/[lmdze]/trunk/phylmd/physiq.f
ViewVC logotype

Contents of /trunk/phylmd/physiq.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 265 - (show annotations)
Tue Mar 20 09:35:59 2018 UTC (6 years, 1 month ago) by guez
File size: 37667 byte(s)
Rename module dimens_m to dimensions.
1 module physiq_m
2
3 IMPLICIT none
4
5 contains
6
7 SUBROUTINE physiq(lafin, dayvrai, time, paprs, play, pphi, pphis, u, v, t, &
8 qx, omega, d_u, d_v, d_t, d_qx)
9
10 ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28
11 ! (subversion revision 678)
12
13 ! Author: Z. X. Li (LMD/CNRS) 1993
14
15 ! This is the main procedure for the "physics" part of the program.
16
17 use aaam_bud_m, only: aaam_bud
18 USE abort_gcm_m, ONLY: abort_gcm
19 use ajsec_m, only: ajsec
20 use calltherm_m, only: calltherm
21 USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ok_instan
22 USE clesphys2, ONLY: conv_emanuel, nbapp_rad, new_oliq, ok_orodr, ok_orolf
23 USE clmain_m, ONLY: clmain
24 use clouds_gno_m, only: clouds_gno
25 use comconst, only: dtphys
26 USE comgeomphy, ONLY: airephy
27 USE concvl_m, ONLY: concvl
28 USE conf_gcm_m, ONLY: lmt_pas
29 USE conf_phys_m, ONLY: conf_phys
30 use conflx_m, only: conflx
31 USE ctherm, ONLY: iflag_thermals, nsplit_thermals
32 use diagcld2_m, only: diagcld2
33 USE dimensions, ONLY: llm, nqmx
34 USE dimphy, ONLY: klon
35 USE dimsoil, ONLY: nsoilmx
36 use drag_noro_m, only: drag_noro
37 use dynetat0_m, only: day_ref, annee_ref
38 USE fcttre, ONLY: foeew
39 use fisrtilp_m, only: fisrtilp
40 USE hgardfou_m, ONLY: hgardfou
41 USE histsync_m, ONLY: histsync
42 USE histwrite_phy_m, ONLY: histwrite_phy
43 USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &
44 nbsrf
45 USE ini_histins_m, ONLY: ini_histins, nid_ins
46 use lift_noro_m, only: lift_noro
47 use netcdf95, only: NF95_CLOSE
48 use newmicro_m, only: newmicro
49 use nr_util, only: assert
50 use nuage_m, only: nuage
51 USE orbite_m, ONLY: orbite
52 USE ozonecm_m, ONLY: ozonecm
53 USE phyetat0_m, ONLY: phyetat0
54 USE phyredem_m, ONLY: phyredem
55 USE phyredem0_m, ONLY: phyredem0
56 USE phytrac_m, ONLY: phytrac
57 use radlwsw_m, only: radlwsw
58 use yoegwd, only: sugwd
59 USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt, rmo3, md
60 use time_phylmdz, only: itap, increment_itap
61 use transp_m, only: transp
62 use transp_lay_m, only: transp_lay
63 use unit_nml_m, only: unit_nml
64 USE ymds2ju_m, ONLY: ymds2ju
65 USE yoethf_m, ONLY: r2es, rvtmp2
66 use zenang_m, only: zenang
67
68 logical, intent(in):: lafin ! dernier passage
69
70 integer, intent(in):: dayvrai
71 ! current day number, based at value 1 on January 1st of annee_ref
72
73 REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour
74
75 REAL, intent(in):: paprs(:, :) ! (klon, llm + 1)
76 ! pression pour chaque inter-couche, en Pa
77
78 REAL, intent(in):: play(:, :) ! (klon, llm)
79 ! pression pour le mileu de chaque couche (en Pa)
80
81 REAL, intent(in):: pphi(:, :) ! (klon, llm)
82 ! géopotentiel de chaque couche (référence sol)
83
84 REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol
85
86 REAL, intent(in):: u(:, :) ! (klon, llm)
87 ! vitesse dans la direction X (de O a E) en m / s
88
89 REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m / s
90 REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)
91
92 REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)
93 ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)
94
95 REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa / s
96 REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)
97 REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)
98 REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K / s)
99
100 REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)
101 ! tendance physique de "qx" (s-1)
102
103 ! Local:
104
105 LOGICAL:: firstcal = .true.
106
107 LOGICAL, PARAMETER:: ok_stratus = .FALSE.
108 ! Ajouter artificiellement les stratus
109
110 ! pour phystoke avec thermiques
111 REAL fm_therm(klon, llm + 1)
112 REAL entr_therm(klon, llm)
113 real, save:: q2(klon, llm + 1, nbsrf)
114
115 INTEGER, PARAMETER:: ivap = 1 ! indice de traceur pour vapeur d'eau
116 INTEGER, PARAMETER:: iliq = 2 ! indice de traceur pour eau liquide
117
118 REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)
119 LOGICAL, save:: ancien_ok
120
121 REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K / s)
122 REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg / kg / s)
123
124 real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)
125
126 REAL, save:: swdn0(klon, llm + 1), swdn(klon, llm + 1)
127 REAL, save:: swup0(klon, llm + 1), swup(klon, llm + 1)
128
129 REAL, save:: lwdn0(klon, llm + 1), lwdn(klon, llm + 1)
130 REAL, save:: lwup0(klon, llm + 1), lwup(klon, llm + 1)
131
132 ! prw: precipitable water
133 real prw(klon)
134
135 ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg / m2)
136 ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg / kg)
137 REAL flwp(klon), fiwp(klon)
138 REAL flwc(klon, llm), fiwc(klon, llm)
139
140 ! Variables propres a la physique
141
142 INTEGER, save:: radpas
143 ! Radiative transfer computations are made every "radpas" call to
144 ! "physiq".
145
146 REAL, save:: radsol(klon) ! bilan radiatif au sol calcule par code radiatif
147 REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction
148
149 REAL, save:: ftsoil(klon, nsoilmx, nbsrf)
150 ! soil temperature of surface fraction
151
152 REAL, save:: fevap(klon, nbsrf) ! evaporation
153 REAL fluxlat(klon, nbsrf)
154
155 REAL, save:: fqsurf(klon, nbsrf)
156 ! humidite de l'air au contact de la surface
157
158 REAL, save:: qsol(klon) ! column-density of water in soil, in kg m-2
159 REAL, save:: fsnow(klon, nbsrf) ! \'epaisseur neigeuse
160 REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface
161
162 ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :
163 REAL, save:: zmea(klon) ! orographie moyenne
164 REAL, save:: zstd(klon) ! deviation standard de l'OESM
165 REAL, save:: zsig(klon) ! pente de l'OESM
166 REAL, save:: zgam(klon) ! anisotropie de l'OESM
167 REAL, save:: zthe(klon) ! orientation de l'OESM
168 REAL, save:: zpic(klon) ! Maximum de l'OESM
169 REAL, save:: zval(klon) ! Minimum de l'OESM
170 REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM
171 REAL zulow(klon), zvlow(klon)
172 INTEGER ktest(klon)
173
174 REAL, save:: agesno(klon, nbsrf) ! age de la neige
175 REAL, save:: run_off_lic_0(klon)
176
177 ! Variables li\'ees \`a la convection d'Emanuel :
178 REAL, save:: Ma(klon, llm) ! undilute upward mass flux
179 REAL, save:: qcondc(klon, llm) ! in-cld water content from convect
180 REAL, save:: sig1(klon, llm), w01(klon, llm)
181
182 ! Variables pour la couche limite (Alain Lahellec) :
183 REAL cdragh(klon) ! drag coefficient pour T and Q
184 REAL cdragm(klon) ! drag coefficient pour vent
185
186 REAL coefh(klon, 2:llm) ! coef d'echange pour phytrac
187
188 REAL, save:: ffonte(klon, nbsrf)
189 ! flux thermique utilise pour fondre la neige
190
191 REAL, save:: fqcalving(klon, nbsrf)
192 ! flux d'eau "perdue" par la surface et necessaire pour limiter la
193 ! hauteur de neige, en kg / m2 / s
194
195 REAL zxffonte(klon), zxfqcalving(klon)
196
197 REAL, save:: pfrac_impa(klon, llm)! Produits des coefs lessivage impaction
198 REAL, save:: pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation
199
200 REAL, save:: pfrac_1nucl(klon, llm)
201 ! Produits des coefs lessi nucl (alpha = 1)
202
203 REAL frac_impa(klon, llm) ! fraction d'a\'erosols lessiv\'es (impaction)
204 REAL frac_nucl(klon, llm) ! idem (nucleation)
205
206 REAL, save:: rain_fall(klon)
207 ! liquid water mass flux (kg / m2 / s), positive down
208
209 REAL, save:: snow_fall(klon)
210 ! solid water mass flux (kg / m2 / s), positive down
211
212 REAL rain_tiedtke(klon), snow_tiedtke(klon)
213
214 REAL evap(klon) ! flux d'\'evaporation au sol
215 real devap(klon) ! derivative of the evaporation flux at the surface
216 REAL sens(klon) ! flux de chaleur sensible au sol
217 real dsens(klon) ! derivee du flux de chaleur sensible au sol
218 REAL, save:: dlw(klon) ! derivative of infra-red flux
219 REAL bils(klon) ! bilan de chaleur au sol
220 REAL fder(klon) ! Derive de flux (sensible et latente)
221 REAL ve(klon) ! integr. verticale du transport meri. de l'energie
222 REAL vq(klon) ! integr. verticale du transport meri. de l'eau
223 REAL ue(klon) ! integr. verticale du transport zonal de l'energie
224 REAL uq(klon) ! integr. verticale du transport zonal de l'eau
225
226 REAL, save:: frugs(klon, nbsrf) ! longueur de rugosite
227 REAL zxrugs(klon) ! longueur de rugosite
228
229 ! Conditions aux limites
230
231 INTEGER julien
232 REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface
233 REAL, save:: albsol(klon) ! albedo du sol total, visible, moyen par maille
234 REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU
235 real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2
236
237 real, save:: clwcon(klon, llm), rnebcon(klon, llm)
238 real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)
239
240 REAL rhcl(klon, llm) ! humiditi relative ciel clair
241 REAL dialiq(klon, llm) ! eau liquide nuageuse
242 REAL diafra(klon, llm) ! fraction nuageuse
243 REAL cldliq(klon, llm) ! eau liquide nuageuse
244 REAL cldfra(klon, llm) ! fraction nuageuse
245 REAL cldtau(klon, llm) ! epaisseur optique
246 REAL cldemi(klon, llm) ! emissivite infrarouge
247
248 REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface
249 REAL flux_t(klon, nbsrf) ! flux turbulent de chaleur à la surface
250
251 REAL flux_u(klon, nbsrf), flux_v(klon, nbsrf)
252 ! tension du vent (flux turbulent de vent) à la surface, en Pa
253
254 ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que
255 ! les variables soient r\'emanentes.
256 REAL, save:: heat(klon, llm) ! chauffage solaire
257 REAL, save:: heat0(klon, llm) ! chauffage solaire ciel clair
258 REAL, save:: cool(klon, llm) ! refroidissement infrarouge
259 REAL, save:: cool0(klon, llm) ! refroidissement infrarouge ciel clair
260 REAL, save:: topsw(klon), toplw(klon), solsw(klon)
261 REAL, save:: sollw(klon) ! rayonnement infrarouge montant \`a la surface
262 real, save:: sollwdown(klon) ! downward LW flux at surface
263 REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)
264 REAL, save:: albpla(klon)
265 REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous-surface
266 REAL fsolsw(klon, nbsrf) ! flux solaire absorb\'e pour chaque sous-surface
267
268 REAL conv_q(klon, llm) ! convergence de l'humidite (kg / kg / s)
269 REAL conv_t(klon, llm) ! convergence of temperature (K / s)
270
271 REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut
272 REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree
273
274 REAL zxfluxlat(klon)
275 REAL dist, mu0(klon), fract(klon)
276 real longi
277 REAL z_avant(klon), z_apres(klon), z_factor(klon)
278 REAL zb
279 REAL zx_t, zx_qs, zcor
280 real zqsat(klon, llm)
281 INTEGER i, k, iq, nsrf
282 REAL zphi(klon, llm)
283
284 ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm)
285
286 REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite
287 REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA
288 REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite
289 REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite
290 REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite
291 REAL, SAVE:: pblt(klon, nbsrf) ! T \`a la hauteur de couche limite
292 REAL, SAVE:: therm(klon, nbsrf)
293 ! Grandeurs de sorties
294 REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)
295 REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)
296 REAL s_therm(klon)
297
298 ! Variables pour la convection de K. Emanuel :
299
300 REAL upwd(klon, llm) ! saturated updraft mass flux
301 REAL dnwd(klon, llm) ! saturated downdraft mass flux
302 REAL, save:: cape(klon)
303
304 INTEGER iflagctrl(klon) ! flag fonctionnement de convect
305
306 ! Variables du changement
307
308 ! con: convection
309 ! lsc: large scale condensation
310 ! ajs: ajustement sec
311 ! eva: \'evaporation de l'eau liquide nuageuse
312 ! vdf: vertical diffusion in boundary layer
313 REAL d_t_con(klon, llm), d_q_con(klon, llm)
314 REAL, save:: d_u_con(klon, llm), d_v_con(klon, llm)
315 REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)
316 REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)
317 REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)
318 REAL rneb(klon, llm)
319
320 REAL mfu(klon, llm), mfd(klon, llm)
321 REAL pen_u(klon, llm), pen_d(klon, llm)
322 REAL pde_u(klon, llm), pde_d(klon, llm)
323 INTEGER kcbot(klon), kctop(klon), kdtop(klon)
324 REAL pmflxr(klon, llm + 1), pmflxs(klon, llm + 1)
325 REAL prfl(klon, llm + 1), psfl(klon, llm + 1)
326
327 INTEGER, save:: ibas_con(klon), itop_con(klon)
328 real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa
329
330 REAL, save:: rain_con(klon)
331 real rain_lsc(klon)
332 REAL, save:: snow_con(klon) ! neige (mm / s)
333 real snow_lsc(klon)
334 REAL d_ts(klon, nbsrf) ! variation of ftsol
335
336 REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)
337 REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)
338
339 REAL d_u_oro(klon, llm), d_v_oro(klon, llm)
340 REAL d_t_oro(klon, llm)
341 REAL d_u_lif(klon, llm), d_v_lif(klon, llm)
342 REAL d_t_lif(klon, llm)
343
344 REAL, save:: ratqs(klon, llm)
345 real ratqss(klon, llm), ratqsc(klon, llm)
346 real:: ratqsbas = 0.01, ratqshaut = 0.3
347
348 ! Parametres lies au nouveau schema de nuages (SB, PDF)
349 real:: fact_cldcon = 0.375
350 real:: facttemps = 1.e-4
351 logical:: ok_newmicro = .true.
352 real facteur
353
354 integer:: iflag_cldcon = 1
355 logical ptconv(klon, llm)
356
357 ! Variables pour effectuer les appels en s\'erie :
358
359 REAL t_seri(klon, llm), q_seri(klon, llm)
360 REAL ql_seri(klon, llm)
361 REAL u_seri(klon, llm), v_seri(klon, llm)
362 REAL tr_seri(klon, llm, nqmx - 2)
363
364 REAL zx_rh(klon, llm)
365
366 REAL zustrdr(klon), zvstrdr(klon)
367 REAL zustrli(klon), zvstrli(klon)
368 REAL aam, torsfc
369
370 REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.
371 REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.
372 REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.
373 REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.
374
375 real date0
376 REAL tsol(klon)
377
378 REAL d_t_ec(klon, llm)
379 ! tendance due \`a la conversion d'\'energie cin\'etique en
380 ! énergie thermique
381
382 REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf)
383 ! temperature and humidity at 2 m
384
385 REAL, save:: u10m_srf(klon, nbsrf), v10m_srf(klon, nbsrf)
386 ! composantes du vent \`a 10 m
387
388 REAL zt2m(klon), zq2m(klon) ! température, humidité 2 m moyenne sur 1 maille
389 REAL u10m(klon), v10m(klon) ! vent \`a 10 m moyenn\' sur les sous-surfaces
390
391 ! Aerosol effects:
392
393 REAL, save:: topswad(klon), solswad(klon) ! aerosol direct effect
394 LOGICAL:: ok_ade = .false. ! apply aerosol direct effect
395
396 REAL:: bl95_b0 = 2., bl95_b1 = 0.2
397 ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus
398 ! B). They link cloud droplet number concentration to aerosol mass
399 ! concentration.
400
401 real zmasse(klon, llm)
402 ! (column-density of mass of air in a cell, in kg m-2)
403
404 integer, save:: ncid_startphy
405
406 namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, &
407 ratqsbas, ratqshaut, ok_ade, bl95_b0, bl95_b1, iflag_thermals, &
408 nsplit_thermals
409
410 !----------------------------------------------------------------
411
412 IF (nqmx < 2) CALL abort_gcm('physiq', &
413 'eaux vapeur et liquide sont indispensables')
414
415 test_firstcal: IF (firstcal) THEN
416 ! initialiser
417 u10m_srf = 0.
418 v10m_srf = 0.
419 t2m = 0.
420 q2m = 0.
421 ffonte = 0.
422 fqcalving = 0.
423 rain_con = 0.
424 snow_con = 0.
425 d_u_con = 0.
426 d_v_con = 0.
427 rnebcon0 = 0.
428 clwcon0 = 0.
429 rnebcon = 0.
430 clwcon = 0.
431 pblh =0. ! Hauteur de couche limite
432 plcl =0. ! Niveau de condensation de la CLA
433 capCL =0. ! CAPE de couche limite
434 oliqCL =0. ! eau_liqu integree de couche limite
435 cteiCL =0. ! cloud top instab. crit. couche limite
436 pblt =0.
437 therm =0.
438
439 iflag_thermals = 0
440 nsplit_thermals = 1
441 print *, "Enter namelist 'physiq_nml'."
442 read(unit=*, nml=physiq_nml)
443 write(unit_nml, nml=physiq_nml)
444
445 call conf_phys
446
447 ! Initialiser les compteurs:
448
449 frugs = 0.
450 CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
451 fevap, rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, &
452 agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, &
453 q_ancien, ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
454 w01, ncid_startphy)
455
456 ! ATTENTION : il faudra a terme relire q2 dans l'etat initial
457 q2 = 1e-8
458
459 radpas = lmt_pas / nbapp_rad
460 print *, "radpas = ", radpas
461
462 ! Initialisation pour le sch\'ema de convection d'Emanuel :
463 IF (conv_emanuel) THEN
464 ibas_con = 1
465 itop_con = 1
466 ENDIF
467
468 IF (ok_orodr) THEN
469 rugoro = MAX(1e-5, zstd * zsig / 2)
470 CALL SUGWD(paprs, play)
471 else
472 rugoro = 0.
473 ENDIF
474
475 ecrit_ins = NINT(ecrit_ins / dtphys)
476
477 ! Initialisation des sorties
478
479 call ini_histins(dtphys, ok_newmicro)
480 CALL ymds2ju(annee_ref, 1, day_ref, 0., date0)
481 ! Positionner date0 pour initialisation de ORCHIDEE
482 print *, 'physiq date0: ', date0
483 CALL phyredem0
484 ENDIF test_firstcal
485
486 ! We will modify variables *_seri and we will not touch variables
487 ! u, v, t, qx:
488 t_seri = t
489 u_seri = u
490 v_seri = v
491 q_seri = qx(:, :, ivap)
492 ql_seri = qx(:, :, iliq)
493 tr_seri = qx(:, :, 3:nqmx)
494
495 tsol = sum(ftsol * pctsrf, dim = 2)
496
497 ! Diagnostic de la tendance dynamique :
498 IF (ancien_ok) THEN
499 DO k = 1, llm
500 DO i = 1, klon
501 d_t_dyn(i, k) = (t_seri(i, k) - t_ancien(i, k)) / dtphys
502 d_q_dyn(i, k) = (q_seri(i, k) - q_ancien(i, k)) / dtphys
503 ENDDO
504 ENDDO
505 ELSE
506 DO k = 1, llm
507 DO i = 1, klon
508 d_t_dyn(i, k) = 0.
509 d_q_dyn(i, k) = 0.
510 ENDDO
511 ENDDO
512 ancien_ok = .TRUE.
513 ENDIF
514
515 ! Ajouter le geopotentiel du sol:
516 DO k = 1, llm
517 DO i = 1, klon
518 zphi(i, k) = pphi(i, k) + pphis(i)
519 ENDDO
520 ENDDO
521
522 ! Check temperatures:
523 CALL hgardfou(t_seri, ftsol)
524
525 call increment_itap
526 julien = MOD(dayvrai, 360)
527 if (julien == 0) julien = 360
528
529 forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg
530
531 ! \'Evaporation de l'eau liquide nuageuse :
532 DO k = 1, llm
533 DO i = 1, klon
534 zb = MAX(0., ql_seri(i, k))
535 t_seri(i, k) = t_seri(i, k) &
536 - zb * RLVTT / RCPD / (1. + RVTMP2 * q_seri(i, k))
537 q_seri(i, k) = q_seri(i, k) + zb
538 ENDDO
539 ENDDO
540 ql_seri = 0.
541
542 frugs = MAX(frugs, 0.000015)
543 zxrugs = sum(frugs * pctsrf, dim = 2)
544
545 ! Calculs n\'ecessaires au calcul de l'albedo dans l'interface avec
546 ! la surface.
547
548 CALL orbite(REAL(julien), longi, dist)
549 CALL zenang(longi, time, dtphys * radpas, mu0, fract)
550 albsol = sum(falbe * pctsrf, dim = 2)
551
552 ! R\'epartition sous maille des flux longwave et shortwave
553 ! R\'epartition du longwave par sous-surface lin\'earis\'ee
554
555 forall (nsrf = 1: nbsrf)
556 fsollw(:, nsrf) = sollw + 4. * RSIGMA * tsol**3 &
557 * (tsol - ftsol(:, nsrf))
558 fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol)
559 END forall
560
561 CALL clmain(dtphys, pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, &
562 ftsol, cdmmax, cdhmax, ftsoil, qsol, paprs, play, fsnow, fqsurf, &
563 fevap, falbe, fluxlat, rain_fall, snow_fall, fsolsw, fsollw, frugs, &
564 agesno, rugoro, d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, flux_t, &
565 flux_q, flux_u, flux_v, cdragh, cdragm, q2, dsens, devap, coefh, t2m, &
566 q2m, u10m_srf, v10m_srf, pblh, capCL, oliqCL, cteiCL, pblT, therm, &
567 plcl, fqcalving, ffonte, run_off_lic_0)
568
569 ! Incr\'ementation des flux
570
571 sens = - sum(flux_t * pctsrf, dim = 2)
572 evap = - sum(flux_q * pctsrf, dim = 2)
573 fder = dlw + dsens + devap
574
575 DO k = 1, llm
576 DO i = 1, klon
577 t_seri(i, k) = t_seri(i, k) + d_t_vdf(i, k)
578 q_seri(i, k) = q_seri(i, k) + d_q_vdf(i, k)
579 u_seri(i, k) = u_seri(i, k) + d_u_vdf(i, k)
580 v_seri(i, k) = v_seri(i, k) + d_v_vdf(i, k)
581 ENDDO
582 ENDDO
583
584 ! Update surface temperature:
585
586 call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf')
587 ftsol = ftsol + d_ts
588 tsol = sum(ftsol * pctsrf, dim = 2)
589 zxfluxlat = sum(fluxlat * pctsrf, dim = 2)
590 zt2m = sum(t2m * pctsrf, dim = 2)
591 zq2m = sum(q2m * pctsrf, dim = 2)
592 u10m = sum(u10m_srf * pctsrf, dim = 2)
593 v10m = sum(v10m_srf * pctsrf, dim = 2)
594 zxffonte = sum(ffonte * pctsrf, dim = 2)
595 zxfqcalving = sum(fqcalving * pctsrf, dim = 2)
596 s_pblh = sum(pblh * pctsrf, dim = 2)
597 s_lcl = sum(plcl * pctsrf, dim = 2)
598 s_capCL = sum(capCL * pctsrf, dim = 2)
599 s_oliqCL = sum(oliqCL * pctsrf, dim = 2)
600 s_cteiCL = sum(cteiCL * pctsrf, dim = 2)
601 s_pblT = sum(pblT * pctsrf, dim = 2)
602 s_therm = sum(therm * pctsrf, dim = 2)
603
604 ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne :
605 DO nsrf = 1, nbsrf
606 DO i = 1, klon
607 IF (pctsrf(i, nsrf) < epsfra) then
608 ftsol(i, nsrf) = tsol(i)
609 t2m(i, nsrf) = zt2m(i)
610 q2m(i, nsrf) = zq2m(i)
611 u10m_srf(i, nsrf) = u10m(i)
612 v10m_srf(i, nsrf) = v10m(i)
613 ffonte(i, nsrf) = zxffonte(i)
614 fqcalving(i, nsrf) = zxfqcalving(i)
615 pblh(i, nsrf) = s_pblh(i)
616 plcl(i, nsrf) = s_lcl(i)
617 capCL(i, nsrf) = s_capCL(i)
618 oliqCL(i, nsrf) = s_oliqCL(i)
619 cteiCL(i, nsrf) = s_cteiCL(i)
620 pblT(i, nsrf) = s_pblT(i)
621 therm(i, nsrf) = s_therm(i)
622 end IF
623 ENDDO
624 ENDDO
625
626 dlw = - 4. * RSIGMA * tsol**3
627
628 ! Appeler la convection
629
630 if (conv_emanuel) then
631 CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, &
632 d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, &
633 upwd, dnwd, Ma, cape, iflagctrl, qcondc, pmflxr, da, phi, mp)
634 snow_con = 0.
635 clwcon0 = qcondc
636 mfu = upwd + dnwd
637
638 zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play)
639 zqsat = zqsat / (1. - retv * zqsat)
640
641 ! Properties of convective clouds
642 clwcon0 = fact_cldcon * clwcon0
643 call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &
644 rnebcon0)
645
646 forall (i = 1:klon) ema_pct(i) = paprs(i, itop_con(i) + 1)
647 mfd = 0.
648 pen_u = 0.
649 pen_d = 0.
650 pde_d = 0.
651 pde_u = 0.
652 else
653 conv_q = d_q_dyn + d_q_vdf / dtphys
654 conv_t = d_t_dyn + d_t_vdf / dtphys
655 z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)
656 CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:- 1), &
657 q_seri(:, llm:1:- 1), conv_t, conv_q, - evap, omega, d_t_con, &
658 d_q_con, rain_con, snow_con, mfu(:, llm:1:- 1), mfd(:, llm:1:- 1), &
659 pen_u, pde_u, pen_d, pde_d, kcbot, kctop, kdtop, pmflxr, pmflxs)
660 WHERE (rain_con < 0.) rain_con = 0.
661 WHERE (snow_con < 0.) snow_con = 0.
662 ibas_con = llm + 1 - kcbot
663 itop_con = llm + 1 - kctop
664 END if
665
666 DO k = 1, llm
667 DO i = 1, klon
668 t_seri(i, k) = t_seri(i, k) + d_t_con(i, k)
669 q_seri(i, k) = q_seri(i, k) + d_q_con(i, k)
670 u_seri(i, k) = u_seri(i, k) + d_u_con(i, k)
671 v_seri(i, k) = v_seri(i, k) + d_v_con(i, k)
672 ENDDO
673 ENDDO
674
675 IF (.not. conv_emanuel) THEN
676 z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)
677 z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres
678 DO k = 1, llm
679 DO i = 1, klon
680 IF (z_factor(i) > 1. + 1E-8 .OR. z_factor(i) < 1. - 1E-8) THEN
681 q_seri(i, k) = q_seri(i, k) * z_factor(i)
682 ENDIF
683 ENDDO
684 ENDDO
685 ENDIF
686
687 ! Convection s\`eche (thermiques ou ajustement)
688
689 d_t_ajs = 0.
690 d_u_ajs = 0.
691 d_v_ajs = 0.
692 d_q_ajs = 0.
693 fm_therm = 0.
694 entr_therm = 0.
695
696 if (iflag_thermals == 0) then
697 ! Ajustement sec
698 CALL ajsec(paprs, play, t_seri, q_seri, d_t_ajs, d_q_ajs)
699 t_seri = t_seri + d_t_ajs
700 q_seri = q_seri + d_q_ajs
701 else
702 call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, &
703 q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)
704 endif
705
706 ! Caclul des ratqs
707
708 ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q
709 ! on \'ecrase le tableau ratqsc calcul\'e par clouds_gno
710 if (iflag_cldcon == 1) then
711 do k = 1, llm
712 do i = 1, klon
713 if(ptconv(i, k)) then
714 ratqsc(i, k) = ratqsbas + fact_cldcon &
715 * (q_seri(i, 1) - q_seri(i, k)) / q_seri(i, k)
716 else
717 ratqsc(i, k) = 0.
718 endif
719 enddo
720 enddo
721 endif
722
723 ! ratqs stables
724 do k = 1, llm
725 do i = 1, klon
726 ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &
727 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)
728 enddo
729 enddo
730
731 ! ratqs final
732 if (iflag_cldcon == 1 .or. iflag_cldcon == 2) then
733 ! les ratqs sont une conbinaison de ratqss et ratqsc
734 ! ratqs final
735 ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de
736 ! relaxation des ratqs
737 ratqs = max(ratqs * exp(- dtphys * facttemps), ratqss)
738 ratqs = max(ratqs, ratqsc)
739 else
740 ! on ne prend que le ratqs stable pour fisrtilp
741 ratqs = ratqss
742 endif
743
744 CALL fisrtilp(dtphys, paprs, play, t_seri, q_seri, ptconv, ratqs, &
745 d_t_lsc, d_q_lsc, d_ql_lsc, rneb, cldliq, rain_lsc, snow_lsc, &
746 pfrac_impa, pfrac_nucl, pfrac_1nucl, frac_impa, frac_nucl, prfl, &
747 psfl, rhcl)
748
749 WHERE (rain_lsc < 0) rain_lsc = 0.
750 WHERE (snow_lsc < 0) snow_lsc = 0.
751 DO k = 1, llm
752 DO i = 1, klon
753 t_seri(i, k) = t_seri(i, k) + d_t_lsc(i, k)
754 q_seri(i, k) = q_seri(i, k) + d_q_lsc(i, k)
755 ql_seri(i, k) = ql_seri(i, k) + d_ql_lsc(i, k)
756 cldfra(i, k) = rneb(i, k)
757 IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)
758 ENDDO
759 ENDDO
760
761 ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
762
763 ! 1. NUAGES CONVECTIFS
764
765 IF (iflag_cldcon <= - 1) THEN
766 ! seulement pour Tiedtke
767 snow_tiedtke = 0.
768 if (iflag_cldcon == - 1) then
769 rain_tiedtke = rain_con
770 else
771 rain_tiedtke = 0.
772 do k = 1, llm
773 do i = 1, klon
774 if (d_q_con(i, k) < 0.) then
775 rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k) / dtphys &
776 * zmasse(i, k)
777 endif
778 enddo
779 enddo
780 endif
781
782 ! Nuages diagnostiques pour Tiedtke
783 CALL diagcld1(paprs, play, rain_tiedtke, snow_tiedtke, ibas_con, &
784 itop_con, diafra, dialiq)
785 DO k = 1, llm
786 DO i = 1, klon
787 IF (diafra(i, k) > cldfra(i, k)) THEN
788 cldliq(i, k) = dialiq(i, k)
789 cldfra(i, k) = diafra(i, k)
790 ENDIF
791 ENDDO
792 ENDDO
793 ELSE IF (iflag_cldcon == 3) THEN
794 ! On prend pour les nuages convectifs le maximum du calcul de
795 ! la convection et du calcul du pas de temps pr\'ec\'edent diminu\'e
796 ! d'un facteur facttemps.
797 facteur = dtphys * facttemps
798 do k = 1, llm
799 do i = 1, klon
800 rnebcon(i, k) = rnebcon(i, k) * facteur
801 if (rnebcon0(i, k) * clwcon0(i, k) &
802 > rnebcon(i, k) * clwcon(i, k)) then
803 rnebcon(i, k) = rnebcon0(i, k)
804 clwcon(i, k) = clwcon0(i, k)
805 endif
806 enddo
807 enddo
808
809 ! On prend la somme des fractions nuageuses et des contenus en eau
810 cldfra = min(max(cldfra, rnebcon), 1.)
811 cldliq = cldliq + rnebcon * clwcon
812 ENDIF
813
814 ! 2. Nuages stratiformes
815
816 IF (ok_stratus) THEN
817 CALL diagcld2(paprs, play, t_seri, q_seri, diafra, dialiq)
818 DO k = 1, llm
819 DO i = 1, klon
820 IF (diafra(i, k) > cldfra(i, k)) THEN
821 cldliq(i, k) = dialiq(i, k)
822 cldfra(i, k) = diafra(i, k)
823 ENDIF
824 ENDDO
825 ENDDO
826 ENDIF
827
828 ! Precipitation totale
829 DO i = 1, klon
830 rain_fall(i) = rain_con(i) + rain_lsc(i)
831 snow_fall(i) = snow_con(i) + snow_lsc(i)
832 ENDDO
833
834 ! Humidit\'e relative pour diagnostic :
835 DO k = 1, llm
836 DO i = 1, klon
837 zx_t = t_seri(i, k)
838 zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t) / play(i, k)
839 zx_qs = MIN(0.5, zx_qs)
840 zcor = 1. / (1. - retv * zx_qs)
841 zx_qs = zx_qs * zcor
842 zx_rh(i, k) = q_seri(i, k) / zx_qs
843 zqsat(i, k) = zx_qs
844 ENDDO
845 ENDDO
846
847 ! Param\`etres optiques des nuages et quelques param\`etres pour
848 ! diagnostics :
849 if (ok_newmicro) then
850 CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &
851 cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc)
852 else
853 CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &
854 cldl, cldm, cldt, cldq)
855 endif
856
857 IF (MOD(itap - 1, radpas) == 0) THEN
858 wo = ozonecm(REAL(julien), paprs)
859 albsol = sum(falbe * pctsrf, dim = 2)
860 CALL radlwsw(dist, mu0, fract, paprs, play, tsol, albsol, t_seri, &
861 q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, &
862 radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, &
863 toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, &
864 swup0, swup, ok_ade, topswad, solswad)
865 ENDIF
866
867 ! Ajouter la tendance des rayonnements (tous les pas)
868 DO k = 1, llm
869 DO i = 1, klon
870 t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys &
871 / 86400.
872 ENDDO
873 ENDDO
874
875 ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage)
876 DO i = 1, klon
877 bils(i) = radsol(i) - sens(i) + zxfluxlat(i)
878 ENDDO
879
880 ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille :
881
882 IF (ok_orodr) THEN
883 ! S\'election des points pour lesquels le sch\'ema est actif :
884 DO i = 1, klon
885 ktest(i) = 0
886 IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN
887 ktest(i) = 1
888 ENDIF
889 ENDDO
890
891 CALL drag_noro(dtphys, paprs, play, zmea, zstd, zsig, zgam, zthe, &
892 zpic, zval, ktest, t_seri, u_seri, v_seri, zulow, zvlow, zustrdr, &
893 zvstrdr, d_t_oro, d_u_oro, d_v_oro)
894
895 ! ajout des tendances
896 DO k = 1, llm
897 DO i = 1, klon
898 t_seri(i, k) = t_seri(i, k) + d_t_oro(i, k)
899 u_seri(i, k) = u_seri(i, k) + d_u_oro(i, k)
900 v_seri(i, k) = v_seri(i, k) + d_v_oro(i, k)
901 ENDDO
902 ENDDO
903 ENDIF
904
905 IF (ok_orolf) THEN
906 ! S\'election des points pour lesquels le sch\'ema est actif :
907 DO i = 1, klon
908 ktest(i) = 0
909 IF (zpic(i) - zmea(i) > 100.) THEN
910 ktest(i) = 1
911 ENDIF
912 ENDDO
913
914 CALL lift_noro(dtphys, paprs, play, zmea, zstd, zpic, ktest, t_seri, &
915 u_seri, v_seri, zulow, zvlow, zustrli, zvstrli, d_t_lif, &
916 d_u_lif, d_v_lif)
917
918 ! Ajout des tendances :
919 DO k = 1, llm
920 DO i = 1, klon
921 t_seri(i, k) = t_seri(i, k) + d_t_lif(i, k)
922 u_seri(i, k) = u_seri(i, k) + d_u_lif(i, k)
923 v_seri(i, k) = v_seri(i, k) + d_v_lif(i, k)
924 ENDDO
925 ENDDO
926 ENDIF
927
928 CALL aaam_bud(rg, romega, pphis, zustrdr, zustrli, &
929 sum((u_seri - u) / dtphys * zmasse, dim = 2), zvstrdr, &
930 zvstrli, sum((v_seri - v) / dtphys * zmasse, dim = 2), paprs, u, v, &
931 aam, torsfc)
932
933 ! Calcul des tendances traceurs
934 call phytrac(julien, time, firstcal, lafin, dtphys, t, paprs, play, mfu, &
935 mfd, pde_u, pen_d, coefh, cdragh, fm_therm, entr_therm, u(:, 1), &
936 v(:, 1), ftsol, pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, &
937 dnwd, tr_seri, zmasse, ncid_startphy)
938
939 ! Calculer le transport de l'eau et de l'energie (diagnostique)
940 CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq)
941
942 ! diag. bilKP
943
944 CALL transp_lay(paprs, t_seri, q_seri, u_seri, v_seri, zphi, &
945 ve_lay, vq_lay, ue_lay, uq_lay)
946
947 ! Accumuler les variables a stocker dans les fichiers histoire:
948
949 ! conversion Ec en énergie thermique
950 DO k = 1, llm
951 DO i = 1, klon
952 d_t_ec(i, k) = 0.5 / (RCPD * (1. + RVTMP2 * q_seri(i, k))) &
953 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)
954 t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)
955 d_t_ec(i, k) = d_t_ec(i, k) / dtphys
956 END DO
957 END DO
958
959 ! SORTIES
960
961 ! prw = eau precipitable
962 DO i = 1, klon
963 prw(i) = 0.
964 DO k = 1, llm
965 prw(i) = prw(i) + q_seri(i, k) * zmasse(i, k)
966 ENDDO
967 ENDDO
968
969 ! Convertir les incrementations en tendances
970
971 DO k = 1, llm
972 DO i = 1, klon
973 d_u(i, k) = (u_seri(i, k) - u(i, k)) / dtphys
974 d_v(i, k) = (v_seri(i, k) - v(i, k)) / dtphys
975 d_t(i, k) = (t_seri(i, k) - t(i, k)) / dtphys
976 d_qx(i, k, ivap) = (q_seri(i, k) - qx(i, k, ivap)) / dtphys
977 d_qx(i, k, iliq) = (ql_seri(i, k) - qx(i, k, iliq)) / dtphys
978 ENDDO
979 ENDDO
980
981 DO iq = 3, nqmx
982 DO k = 1, llm
983 DO i = 1, klon
984 d_qx(i, k, iq) = (tr_seri(i, k, iq - 2) - qx(i, k, iq)) / dtphys
985 ENDDO
986 ENDDO
987 ENDDO
988
989 ! Sauvegarder les valeurs de t et q a la fin de la physique:
990 DO k = 1, llm
991 DO i = 1, klon
992 t_ancien(i, k) = t_seri(i, k)
993 q_ancien(i, k) = q_seri(i, k)
994 ENDDO
995 ENDDO
996
997 CALL histwrite_phy("phis", pphis)
998 CALL histwrite_phy("aire", airephy)
999 CALL histwrite_phy("psol", paprs(:, 1))
1000 CALL histwrite_phy("precip", rain_fall + snow_fall)
1001 CALL histwrite_phy("plul", rain_lsc + snow_lsc)
1002 CALL histwrite_phy("pluc", rain_con + snow_con)
1003 CALL histwrite_phy("tsol", tsol)
1004 CALL histwrite_phy("t2m", zt2m)
1005 CALL histwrite_phy("q2m", zq2m)
1006 CALL histwrite_phy("u10m", u10m)
1007 CALL histwrite_phy("v10m", v10m)
1008 CALL histwrite_phy("snow", snow_fall)
1009 CALL histwrite_phy("cdrm", cdragm)
1010 CALL histwrite_phy("cdrh", cdragh)
1011 CALL histwrite_phy("topl", toplw)
1012 CALL histwrite_phy("evap", evap)
1013 CALL histwrite_phy("sols", solsw)
1014 CALL histwrite_phy("soll", sollw)
1015 CALL histwrite_phy("solldown", sollwdown)
1016 CALL histwrite_phy("bils", bils)
1017 CALL histwrite_phy("sens", - sens)
1018 CALL histwrite_phy("fder", fder)
1019 CALL histwrite_phy("dtsvdfo", d_ts(:, is_oce))
1020 CALL histwrite_phy("dtsvdft", d_ts(:, is_ter))
1021 CALL histwrite_phy("dtsvdfg", d_ts(:, is_lic))
1022 CALL histwrite_phy("dtsvdfi", d_ts(:, is_sic))
1023
1024 DO nsrf = 1, nbsrf
1025 CALL histwrite_phy("pourc_"//clnsurf(nsrf), pctsrf(:, nsrf) * 100.)
1026 CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf))
1027 CALL histwrite_phy("sens_"//clnsurf(nsrf), flux_t(:, nsrf))
1028 CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf))
1029 CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf))
1030 CALL histwrite_phy("taux_"//clnsurf(nsrf), flux_u(:, nsrf))
1031 CALL histwrite_phy("tauy_"//clnsurf(nsrf), flux_v(:, nsrf))
1032 CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf))
1033 CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf))
1034 CALL histwrite_phy("u10m_"//clnsurf(nsrf), u10m_srf(:, nsrf))
1035 CALL histwrite_phy("v10m_"//clnsurf(nsrf), v10m_srf(:, nsrf))
1036 END DO
1037
1038 CALL histwrite_phy("albs", albsol)
1039 CALL histwrite_phy("tro3", wo * dobson_u * 1e3 / zmasse / rmo3 * md)
1040 CALL histwrite_phy("rugs", zxrugs)
1041 CALL histwrite_phy("s_pblh", s_pblh)
1042 CALL histwrite_phy("s_pblt", s_pblt)
1043 CALL histwrite_phy("s_lcl", s_lcl)
1044 CALL histwrite_phy("s_capCL", s_capCL)
1045 CALL histwrite_phy("s_oliqCL", s_oliqCL)
1046 CALL histwrite_phy("s_cteiCL", s_cteiCL)
1047 CALL histwrite_phy("s_therm", s_therm)
1048
1049 if (conv_emanuel) then
1050 CALL histwrite_phy("ptop", ema_pct)
1051 CALL histwrite_phy("dnwd0", - mp)
1052 end if
1053
1054 CALL histwrite_phy("temp", t_seri)
1055 CALL histwrite_phy("vitu", u_seri)
1056 CALL histwrite_phy("vitv", v_seri)
1057 CALL histwrite_phy("geop", zphi)
1058 CALL histwrite_phy("pres", play)
1059 CALL histwrite_phy("dtvdf", d_t_vdf)
1060 CALL histwrite_phy("dqvdf", d_q_vdf)
1061 CALL histwrite_phy("rhum", zx_rh)
1062 CALL histwrite_phy("d_t_ec", d_t_ec)
1063 CALL histwrite_phy("dtsw0", heat0 / 86400.)
1064 CALL histwrite_phy("dtlw0", - cool0 / 86400.)
1065 CALL histwrite_phy("msnow", sum(fsnow * pctsrf, dim = 2))
1066 call histwrite_phy("qsurf", sum(fqsurf * pctsrf, dim = 2))
1067
1068 if (ok_instan) call histsync(nid_ins)
1069
1070 IF (lafin) then
1071 call NF95_CLOSE(ncid_startphy)
1072 CALL phyredem(pctsrf, ftsol, ftsoil, fqsurf, qsol, &
1073 fsnow, falbe, fevap, rain_fall, snow_fall, solsw, sollw, dlw, &
1074 radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, &
1075 t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
1076 w01)
1077 end IF
1078
1079 firstcal = .FALSE.
1080
1081 END SUBROUTINE physiq
1082
1083 end module physiq_m

  ViewVC Help
Powered by ViewVC 1.1.21