAL rneb(klon, llm)
318    
319      REAL pmfu(klon, llm), pmfd(klon, llm)      REAL mfu(klon, llm), mfd(klon, llm)
320      REAL pen_u(klon, llm), pen_d(klon, llm)      REAL pen_u(klon, llm), pen_d(klon, llm)
321      REAL pde_u(klon, llm), pde_d(klon, llm)      REAL pde_u(klon, llm), pde_d(klon, llm)
322      INTEGER kcbot(klon), kctop(klon), kdtop(klon)      INTEGER kcbot(klon), kctop(klon), kdtop(klon)
323      REAL pmflxr(klon, llm+1), pmflxs(klon, llm+1)      REAL pmflxr(klon, llm + 1), pmflxs(klon, llm + 1)
324      REAL prfl(klon, llm+1), psfl(klon, llm+1)      REAL prfl(klon, llm + 1), psfl(klon, llm + 1)
   
     INTEGER ibas_con(klon), itop_con(klon)  
325    
326      SAVE ibas_con, itop_con      INTEGER, save:: ibas_con(klon), itop_con(klon)
327        real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa
328    
329      REAL rain_con(klon), rain_lsc(klon)      REAL rain_con(klon)
330      REAL snow_con(klon), snow_lsc(klon)      real rain_lsc(klon)
331      REAL d_ts(klon, nbsrf)      REAL snow_con(klon) ! neige (mm / s)
332        real snow_lsc(klon)
333        REAL d_ts(klon, nbsrf) ! variation of ftsol
334    
335      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)
336      REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)      REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)
# Line 542  contains Line 340  contains
340      REAL d_u_lif(klon, llm), d_v_lif(klon, llm)      REAL d_u_lif(klon, llm), d_v_lif(klon, llm)
341      REAL d_t_lif(klon, llm)      REAL d_t_lif(klon, llm)
342    
343      REAL ratqs(klon, llm), ratqss(klon, llm), ratqsc(klon, llm)      REAL, save:: ratqs(klon, llm)
344      real ratqsbas, ratqshaut      real ratqss(klon, llm), ratqsc(klon, llm)
345      save ratqsbas, ratqshaut, ratqs      real:: ratqsbas = 0.01, ratqshaut = 0.3
346    
347      ! Parametres lies au nouveau schema de nuages (SB, PDF)      ! Parametres lies au nouveau schema de nuages (SB, PDF)
348      real, save:: fact_cldcon      real:: fact_cldcon = 0.375
349      real, save:: facttemps      real:: facttemps = 1.e-4
350      logical ok_newmicro      logical:: ok_newmicro = .true.
     save ok_newmicro  
351      real facteur      real facteur
352    
353      integer iflag_cldcon      integer:: iflag_cldcon = 1
     save iflag_cldcon  
   
354      logical ptconv(klon, llm)      logical ptconv(klon, llm)
355    
356      ! Variables locales pour effectuer les appels en serie      ! Variables pour effectuer les appels en s\'erie :
357    
358      REAL t_seri(klon, llm), q_seri(klon, llm)      REAL t_seri(klon, llm), q_seri(klon, llm)
359      REAL ql_seri(klon, llm), qs_seri(klon, llm)      REAL ql_seri(klon, llm)
360      REAL u_seri(klon, llm), v_seri(klon, llm)      REAL u_seri(klon, llm), v_seri(klon, llm)
361        REAL tr_seri(klon, llm, nqmx - 2)
     REAL tr_seri(klon, llm, nbtr)  
     REAL d_tr(klon, llm, nbtr)  
362    
363      REAL zx_rh(klon, llm)      REAL zx_rh(klon, llm)
364    
365      REAL zustrdr(klon), zvstrdr(klon)      REAL zustrdr(klon), zvstrdr(klon)
366      REAL zustrli(klon), zvstrli(klon)      REAL zustrli(klon), zvstrli(klon)
     REAL zustrph(klon), zvstrph(klon)  
367      REAL aam, torsfc      REAL aam, torsfc
368    
     REAL dudyn(iim+1, jjm + 1, llm)  
   
     REAL zx_tmp_fi2d(klon) ! variable temporaire grille physique  
     REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm)  
   
     INTEGER, SAVE:: nid_day, nid_ins  
   
369      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.
370      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.
371      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.
372      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.
373    
374      REAL zsto      REAL tsol(klon)
375    
376        REAL d_t_ec(klon, llm)
377        ! tendance due \`a la conversion d'\'energie cin\'etique en
378        ! énergie thermique
379    
380        REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf)
381        ! temperature and humidity at 2 m
382    
383        REAL, save:: u10m_srf(klon, nbsrf), v10m_srf(klon, nbsrf)
384        ! composantes du vent \`a 10 m
385        
386        REAL zt2m(klon), zq2m(klon) ! température, humidité 2 m moyenne sur 1 maille
387        REAL u10m(klon), v10m(klon) ! vent \`a 10 m moyenn\' sur les sous-surfaces
388    
389        ! Aerosol effects:
390    
391        REAL, save:: topswad(klon), solswad(klon) ! aerosol direct effect
392        LOGICAL:: ok_ade = .false. ! apply aerosol direct effect
393    
394      character(len=20) modname      REAL:: bl95_b0 = 2., bl95_b1 = 0.2
395      character(len=80) abort_message      ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus
396      logical ok_sync      ! B). They link cloud droplet number concentration to aerosol mass
397      real date0      ! concentration.
   
     ! Variables liees au bilan d'energie et d'enthalpi  
     REAL ztsol(klon)  
     REAL d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec  
     REAL d_h_vcol_phy  
     REAL fs_bound, fq_bound  
     SAVE d_h_vcol_phy  
     REAL zero_v(klon)  
     CHARACTER(LEN=15) ztit  
     INTEGER ip_ebil ! PRINT level for energy conserv. diag.  
     SAVE ip_ebil  
     DATA ip_ebil/0/  
     INTEGER, SAVE:: if_ebil ! level for energy conservation diagnostics  
     !+jld ec_conser  
     REAL d_t_ec(klon, llm) ! tendance du a la conersion Ec -> E thermique  
     REAL ZRCPD  
     !-jld ec_conser  
     !IM: t2m, q2m, u10m, v10m  
     REAL t2m(klon, nbsrf), q2m(klon, nbsrf) !temperature, humidite a 2m  
     REAL u10m(klon, nbsrf), v10m(klon, nbsrf) !vents a 10m  
     REAL zt2m(klon), zq2m(klon) !temp., hum. 2m moyenne s/ 1 maille  
     REAL zu10m(klon), zv10m(klon) !vents a 10m moyennes s/1 maille  
     !jq Aerosol effects (Johannes Quaas, 27/11/2003)  
     REAL sulfate(klon, llm) ! SO4 aerosol concentration [ug/m3]  
   
     REAL sulfate_pi(klon, llm)  
     ! (SO4 aerosol concentration [ug/m3] (pre-industrial value))  
     SAVE sulfate_pi  
   
     REAL cldtaupi(klon, llm)  
     ! (Cloud optical thickness for pre-industrial (pi) aerosols)  
   
     REAL re(klon, llm) ! Cloud droplet effective radius  
     REAL fl(klon, llm) ! denominator of re  
   
     ! Aerosol optical properties  
     REAL tau_ae(klon, llm, 2), piz_ae(klon, llm, 2)  
     REAL cg_ae(klon, llm, 2)  
   
     REAL topswad(klon), solswad(klon) ! Aerosol direct effect.  
     ! ok_ade=T -ADE=topswad-topsw  
   
     REAL topswai(klon), solswai(klon) ! Aerosol indirect effect.  
     ! ok_aie=T ->  
     ! ok_ade=T -AIE=topswai-topswad  
     ! ok_ade=F -AIE=topswai-topsw  
   
     REAL aerindex(klon) ! POLDER aerosol index  
   
     ! Parameters  
     LOGICAL ok_ade, ok_aie ! Apply aerosol (in)direct effects or not  
     REAL bl95_b0, bl95_b1 ! Parameter in Boucher and Lohmann (1995)  
   
     SAVE ok_ade, ok_aie, bl95_b0, bl95_b1  
     SAVE u10m  
     SAVE v10m  
     SAVE t2m  
     SAVE q2m  
     SAVE ffonte  
     SAVE fqcalving  
     SAVE piz_ae  
     SAVE tau_ae  
     SAVE cg_ae  
     SAVE rain_con  
     SAVE snow_con  
     SAVE topswai  
     SAVE topswad  
     SAVE solswai  
     SAVE solswad  
     SAVE d_u_con  
     SAVE d_v_con  
     SAVE rnebcon0  
     SAVE clwcon0  
     SAVE pblh  
     SAVE plcl  
     SAVE capCL  
     SAVE oliqCL  
     SAVE cteiCL  
     SAVE pblt  
     SAVE therm  
     SAVE trmb1  
     SAVE trmb2  
     SAVE trmb3  
398    
399      real zmasse(klon, llm)      real zmasse(klon, llm)
400      ! (column-density of mass of air in a cell, in kg m-2)      ! (column-density of mass of air in a cell, in kg m-2)
401    
402      real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2      integer, save:: ncid_startphy
403    
404        namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, &
405             ratqsbas, ratqshaut, ok_ade, bl95_b0, bl95_b1, iflag_thermals, &
406             nsplit_thermals
407    
408      !----------------------------------------------------------------      !----------------------------------------------------------------
409    
410      modname = 'physiq'      IF (nqmx < 2) CALL abort_gcm('physiq', &
411      IF (if_ebil >= 1) THEN           'eaux vapeur et liquide sont indispensables')
        DO i=1, klon  
           zero_v(i)=0.  
        END DO  
     END IF  
     ok_sync=.TRUE.  
     IF (nqmx < 2) THEN  
        abort_message = 'eaux vapeur et liquide sont indispensables'  
        CALL abort_gcm(modname, abort_message, 1)  
     ENDIF  
412    
413      test_firstcal: IF (firstcal) THEN      test_firstcal: IF (firstcal) THEN
414         ! initialiser         ! initialiser
415         u10m=0.         u10m_srf = 0.
416         v10m=0.         v10m_srf = 0.
417         t2m=0.         t2m = 0.
418         q2m=0.         q2m = 0.
419         ffonte=0.         ffonte = 0.
420         fqcalving=0.         d_u_con = 0.
421         piz_ae=0.         d_v_con = 0.
422         tau_ae=0.         rnebcon0 = 0.
423         cg_ae=0.         clwcon0 = 0.
424         rain_con(:)=0.         rnebcon = 0.
425         snow_con(:)=0.         clwcon = 0.
        bl95_b0=0.  
        bl95_b1=0.  
        topswai(:)=0.  
        topswad(:)=0.  
        solswai(:)=0.  
        solswad(:)=0.  
   
        d_u_con = 0.0  
        d_v_con = 0.0  
        rnebcon0 = 0.0  
        clwcon0 = 0.0  
        rnebcon = 0.0  
        clwcon = 0.0  
   
426         pblh =0. ! Hauteur de couche limite         pblh =0. ! Hauteur de couche limite
427         plcl =0. ! Niveau de condensation de la CLA         plcl =0. ! Niveau de condensation de la CLA
428         capCL =0. ! CAPE de couche limite         capCL =0. ! CAPE de couche limite
429         oliqCL =0. ! eau_liqu integree de couche limite         oliqCL =0. ! eau_liqu integree de couche limite
430         cteiCL =0. ! cloud top instab. crit. couche limite         cteiCL =0. ! cloud top instab. crit. couche limite
431         pblt =0. ! T a la Hauteur de couche limite         pblt =0.
432         therm =0.         therm =0.
433         trmb1 =0. ! deep_cape  
434         trmb2 =0. ! inhibition         iflag_thermals = 0
435         trmb3 =0. ! Point Omega         nsplit_thermals = 1
436           print *, "Enter namelist 'physiq_nml'."
437         IF (if_ebil >= 1) d_h_vcol_phy=0.         read(unit=*, nml=physiq_nml)
438           write(unit_nml, nml=physiq_nml)
439         ! appel a la lecture du run.def physique  
440           call conf_phys
        call conf_phys(ocean, ok_veget, ok_journe, ok_mensuel, &  
             ok_instan, fact_cldcon, facttemps, ok_newmicro, &  
             iflag_cldcon, ratqsbas, ratqshaut, if_ebil, &  
             ok_ade, ok_aie, &  
             bl95_b0, bl95_b1, &  
             iflag_thermals, nsplit_thermals)  
441    
442         ! Initialiser les compteurs:         ! Initialiser les compteurs:
443    
444         frugs = 0.         frugs = 0.
445         itap = 0         CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
446         itaprad = 0              rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, agesno, &
447         CALL phyetat0("startphy.nc", pctsrf, ftsol, ftsoil, ocean, tslab, &              zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, &
448              seaice, fqsurf, qsol, fsnow, &              ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01, &
449              falbe, falblw, fevap, rain_fall, snow_fall, solsw, sollwdown, &              ncid_startphy)
             dlw, radsol, frugs, agesno, &  
             zmea, zstd, zsig, zgam, zthe, zpic, zval, &  
             t_ancien, q_ancien, ancien_ok, rnebcon, ratqs, clwcon, &  
             run_off_lic_0)  
450    
451         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial         ! ATTENTION : il faudra a terme relire q2 dans l'etat initial
452         q2=1.e-8         q2 = 1e-8
   
        radpas = NINT( 86400. / dtphys / nbapp_rad)  
   
        ! on remet le calendrier a zero  
        IF (raz_date) itau_phy = 0  
   
        PRINT *, 'cycle_diurne = ', cycle_diurne  
   
        IF(ocean.NE.'force ') THEN  
           ok_ocean=.TRUE.  
        ENDIF  
453    
454         CALL printflag(radpas, ok_ocean, ok_oasis, ok_journe, ok_instan, &         radpas = lmt_pas / nbapp_rad
455              ok_region)         print *, "radpas = ", radpas
   
        IF (dtphys*REAL(radpas).GT.21600..AND.cycle_diurne) THEN  
           print *,'Nbre d appels au rayonnement insuffisant'  
           print *,"Au minimum 4 appels par jour si cycle diurne"  
           abort_message='Nbre d appels au rayonnement insuffisant'  
           call abort_gcm(modname, abort_message, 1)  
        ENDIF  
        print *,"Clef pour la convection, iflag_con=", iflag_con  
        print *,"Clef pour le driver de la convection, ok_cvl=", &  
             ok_cvl  
   
        ! Initialisation pour la convection de K.E. (sb):  
        IF (iflag_con >= 3) THEN  
   
           print *,"*** Convection de Kerry Emanuel 4.3 "  
   
           !IM15/11/02 rajout initialisation ibas_con, itop_con cf. SB =>BEG  
           DO i = 1, klon  
              ibas_con(i) = 1  
              itop_con(i) = 1  
           ENDDO  
           !IM15/11/02 rajout initialisation ibas_con, itop_con cf. SB =>END  
456    
457           ! Initialisation pour le sch\'ema de convection d'Emanuel :
458           IF (conv_emanuel) THEN
459              ibas_con = 1
460              itop_con = 1
461         ENDIF         ENDIF
462    
463         IF (ok_orodr) THEN         IF (ok_orodr) THEN
464            rugoro = MAX(1e-5, zstd * zsig / 2)            rugoro = MAX(1e-5, zstd * zsig / 2)
465            CALL SUGWD(klon, llm, paprs, play)            CALL SUGWD(paprs, play)
466         else         else
467            rugoro = 0.            rugoro = 0.
468         ENDIF         ENDIF
469    
        lmt_pas = NINT(86400. / dtphys) ! tous les jours  
        print *, 'Number of time steps of "physics" per day: ', lmt_pas  
   
        ecrit_ins = NINT(ecrit_ins/dtphys)  
        ecrit_hf = NINT(ecrit_hf/dtphys)  
        ecrit_mth = NINT(ecrit_mth/dtphys)  
        ecrit_tra = NINT(86400.*ecrit_tra/dtphys)  
        ecrit_reg = NINT(ecrit_reg/dtphys)  
   
        ! Initialiser le couplage si necessaire  
   
        npas = 0  
        nexca = 0  
   
        print *,'AVANT HIST IFLAG_CON=', iflag_con  
   
470         ! Initialisation des sorties         ! Initialisation des sorties
471           call ini_histins(ok_newmicro)
472         call ini_histhf(dtphys, nid_hf, nid_hf3d)         CALL phyredem0
473         call ini_histday(dtphys, ok_journe, nid_day, nqmx)         call conf_interface
        call ini_histins(dtphys, ok_instan, nid_ins)  
        CALL ymds2ju(annee_ref, 1, int(day_ref), 0., date0)  
        !XXXPB Positionner date0 pour initialisation de ORCHIDEE  
        WRITE(*, *) 'physiq date0 : ', date0  
474      ENDIF test_firstcal      ENDIF test_firstcal
475    
476      ! Mettre a zero des variables de sortie (pour securite)      ! We will modify variables *_seri and we will not touch variables
477        ! u, v, t, qx:
478      DO i = 1, klon      t_seri = t
479         d_ps(i) = 0.0      u_seri = u
480      ENDDO      v_seri = v
481      DO k = 1, llm      q_seri = qx(:, :, ivap)
482         DO i = 1, klon      ql_seri = qx(:, :, iliq)
483            d_t(i, k) = 0.0      tr_seri = qx(:, :, 3:nqmx)
           d_u(i, k) = 0.0  
           d_v(i, k) = 0.0  
        ENDDO  
     ENDDO  
     DO iq = 1, nqmx  
        DO k = 1, llm  
           DO i = 1, klon  
              d_qx(i, k, iq) = 0.0  
           ENDDO  
        ENDDO  
     ENDDO  
     da=0.  
     mp=0.  
     phi=0.  
   
     ! Ne pas affecter les valeurs entrees de u, v, h, et q  
   
     DO k = 1, llm  
        DO i = 1, klon  
           t_seri(i, k) = t(i, k)  
           u_seri(i, k) = u(i, k)  
           v_seri(i, k) = v(i, k)  
           q_seri(i, k) = qx(i, k, ivap)  
           ql_seri(i, k) = qx(i, k, iliq)  
           qs_seri(i, k) = 0.  
        ENDDO  
     ENDDO  
     IF (nqmx >= 3) THEN  
        tr_seri(:, :, :nqmx-2) = qx(:, :, 3:nqmx)  
     ELSE  
        tr_seri(:, :, 1) = 0.  
     ENDIF  
   
     DO i = 1, klon  
        ztsol(i) = 0.  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           ztsol(i) = ztsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     IF (if_ebil >= 1) THEN  
        ztit='after dynamic'  
        CALL diagetpq(airephy, ztit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        ! Comme les tendances de la physique sont ajoute dans la dynamique,  
        ! on devrait avoir que la variation d'entalpie par la dynamique  
        ! est egale a la variation de la physique au pas de temps precedent.  
        ! Donc la somme de ces 2 variations devrait etre nulle.  
        call diagphy(airephy, ztit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol+d_h_vcol_phy, &  
             d_qt, 0., fs_bound, fq_bound )  
     END IF  
484    
485      ! Diagnostiquer la tendance dynamique      tsol = sum(ftsol * pctsrf, dim = 2)
486    
487        ! Diagnostic de la tendance dynamique :
488      IF (ancien_ok) THEN      IF (ancien_ok) THEN
489         DO k = 1, llm         DO k = 1, llm
490            DO i = 1, klon            DO i = 1, klon
491               d_t_dyn(i, k) = (t_seri(i, k)-t_ancien(i, k))/dtphys               d_t_dyn(i, k) = (t_seri(i, k) - t_ancien(i, k)) / dtphys
492               d_q_dyn(i, k) = (q_seri(i, k)-q_ancien(i, k))/dtphys               d_q_dyn(i, k) = (q_seri(i, k) - q_ancien(i, k)) / dtphys
493            ENDDO            ENDDO
494         ENDDO         ENDDO
495      ELSE      ELSE
496         DO k = 1, llm         DO k = 1, llm
497            DO i = 1, klon            DO i = 1, klon
498               d_t_dyn(i, k) = 0.0               d_t_dyn(i, k) = 0.
499               d_q_dyn(i, k) = 0.0               d_q_dyn(i, k) = 0.
500            ENDDO            ENDDO
501         ENDDO         ENDDO
502         ancien_ok = .TRUE.         ancien_ok = .TRUE.
503      ENDIF      ENDIF
504    
505      ! Ajouter le geopotentiel du sol:      ! Ajouter le geopotentiel du sol:
   
506      DO k = 1, llm      DO k = 1, llm
507         DO i = 1, klon         DO i = 1, klon
508            zphi(i, k) = pphi(i, k) + pphis(i)            zphi(i, k) = pphi(i, k) + pphis(i)
509         ENDDO         ENDDO
510      ENDDO      ENDDO
511    
512      ! Verifier les temperatures      ! Check temperatures:
   
513      CALL hgardfou(t_seri, ftsol)      CALL hgardfou(t_seri, ftsol)
514    
515      ! Incrementer le compteur de la physique      call increment_itap
516        julien = MOD(dayvrai, 360)
     itap = itap + 1  
     julien = MOD(NINT(rdayvrai), 360)  
517      if (julien == 0) julien = 360      if (julien == 0) julien = 360
518    
519      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k)-paprs(:, k+1)) / rg      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg
   
     ! Mettre en action les conditions aux limites (albedo, sst, etc.).  
     ! Prescrire l'ozone et calculer l'albedo sur l'ocean.  
   
     if (nqmx >= 5) then  
        wo = qx(:, :, 5) * zmasse / dobson_u / 1e3  
     else IF (MOD(itap - 1, lmt_pas) == 0) THEN  
        wo = ozonecm(REAL(julien), paprs)  
     ENDIF  
   
     ! Re-evaporer l'eau liquide nuageuse  
520    
521      DO k = 1, llm ! re-evaporation de l'eau liquide nuageuse      ! \'Evaporation de l'eau liquide nuageuse :
522        DO k = 1, llm
523         DO i = 1, klon         DO i = 1, klon
524            zlvdcp=RLVTT/RCPD/(1.0+RVTMP2*q_seri(i, k))            zb = MAX(0., ql_seri(i, k))
525            zlsdcp=RLVTT/RCPD/(1.0+RVTMP2*q_seri(i, k))            t_seri(i, k) = t_seri(i, k) &
526            zdelta = MAX(0., SIGN(1., RTT-t_seri(i, k)))                 - zb * RLVTT / RCPD / (1. + RVTMP2 * q_seri(i, k))
           zb = MAX(0.0, ql_seri(i, k))  
           za = - MAX(0.0, ql_seri(i, k)) &  
                * (zlvdcp*(1.-zdelta)+zlsdcp*zdelta)  
           t_seri(i, k) = t_seri(i, k) + za  
527            q_seri(i, k) = q_seri(i, k) + zb            q_seri(i, k) = q_seri(i, k) + zb
           ql_seri(i, k) = 0.0  
        ENDDO  
     ENDDO  
   
     IF (if_ebil >= 2) THEN  
        ztit='after reevap'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 1, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound )  
   
     END IF  
   
     ! Appeler la diffusion verticale (programme de couche limite)  
   
     DO i = 1, klon  
        zxrugs(i) = 0.0  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           frugs(i, nsrf) = MAX(frugs(i, nsrf), 0.000015)  
        ENDDO  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxrugs(i) = zxrugs(i) + frugs(i, nsrf)*pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     ! calculs necessaires au calcul de l'albedo dans l'interface  
   
     CALL orbite(REAL(julien), zlongi, dist)  
     IF (cycle_diurne) THEN  
        zdtime = dtphys * REAL(radpas)  
        CALL zenang(zlongi, time, zdtime, rmu0, fract)  
     ELSE  
        rmu0 = -999.999  
     ENDIF  
   
     ! Calcul de l'abedo moyen par maille  
     albsol(:)=0.  
     albsollw(:)=0.  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           albsol(i) = albsol(i) + falbe(i, nsrf) * pctsrf(i, nsrf)  
           albsollw(i) = albsollw(i) + falblw(i, nsrf) * pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     ! Repartition sous maille des flux LW et SW  
     ! Repartition du longwave par sous-surface linearisee  
   
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           fsollw(i, nsrf) = sollw(i) &  
                + 4.0*RSIGMA*ztsol(i)**3 * (ztsol(i)-ftsol(i, nsrf))  
           fsolsw(i, nsrf) = solsw(i)*(1.-falbe(i, nsrf))/(1.-albsol(i))  
528         ENDDO         ENDDO
529      ENDDO      ENDDO
530        ql_seri = 0.
531    
532      fder = dlw      frugs = MAX(frugs, 0.000015)
533        zxrugs = sum(frugs * pctsrf, dim = 2)
534    
535      ! Couche limite:      ! Calculs n\'ecessaires au calcul de l'albedo dans l'interface avec
536        ! la surface.
537    
538      CALL clmain(dtphys, itap, date0, pctsrf, pctsrf_new, t_seri, q_seri, &      CALL orbite(REAL(julien), longi, dist)
539           u_seri, v_seri, julien, rmu0, co2_ppm, ok_veget, ocean, npas, nexca, &      CALL zenang(longi, time, dtphys * radpas, mu0, fract)
540           ftsol, soil_model, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, &      albsol = sum(falbe * pctsrf, dim = 2)
541           qsol, paprs, play, fsnow, fqsurf, fevap, falbe, falblw, fluxlat, &  
542           rain_fall, snow_fall, fsolsw, fsollw, sollwdown, fder, rlon, rlat, &      ! R\'epartition sous maille des flux longwave et shortwave
543           cuphy, cvphy, frugs, firstcal, lafin, agesno, rugoro, d_t_vdf, &      ! R\'epartition du longwave par sous-surface lin\'earis\'ee
544           d_q_vdf, d_u_vdf, d_v_vdf, d_ts, fluxt, fluxq, fluxu, fluxv, cdragh, &  
545           cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, &      forall (nsrf = 1: nbsrf)
546           pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, plcl, &         fsollw(:, nsrf) = sollw + 4. * RSIGMA * tsol**3 &
547           fqcalving, ffonte, run_off_lic_0, fluxo, fluxg, tslab, seaice)              * (tsol - ftsol(:, nsrf))
548           fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol)
549      ! Incrémentation des flux      END forall
550    
551      zxfluxt=0.      CALL pbl_surface(pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, &
552      zxfluxq=0.           ftsol, cdmmax, cdhmax, ftsoil, qsol, paprs, play, fsnow, fqsurf, &
553      zxfluxu=0.           falbe, fluxlat, rain_fall, snow_fall, fsolsw, fsollw, frugs, agesno, &
554      zxfluxv=0.           rugoro, d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, flux_t, flux_q, &
555      DO nsrf = 1, nbsrf           flux_u, flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, coefh, t2m, &
556         DO k = 1, llm           q2m, u10m_srf, v10m_srf, pblh, capCL, oliqCL, cteiCL, pblT, therm, &
557            DO i = 1, klon           plcl, fqcalving, ffonte, run_off_lic_0)
558               zxfluxt(i, k) = zxfluxt(i, k) + &  
559                    fluxt(i, k, nsrf) * pctsrf( i, nsrf)      ! Incr\'ementation des flux
560               zxfluxq(i, k) = zxfluxq(i, k) + &  
561                    fluxq(i, k, nsrf) * pctsrf( i, nsrf)      sens = - sum(flux_t * pctsrf, dim = 2)
562               zxfluxu(i, k) = zxfluxu(i, k) + &      evap = - sum(flux_q * pctsrf, dim = 2)
563                    fluxu(i, k, nsrf) * pctsrf( i, nsrf)      fder = dlw + dflux_t + dflux_q
              zxfluxv(i, k) = zxfluxv(i, k) + &  
                   fluxv(i, k, nsrf) * pctsrf( i, nsrf)  
           END DO  
        END DO  
     END DO  
     DO i = 1, klon  
        sens(i) = - zxfluxt(i, 1) ! flux de chaleur sensible au sol  
        evap(i) = - zxfluxq(i, 1) ! flux d'evaporation au sol  
        fder(i) = dlw(i) + dsens(i) + devap(i)  
     ENDDO  
564    
565      DO k = 1, llm      DO k = 1, llm
566         DO i = 1, klon         DO i = 1, klon
# Line 1067  contains Line 571  contains
571         ENDDO         ENDDO
572      ENDDO      ENDDO
573    
574      IF (if_ebil >= 2) THEN      call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf')
575         ztit='after clmain'      ftsol = ftsol + d_ts ! update surface temperature
576         CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &      tsol = sum(ftsol * pctsrf, dim = 2)
577              ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &      zxfluxlat = sum(fluxlat * pctsrf, dim = 2)
578              d_ql, d_qs, d_ec)      zt2m = sum(t2m * pctsrf, dim = 2)
579         call diagphy(airephy, ztit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &      zq2m = sum(q2m * pctsrf, dim = 2)
580              sens, evap, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &      u10m = sum(u10m_srf * pctsrf, dim = 2)
581              fs_bound, fq_bound )      v10m = sum(v10m_srf * pctsrf, dim = 2)
582      END IF      zxffonte = sum(ffonte * pctsrf, dim = 2)
583        s_pblh = sum(pblh * pctsrf, dim = 2)
584      ! Incrementer la temperature du sol      s_lcl = sum(plcl * pctsrf, dim = 2)
585        s_capCL = sum(capCL * pctsrf, dim = 2)
586      DO i = 1, klon      s_oliqCL = sum(oliqCL * pctsrf, dim = 2)
587         zxtsol(i) = 0.0      s_cteiCL = sum(cteiCL * pctsrf, dim = 2)
588         zxfluxlat(i) = 0.0      s_pblT = sum(pblT * pctsrf, dim = 2)
589        s_therm = sum(therm * pctsrf, dim = 2)
        zt2m(i) = 0.0  
        zq2m(i) = 0.0  
        zu10m(i) = 0.0  
        zv10m(i) = 0.0  
        zxffonte(i) = 0.0  
        zxfqcalving(i) = 0.0  
   
        s_pblh(i) = 0.0  
        s_lcl(i) = 0.0  
        s_capCL(i) = 0.0  
        s_oliqCL(i) = 0.0  
        s_cteiCL(i) = 0.0  
        s_pblT(i) = 0.0  
        s_therm(i) = 0.0  
        s_trmb1(i) = 0.0  
        s_trmb2(i) = 0.0  
        s_trmb3(i) = 0.0  
   
        IF ( abs( pctsrf(i, is_ter) + pctsrf(i, is_lic) + &  
             pctsrf(i, is_oce) + pctsrf(i, is_sic) - 1.) .GT. EPSFRA) &  
             THEN  
           WRITE(*, *) 'physiq : pb sous surface au point ', i, &  
                pctsrf(i, 1 : nbsrf)  
        ENDIF  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           ftsol(i, nsrf) = ftsol(i, nsrf) + d_ts(i, nsrf)  
           zxtsol(i) = zxtsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)  
           zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf)*pctsrf(i, nsrf)  
   
           zt2m(i) = zt2m(i) + t2m(i, nsrf)*pctsrf(i, nsrf)  
           zq2m(i) = zq2m(i) + q2m(i, nsrf)*pctsrf(i, nsrf)  
           zu10m(i) = zu10m(i) + u10m(i, nsrf)*pctsrf(i, nsrf)  
           zv10m(i) = zv10m(i) + v10m(i, nsrf)*pctsrf(i, nsrf)  
           zxffonte(i) = zxffonte(i) + ffonte(i, nsrf)*pctsrf(i, nsrf)  
           zxfqcalving(i) = zxfqcalving(i) + &  
                fqcalving(i, nsrf)*pctsrf(i, nsrf)  
           s_pblh(i) = s_pblh(i) + pblh(i, nsrf)*pctsrf(i, nsrf)  
           s_lcl(i) = s_lcl(i) + plcl(i, nsrf)*pctsrf(i, nsrf)  
           s_capCL(i) = s_capCL(i) + capCL(i, nsrf) *pctsrf(i, nsrf)  
           s_oliqCL(i) = s_oliqCL(i) + oliqCL(i, nsrf) *pctsrf(i, nsrf)  
           s_cteiCL(i) = s_cteiCL(i) + cteiCL(i, nsrf) *pctsrf(i, nsrf)  
           s_pblT(i) = s_pblT(i) + pblT(i, nsrf) *pctsrf(i, nsrf)  
           s_therm(i) = s_therm(i) + therm(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb1(i) = s_trmb1(i) + trmb1(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb2(i) = s_trmb2(i) + trmb2(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb3(i) = s_trmb3(i) + trmb3(i, nsrf) *pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     ! Si une sous-fraction n'existe pas, elle prend la temp. moyenne  
590    
591        ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne :
592      DO nsrf = 1, nbsrf      DO nsrf = 1, nbsrf
593         DO i = 1, klon         DO i = 1, klon
594            IF (pctsrf(i, nsrf) < epsfra) ftsol(i, nsrf) = zxtsol(i)            IF (pctsrf(i, nsrf) < epsfra) then
595                 ftsol(i, nsrf) = tsol(i)
596            IF (pctsrf(i, nsrf) < epsfra) t2m(i, nsrf) = zt2m(i)               t2m(i, nsrf) = zt2m(i)
597            IF (pctsrf(i, nsrf) < epsfra) q2m(i, nsrf) = zq2m(i)               q2m(i, nsrf) = zq2m(i)
598            IF (pctsrf(i, nsrf) < epsfra) u10m(i, nsrf) = zu10m(i)               u10m_srf(i, nsrf) = u10m(i)
599            IF (pctsrf(i, nsrf) < epsfra) v10m(i, nsrf) = zv10m(i)               v10m_srf(i, nsrf) = v10m(i)
600            IF (pctsrf(i, nsrf) < epsfra) ffonte(i, nsrf) = zxffonte(i)               ffonte(i, nsrf) = zxffonte(i)
601            IF (pctsrf(i, nsrf) < epsfra) &               pblh(i, nsrf) = s_pblh(i)
602                 fqcalving(i, nsrf) = zxfqcalving(i)               plcl(i, nsrf) = s_lcl(i)
603            IF (pctsrf(i, nsrf) < epsfra) pblh(i, nsrf)=s_pblh(i)               capCL(i, nsrf) = s_capCL(i)
604            IF (pctsrf(i, nsrf) < epsfra) plcl(i, nsrf)=s_lcl(i)               oliqCL(i, nsrf) = s_oliqCL(i)
605            IF (pctsrf(i, nsrf) < epsfra) capCL(i, nsrf)=s_capCL(i)               cteiCL(i, nsrf) = s_cteiCL(i)
606            IF (pctsrf(i, nsrf) < epsfra) oliqCL(i, nsrf)=s_oliqCL(i)               pblT(i, nsrf) = s_pblT(i)
607            IF (pctsrf(i, nsrf) < epsfra) cteiCL(i, nsrf)=s_cteiCL(i)               therm(i, nsrf) = s_therm(i)
608            IF (pctsrf(i, nsrf) < epsfra) pblT(i, nsrf)=s_pblT(i)            end IF
           IF (pctsrf(i, nsrf) < epsfra) therm(i, nsrf)=s_therm(i)  
           IF (pctsrf(i, nsrf) < epsfra) trmb1(i, nsrf)=s_trmb1(i)  
           IF (pctsrf(i, nsrf) < epsfra) trmb2(i, nsrf)=s_trmb2(i)  
           IF (pctsrf(i, nsrf) < epsfra) trmb3(i, nsrf)=s_trmb3(i)  
609         ENDDO         ENDDO
610      ENDDO      ENDDO
611    
612      ! Calculer la derive du flux infrarouge      dlw = - 4. * RSIGMA * tsol**3
613    
614      DO i = 1, klon      ! Appeler la convection
615         dlw(i) = - 4.0*RSIGMA*zxtsol(i)**3  
616      ENDDO      if (conv_emanuel) then
617           CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, &
618      ! Appeler la convection (au choix)              d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, &
619                upwd, dnwd, Ma, cape, iflagctrl, clwcon0, pmflxr, da, phi, mp)
620      DO k = 1, llm         snow_con = 0.
621         DO i = 1, klon         mfu = upwd + dnwd
622            conv_q(i, k) = d_q_dyn(i, k) &  
623                 + d_q_vdf(i, k)/dtphys         zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play)
624            conv_t(i, k) = d_t_dyn(i, k) &         zqsat = zqsat / (1. - retv * zqsat)
625                 + d_t_vdf(i, k)/dtphys  
626         ENDDO         ! Properties of convective clouds
627      ENDDO         clwcon0 = fact_cldcon * clwcon0
628      IF (check) THEN         call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &
629         za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)              rnebcon0)
630         print *, "avantcon=", za  
631      ENDIF         forall (i = 1:klon) ema_pct(i) = paprs(i, itop_con(i) + 1)
632      zx_ajustq = .FALSE.         mfd = 0.
633      IF (iflag_con == 2) zx_ajustq=.TRUE.         pen_u = 0.
634      IF (zx_ajustq) THEN         pen_d = 0.
635         DO i = 1, klon         pde_d = 0.
636            z_avant(i) = 0.0         pde_u = 0.
637         ENDDO      else
638         DO k = 1, llm         conv_q = d_q_dyn + d_q_vdf / dtphys
639            DO i = 1, klon         conv_t = d_t_dyn + d_t_vdf / dtphys
640               z_avant(i) = z_avant(i) + (q_seri(i, k)+ql_seri(i, k)) &         z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)
641                    *zmasse(i, k)         CALL conflx(paprs, play, t_seri(:, llm:1:- 1), q_seri(:, llm:1:- 1), &
642            ENDDO              conv_t, conv_q, - evap, omega, d_t_con, d_q_con, rain_con, &
643         ENDDO              snow_con, mfu(:, llm:1:- 1), mfd(:, llm:1:- 1), pen_u, pde_u, &
644      ENDIF              pen_d, pde_d, kcbot, kctop, kdtop, pmflxr, pmflxs)
     IF (iflag_con == 1) THEN  
        stop 'reactiver le call conlmd dans physiq.F'  
     ELSE IF (iflag_con == 2) THEN  
        CALL conflx(dtphys, paprs, play, t_seri, q_seri, &  
             conv_t, conv_q, zxfluxq(1, 1), omega, &  
             d_t_con, d_q_con, rain_con, snow_con, &  
             pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, &  
             kcbot, kctop, kdtop, pmflxr, pmflxs)  
645         WHERE (rain_con < 0.) rain_con = 0.         WHERE (rain_con < 0.) rain_con = 0.
646         WHERE (snow_con < 0.) snow_con = 0.         WHERE (snow_con < 0.) snow_con = 0.
647         DO i = 1, klon         ibas_con = llm + 1 - kcbot
648            ibas_con(i) = llm+1 - kcbot(i)         itop_con = llm + 1 - kctop
649            itop_con(i) = llm+1 - kctop(i)      END if
        ENDDO  
     ELSE IF (iflag_con >= 3) THEN  
        ! nb of tracers for the KE convection:  
        ! MAF la partie traceurs est faite dans phytrac  
        ! on met ntra=1 pour limiter les appels mais on peut  
        ! supprimer les calculs / ftra.  
        ntra = 1  
        ! Schema de convection modularise et vectorise:  
        ! (driver commun aux versions 3 et 4)  
   
        IF (ok_cvl) THEN ! new driver for convectL  
           CALL concvl(iflag_con, dtphys, paprs, play, t_seri, q_seri, &  
                u_seri, v_seri, tr_seri, ntra, ema_work1, ema_work2, d_t_con, &  
                d_q_con, d_u_con, d_v_con, d_tr, rain_con, snow_con, ibas_con, &  
                itop_con, upwd, dnwd, dnwd0, Ma, cape, tvp, iflagctrl, pbase, &  
                bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr, qcondc, wd, pmflxr, &  
                pmflxs, da, phi, mp)  
   
           clwcon0=qcondc  
           pmfu=upwd+dnwd  
        ELSE  
           ! MAF conema3 ne contient pas les traceurs  
           CALL conema3 (dtphys, paprs, play, t_seri, q_seri, &  
                u_seri, v_seri, tr_seri, ntra, &  
                ema_work1, ema_work2, &  
                d_t_con, d_q_con, d_u_con, d_v_con, d_tr, &  
                rain_con, snow_con, ibas_con, itop_con, &  
                upwd, dnwd, dnwd0, bas, top, &  
                Ma, cape, tvp, rflag, &  
                pbase &  
                , bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr &  
                , clwcon0)  
        ENDIF ! ok_cvl  
   
        IF (.NOT. ok_gust) THEN  
           do i = 1, klon  
              wd(i)=0.0  
           enddo  
        ENDIF  
   
        ! Calcul des proprietes des nuages convectifs  
   
        DO k = 1, llm  
           DO i = 1, klon  
              zx_t = t_seri(i, k)  
              IF (thermcep) THEN  
                 zdelta = MAX(0., SIGN(1., rtt-zx_t))  
                 zx_qs = r2es * FOEEW(zx_t, zdelta)/play(i, k)  
                 zx_qs = MIN(0.5, zx_qs)  
                 zcor = 1./(1.-retv*zx_qs)  
                 zx_qs = zx_qs*zcor  
              ELSE  
                 IF (zx_t < t_coup) THEN  
                    zx_qs = qsats(zx_t)/play(i, k)  
                 ELSE  
                    zx_qs = qsatl(zx_t)/play(i, k)  
                 ENDIF  
              ENDIF  
              zqsat(i, k)=zx_qs  
           ENDDO  
        ENDDO  
   
        ! calcul des proprietes des nuages convectifs  
        clwcon0=fact_cldcon*clwcon0  
        call clouds_gno &  
             (klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, rnebcon0)  
     ELSE  
        print *, "iflag_con non-prevu", iflag_con  
        stop 1  
     ENDIF  
650    
651      DO k = 1, llm      DO k = 1, llm
652         DO i = 1, klon         DO i = 1, klon
# Line 1286  contains Line 657  contains
657         ENDDO         ENDDO
658      ENDDO      ENDDO
659    
660      IF (if_ebil >= 2) THEN      IF (.not. conv_emanuel) THEN
661         ztit='after convect'         z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)
662         CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &         z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, rain_con, snow_con, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound )  
     END IF  
   
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        print *,"aprescon=", za  
        zx_t = 0.0  
        za = 0.0  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_con(i)+ &  
                snow_con(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtphys  
        print *,"Precip=", zx_t  
     ENDIF  
     IF (zx_ajustq) THEN  
        DO i = 1, klon  
           z_apres(i) = 0.0  
        ENDDO  
        DO k = 1, llm  
           DO i = 1, klon  
              z_apres(i) = z_apres(i) + (q_seri(i, k)+ql_seri(i, k)) &  
                   *zmasse(i, k)  
           ENDDO  
        ENDDO  
        DO i = 1, klon  
           z_factor(i) = (z_avant(i)-(rain_con(i)+snow_con(i))*dtphys) &  
                /z_apres(i)  
        ENDDO  
663         DO k = 1, llm         DO k = 1, llm
664            DO i = 1, klon            DO i = 1, klon
665               IF (z_factor(i).GT.(1.0+1.0E-08) .OR. &               IF (z_factor(i) > 1. + 1E-8 .OR. z_factor(i) < 1. - 1E-8) THEN
                   z_factor(i) < (1.0-1.0E-08)) THEN  
666                  q_seri(i, k) = q_seri(i, k) * z_factor(i)                  q_seri(i, k) = q_seri(i, k) * z_factor(i)
667               ENDIF               ENDIF
668            ENDDO            ENDDO
669         ENDDO         ENDDO
670      ENDIF      ENDIF
     zx_ajustq=.FALSE.  
671    
672      ! Convection seche (thermiques ou ajustement)      ! Convection s\`eche (thermiques ou ajustement)
673    
674      d_t_ajs=0.      d_t_ajs = 0.
675      d_u_ajs=0.      d_u_ajs = 0.
676      d_v_ajs=0.      d_v_ajs = 0.
677      d_q_ajs=0.      d_q_ajs = 0.
678      fm_therm=0.      fm_therm = 0.
679      entr_therm=0.      entr_therm = 0.
680    
681      if (iflag_thermals == 0) then      if (iflag_thermals == 0) then
682         ! Ajustement sec         ! Ajustement sec
# Line 1349  contains Line 684  contains
684         t_seri = t_seri + d_t_ajs         t_seri = t_seri + d_t_ajs
685         q_seri = q_seri + d_q_ajs         q_seri = q_seri + d_q_ajs
686      else      else
687         ! Thermiques         call calltherm(play, paprs, pphi, u_seri, v_seri, t_seri, q_seri, &
688         call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, &              d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)
             q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)  
689      endif      endif
690    
     IF (if_ebil >= 2) THEN  
        ztit='after dry_adjust'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
     END IF  
   
691      ! Caclul des ratqs      ! Caclul des ratqs
692    
     ! ratqs convectifs a l'ancienne en fonction de q(z=0)-q / q  
     ! on ecrase le tableau ratqsc calcule par clouds_gno  
693      if (iflag_cldcon == 1) then      if (iflag_cldcon == 1) then
694         do k=1, llm         ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q
695            do i=1, klon         ! on \'ecrase le tableau ratqsc calcul\'e par clouds_gno
696           do k = 1, llm
697              do i = 1, klon
698               if(ptconv(i, k)) then               if(ptconv(i, k)) then
699                  ratqsc(i, k)=ratqsbas &                  ratqsc(i, k) = ratqsbas + fact_cldcon &
700                       +fact_cldcon*(q_seri(i, 1)-q_seri(i, k))/q_seri(i, k)                       * (q_seri(i, 1) - q_seri(i, k)) / q_seri(i, k)
701               else               else
702                  ratqsc(i, k)=0.                  ratqsc(i, k) = 0.
703               endif               endif
704            enddo            enddo
705         enddo         enddo
706      endif      endif
707    
708      ! ratqs stables      ! ratqs stables
709      do k=1, llm      do k = 1, llm
710         do i=1, klon         do i = 1, klon
711            ratqss(i, k)=ratqsbas+(ratqshaut-ratqsbas)* &            ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &
712                 min((paprs(i, 1)-play(i, k))/(paprs(i, 1)-30000.), 1.)                 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)
713         enddo         enddo
714      enddo      enddo
715    
716      ! ratqs final      ! ratqs final
717      if (iflag_cldcon == 1 .or.iflag_cldcon == 2) then      if (iflag_cldcon == 1 .or. iflag_cldcon == 2) then
718         ! les ratqs sont une conbinaison de ratqss et ratqsc         ! les ratqs sont une conbinaison de ratqss et ratqsc
719         ! ratqs final         ! ratqs final
720         ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de         ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de
721         ! relaxation des ratqs         ! relaxation des ratqs
722         facteur=exp(-dtphys*facttemps)         ratqs = max(ratqs * exp(- dtphys * facttemps), ratqss)
723         ratqs=max(ratqs*facteur, ratqss)         ratqs = max(ratqs, ratqsc)
        ratqs=max(ratqs, ratqsc)  
724      else      else
725         ! on ne prend que le ratqs stable pour fisrtilp         ! on ne prend que le ratqs stable pour fisrtilp
726         ratqs=ratqss         ratqs = ratqss
727      endif      endif
728    
729      ! Appeler le processus de condensation a grande echelle      CALL fisrtilp(paprs, play, t_seri, q_seri, ptconv, ratqs, d_t_lsc, &
730      ! et le processus de precipitation           d_q_lsc, d_ql_lsc, rneb, cldliq, rain_lsc, snow_lsc, pfrac_impa, &
731      CALL fisrtilp(dtphys, paprs, play, &           pfrac_nucl, pfrac_1nucl, frac_impa, frac_nucl, prfl, psfl, rhcl)
          t_seri, q_seri, ptconv, ratqs, &  
          d_t_lsc, d_q_lsc, d_ql_lsc, rneb, cldliq, &  
          rain_lsc, snow_lsc, &  
          pfrac_impa, pfrac_nucl, pfrac_1nucl, &  
          frac_impa, frac_nucl, &  
          prfl, psfl, rhcl)  
732    
733      WHERE (rain_lsc < 0) rain_lsc = 0.      WHERE (rain_lsc < 0) rain_lsc = 0.
734      WHERE (snow_lsc < 0) snow_lsc = 0.      WHERE (snow_lsc < 0) snow_lsc = 0.
# Line 1421  contains Line 741  contains
741            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)
742         ENDDO         ENDDO
743      ENDDO      ENDDO
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        print *,"apresilp=", za  
        zx_t = 0.0  
        za = 0.0  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_lsc(i) &  
                + snow_lsc(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*dtphys  
        print *,"Precip=", zx_t  
     ENDIF  
   
     IF (if_ebil >= 2) THEN  
        ztit='after fisrt'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil, zero_v, zero_v, zero_v, zero_v, &  
             zero_v, zero_v, rain_lsc, snow_lsc, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound )  
     END IF  
744    
745      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
746    
747      ! 1. NUAGES CONVECTIFS      ! 1. NUAGES CONVECTIFS
748    
749      IF (iflag_cldcon.le.-1) THEN ! seulement pour Tiedtke      IF (iflag_cldcon <= - 1) THEN
750         snow_tiedtke=0.         ! seulement pour Tiedtke
751         if (iflag_cldcon == -1) then         snow_tiedtke = 0.
752            rain_tiedtke=rain_con         if (iflag_cldcon == - 1) then
753              rain_tiedtke = rain_con
754         else         else
755            rain_tiedtke=0.            rain_tiedtke = 0.
756            do k=1, llm            do k = 1, llm
757               do i=1, klon               do i = 1, klon
758                  if (d_q_con(i, k) < 0.) then                  if (d_q_con(i, k) < 0.) then
759                     rain_tiedtke(i)=rain_tiedtke(i)-d_q_con(i, k)/dtphys &                     rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k) / dtphys &
760                          *zmasse(i, k)                          * zmasse(i, k)
761                  endif                  endif
762               enddo               enddo
763            enddo            enddo
764         endif         endif
765    
766         ! Nuages diagnostiques pour Tiedtke         ! Nuages diagnostiques pour Tiedtke
767         CALL diagcld1(paprs, play, &         CALL diagcld1(paprs, play, rain_tiedtke, snow_tiedtke, ibas_con, &
768              rain_tiedtke, snow_tiedtke, ibas_con, itop_con, &              itop_con, diafra, dialiq)
             diafra, dialiq)  
769         DO k = 1, llm         DO k = 1, llm
770            DO i = 1, klon            DO i = 1, klon
771               IF (diafra(i, k).GT.cldfra(i, k)) THEN               IF (diafra(i, k) > cldfra(i, k)) THEN
772                  cldliq(i, k) = dialiq(i, k)                  cldliq(i, k) = dialiq(i, k)
773                  cldfra(i, k) = diafra(i, k)                  cldfra(i, k) = diafra(i, k)
774               ENDIF               ENDIF
775            ENDDO            ENDDO
776         ENDDO         ENDDO
   
777      ELSE IF (iflag_cldcon == 3) THEN      ELSE IF (iflag_cldcon == 3) THEN
778         ! On prend pour les nuages convectifs le max du calcul de la         ! On prend pour les nuages convectifs le maximum du calcul de
779         ! convection et du calcul du pas de temps précédent diminué d'un facteur         ! la convection et du calcul du pas de temps pr\'ec\'edent diminu\'e
780         ! facttemps         ! d'un facteur facttemps.
781         facteur = dtphys *facttemps         facteur = dtphys * facttemps
782         do k=1, llm         do k = 1, llm
783            do i=1, klon            do i = 1, klon
784               rnebcon(i, k)=rnebcon(i, k)*facteur               rnebcon(i, k) = rnebcon(i, k) * facteur
785               if (rnebcon0(i, k)*clwcon0(i, k).gt.rnebcon(i, k)*clwcon(i, k)) &               if (rnebcon0(i, k) * clwcon0(i, k) &
786                    then                    > rnebcon(i, k) * clwcon(i, k)) then
787                  rnebcon(i, k)=rnebcon0(i, k)                  rnebcon(i, k) = rnebcon0(i, k)
788                  clwcon(i, k)=clwcon0(i, k)                  clwcon(i, k) = clwcon0(i, k)
789               endif               endif
790            enddo            enddo
791         enddo         enddo
792    
793         ! On prend la somme des fractions nuageuses et des contenus en eau         ! On prend la somme des fractions nuageuses et des contenus en eau
794         cldfra=min(max(cldfra, rnebcon), 1.)         cldfra = min(max(cldfra, rnebcon), 1.)
795         cldliq=cldliq+rnebcon*clwcon         cldliq = cldliq + rnebcon * clwcon
   
796      ENDIF      ENDIF
797    
798      ! 2. NUAGES STARTIFORMES      ! 2. Nuages stratiformes
799    
800      IF (ok_stratus) THEN      IF (ok_stratus) THEN
801         CALL diagcld2(paprs, play, t_seri, q_seri, diafra, dialiq)         CALL diagcld2(paprs, play, t_seri, q_seri, diafra, dialiq)
802         DO k = 1, llm         DO k = 1, llm
803            DO i = 1, klon            DO i = 1, klon
804               IF (diafra(i, k).GT.cldfra(i, k)) THEN               IF (diafra(i, k) > cldfra(i, k)) THEN
805                  cldliq(i, k) = dialiq(i, k)                  cldliq(i, k) = dialiq(i, k)
806                  cldfra(i, k) = diafra(i, k)                  cldfra(i, k) = diafra(i, k)
807               ENDIF               ENDIF
# Line 1515  contains Line 810  contains
810      ENDIF      ENDIF
811    
812      ! Precipitation totale      ! Precipitation totale
   
813      DO i = 1, klon      DO i = 1, klon
814         rain_fall(i) = rain_con(i) + rain_lsc(i)         rain_fall(i) = rain_con(i) + rain_lsc(i)
815         snow_fall(i) = snow_con(i) + snow_lsc(i)         snow_fall(i) = snow_con(i) + snow_lsc(i)
816      ENDDO      ENDDO
817    
818      IF (if_ebil >= 2) THEN      ! Humidit\'e relative pour diagnostic :
        ztit="after diagcld"  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
     END IF  
   
     ! Calculer l'humidite relative pour diagnostique  
   
819      DO k = 1, llm      DO k = 1, llm
820         DO i = 1, klon         DO i = 1, klon
821            zx_t = t_seri(i, k)            zx_t = t_seri(i, k)
822            IF (thermcep) THEN            zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t) / play(i, k)
823               zdelta = MAX(0., SIGN(1., rtt-zx_t))            zx_qs = MIN(0.5, zx_qs)
824               zx_qs = r2es * FOEEW(zx_t, zdelta)/play(i, k)            zcor = 1. / (1. - retv * zx_qs)
825               zx_qs = MIN(0.5, zx_qs)            zx_qs = zx_qs * zcor
826               zcor = 1./(1.-retv*zx_qs)            zx_rh(i, k) = q_seri(i, k) / zx_qs
827               zx_qs = zx_qs*zcor            zqsat(i, k) = zx_qs
           ELSE  
              IF (zx_t < t_coup) THEN  
                 zx_qs = qsats(zx_t)/play(i, k)  
              ELSE  
                 zx_qs = qsatl(zx_t)/play(i, k)  
              ENDIF  
           ENDIF  
           zx_rh(i, k) = q_seri(i, k)/zx_qs  
           zqsat(i, k)=zx_qs  
828         ENDDO         ENDDO
829      ENDDO      ENDDO
     !jq - introduce the aerosol direct and first indirect radiative forcings  
     !jq - Johannes Quaas, 27/11/2003 (quaas@lmd.jussieu.fr)  
     IF (ok_ade.OR.ok_aie) THEN  
        ! Get sulfate aerosol distribution  
        CALL readsulfate(rdayvrai, firstcal, sulfate)  
        CALL readsulfate_preind(rdayvrai, firstcal, sulfate_pi)  
   
        ! Calculate aerosol optical properties (Olivier Boucher)  
        CALL aeropt(play, paprs, t_seri, sulfate, rhcl, &  
             tau_ae, piz_ae, cg_ae, aerindex)  
     ELSE  
        tau_ae=0.0  
        piz_ae=0.0  
        cg_ae=0.0  
     ENDIF  
   
     ! Calculer les parametres optiques des nuages et quelques  
     ! parametres pour diagnostiques:  
830    
831        ! Param\`etres optiques des nuages et quelques param\`etres pour
832        ! diagnostics :
833      if (ok_newmicro) then      if (ok_newmicro) then
834         CALL newmicro (paprs, play, ok_newmicro, &         CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &
835              t_seri, cldliq, cldfra, cldtau, cldemi, &              cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc)
             cldh, cldl, cldm, cldt, cldq, &  
             flwp, fiwp, flwc, fiwc, &  
             ok_aie, &  
             sulfate, sulfate_pi, &  
             bl95_b0, bl95_b1, &  
             cldtaupi, re, fl)  
836      else      else
837         CALL nuage (paprs, play, &         CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &
838              t_seri, cldliq, cldfra, cldtau, cldemi, &              cldl, cldm, cldt, cldq)
             cldh, cldl, cldm, cldt, cldq, &  
             ok_aie, &  
             sulfate, sulfate_pi, &  
             bl95_b0, bl95_b1, &  
             cldtaupi, re, fl)  
   
839      endif      endif
840    
841      ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.      IF (MOD(itap - 1, radpas) == 0) THEN
842           wo = ozonecm(REAL(julien), paprs)
843      IF (MOD(itaprad, radpas) == 0) THEN         albsol = sum(falbe * pctsrf, dim = 2)
844         DO i = 1, klon         CALL radlwsw(dist, mu0, fract, paprs, play, tsol, albsol, t_seri, &
845            albsol(i) = falbe(i, is_oce) * pctsrf(i, is_oce) &              q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, &
846                 + falbe(i, is_lic) * pctsrf(i, is_lic) &              radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, &
847                 + falbe(i, is_ter) * pctsrf(i, is_ter) &              toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, &
848                 + falbe(i, is_sic) * pctsrf(i, is_sic)              swup0, swup, ok_ade, topswad, solswad)
           albsollw(i) = falblw(i, is_oce) * pctsrf(i, is_oce) &  
                + falblw(i, is_lic) * pctsrf(i, is_lic) &  
                + falblw(i, is_ter) * pctsrf(i, is_ter) &  
                + falblw(i, is_sic) * pctsrf(i, is_sic)  
        ENDDO  
        ! nouveau rayonnement (compatible Arpege-IFS):  
        CALL radlwsw(dist, rmu0, fract, paprs, play, zxtsol, albsol, &  
             albsollw, t_seri, q_seri, wo, cldfra, cldemi, cldtau, heat, &  
             heat0, cool, cool0, radsol, albpla, topsw, toplw, solsw, sollw, &  
             sollwdown, topsw0, toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, &  
             lwup, swdn0, swdn, swup0, swup, ok_ade, ok_aie, tau_ae, piz_ae, &  
             cg_ae, topswad, solswad, cldtaupi, topswai, solswai)  
        itaprad = 0  
849      ENDIF      ENDIF
     itaprad = itaprad + 1  
850    
851      ! Ajouter la tendance des rayonnements (tous les pas)      ! Ajouter la tendance des rayonnements (tous les pas)
   
852      DO k = 1, llm      DO k = 1, llm
853         DO i = 1, klon         DO i = 1, klon
854            t_seri(i, k) = t_seri(i, k) &            t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys &
855                 + (heat(i, k)-cool(i, k)) * dtphys/86400.                 / 86400.
        ENDDO  
     ENDDO  
   
     IF (if_ebil >= 2) THEN  
        ztit='after rad'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil, topsw, toplw, solsw, sollw, &  
             zero_v, zero_v, zero_v, zero_v, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound )  
     END IF  
   
     ! Calculer l'hydrologie de la surface  
   
     DO i = 1, klon  
        zxqsurf(i) = 0.0  
        zxsnow(i) = 0.0  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxqsurf(i) = zxqsurf(i) + fqsurf(i, nsrf)*pctsrf(i, nsrf)  
           zxsnow(i) = zxsnow(i) + fsnow(i, nsrf)*pctsrf(i, nsrf)  
856         ENDDO         ENDDO
857      ENDDO      ENDDO
858    
859      ! Calculer le bilan du sol et la derive de temperature (couplage)      ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage)
   
860      DO i = 1, klon      DO i = 1, klon
861         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)
862      ENDDO      ENDDO
863    
864      !mod deb lott(jan95)      ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille :
     ! Appeler le programme de parametrisation de l'orographie  
     ! a l'echelle sous-maille:  
865    
866      IF (ok_orodr) THEN      IF (ok_orodr) THEN
867         ! selection des points pour lesquels le shema est actif:         ! S\'election des points pour lesquels le sch\'ema est actif :
868         igwd=0         DO i = 1, klon
869         DO i=1, klon            ktest(i) = 0
870            itest(i)=0            IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN
871            IF (((zpic(i)-zmea(i)).GT.100.).AND.(zstd(i).GT.10.0)) THEN               ktest(i) = 1
              itest(i)=1  
              igwd=igwd+1  
              idx(igwd)=i  
872            ENDIF            ENDIF
873         ENDDO         ENDDO
874    
875         CALL drag_noro(klon, llm, dtphys, paprs, play, &         CALL drag_noro(paprs, play, zmea, zstd, zsig, zgam, zthe, zpic, zval, &
876              zmea, zstd, zsig, zgam, zthe, zpic, zval, &              ktest, t_seri, u_seri, v_seri, zulow, zvlow, zustrdr, zvstrdr, &
             igwd, idx, itest, &  
             t_seri, u_seri, v_seri, &  
             zulow, zvlow, zustrdr, zvstrdr, &  
877              d_t_oro, d_u_oro, d_v_oro)              d_t_oro, d_u_oro, d_v_oro)
878    
879         ! ajout des tendances         ! ajout des tendances
# Line 1685  contains Line 887  contains
887      ENDIF      ENDIF
888    
889      IF (ok_orolf) THEN      IF (ok_orolf) THEN
890           ! S\'election des points pour lesquels le sch\'ema est actif :
891         ! selection des points pour lesquels le shema est actif:         DO i = 1, klon
892         igwd=0            ktest(i) = 0
893         DO i=1, klon            IF (zpic(i) - zmea(i) > 100.) THEN
894            itest(i)=0               ktest(i) = 1
           IF ((zpic(i)-zmea(i)).GT.100.) THEN  
              itest(i)=1  
              igwd=igwd+1  
              idx(igwd)=i  
895            ENDIF            ENDIF
896         ENDDO         ENDDO
897    
898         CALL lift_noro(klon, llm, dtphys, paprs, play, rlat, zmea, zstd, zpic, &         CALL lift_noro(paprs, play, zmea, zstd, zpic, ktest, t_seri, u_seri, &
899              itest, t_seri, u_seri, v_seri, zulow, zvlow, zustrli, zvstrli, &              v_seri, zulow, zvlow, zustrli, zvstrli, d_t_lif, d_u_lif, d_v_lif)
             d_t_lif, d_u_lif, d_v_lif)  
900    
901         ! ajout des tendances         ! Ajout des tendances :
902         DO k = 1, llm         DO k = 1, llm
903            DO i = 1, klon            DO i = 1, klon
904               t_seri(i, k) = t_seri(i, k) + d_t_lif(i, k)               t_seri(i, k) = t_seri(i, k) + d_t_lif(i, k)
# Line 1709  contains Line 906  contains
906               v_seri(i, k) = v_seri(i, k) + d_v_lif(i, k)               v_seri(i, k) = v_seri(i, k) + d_v_lif(i, k)
907            ENDDO            ENDDO
908         ENDDO         ENDDO
909        ENDIF
910    
911      ENDIF ! fin de test sur ok_orolf      CALL aaam_bud(rg, romega, pphis, zustrdr, zustrli, &
912             sum((u_seri - u) / dtphys * zmasse, dim = 2), zvstrdr, &
913      ! STRESS NECESSAIRES: TOUTE LA PHYSIQUE           zvstrli, sum((v_seri - v) / dtphys * zmasse, dim = 2), paprs, u, v, &
   
     DO i = 1, klon  
        zustrph(i)=0.  
        zvstrph(i)=0.  
     ENDDO  
     DO k = 1, llm  
        DO i = 1, klon  
           zustrph(i)=zustrph(i)+(u_seri(i, k)-u(i, k))/dtphys* zmasse(i, k)  
           zvstrph(i)=zvstrph(i)+(v_seri(i, k)-v(i, k))/dtphys* zmasse(i, k)  
        ENDDO  
     ENDDO  
   
     !IM calcul composantes axiales du moment angulaire et couple des montagnes  
   
     CALL aaam_bud(27, klon, llm, time, ra, rg, romega, rlat, rlon, pphis, &  
          zustrdr, zustrli, zustrph, zvstrdr, zvstrli, zvstrph, paprs, u, v, &  
914           aam, torsfc)           aam, torsfc)
915    
     IF (if_ebil >= 2) THEN  
        ztit='after orography'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
     END IF  
   
916      ! Calcul des tendances traceurs      ! Calcul des tendances traceurs
917      call phytrac(rnpb, itap, lmt_pas, julien, time, firstcal, lafin, &      call phytrac(julien, time, firstcal, lafin, t, paprs, play, mfu, mfd, &
918           nqmx-2, dtphys, u, t, paprs, play, pmfu, pmfd, pen_u, pde_u, &           pde_u, pen_d, coefh, cdragh, fm_therm, entr_therm, u(:, 1), v(:, 1), &
919           pen_d, pde_d, ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, pctsrf, &           ftsol, pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, dnwd, &
920           frac_impa, frac_nucl, pphis, albsol, rhcl, cldfra, rneb, &           tr_seri, zmasse, ncid_startphy)
          diafra, cldliq, pmflxr, pmflxs, prfl, psfl, da, phi, mp, upwd, dnwd, &  
          tr_seri, zmasse)  
   
     IF (offline) THEN  
        call phystokenc(dtphys, rlon, rlat, t, pmfu, pmfd, pen_u, pde_u, &  
             pen_d, pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, &  
             pctsrf, frac_impa, frac_nucl, pphis, airephy, dtphys, itap)  
     ENDIF  
921    
922      ! Calculer le transport de l'eau et de l'energie (diagnostique)      ! Calculer le transport de l'eau et de l'energie (diagnostique)
923      CALL transp(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, &      CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq)
          ue, uq)  
924    
925      ! diag. bilKP      ! diag. bilKP
926    
927      CALL transp_lay (paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, &      CALL transp_lay(paprs, t_seri, q_seri, u_seri, v_seri, zphi, &
928           ve_lay, vq_lay, ue_lay, uq_lay)           ve_lay, vq_lay, ue_lay, uq_lay)
929    
930      ! Accumuler les variables a stocker dans les fichiers histoire:      ! Accumuler les variables a stocker dans les fichiers histoire:
931    
932      !+jld ec_conser      ! conversion Ec en énergie thermique
933      DO k = 1, llm      DO k = 1, llm
934         DO i = 1, klon         DO i = 1, klon
935            ZRCPD = RCPD*(1.0+RVTMP2*q_seri(i, k))            d_t_ec(i, k) = 0.5 / (RCPD * (1. + RVTMP2 * q_seri(i, k))) &
936            d_t_ec(i, k)=0.5/ZRCPD &                 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)
937                 *(u(i, k)**2+v(i, k)**2-u_seri(i, k)**2-v_seri(i, k)**2)            t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)
938            t_seri(i, k)=t_seri(i, k)+d_t_ec(i, k)            d_t_ec(i, k) = d_t_ec(i, k) / dtphys
           d_t_ec(i, k) = d_t_ec(i, k)/dtphys  
939         END DO         END DO
940      END DO      END DO
     !-jld ec_conser  
     IF (if_ebil >= 1) THEN  
        ztit='after physic'  
        CALL diagetpq(airephy, ztit, ip_ebil, 1, 1, dtphys, t_seri, q_seri, &  
             ql_seri, qs_seri, u_seri, v_seri, paprs, d_h_vcol, d_qt, d_qw, &  
             d_ql, d_qs, d_ec)  
        ! Comme les tendances de la physique sont ajoute dans la dynamique,  
        ! on devrait avoir que la variation d'entalpie par la dynamique  
        ! est egale a la variation de la physique au pas de temps precedent.  
        ! Donc la somme de ces 2 variations devrait etre nulle.  
        call diagphy(airephy, ztit, ip_ebil, topsw, toplw, solsw, sollw, sens, &  
             evap, rain_fall, snow_fall, ztsol, d_h_vcol, d_qt, d_ec, &  
             fs_bound, fq_bound )  
   
        d_h_vcol_phy=d_h_vcol  
   
     END IF  
941    
942      ! SORTIES      ! SORTIES
943    
944      !cc prw = eau precipitable      ! prw = eau precipitable
945      DO i = 1, klon      DO i = 1, klon
946         prw(i) = 0.         prw(i) = 0.
947         DO k = 1, llm         DO k = 1, llm
948            prw(i) = prw(i) + q_seri(i, k)*zmasse(i, k)            prw(i) = prw(i) + q_seri(i, k) * zmasse(i, k)
949         ENDDO         ENDDO
950      ENDDO      ENDDO
951    
# Line 1805  contains Line 953  contains
953    
954      DO k = 1, llm      DO k = 1, llm
955         DO i = 1, klon         DO i = 1, klon
956            d_u(i, k) = ( u_seri(i, k) - u(i, k) ) / dtphys            d_u(i, k) = (u_seri(i, k) - u(i, k)) / dtphys
957            d_v(i, k) = ( v_seri(i, k) - v(i, k) ) / dtphys            d_v(i, k) = (v_seri(i, k) - v(i, k)) / dtphys
958            d_t(i, k) = ( t_seri(i, k)-t(i, k) ) / dtphys            d_t(i, k) = (t_seri(i, k) - t(i, k)) / dtphys
959            d_qx(i, k, ivap) = ( q_seri(i, k) - qx(i, k, ivap) ) / dtphys            d_qx(i, k, ivap) = (q_seri(i, k) - qx(i, k, ivap)) / dtphys
960            d_qx(i, k, iliq) = ( ql_seri(i, k) - qx(i, k, iliq) ) / dtphys            d_qx(i, k, iliq) = (ql_seri(i, k) - qx(i, k, iliq)) / dtphys
961         ENDDO         ENDDO
962      ENDDO      ENDDO
963    
964      IF (nqmx >= 3) THEN      DO iq = 3, nqmx
965         DO iq = 3, nqmx         DO k = 1, llm
966            DO k = 1, llm            DO i = 1, klon
967               DO i = 1, klon               d_qx(i, k, iq) = (tr_seri(i, k, iq - 2) - qx(i, k, iq)) / dtphys
                 d_qx(i, k, iq) = (tr_seri(i, k, iq-2) - qx(i, k, iq)) / dtphys  
              ENDDO  
968            ENDDO            ENDDO
969         ENDDO         ENDDO
970      ENDIF      ENDDO
971    
972      ! Sauvegarder les valeurs de t et q a la fin de la physique:      ! Sauvegarder les valeurs de t et q a la fin de la physique:
973      DO k = 1, llm      DO k = 1, llm
# Line 1831  contains Line 977  contains
977         ENDDO         ENDDO
978      ENDDO      ENDDO
979    
980      ! Ecriture des sorties      CALL histwrite_phy("phis", pphis)
981      call write_histhf      CALL histwrite_phy("aire", airephy)
982      call write_histday      CALL histwrite_phy("psol", paprs(:, 1))
983      call write_histins      CALL histwrite_phy("precip", rain_fall + snow_fall)
984        CALL histwrite_phy("plul", rain_lsc + snow_lsc)
985      ! Si c'est la fin, il faut conserver l'etat de redemarrage      CALL histwrite_phy("pluc", rain_con + snow_con)
986      IF (lafin) THEN      CALL histwrite_phy("tsol", tsol)
987         itau_phy = itau_phy + itap      CALL histwrite_phy("t2m", zt2m)
988         CALL phyredem("restartphy.nc", rlat, rlon, pctsrf, ftsol, &      CALL histwrite_phy("q2m", zq2m)
989              ftsoil, tslab, seaice, fqsurf, qsol, &      CALL histwrite_phy("u10m", u10m)
990              fsnow, falbe, falblw, fevap, rain_fall, snow_fall, &      CALL histwrite_phy("v10m", v10m)
991              solsw, sollwdown, dlw, &      CALL histwrite_phy("snow", snow_fall)
992              radsol, frugs, agesno, &      CALL histwrite_phy("cdrm", cdragm)
993              zmea, zstd, zsig, zgam, zthe, zpic, zval, &      CALL histwrite_phy("cdrh", cdragh)
994              t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0)      CALL histwrite_phy("topl", toplw)
995      ENDIF      CALL histwrite_phy("evap", evap)
996        CALL histwrite_phy("sols", solsw)
997      firstcal = .FALSE.      CALL histwrite_phy("soll", sollw)
998        CALL histwrite_phy("solldown", sollwdown)
999    contains      CALL histwrite_phy("bils", bils)
1000        CALL histwrite_phy("sens", - sens)
1001      subroutine write_histday      CALL histwrite_phy("fder", fder)
1002        CALL histwrite_phy("dtsvdfo", d_ts(:, is_oce))
1003        use gr_phy_write_3d_m, only: gr_phy_write_3d      CALL histwrite_phy("dtsvdft", d_ts(:, is_ter))
1004        integer itau_w ! pas de temps ecriture      CALL histwrite_phy("dtsvdfg", d_ts(:, is_lic))
1005        CALL histwrite_phy("dtsvdfi", d_ts(:, is_sic))
1006        !------------------------------------------------      CALL histwrite_phy("zxfqcalving", sum(fqcalving * pctsrf, dim = 2))
   
       if (ok_journe) THEN  
          itau_w = itau_phy + itap  
          if (nqmx <= 4) then  
             call histwrite(nid_day, "Sigma_O3_Royer", itau_w, &  
                  gr_phy_write_3d(wo) * 1e3)  
             ! (convert "wo" from kDU to DU)  
          end if  
          if (ok_sync) then  
             call histsync(nid_day)  
          endif  
       ENDIF  
1007    
1008      End subroutine write_histday      DO nsrf = 1, nbsrf
1009           CALL histwrite_phy("pourc_"//clnsurf(nsrf), pctsrf(:, nsrf) * 100.)
1010      !****************************         CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf))
1011           CALL histwrite_phy("sens_"//clnsurf(nsrf), flux_t(:, nsrf))
1012      subroutine write_histhf         CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf))
1013           CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf))
1014        ! From phylmd/write_histhf.h, version 1.5 2005/05/25 13:10:09         CALL histwrite_phy("taux_"//clnsurf(nsrf), flux_u(:, nsrf))
1015           CALL histwrite_phy("tauy_"//clnsurf(nsrf), flux_v(:, nsrf))
1016        !------------------------------------------------         CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf))
1017           CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf))
1018        call write_histhf3d         CALL histwrite_phy("u10m_"//clnsurf(nsrf), u10m_srf(:, nsrf))
1019           CALL histwrite_phy("v10m_"//clnsurf(nsrf), v10m_srf(:, nsrf))
1020        IF (ok_sync) THEN      END DO
          call histsync(nid_hf)  
       ENDIF  
   
     end subroutine write_histhf  
   
     !***************************************************************  
   
     subroutine write_histins  
   
       ! From phylmd/write_histins.h, version 1.2 2005/05/25 13:10:09  
   
       real zout  
       integer itau_w ! pas de temps ecriture  
   
       !--------------------------------------------------  
   
       IF (ok_instan) THEN  
          ! Champs 2D:  
   
          zsto = dtphys * ecrit_ins  
          zout = dtphys * ecrit_ins  
          itau_w = itau_phy + itap  
   
          i = NINT(zout/zsto)  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), pphis, zx_tmp_2d)  
          CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d)  
   
          i = NINT(zout/zsto)  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), airephy, zx_tmp_2d)  
          CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = paprs(i, 1)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "psol", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_fall(i) + snow_fall(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "precip", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_lsc(i) + snow_lsc(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "plul", itau_w, zx_tmp_2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_con(i) + snow_con(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "pluc", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zxtsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "tsol", itau_w, zx_tmp_2d)  
          !ccIM  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zt2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "t2m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zq2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "q2m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zu10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "u10m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zv10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "v10m", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), snow_fall, zx_tmp_2d)  
          CALL histwrite(nid_ins, "snow", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), cdragm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrm", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), cdragh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrh", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), toplw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "topl", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), evap, zx_tmp_2d)  
          CALL histwrite(nid_ins, "evap", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), solsw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sols", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "soll", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sollwdown, zx_tmp_2d)  
          CALL histwrite(nid_ins, "solldown", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), bils, zx_tmp_2d)  
          CALL histwrite(nid_ins, "bils", itau_w, zx_tmp_2d)  
   
          zx_tmp_fi2d(1:klon)=-1*sens(1:klon)  
          ! CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sens, zx_tmp_2d)  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sens", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), fder, zx_tmp_2d)  
          CALL histwrite(nid_ins, "fder", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_oce), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfo", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_ter), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdft", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_lic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfg", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_sic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfi", itau_w, zx_tmp_2d)  
   
          DO nsrf = 1, nbsrf  
             !XXX  
             zx_tmp_fi2d(1 : klon) = pctsrf( 1 : klon, nsrf)*100.  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "pourc_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = pctsrf( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "fract_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxt( 1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "sens_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxlat( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "lat_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = ftsol( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tsol_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxu( 1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "taux_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxv( 1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tauy_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = frugs( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "rugs_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
             zx_tmp_fi2d(1 : klon) = falbe( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "albe_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d)  
   
          END DO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), albsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albs", itau_w, zx_tmp_2d)  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), albsollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albslw", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zxrugs, zx_tmp_2d)  
          CALL histwrite(nid_ins, "rugs", itau_w, zx_tmp_2d)  
   
          !IM cf. AM 081204 BEG  
   
          !HBTM2  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_pblh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblh", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_pblt, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblt", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_lcl, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_lcl", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_capCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_capCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_oliqCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_oliqCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_cteiCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_cteiCL", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_therm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_therm", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb1, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb1", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb2, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb2", itau_w, zx_tmp_2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb3, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb3", itau_w, zx_tmp_2d)  
   
          !IM cf. AM 081204 END  
   
          ! Champs 3D:  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), t_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "temp", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), u_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitu", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), v_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitv", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), zphi, zx_tmp_3d)  
          CALL histwrite(nid_ins, "geop", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), play, zx_tmp_3d)  
          CALL histwrite(nid_ins, "pres", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), d_t_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dtvdf", itau_w, zx_tmp_3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), d_q_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d)  
   
          if (ok_sync) then  
             call histsync(nid_ins)  
          endif  
       ENDIF  
   
     end subroutine write_histins  
   
     !****************************************************  
   
     subroutine write_histhf3d  
   
       ! From phylmd/write_histhf3d.h, version 1.2 2005/05/25 13:10:09  
   
       integer itau_w ! pas de temps ecriture  
   
       !-------------------------------------------------------  
   
       itau_w = itau_phy + itap  
   
       ! Champs 3D:  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), t_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "temp", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), qx(1, 1, ivap), zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "ovap", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), u_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitu", itau_w, zx_tmp_3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), v_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitv", itau_w, zx_tmp_3d)  
   
       if (nbtr >= 3) then  
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), tr_seri(1, 1, 3), &  
               zx_tmp_3d)  
          CALL histwrite(nid_hf3d, "O3", itau_w, zx_tmp_3d)  
       end if  
1021    
1022        if (ok_sync) then      CALL histwrite_phy("albs", albsol)
1023           call histsync(nid_hf3d)      CALL histwrite_phy("tro3", wo * dobson_u * 1e3 / zmasse / rmo3 * md)
1024        endif      CALL histwrite_phy("rugs", zxrugs)
1025        CALL histwrite_phy("s_pblh", s_pblh)
1026        CALL histwrite_phy("s_pblt", s_pblt)
1027        CALL histwrite_phy("s_lcl", s_lcl)
1028        CALL histwrite_phy("s_capCL", s_capCL)
1029        CALL histwrite_phy("s_oliqCL", s_oliqCL)
1030        CALL histwrite_phy("s_cteiCL", s_cteiCL)
1031        CALL histwrite_phy("s_therm", s_therm)
1032    
1033        if (conv_emanuel) then
1034           CALL histwrite_phy("ptop", ema_pct)
1035           CALL histwrite_phy("dnwd0", - mp)
1036        end if
1037    
1038        CALL histwrite_phy("temp", t_seri)
1039        CALL histwrite_phy("vitu", u_seri)
1040        CALL histwrite_phy("vitv", v_seri)
1041        CALL histwrite_phy("geop", zphi)
1042        CALL histwrite_phy("pres", play)
1043        CALL histwrite_phy("dtvdf", d_t_vdf)
1044        CALL histwrite_phy("dqvdf", d_q_vdf)
1045        CALL histwrite_phy("rhum", zx_rh)
1046        CALL histwrite_phy("d_t_ec", d_t_ec)
1047        CALL histwrite_phy("dtsw0", heat0 / 86400.)
1048        CALL histwrite_phy("dtlw0", - cool0 / 86400.)
1049        CALL histwrite_phy("msnow", sum(fsnow * pctsrf, dim = 2))
1050        call histwrite_phy("qsurf", sum(fqsurf * pctsrf, dim = 2))
1051    
1052        if (ok_instan) call histsync(nid_ins)
1053    
1054        IF (lafin) then
1055           call NF95_CLOSE(ncid_startphy)
1056           CALL phyredem(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
1057                rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, agesno, &
1058                zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, q_ancien, &
1059                rnebcon, ratqs, clwcon, run_off_lic_0, sig1, w01)
1060        end IF
1061    
1062      end subroutine write_histhf3d      firstcal = .FALSE.
1063    
1064    END SUBROUTINE physiq    END SUBROUTINE physiq
1065    

Legend:
Removed from v.47  
changed lines
  Added in v.305

  ViewVC Help
Powered by ViewVC 1.1.21