/[lmdze]/trunk/phylmd/physiq.f
ViewVC logotype

Contents of /trunk/phylmd/physiq.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 279 - (show annotations)
Fri Jul 20 14:30:23 2018 UTC (5 years, 10 months ago) by guez
File size: 37342 byte(s)
fqcalving was saved in physiq and had intent inout in pbl_surface. So
we could set fqcalving to 0 only once per run. The point is fqcalving
must be defined everywhere for the computation of the average over all
surfaces, even values that get multiplied by pctsrf = 0. I find it
clearer to set fqcalving to 0 at every call of pbl_surface. This is
more expensive but allows to give intent out to fqcalving in
pbl_surface and remove the save attribute in physiq.

Add zxfqcalving output netCDF variable (following LMDZ).

1 module physiq_m
2
3 IMPLICIT none
4
5 contains
6
7 SUBROUTINE physiq(lafin, dayvrai, time, paprs, play, pphi, pphis, u, v, t, &
8 qx, omega, d_u, d_v, d_t, d_qx)
9
10 ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28
11 ! (subversion revision 678)
12
13 ! Author: Z. X. Li (LMD/CNRS) 1993
14
15 ! This is the main procedure for the "physics" part of the program.
16
17 use aaam_bud_m, only: aaam_bud
18 USE abort_gcm_m, ONLY: abort_gcm
19 use ajsec_m, only: ajsec
20 use calltherm_m, only: calltherm
21 USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ok_instan
22 USE clesphys2, ONLY: conv_emanuel, nbapp_rad, new_oliq, ok_orodr, ok_orolf
23 USE pbl_surface_m, ONLY: pbl_surface
24 use clouds_gno_m, only: clouds_gno
25 use comconst, only: dtphys
26 USE comgeomphy, ONLY: airephy
27 USE concvl_m, ONLY: concvl
28 USE conf_gcm_m, ONLY: lmt_pas
29 USE conf_phys_m, ONLY: conf_phys
30 use conflx_m, only: conflx
31 USE ctherm, ONLY: iflag_thermals, nsplit_thermals
32 use diagcld2_m, only: diagcld2
33 USE dimensions, ONLY: llm, nqmx
34 USE dimphy, ONLY: klon
35 USE dimsoil, ONLY: nsoilmx
36 use drag_noro_m, only: drag_noro
37 use dynetat0_m, only: day_ref, annee_ref
38 USE fcttre, ONLY: foeew
39 use fisrtilp_m, only: fisrtilp
40 USE hgardfou_m, ONLY: hgardfou
41 USE histsync_m, ONLY: histsync
42 USE histwrite_phy_m, ONLY: histwrite_phy
43 USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &
44 nbsrf
45 USE ini_histins_m, ONLY: ini_histins, nid_ins
46 use lift_noro_m, only: lift_noro
47 use netcdf95, only: NF95_CLOSE
48 use newmicro_m, only: newmicro
49 use nr_util, only: assert
50 use nuage_m, only: nuage
51 USE orbite_m, ONLY: orbite
52 USE ozonecm_m, ONLY: ozonecm
53 USE phyetat0_m, ONLY: phyetat0
54 USE phyredem_m, ONLY: phyredem
55 USE phyredem0_m, ONLY: phyredem0
56 USE phytrac_m, ONLY: phytrac
57 use radlwsw_m, only: radlwsw
58 use yoegwd, only: sugwd
59 USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt, rmo3, md
60 use time_phylmdz, only: itap, increment_itap
61 use transp_m, only: transp
62 use transp_lay_m, only: transp_lay
63 use unit_nml_m, only: unit_nml
64 USE ymds2ju_m, ONLY: ymds2ju
65 USE yoethf_m, ONLY: r2es, rvtmp2
66 use zenang_m, only: zenang
67
68 logical, intent(in):: lafin ! dernier passage
69
70 integer, intent(in):: dayvrai
71 ! current day number, based at value 1 on January 1st of annee_ref
72
73 REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour
74
75 REAL, intent(in):: paprs(:, :) ! (klon, llm + 1)
76 ! pression pour chaque inter-couche, en Pa
77
78 REAL, intent(in):: play(:, :) ! (klon, llm)
79 ! pression pour le mileu de chaque couche (en Pa)
80
81 REAL, intent(in):: pphi(:, :) ! (klon, llm)
82 ! géopotentiel de chaque couche (référence sol)
83
84 REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol
85
86 REAL, intent(in):: u(:, :) ! (klon, llm)
87 ! vitesse dans la direction X (de O a E) en m / s
88
89 REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m / s
90 REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)
91
92 REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)
93 ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)
94
95 REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa / s
96 REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)
97 REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)
98 REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K / s)
99
100 REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)
101 ! tendance physique de "qx" (s-1)
102
103 ! Local:
104
105 LOGICAL:: firstcal = .true.
106
107 LOGICAL, PARAMETER:: ok_stratus = .FALSE.
108 ! Ajouter artificiellement les stratus
109
110 ! pour phystoke avec thermiques
111 REAL fm_therm(klon, llm + 1)
112 REAL entr_therm(klon, llm)
113 real, save:: q2(klon, llm + 1, nbsrf)
114
115 INTEGER, PARAMETER:: ivap = 1 ! indice de traceur pour vapeur d'eau
116 INTEGER, PARAMETER:: iliq = 2 ! indice de traceur pour eau liquide
117
118 REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)
119 LOGICAL, save:: ancien_ok
120
121 REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K / s)
122 REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg / kg / s)
123
124 real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)
125
126 REAL, save:: swdn0(klon, llm + 1), swdn(klon, llm + 1)
127 REAL, save:: swup0(klon, llm + 1), swup(klon, llm + 1)
128
129 REAL, save:: lwdn0(klon, llm + 1), lwdn(klon, llm + 1)
130 REAL, save:: lwup0(klon, llm + 1), lwup(klon, llm + 1)
131
132 ! prw: precipitable water
133 real prw(klon)
134
135 ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg / m2)
136 ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg / kg)
137 REAL flwp(klon), fiwp(klon)
138 REAL flwc(klon, llm), fiwc(klon, llm)
139
140 ! Variables propres a la physique
141
142 INTEGER, save:: radpas
143 ! Radiative transfer computations are made every "radpas" call to
144 ! "physiq".
145
146 REAL, save:: radsol(klon) ! bilan radiatif au sol calcule par code radiatif
147 REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction
148
149 REAL, save:: ftsoil(klon, nsoilmx, nbsrf)
150 ! soil temperature of surface fraction
151
152 REAL, save:: fevap(klon, nbsrf) ! evaporation
153 REAL fluxlat(klon, nbsrf)
154
155 REAL, save:: fqsurf(klon, nbsrf)
156 ! humidite de l'air au contact de la surface
157
158 REAL, save:: qsol(klon) ! column-density of water in soil, in kg m-2
159 REAL, save:: fsnow(klon, nbsrf) ! \'epaisseur neigeuse
160 REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface
161
162 ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :
163 REAL, save:: zmea(klon) ! orographie moyenne
164 REAL, save:: zstd(klon) ! deviation standard de l'OESM
165 REAL, save:: zsig(klon) ! pente de l'OESM
166 REAL, save:: zgam(klon) ! anisotropie de l'OESM
167 REAL, save:: zthe(klon) ! orientation de l'OESM
168 REAL, save:: zpic(klon) ! Maximum de l'OESM
169 REAL, save:: zval(klon) ! Minimum de l'OESM
170 REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM
171 REAL zulow(klon), zvlow(klon)
172 INTEGER ktest(klon)
173
174 REAL, save:: agesno(klon, nbsrf) ! age de la neige
175 REAL, save:: run_off_lic_0(klon)
176
177 ! Variables li\'ees \`a la convection d'Emanuel :
178 REAL, save:: Ma(klon, llm) ! undilute upward mass flux
179 REAL, save:: sig1(klon, llm), w01(klon, llm)
180
181 ! Variables pour la couche limite (Alain Lahellec) :
182 REAL cdragh(klon) ! drag coefficient pour T and Q
183 REAL cdragm(klon) ! drag coefficient pour vent
184
185 REAL coefh(klon, 2:llm) ! coef d'echange pour phytrac
186
187 REAL, save:: ffonte(klon, nbsrf)
188 ! flux thermique utilise pour fondre la neige
189
190 REAL fqcalving(klon, nbsrf)
191 ! flux d'eau "perdue" par la surface et n\'ecessaire pour limiter
192 ! la hauteur de neige, en kg / m2 / s
193
194 REAL zxffonte(klon)
195
196 REAL, save:: pfrac_impa(klon, llm)! Produits des coefs lessivage impaction
197 REAL, save:: pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation
198
199 REAL, save:: pfrac_1nucl(klon, llm)
200 ! Produits des coefs lessi nucl (alpha = 1)
201
202 REAL frac_impa(klon, llm) ! fraction d'a\'erosols lessiv\'es (impaction)
203 REAL frac_nucl(klon, llm) ! idem (nucleation)
204
205 REAL, save:: rain_fall(klon)
206 ! liquid water mass flux (kg / m2 / s), positive down
207
208 REAL, save:: snow_fall(klon)
209 ! solid water mass flux (kg / m2 / s), positive down
210
211 REAL rain_tiedtke(klon), snow_tiedtke(klon)
212
213 REAL evap(klon) ! flux d'\'evaporation au sol
214 real devap(klon) ! derivative of the evaporation flux at the surface
215 REAL sens(klon) ! flux de chaleur sensible au sol
216 real dsens(klon) ! derivee du flux de chaleur sensible au sol
217 REAL, save:: dlw(klon) ! derivative of infra-red flux
218 REAL bils(klon) ! bilan de chaleur au sol
219 REAL fder(klon) ! Derive de flux (sensible et latente)
220 REAL ve(klon) ! integr. verticale du transport meri. de l'energie
221 REAL vq(klon) ! integr. verticale du transport meri. de l'eau
222 REAL ue(klon) ! integr. verticale du transport zonal de l'energie
223 REAL uq(klon) ! integr. verticale du transport zonal de l'eau
224
225 REAL, save:: frugs(klon, nbsrf) ! longueur de rugosite
226 REAL zxrugs(klon) ! longueur de rugosite
227
228 ! Conditions aux limites
229
230 INTEGER julien
231 REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface
232 REAL, save:: albsol(klon) ! albedo du sol total, visible, moyen par maille
233 REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU
234 real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2
235
236 real, save:: clwcon(klon, llm), rnebcon(klon, llm)
237 real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)
238
239 REAL rhcl(klon, llm) ! humidit\'e relative ciel clair
240 REAL dialiq(klon, llm) ! eau liquide nuageuse
241 REAL diafra(klon, llm) ! fraction nuageuse
242 REAL cldliq(klon, llm) ! eau liquide nuageuse
243 REAL cldfra(klon, llm) ! fraction nuageuse
244 REAL cldtau(klon, llm) ! epaisseur optique
245 REAL cldemi(klon, llm) ! emissivite infrarouge
246
247 REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface
248 REAL flux_t(klon, nbsrf) ! flux turbulent de chaleur à la surface
249
250 REAL flux_u(klon, nbsrf), flux_v(klon, nbsrf)
251 ! tension du vent (flux turbulent de vent) à la surface, en Pa
252
253 ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que
254 ! les variables soient r\'emanentes.
255 REAL, save:: heat(klon, llm) ! chauffage solaire
256 REAL, save:: heat0(klon, llm) ! chauffage solaire ciel clair
257 REAL, save:: cool(klon, llm) ! refroidissement infrarouge
258 REAL, save:: cool0(klon, llm) ! refroidissement infrarouge ciel clair
259 REAL, save:: topsw(klon), toplw(klon), solsw(klon)
260 REAL, save:: sollw(klon) ! rayonnement infrarouge montant \`a la surface
261 real, save:: sollwdown(klon) ! downward LW flux at surface
262 REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)
263 REAL, save:: albpla(klon)
264 REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous-surface
265 REAL fsolsw(klon, nbsrf) ! flux solaire absorb\'e pour chaque sous-surface
266
267 REAL conv_q(klon, llm) ! convergence de l'humidite (kg / kg / s)
268 REAL conv_t(klon, llm) ! convergence of temperature (K / s)
269
270 REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut
271 REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree
272
273 REAL zxfluxlat(klon)
274 REAL dist, mu0(klon), fract(klon)
275 real longi
276 REAL z_avant(klon), z_apres(klon), z_factor(klon)
277 REAL zb
278 REAL zx_t, zx_qs, zcor
279 real zqsat(klon, llm)
280 INTEGER i, k, iq, nsrf
281 REAL zphi(klon, llm)
282
283 ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm)
284
285 REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite
286 REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA
287 REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite
288 REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite
289 REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite
290 REAL, SAVE:: pblt(klon, nbsrf) ! T \`a la hauteur de couche limite
291 REAL, SAVE:: therm(klon, nbsrf)
292 ! Grandeurs de sorties
293 REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)
294 REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)
295 REAL s_therm(klon)
296
297 ! Variables pour la convection de K. Emanuel :
298
299 REAL upwd(klon, llm) ! saturated updraft mass flux
300 REAL dnwd(klon, llm) ! saturated downdraft mass flux
301 REAL, save:: cape(klon)
302
303 INTEGER iflagctrl(klon) ! flag fonctionnement de convect
304
305 ! Variables du changement
306
307 ! con: convection
308 ! lsc: large scale condensation
309 ! ajs: ajustement sec
310 ! eva: \'evaporation de l'eau liquide nuageuse
311 ! vdf: vertical diffusion in boundary layer
312 REAL d_t_con(klon, llm), d_q_con(klon, llm)
313 REAL, save:: d_u_con(klon, llm), d_v_con(klon, llm)
314 REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)
315 REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)
316 REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)
317 REAL rneb(klon, llm)
318
319 REAL mfu(klon, llm), mfd(klon, llm)
320 REAL pen_u(klon, llm), pen_d(klon, llm)
321 REAL pde_u(klon, llm), pde_d(klon, llm)
322 INTEGER kcbot(klon), kctop(klon), kdtop(klon)
323 REAL pmflxr(klon, llm + 1), pmflxs(klon, llm + 1)
324 REAL prfl(klon, llm + 1), psfl(klon, llm + 1)
325
326 INTEGER, save:: ibas_con(klon), itop_con(klon)
327 real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa
328
329 REAL, save:: rain_con(klon)
330 real rain_lsc(klon)
331 REAL, save:: snow_con(klon) ! neige (mm / s)
332 real snow_lsc(klon)
333 REAL d_ts(klon, nbsrf) ! variation of ftsol
334
335 REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)
336 REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)
337
338 REAL d_u_oro(klon, llm), d_v_oro(klon, llm)
339 REAL d_t_oro(klon, llm)
340 REAL d_u_lif(klon, llm), d_v_lif(klon, llm)
341 REAL d_t_lif(klon, llm)
342
343 REAL, save:: ratqs(klon, llm)
344 real ratqss(klon, llm), ratqsc(klon, llm)
345 real:: ratqsbas = 0.01, ratqshaut = 0.3
346
347 ! Parametres lies au nouveau schema de nuages (SB, PDF)
348 real:: fact_cldcon = 0.375
349 real:: facttemps = 1.e-4
350 logical:: ok_newmicro = .true.
351 real facteur
352
353 integer:: iflag_cldcon = 1
354 logical ptconv(klon, llm)
355
356 ! Variables pour effectuer les appels en s\'erie :
357
358 REAL t_seri(klon, llm), q_seri(klon, llm)
359 REAL ql_seri(klon, llm)
360 REAL u_seri(klon, llm), v_seri(klon, llm)
361 REAL tr_seri(klon, llm, nqmx - 2)
362
363 REAL zx_rh(klon, llm)
364
365 REAL zustrdr(klon), zvstrdr(klon)
366 REAL zustrli(klon), zvstrli(klon)
367 REAL aam, torsfc
368
369 REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.
370 REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.
371 REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.
372 REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.
373
374 REAL tsol(klon)
375
376 REAL d_t_ec(klon, llm)
377 ! tendance due \`a la conversion d'\'energie cin\'etique en
378 ! énergie thermique
379
380 REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf)
381 ! temperature and humidity at 2 m
382
383 REAL, save:: u10m_srf(klon, nbsrf), v10m_srf(klon, nbsrf)
384 ! composantes du vent \`a 10 m
385
386 REAL zt2m(klon), zq2m(klon) ! température, humidité 2 m moyenne sur 1 maille
387 REAL u10m(klon), v10m(klon) ! vent \`a 10 m moyenn\' sur les sous-surfaces
388
389 ! Aerosol effects:
390
391 REAL, save:: topswad(klon), solswad(klon) ! aerosol direct effect
392 LOGICAL:: ok_ade = .false. ! apply aerosol direct effect
393
394 REAL:: bl95_b0 = 2., bl95_b1 = 0.2
395 ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus
396 ! B). They link cloud droplet number concentration to aerosol mass
397 ! concentration.
398
399 real zmasse(klon, llm)
400 ! (column-density of mass of air in a cell, in kg m-2)
401
402 integer, save:: ncid_startphy
403
404 namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, &
405 ratqsbas, ratqshaut, ok_ade, bl95_b0, bl95_b1, iflag_thermals, &
406 nsplit_thermals
407
408 !----------------------------------------------------------------
409
410 IF (nqmx < 2) CALL abort_gcm('physiq', &
411 'eaux vapeur et liquide sont indispensables')
412
413 test_firstcal: IF (firstcal) THEN
414 ! initialiser
415 u10m_srf = 0.
416 v10m_srf = 0.
417 t2m = 0.
418 q2m = 0.
419 ffonte = 0.
420 rain_con = 0.
421 snow_con = 0.
422 d_u_con = 0.
423 d_v_con = 0.
424 rnebcon0 = 0.
425 clwcon0 = 0.
426 rnebcon = 0.
427 clwcon = 0.
428 pblh =0. ! Hauteur de couche limite
429 plcl =0. ! Niveau de condensation de la CLA
430 capCL =0. ! CAPE de couche limite
431 oliqCL =0. ! eau_liqu integree de couche limite
432 cteiCL =0. ! cloud top instab. crit. couche limite
433 pblt =0.
434 therm =0.
435
436 iflag_thermals = 0
437 nsplit_thermals = 1
438 print *, "Enter namelist 'physiq_nml'."
439 read(unit=*, nml=physiq_nml)
440 write(unit_nml, nml=physiq_nml)
441
442 call conf_phys
443
444 ! Initialiser les compteurs:
445
446 frugs = 0.
447 CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
448 fevap, rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, &
449 agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, &
450 q_ancien, ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
451 w01, ncid_startphy)
452
453 ! ATTENTION : il faudra a terme relire q2 dans l'etat initial
454 q2 = 1e-8
455
456 radpas = lmt_pas / nbapp_rad
457 print *, "radpas = ", radpas
458
459 ! Initialisation pour le sch\'ema de convection d'Emanuel :
460 IF (conv_emanuel) THEN
461 ibas_con = 1
462 itop_con = 1
463 ENDIF
464
465 IF (ok_orodr) THEN
466 rugoro = MAX(1e-5, zstd * zsig / 2)
467 CALL SUGWD(paprs, play)
468 else
469 rugoro = 0.
470 ENDIF
471
472 ecrit_ins = NINT(ecrit_ins / dtphys)
473
474 ! Initialisation des sorties
475
476 call ini_histins(dtphys, ok_newmicro)
477 CALL phyredem0
478 ENDIF test_firstcal
479
480 ! We will modify variables *_seri and we will not touch variables
481 ! u, v, t, qx:
482 t_seri = t
483 u_seri = u
484 v_seri = v
485 q_seri = qx(:, :, ivap)
486 ql_seri = qx(:, :, iliq)
487 tr_seri = qx(:, :, 3:nqmx)
488
489 tsol = sum(ftsol * pctsrf, dim = 2)
490
491 ! Diagnostic de la tendance dynamique :
492 IF (ancien_ok) THEN
493 DO k = 1, llm
494 DO i = 1, klon
495 d_t_dyn(i, k) = (t_seri(i, k) - t_ancien(i, k)) / dtphys
496 d_q_dyn(i, k) = (q_seri(i, k) - q_ancien(i, k)) / dtphys
497 ENDDO
498 ENDDO
499 ELSE
500 DO k = 1, llm
501 DO i = 1, klon
502 d_t_dyn(i, k) = 0.
503 d_q_dyn(i, k) = 0.
504 ENDDO
505 ENDDO
506 ancien_ok = .TRUE.
507 ENDIF
508
509 ! Ajouter le geopotentiel du sol:
510 DO k = 1, llm
511 DO i = 1, klon
512 zphi(i, k) = pphi(i, k) + pphis(i)
513 ENDDO
514 ENDDO
515
516 ! Check temperatures:
517 CALL hgardfou(t_seri, ftsol)
518
519 call increment_itap
520 julien = MOD(dayvrai, 360)
521 if (julien == 0) julien = 360
522
523 forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg
524
525 ! \'Evaporation de l'eau liquide nuageuse :
526 DO k = 1, llm
527 DO i = 1, klon
528 zb = MAX(0., ql_seri(i, k))
529 t_seri(i, k) = t_seri(i, k) &
530 - zb * RLVTT / RCPD / (1. + RVTMP2 * q_seri(i, k))
531 q_seri(i, k) = q_seri(i, k) + zb
532 ENDDO
533 ENDDO
534 ql_seri = 0.
535
536 frugs = MAX(frugs, 0.000015)
537 zxrugs = sum(frugs * pctsrf, dim = 2)
538
539 ! Calculs n\'ecessaires au calcul de l'albedo dans l'interface avec
540 ! la surface.
541
542 CALL orbite(REAL(julien), longi, dist)
543 CALL zenang(longi, time, dtphys * radpas, mu0, fract)
544 albsol = sum(falbe * pctsrf, dim = 2)
545
546 ! R\'epartition sous maille des flux longwave et shortwave
547 ! R\'epartition du longwave par sous-surface lin\'earis\'ee
548
549 forall (nsrf = 1: nbsrf)
550 fsollw(:, nsrf) = sollw + 4. * RSIGMA * tsol**3 &
551 * (tsol - ftsol(:, nsrf))
552 fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol)
553 END forall
554
555 CALL pbl_surface(dtphys, pctsrf, t_seri, q_seri, u_seri, v_seri, julien, &
556 mu0, ftsol, cdmmax, cdhmax, ftsoil, qsol, paprs, play, fsnow, fqsurf, &
557 fevap, falbe, fluxlat, rain_fall, snow_fall, fsolsw, fsollw, frugs, &
558 agesno, rugoro, d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, flux_t, &
559 flux_q, flux_u, flux_v, cdragh, cdragm, q2, dsens, devap, coefh, t2m, &
560 q2m, u10m_srf, v10m_srf, pblh, capCL, oliqCL, cteiCL, pblT, therm, &
561 plcl, fqcalving, ffonte, run_off_lic_0)
562
563 ! Incr\'ementation des flux
564
565 sens = - sum(flux_t * pctsrf, dim = 2)
566 evap = - sum(flux_q * pctsrf, dim = 2)
567 fder = dlw + dsens + devap
568
569 DO k = 1, llm
570 DO i = 1, klon
571 t_seri(i, k) = t_seri(i, k) + d_t_vdf(i, k)
572 q_seri(i, k) = q_seri(i, k) + d_q_vdf(i, k)
573 u_seri(i, k) = u_seri(i, k) + d_u_vdf(i, k)
574 v_seri(i, k) = v_seri(i, k) + d_v_vdf(i, k)
575 ENDDO
576 ENDDO
577
578 ! Update surface temperature:
579
580 call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf')
581 ftsol = ftsol + d_ts
582 tsol = sum(ftsol * pctsrf, dim = 2)
583 zxfluxlat = sum(fluxlat * pctsrf, dim = 2)
584 zt2m = sum(t2m * pctsrf, dim = 2)
585 zq2m = sum(q2m * pctsrf, dim = 2)
586 u10m = sum(u10m_srf * pctsrf, dim = 2)
587 v10m = sum(v10m_srf * pctsrf, dim = 2)
588 zxffonte = sum(ffonte * pctsrf, dim = 2)
589 s_pblh = sum(pblh * pctsrf, dim = 2)
590 s_lcl = sum(plcl * pctsrf, dim = 2)
591 s_capCL = sum(capCL * pctsrf, dim = 2)
592 s_oliqCL = sum(oliqCL * pctsrf, dim = 2)
593 s_cteiCL = sum(cteiCL * pctsrf, dim = 2)
594 s_pblT = sum(pblT * pctsrf, dim = 2)
595 s_therm = sum(therm * pctsrf, dim = 2)
596
597 ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne :
598 DO nsrf = 1, nbsrf
599 DO i = 1, klon
600 IF (pctsrf(i, nsrf) < epsfra) then
601 ftsol(i, nsrf) = tsol(i)
602 t2m(i, nsrf) = zt2m(i)
603 q2m(i, nsrf) = zq2m(i)
604 u10m_srf(i, nsrf) = u10m(i)
605 v10m_srf(i, nsrf) = v10m(i)
606 ffonte(i, nsrf) = zxffonte(i)
607 pblh(i, nsrf) = s_pblh(i)
608 plcl(i, nsrf) = s_lcl(i)
609 capCL(i, nsrf) = s_capCL(i)
610 oliqCL(i, nsrf) = s_oliqCL(i)
611 cteiCL(i, nsrf) = s_cteiCL(i)
612 pblT(i, nsrf) = s_pblT(i)
613 therm(i, nsrf) = s_therm(i)
614 end IF
615 ENDDO
616 ENDDO
617
618 dlw = - 4. * RSIGMA * tsol**3
619
620 ! Appeler la convection
621
622 if (conv_emanuel) then
623 CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, &
624 d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, &
625 upwd, dnwd, Ma, cape, iflagctrl, clwcon0, pmflxr, da, phi, mp)
626 snow_con = 0.
627 mfu = upwd + dnwd
628
629 zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play)
630 zqsat = zqsat / (1. - retv * zqsat)
631
632 ! Properties of convective clouds
633 clwcon0 = fact_cldcon * clwcon0
634 call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &
635 rnebcon0)
636
637 forall (i = 1:klon) ema_pct(i) = paprs(i, itop_con(i) + 1)
638 mfd = 0.
639 pen_u = 0.
640 pen_d = 0.
641 pde_d = 0.
642 pde_u = 0.
643 else
644 conv_q = d_q_dyn + d_q_vdf / dtphys
645 conv_t = d_t_dyn + d_t_vdf / dtphys
646 z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)
647 CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:- 1), &
648 q_seri(:, llm:1:- 1), conv_t, conv_q, - evap, omega, d_t_con, &
649 d_q_con, rain_con, snow_con, mfu(:, llm:1:- 1), mfd(:, llm:1:- 1), &
650 pen_u, pde_u, pen_d, pde_d, kcbot, kctop, kdtop, pmflxr, pmflxs)
651 WHERE (rain_con < 0.) rain_con = 0.
652 WHERE (snow_con < 0.) snow_con = 0.
653 ibas_con = llm + 1 - kcbot
654 itop_con = llm + 1 - kctop
655 END if
656
657 DO k = 1, llm
658 DO i = 1, klon
659 t_seri(i, k) = t_seri(i, k) + d_t_con(i, k)
660 q_seri(i, k) = q_seri(i, k) + d_q_con(i, k)
661 u_seri(i, k) = u_seri(i, k) + d_u_con(i, k)
662 v_seri(i, k) = v_seri(i, k) + d_v_con(i, k)
663 ENDDO
664 ENDDO
665
666 IF (.not. conv_emanuel) THEN
667 z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)
668 z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres
669 DO k = 1, llm
670 DO i = 1, klon
671 IF (z_factor(i) > 1. + 1E-8 .OR. z_factor(i) < 1. - 1E-8) THEN
672 q_seri(i, k) = q_seri(i, k) * z_factor(i)
673 ENDIF
674 ENDDO
675 ENDDO
676 ENDIF
677
678 ! Convection s\`eche (thermiques ou ajustement)
679
680 d_t_ajs = 0.
681 d_u_ajs = 0.
682 d_v_ajs = 0.
683 d_q_ajs = 0.
684 fm_therm = 0.
685 entr_therm = 0.
686
687 if (iflag_thermals == 0) then
688 ! Ajustement sec
689 CALL ajsec(paprs, play, t_seri, q_seri, d_t_ajs, d_q_ajs)
690 t_seri = t_seri + d_t_ajs
691 q_seri = q_seri + d_q_ajs
692 else
693 call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, &
694 q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)
695 endif
696
697 ! Caclul des ratqs
698
699 if (iflag_cldcon == 1) then
700 ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q
701 ! on \'ecrase le tableau ratqsc calcul\'e par clouds_gno
702 do k = 1, llm
703 do i = 1, klon
704 if(ptconv(i, k)) then
705 ratqsc(i, k) = ratqsbas + fact_cldcon &
706 * (q_seri(i, 1) - q_seri(i, k)) / q_seri(i, k)
707 else
708 ratqsc(i, k) = 0.
709 endif
710 enddo
711 enddo
712 endif
713
714 ! ratqs stables
715 do k = 1, llm
716 do i = 1, klon
717 ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &
718 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)
719 enddo
720 enddo
721
722 ! ratqs final
723 if (iflag_cldcon == 1 .or. iflag_cldcon == 2) then
724 ! les ratqs sont une conbinaison de ratqss et ratqsc
725 ! ratqs final
726 ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de
727 ! relaxation des ratqs
728 ratqs = max(ratqs * exp(- dtphys * facttemps), ratqss)
729 ratqs = max(ratqs, ratqsc)
730 else
731 ! on ne prend que le ratqs stable pour fisrtilp
732 ratqs = ratqss
733 endif
734
735 CALL fisrtilp(dtphys, paprs, play, t_seri, q_seri, ptconv, ratqs, d_t_lsc, &
736 d_q_lsc, d_ql_lsc, rneb, cldliq, rain_lsc, snow_lsc, pfrac_impa, &
737 pfrac_nucl, pfrac_1nucl, frac_impa, frac_nucl, prfl, psfl, rhcl)
738
739 WHERE (rain_lsc < 0) rain_lsc = 0.
740 WHERE (snow_lsc < 0) snow_lsc = 0.
741 DO k = 1, llm
742 DO i = 1, klon
743 t_seri(i, k) = t_seri(i, k) + d_t_lsc(i, k)
744 q_seri(i, k) = q_seri(i, k) + d_q_lsc(i, k)
745 ql_seri(i, k) = ql_seri(i, k) + d_ql_lsc(i, k)
746 cldfra(i, k) = rneb(i, k)
747 IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)
748 ENDDO
749 ENDDO
750
751 ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
752
753 ! 1. NUAGES CONVECTIFS
754
755 IF (iflag_cldcon <= - 1) THEN
756 ! seulement pour Tiedtke
757 snow_tiedtke = 0.
758 if (iflag_cldcon == - 1) then
759 rain_tiedtke = rain_con
760 else
761 rain_tiedtke = 0.
762 do k = 1, llm
763 do i = 1, klon
764 if (d_q_con(i, k) < 0.) then
765 rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k) / dtphys &
766 * zmasse(i, k)
767 endif
768 enddo
769 enddo
770 endif
771
772 ! Nuages diagnostiques pour Tiedtke
773 CALL diagcld1(paprs, play, rain_tiedtke, snow_tiedtke, ibas_con, &
774 itop_con, diafra, dialiq)
775 DO k = 1, llm
776 DO i = 1, klon
777 IF (diafra(i, k) > cldfra(i, k)) THEN
778 cldliq(i, k) = dialiq(i, k)
779 cldfra(i, k) = diafra(i, k)
780 ENDIF
781 ENDDO
782 ENDDO
783 ELSE IF (iflag_cldcon == 3) THEN
784 ! On prend pour les nuages convectifs le maximum du calcul de
785 ! la convection et du calcul du pas de temps pr\'ec\'edent diminu\'e
786 ! d'un facteur facttemps.
787 facteur = dtphys * facttemps
788 do k = 1, llm
789 do i = 1, klon
790 rnebcon(i, k) = rnebcon(i, k) * facteur
791 if (rnebcon0(i, k) * clwcon0(i, k) &
792 > rnebcon(i, k) * clwcon(i, k)) then
793 rnebcon(i, k) = rnebcon0(i, k)
794 clwcon(i, k) = clwcon0(i, k)
795 endif
796 enddo
797 enddo
798
799 ! On prend la somme des fractions nuageuses et des contenus en eau
800 cldfra = min(max(cldfra, rnebcon), 1.)
801 cldliq = cldliq + rnebcon * clwcon
802 ENDIF
803
804 ! 2. Nuages stratiformes
805
806 IF (ok_stratus) THEN
807 CALL diagcld2(paprs, play, t_seri, q_seri, diafra, dialiq)
808 DO k = 1, llm
809 DO i = 1, klon
810 IF (diafra(i, k) > cldfra(i, k)) THEN
811 cldliq(i, k) = dialiq(i, k)
812 cldfra(i, k) = diafra(i, k)
813 ENDIF
814 ENDDO
815 ENDDO
816 ENDIF
817
818 ! Precipitation totale
819 DO i = 1, klon
820 rain_fall(i) = rain_con(i) + rain_lsc(i)
821 snow_fall(i) = snow_con(i) + snow_lsc(i)
822 ENDDO
823
824 ! Humidit\'e relative pour diagnostic :
825 DO k = 1, llm
826 DO i = 1, klon
827 zx_t = t_seri(i, k)
828 zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t) / play(i, k)
829 zx_qs = MIN(0.5, zx_qs)
830 zcor = 1. / (1. - retv * zx_qs)
831 zx_qs = zx_qs * zcor
832 zx_rh(i, k) = q_seri(i, k) / zx_qs
833 zqsat(i, k) = zx_qs
834 ENDDO
835 ENDDO
836
837 ! Param\`etres optiques des nuages et quelques param\`etres pour
838 ! diagnostics :
839 if (ok_newmicro) then
840 CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &
841 cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc)
842 else
843 CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &
844 cldl, cldm, cldt, cldq)
845 endif
846
847 IF (MOD(itap - 1, radpas) == 0) THEN
848 wo = ozonecm(REAL(julien), paprs)
849 albsol = sum(falbe * pctsrf, dim = 2)
850 CALL radlwsw(dist, mu0, fract, paprs, play, tsol, albsol, t_seri, &
851 q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, &
852 radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, &
853 toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, &
854 swup0, swup, ok_ade, topswad, solswad)
855 ENDIF
856
857 ! Ajouter la tendance des rayonnements (tous les pas)
858 DO k = 1, llm
859 DO i = 1, klon
860 t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys &
861 / 86400.
862 ENDDO
863 ENDDO
864
865 ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage)
866 DO i = 1, klon
867 bils(i) = radsol(i) - sens(i) + zxfluxlat(i)
868 ENDDO
869
870 ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille :
871
872 IF (ok_orodr) THEN
873 ! S\'election des points pour lesquels le sch\'ema est actif :
874 DO i = 1, klon
875 ktest(i) = 0
876 IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN
877 ktest(i) = 1
878 ENDIF
879 ENDDO
880
881 CALL drag_noro(dtphys, paprs, play, zmea, zstd, zsig, zgam, zthe, &
882 zpic, zval, ktest, t_seri, u_seri, v_seri, zulow, zvlow, zustrdr, &
883 zvstrdr, d_t_oro, d_u_oro, d_v_oro)
884
885 ! ajout des tendances
886 DO k = 1, llm
887 DO i = 1, klon
888 t_seri(i, k) = t_seri(i, k) + d_t_oro(i, k)
889 u_seri(i, k) = u_seri(i, k) + d_u_oro(i, k)
890 v_seri(i, k) = v_seri(i, k) + d_v_oro(i, k)
891 ENDDO
892 ENDDO
893 ENDIF
894
895 IF (ok_orolf) THEN
896 ! S\'election des points pour lesquels le sch\'ema est actif :
897 DO i = 1, klon
898 ktest(i) = 0
899 IF (zpic(i) - zmea(i) > 100.) THEN
900 ktest(i) = 1
901 ENDIF
902 ENDDO
903
904 CALL lift_noro(dtphys, paprs, play, zmea, zstd, zpic, ktest, t_seri, &
905 u_seri, v_seri, zulow, zvlow, zustrli, zvstrli, d_t_lif, &
906 d_u_lif, d_v_lif)
907
908 ! Ajout des tendances :
909 DO k = 1, llm
910 DO i = 1, klon
911 t_seri(i, k) = t_seri(i, k) + d_t_lif(i, k)
912 u_seri(i, k) = u_seri(i, k) + d_u_lif(i, k)
913 v_seri(i, k) = v_seri(i, k) + d_v_lif(i, k)
914 ENDDO
915 ENDDO
916 ENDIF
917
918 CALL aaam_bud(rg, romega, pphis, zustrdr, zustrli, &
919 sum((u_seri - u) / dtphys * zmasse, dim = 2), zvstrdr, &
920 zvstrli, sum((v_seri - v) / dtphys * zmasse, dim = 2), paprs, u, v, &
921 aam, torsfc)
922
923 ! Calcul des tendances traceurs
924 call phytrac(julien, time, firstcal, lafin, dtphys, t, paprs, play, mfu, &
925 mfd, pde_u, pen_d, coefh, cdragh, fm_therm, entr_therm, u(:, 1), &
926 v(:, 1), ftsol, pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, &
927 dnwd, tr_seri, zmasse, ncid_startphy)
928
929 ! Calculer le transport de l'eau et de l'energie (diagnostique)
930 CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq)
931
932 ! diag. bilKP
933
934 CALL transp_lay(paprs, t_seri, q_seri, u_seri, v_seri, zphi, &
935 ve_lay, vq_lay, ue_lay, uq_lay)
936
937 ! Accumuler les variables a stocker dans les fichiers histoire:
938
939 ! conversion Ec en énergie thermique
940 DO k = 1, llm
941 DO i = 1, klon
942 d_t_ec(i, k) = 0.5 / (RCPD * (1. + RVTMP2 * q_seri(i, k))) &
943 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)
944 t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)
945 d_t_ec(i, k) = d_t_ec(i, k) / dtphys
946 END DO
947 END DO
948
949 ! SORTIES
950
951 ! prw = eau precipitable
952 DO i = 1, klon
953 prw(i) = 0.
954 DO k = 1, llm
955 prw(i) = prw(i) + q_seri(i, k) * zmasse(i, k)
956 ENDDO
957 ENDDO
958
959 ! Convertir les incrementations en tendances
960
961 DO k = 1, llm
962 DO i = 1, klon
963 d_u(i, k) = (u_seri(i, k) - u(i, k)) / dtphys
964 d_v(i, k) = (v_seri(i, k) - v(i, k)) / dtphys
965 d_t(i, k) = (t_seri(i, k) - t(i, k)) / dtphys
966 d_qx(i, k, ivap) = (q_seri(i, k) - qx(i, k, ivap)) / dtphys
967 d_qx(i, k, iliq) = (ql_seri(i, k) - qx(i, k, iliq)) / dtphys
968 ENDDO
969 ENDDO
970
971 DO iq = 3, nqmx
972 DO k = 1, llm
973 DO i = 1, klon
974 d_qx(i, k, iq) = (tr_seri(i, k, iq - 2) - qx(i, k, iq)) / dtphys
975 ENDDO
976 ENDDO
977 ENDDO
978
979 ! Sauvegarder les valeurs de t et q a la fin de la physique:
980 DO k = 1, llm
981 DO i = 1, klon
982 t_ancien(i, k) = t_seri(i, k)
983 q_ancien(i, k) = q_seri(i, k)
984 ENDDO
985 ENDDO
986
987 CALL histwrite_phy("phis", pphis)
988 CALL histwrite_phy("aire", airephy)
989 CALL histwrite_phy("psol", paprs(:, 1))
990 CALL histwrite_phy("precip", rain_fall + snow_fall)
991 CALL histwrite_phy("plul", rain_lsc + snow_lsc)
992 CALL histwrite_phy("pluc", rain_con + snow_con)
993 CALL histwrite_phy("tsol", tsol)
994 CALL histwrite_phy("t2m", zt2m)
995 CALL histwrite_phy("q2m", zq2m)
996 CALL histwrite_phy("u10m", u10m)
997 CALL histwrite_phy("v10m", v10m)
998 CALL histwrite_phy("snow", snow_fall)
999 CALL histwrite_phy("cdrm", cdragm)
1000 CALL histwrite_phy("cdrh", cdragh)
1001 CALL histwrite_phy("topl", toplw)
1002 CALL histwrite_phy("evap", evap)
1003 CALL histwrite_phy("sols", solsw)
1004 CALL histwrite_phy("soll", sollw)
1005 CALL histwrite_phy("solldown", sollwdown)
1006 CALL histwrite_phy("bils", bils)
1007 CALL histwrite_phy("sens", - sens)
1008 CALL histwrite_phy("fder", fder)
1009 CALL histwrite_phy("dtsvdfo", d_ts(:, is_oce))
1010 CALL histwrite_phy("dtsvdft", d_ts(:, is_ter))
1011 CALL histwrite_phy("dtsvdfg", d_ts(:, is_lic))
1012 CALL histwrite_phy("dtsvdfi", d_ts(:, is_sic))
1013 CALL histwrite_phy("zxfqcalving", sum(fqcalving * pctsrf, dim = 2))
1014
1015 DO nsrf = 1, nbsrf
1016 CALL histwrite_phy("pourc_"//clnsurf(nsrf), pctsrf(:, nsrf) * 100.)
1017 CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf))
1018 CALL histwrite_phy("sens_"//clnsurf(nsrf), flux_t(:, nsrf))
1019 CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf))
1020 CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf))
1021 CALL histwrite_phy("taux_"//clnsurf(nsrf), flux_u(:, nsrf))
1022 CALL histwrite_phy("tauy_"//clnsurf(nsrf), flux_v(:, nsrf))
1023 CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf))
1024 CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf))
1025 CALL histwrite_phy("u10m_"//clnsurf(nsrf), u10m_srf(:, nsrf))
1026 CALL histwrite_phy("v10m_"//clnsurf(nsrf), v10m_srf(:, nsrf))
1027 END DO
1028
1029 CALL histwrite_phy("albs", albsol)
1030 CALL histwrite_phy("tro3", wo * dobson_u * 1e3 / zmasse / rmo3 * md)
1031 CALL histwrite_phy("rugs", zxrugs)
1032 CALL histwrite_phy("s_pblh", s_pblh)
1033 CALL histwrite_phy("s_pblt", s_pblt)
1034 CALL histwrite_phy("s_lcl", s_lcl)
1035 CALL histwrite_phy("s_capCL", s_capCL)
1036 CALL histwrite_phy("s_oliqCL", s_oliqCL)
1037 CALL histwrite_phy("s_cteiCL", s_cteiCL)
1038 CALL histwrite_phy("s_therm", s_therm)
1039
1040 if (conv_emanuel) then
1041 CALL histwrite_phy("ptop", ema_pct)
1042 CALL histwrite_phy("dnwd0", - mp)
1043 end if
1044
1045 CALL histwrite_phy("temp", t_seri)
1046 CALL histwrite_phy("vitu", u_seri)
1047 CALL histwrite_phy("vitv", v_seri)
1048 CALL histwrite_phy("geop", zphi)
1049 CALL histwrite_phy("pres", play)
1050 CALL histwrite_phy("dtvdf", d_t_vdf)
1051 CALL histwrite_phy("dqvdf", d_q_vdf)
1052 CALL histwrite_phy("rhum", zx_rh)
1053 CALL histwrite_phy("d_t_ec", d_t_ec)
1054 CALL histwrite_phy("dtsw0", heat0 / 86400.)
1055 CALL histwrite_phy("dtlw0", - cool0 / 86400.)
1056 CALL histwrite_phy("msnow", sum(fsnow * pctsrf, dim = 2))
1057 call histwrite_phy("qsurf", sum(fqsurf * pctsrf, dim = 2))
1058
1059 if (ok_instan) call histsync(nid_ins)
1060
1061 IF (lafin) then
1062 call NF95_CLOSE(ncid_startphy)
1063 CALL phyredem(pctsrf, ftsol, ftsoil, fqsurf, qsol, &
1064 fsnow, falbe, fevap, rain_fall, snow_fall, solsw, sollw, dlw, &
1065 radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, &
1066 t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
1067 w01)
1068 end IF
1069
1070 firstcal = .FALSE.
1071
1072 END SUBROUTINE physiq
1073
1074 end module physiq_m

  ViewVC Help
Powered by ViewVC 1.1.21