/[lmdze]/trunk/phylmd/physiq.f
ViewVC logotype

Diff of /trunk/phylmd/physiq.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/physiq.f90 revision 12 by guez, Mon Jul 21 16:05:07 2008 UTC trunk/Sources/phylmd/physiq.f revision 224 by guez, Fri Apr 28 13:40:59 2017 UTC
# Line 1  Line 1 
1  module physiq_m  module physiq_m
2    
   ! This module is clean: no C preprocessor directive, no include line.  
   
3    IMPLICIT none    IMPLICIT none
4    
   private  
   public physiq  
   
5  contains  contains
6    
7    SUBROUTINE physiq(nq, firstcal, lafin, rdayvrai, gmtime, pdtphys, paprs, &    SUBROUTINE physiq(lafin, dayvrai, time, paprs, play, pphi, pphis, u, v, t, &
8         pplay, pphi, pphis, presnivs, clesphy0, u, v, t, qx, omega, d_u, d_v, &         qx, omega, d_u, d_v, d_t, d_qx)
        d_t, d_qx, d_ps, dudyn, PVteta)  
   
     ! From phylmd/physiq.F, v 1.22 2006/02/20 09:38:28  
   
     ! Author : Z.X. Li (LMD/CNRS), date: 1993/08/18  
   
     ! Objet: Moniteur general de la physique du modele  
     !AA      Modifications quant aux traceurs :  
     !AA                  -  uniformisation des parametrisations ds phytrac  
     !AA                  -  stockage des moyennes des champs necessaires  
     !AA                     en mode traceur off-line  
   
     USE ioipsl, only: ymds2ju, histwrite, histsync  
     use dimens_m, only: jjm, iim, llm  
     use indicesol, only: nbsrf, is_ter, is_lic, is_sic, is_oce, &  
          clnsurf, epsfra  
     use dimphy, only: klon, nbtr  
     use conf_gcm_m, only: raz_date, offline, iphysiq  
     use dimsoil, only: nsoilmx  
     use temps, only: itau_phy, day_ref, annee_ref, itaufin  
     use clesphys, only: ecrit_hf, ecrit_hf2mth, &  
          ecrit_ins, ecrit_mth, ecrit_day, &  
          cdmmax, cdhmax, &  
          co2_ppm, ecrit_reg, ecrit_tra, ksta, ksta_ter, &  
          ok_kzmin  
     use clesphys2, only: iflag_con, ok_orolf, ok_orodr, nbapp_rad, &  
          cycle_diurne, new_oliq, soil_model  
     use iniprint, only: prt_level  
     use abort_gcm_m, only: abort_gcm  
     use YOMCST, only: rcpd, rtt, rlvtt, rg, ra, rsigma, retv, romega  
     use comgeomphy  
     use ctherm  
     use phytrac_m, only: phytrac  
     use oasis_m  
     use radepsi  
     use radopt  
     use yoethf  
     use ini_hist, only: ini_histhf, ini_histday, ini_histins  
     use orbite_m, only: orbite, zenang  
     use phyetat0_m, only: phyetat0, rlat, rlon  
     use hgardfou_m, only: hgardfou  
     use conf_phys_m, only: conf_phys  
   
     ! Declaration des constantes et des fonctions thermodynamiques :  
     use fcttre, only: thermcep, foeew, qsats, qsatl  
   
     ! Variables argument:  
   
     INTEGER nq ! input nombre de traceurs (y compris vapeur d'eau)  
     REAL, intent(in):: rdayvrai ! input numero du jour de l'experience  
     REAL, intent(in):: gmtime ! heure de la journée en fraction de jour  
     REAL, intent(in):: pdtphys ! pas d'integration pour la physique (seconde)  
     LOGICAL, intent(in):: firstcal ! first call to "calfis"  
     logical, intent(in):: lafin ! dernier passage  
9    
10      REAL, intent(in):: paprs(klon, llm+1)      ! From phylmd/physiq.F, version 1.22 2006/02/20 09:38:28
11      ! (pression pour chaque inter-couche, en Pa)      ! (subversion revision 678)
       
     REAL, intent(in):: pplay(klon, llm)  
     ! (input pression pour le mileu de chaque couche (en Pa))  
   
     REAL pphi(klon, llm)    
     ! (input geopotentiel de chaque couche (g z) (reference sol))  
   
     REAL pphis(klon) ! input geopotentiel du sol  
   
     REAL presnivs(llm)  
     ! (input pressions approximat. des milieux couches ( en PA))  
   
     REAL u(klon, llm)  ! input vitesse dans la direction X (de O a E) en m/s  
     REAL v(klon, llm)  ! input vitesse Y (de S a N) en m/s  
     REAL t(klon, llm)  ! input temperature (K)  
   
     REAL, intent(in):: qx(klon, llm, nq)  
     ! (humidite specifique (kg/kg) et fractions massiques des autres traceurs)  
   
     REAL omega(klon, llm)  ! input vitesse verticale en Pa/s  
     REAL d_u(klon, llm)  ! output tendance physique de "u" (m/s/s)  
     REAL d_v(klon, llm)  ! output tendance physique de "v" (m/s/s)  
     REAL d_t(klon, llm)  ! output tendance physique de "t" (K/s)  
     REAL d_qx(klon, llm, nq)  ! output tendance physique de "qx" (kg/kg/s)  
     REAL d_ps(klon)  ! output tendance physique de la pression au sol  
   
     INTEGER nbteta  
     PARAMETER(nbteta=3)  
   
     REAL PVteta(klon, nbteta)  
     ! (output vorticite potentielle a des thetas constantes)  
   
     LOGICAL ok_cvl  ! pour activer le nouveau driver pour convection KE  
     PARAMETER (ok_cvl=.TRUE.)  
     LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface  
     PARAMETER (ok_gust=.FALSE.)  
   
     LOGICAL check ! Verifier la conservation du modele en eau  
     PARAMETER (check=.FALSE.)  
     LOGICAL ok_stratus ! Ajouter artificiellement les stratus  
     PARAMETER (ok_stratus=.FALSE.)  
   
     ! Parametres lies au coupleur OASIS:  
     INTEGER, SAVE :: npas, nexca  
     logical rnpb  
     parameter(rnpb=.true.)  
   
     character(len=6), save:: ocean  
     ! (type de modèle océan à utiliser: "force" ou "slab" mais pas "couple")  
   
     logical ok_ocean  
     SAVE ok_ocean  
   
     !IM "slab" ocean  
     REAL tslab(klon)    !Temperature du slab-ocean  
     SAVE tslab  
     REAL seaice(klon)   !glace de mer (kg/m2)  
     SAVE seaice  
     REAL fluxo(klon)    !flux turbulents ocean-glace de mer  
     REAL fluxg(klon)    !flux turbulents ocean-atmosphere  
   
     ! Modele thermique du sol, a activer pour le cycle diurne:  
     logical ok_veget  
     save ok_veget  
     LOGICAL ok_journe ! sortir le fichier journalier  
     save ok_journe  
   
     LOGICAL ok_mensuel ! sortir le fichier mensuel  
12    
13      LOGICAL ok_instan ! sortir le fichier instantane      ! Author: Z. X. Li (LMD/CNRS) 1993
     save ok_instan  
14    
15      LOGICAL ok_region ! sortir le fichier regional      ! This is the main procedure for the "physics" part of the program.
16      PARAMETER (ok_region=.FALSE.)  
17        use aaam_bud_m, only: aaam_bud
18        USE abort_gcm_m, ONLY: abort_gcm
19        use ajsec_m, only: ajsec
20        use calltherm_m, only: calltherm
21        USE clesphys, ONLY: cdhmax, cdmmax, ecrit_ins, ksta, ksta_ter, ok_kzmin, &
22             ok_instan
23        USE clesphys2, ONLY: conv_emanuel, nbapp_rad, new_oliq, ok_orodr, ok_orolf
24        USE clmain_m, ONLY: clmain
25        use clouds_gno_m, only: clouds_gno
26        use comconst, only: dtphys
27        USE comgeomphy, ONLY: airephy
28        USE concvl_m, ONLY: concvl
29        USE conf_gcm_m, ONLY: lmt_pas
30        USE conf_phys_m, ONLY: conf_phys
31        use conflx_m, only: conflx
32        USE ctherm, ONLY: iflag_thermals, nsplit_thermals
33        use diagcld2_m, only: diagcld2
34        USE dimens_m, ONLY: llm, nqmx
35        USE dimphy, ONLY: klon
36        USE dimsoil, ONLY: nsoilmx
37        use drag_noro_m, only: drag_noro
38        use dynetat0_m, only: day_ref, annee_ref
39        USE fcttre, ONLY: foeew
40        use fisrtilp_m, only: fisrtilp
41        USE hgardfou_m, ONLY: hgardfou
42        USE histsync_m, ONLY: histsync
43        USE histwrite_phy_m, ONLY: histwrite_phy
44        USE indicesol, ONLY: clnsurf, epsfra, is_lic, is_oce, is_sic, is_ter, &
45             nbsrf
46        USE ini_histins_m, ONLY: ini_histins, nid_ins
47        use netcdf95, only: NF95_CLOSE
48        use newmicro_m, only: newmicro
49        use nr_util, only: assert
50        use nuage_m, only: nuage
51        USE orbite_m, ONLY: orbite
52        USE ozonecm_m, ONLY: ozonecm
53        USE phyetat0_m, ONLY: phyetat0, rlat, rlon
54        USE phyredem_m, ONLY: phyredem
55        USE phyredem0_m, ONLY: phyredem0
56        USE phytrac_m, ONLY: phytrac
57        use radlwsw_m, only: radlwsw
58        use yoegwd, only: sugwd
59        USE suphec_m, ONLY: rcpd, retv, rg, rlvtt, romega, rsigma, rtt, rmo3, md
60        use time_phylmdz, only: itap, increment_itap
61        use transp_m, only: transp
62        use transp_lay_m, only: transp_lay
63        use unit_nml_m, only: unit_nml
64        USE ymds2ju_m, ONLY: ymds2ju
65        USE yoethf_m, ONLY: r2es, rvtmp2
66        use zenang_m, only: zenang
67    
68      !     pour phsystoke avec thermiques      logical, intent(in):: lafin ! dernier passage
     REAL fm_therm(klon, llm+1)  
     REAL entr_therm(klon, llm)  
     real q2(klon, llm+1, nbsrf)  
     save q2  
69    
70      INTEGER ivap          ! indice de traceurs pour vapeur d'eau      integer, intent(in):: dayvrai
71      PARAMETER (ivap=1)      ! current day number, based at value 1 on January 1st of annee_ref
     INTEGER iliq          ! indice de traceurs pour eau liquide  
     PARAMETER (iliq=2)  
   
     REAL t_ancien(klon, llm), q_ancien(klon, llm)  
     SAVE t_ancien, q_ancien  
     LOGICAL ancien_ok  
     SAVE ancien_ok  
72    
73      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K/s)      REAL, intent(in):: time ! heure de la journ\'ee en fraction de jour
     REAL d_q_dyn(klon, llm)  ! tendance dynamique pour "q" (kg/kg/s)  
74    
75      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)      REAL, intent(in):: paprs(:, :) ! (klon, llm + 1)
76        ! pression pour chaque inter-couche, en Pa
77    
78      !IM Amip2 PV a theta constante      REAL, intent(in):: play(:, :) ! (klon, llm)
79        ! pression pour le mileu de chaque couche (en Pa)
80    
81      CHARACTER(LEN=3) ctetaSTD(nbteta)      REAL, intent(in):: pphi(:, :) ! (klon, llm)
82      DATA ctetaSTD/'350', '380', '405'/      ! géopotentiel de chaque couche (référence sol)
     REAL rtetaSTD(nbteta)  
     DATA rtetaSTD/350., 380., 405./  
   
     !MI Amip2 PV a theta constante  
   
     INTEGER klevp1  
     PARAMETER(klevp1=llm+1)  
   
     REAL swdn0(klon, klevp1), swdn(klon, klevp1)  
     REAL swup0(klon, klevp1), swup(klon, klevp1)  
     SAVE swdn0, swdn, swup0, swup  
   
     REAL SWdn200clr(klon), SWdn200(klon)  
     REAL SWup200clr(klon), SWup200(klon)  
     SAVE SWdn200clr, SWdn200, SWup200clr, SWup200  
   
     REAL lwdn0(klon, klevp1), lwdn(klon, klevp1)  
     REAL lwup0(klon, klevp1), lwup(klon, klevp1)  
     SAVE lwdn0, lwdn, lwup0, lwup  
   
     REAL LWdn200clr(klon), LWdn200(klon)  
     REAL LWup200clr(klon), LWup200(klon)  
     SAVE LWdn200clr, LWdn200, LWup200clr, LWup200  
   
     !IM Amip2  
     ! variables a une pression donnee  
   
     integer nlevSTD  
     PARAMETER(nlevSTD=17)  
     real rlevSTD(nlevSTD)  
     DATA rlevSTD/100000., 92500., 85000., 70000., &  
          60000., 50000., 40000., 30000., 25000., 20000., &  
          15000., 10000., 7000., 5000., 3000., 2000., 1000./  
     CHARACTER(LEN=4) clevSTD(nlevSTD)  
     DATA clevSTD/'1000', '925 ', '850 ', '700 ', '600 ', &  
          '500 ', '400 ', '300 ', '250 ', '200 ', '150 ', '100 ', &  
          '70  ', '50  ', '30  ', '20  ', '10  '/  
   
     real tlevSTD(klon, nlevSTD), qlevSTD(klon, nlevSTD)  
     real rhlevSTD(klon, nlevSTD), philevSTD(klon, nlevSTD)  
     real ulevSTD(klon, nlevSTD), vlevSTD(klon, nlevSTD)  
     real wlevSTD(klon, nlevSTD)  
   
     ! nout : niveau de output des variables a une pression donnee  
     INTEGER nout  
     PARAMETER(nout=3) !nout=1 : day; =2 : mth; =3 : NMC  
   
     REAL tsumSTD(klon, nlevSTD, nout)  
     REAL usumSTD(klon, nlevSTD, nout), vsumSTD(klon, nlevSTD, nout)  
     REAL wsumSTD(klon, nlevSTD, nout), phisumSTD(klon, nlevSTD, nout)  
     REAL qsumSTD(klon, nlevSTD, nout), rhsumSTD(klon, nlevSTD, nout)  
   
     SAVE tsumSTD, usumSTD, vsumSTD, wsumSTD, phisumSTD,  &  
          qsumSTD, rhsumSTD  
   
     logical oknondef(klon, nlevSTD, nout)  
     real tnondef(klon, nlevSTD, nout)  
     save tnondef  
   
     ! les produits uvSTD, vqSTD, .., T2STD sont calcules  
     ! a partir des valeurs instantannees toutes les 6 h  
     ! qui sont moyennees sur le mois  
   
     real uvSTD(klon, nlevSTD)  
     real vqSTD(klon, nlevSTD)  
     real vTSTD(klon, nlevSTD)  
     real wqSTD(klon, nlevSTD)  
   
     real uvsumSTD(klon, nlevSTD, nout)  
     real vqsumSTD(klon, nlevSTD, nout)  
     real vTsumSTD(klon, nlevSTD, nout)  
     real wqsumSTD(klon, nlevSTD, nout)  
   
     real vphiSTD(klon, nlevSTD)  
     real wTSTD(klon, nlevSTD)  
     real u2STD(klon, nlevSTD)  
     real v2STD(klon, nlevSTD)  
     real T2STD(klon, nlevSTD)  
   
     real vphisumSTD(klon, nlevSTD, nout)  
     real wTsumSTD(klon, nlevSTD, nout)  
     real u2sumSTD(klon, nlevSTD, nout)  
     real v2sumSTD(klon, nlevSTD, nout)  
     real T2sumSTD(klon, nlevSTD, nout)  
   
     SAVE uvsumSTD, vqsumSTD, vTsumSTD, wqsumSTD  
     SAVE vphisumSTD, wTsumSTD, u2sumSTD, v2sumSTD, T2sumSTD  
     !MI Amip2  
83    
84      ! prw: precipitable water      REAL, intent(in):: pphis(:) ! (klon) géopotentiel du sol
     real prw(klon)  
85    
86      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg/m2)      REAL, intent(in):: u(:, :) ! (klon, llm)
87      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg/kg)      ! vitesse dans la direction X (de O a E) en m / s
     REAL flwp(klon), fiwp(klon)  
     REAL flwc(klon, llm), fiwc(klon, llm)  
88    
89      INTEGER l, kmax, lmax      REAL, intent(in):: v(:, :) ! (klon, llm) vitesse Y (de S a N) en m / s
90      PARAMETER(kmax=8, lmax=8)      REAL, intent(in):: t(:, :) ! (klon, llm) temperature (K)
     INTEGER kmaxm1, lmaxm1  
     PARAMETER(kmaxm1=kmax-1, lmaxm1=lmax-1)  
   
     REAL zx_tau(kmaxm1), zx_pc(lmaxm1)  
     DATA zx_tau/0.0, 0.3, 1.3, 3.6, 9.4, 23., 60./  
     DATA zx_pc/50., 180., 310., 440., 560., 680., 800./  
   
     ! cldtopres pression au sommet des nuages  
     REAL cldtopres(lmaxm1)  
     DATA cldtopres/50., 180., 310., 440., 560., 680., 800./  
   
     ! taulev: numero du niveau de tau dans les sorties ISCCP  
     CHARACTER(LEN=4) taulev(kmaxm1)  
   
     DATA taulev/'tau0', 'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'/  
     CHARACTER(LEN=3) pclev(lmaxm1)  
     DATA pclev/'pc1', 'pc2', 'pc3', 'pc4', 'pc5', 'pc6', 'pc7'/  
   
     CHARACTER(LEN=28) cnameisccp(lmaxm1, kmaxm1)  
     DATA cnameisccp/'pc< 50hPa, tau< 0.3', 'pc= 50-180hPa, tau< 0.3', &  
          'pc= 180-310hPa, tau< 0.3', 'pc= 310-440hPa, tau< 0.3', &  
          'pc= 440-560hPa, tau< 0.3', 'pc= 560-680hPa, tau< 0.3', &  
          'pc= 680-800hPa, tau< 0.3', 'pc< 50hPa, tau= 0.3-1.3', &  
          'pc= 50-180hPa, tau= 0.3-1.3', 'pc= 180-310hPa, tau= 0.3-1.3', &  
          'pc= 310-440hPa, tau= 0.3-1.3', 'pc= 440-560hPa, tau= 0.3-1.3', &  
          'pc= 560-680hPa, tau= 0.3-1.3', 'pc= 680-800hPa, tau= 0.3-1.3', &  
          'pc< 50hPa, tau= 1.3-3.6', 'pc= 50-180hPa, tau= 1.3-3.6', &  
          'pc= 180-310hPa, tau= 1.3-3.6', 'pc= 310-440hPa, tau= 1.3-3.6', &  
          'pc= 440-560hPa, tau= 1.3-3.6', 'pc= 560-680hPa, tau= 1.3-3.6', &  
          'pc= 680-800hPa, tau= 1.3-3.6', 'pc< 50hPa, tau= 3.6-9.4', &  
          'pc= 50-180hPa, tau= 3.6-9.4', 'pc= 180-310hPa, tau= 3.6-9.4', &  
          'pc= 310-440hPa, tau= 3.6-9.4', 'pc= 440-560hPa, tau= 3.6-9.4', &  
          'pc= 560-680hPa, tau= 3.6-9.4', 'pc= 680-800hPa, tau= 3.6-9.4', &  
          'pc< 50hPa, tau= 9.4-23', 'pc= 50-180hPa, tau= 9.4-23', &  
          'pc= 180-310hPa, tau= 9.4-23', 'pc= 310-440hPa, tau= 9.4-23', &  
          'pc= 440-560hPa, tau= 9.4-23', 'pc= 560-680hPa, tau= 9.4-23', &  
          'pc= 680-800hPa, tau= 9.4-23', 'pc< 50hPa, tau= 23-60', &  
          'pc= 50-180hPa, tau= 23-60', 'pc= 180-310hPa, tau= 23-60', &  
          'pc= 310-440hPa, tau= 23-60', 'pc= 440-560hPa, tau= 23-60', &  
          'pc= 560-680hPa, tau= 23-60', 'pc= 680-800hPa, tau= 23-60', &  
          'pc< 50hPa, tau> 60.', 'pc= 50-180hPa, tau> 60.', &  
          'pc= 180-310hPa, tau> 60.', 'pc= 310-440hPa, tau> 60.', &  
          'pc= 440-560hPa, tau> 60.', 'pc= 560-680hPa, tau> 60.', &  
          'pc= 680-800hPa, tau> 60.'/  
   
     !IM ISCCP simulator v3.4  
   
     integer nid_hf, nid_hf3d  
     save nid_hf, nid_hf3d  
   
     INTEGER        longcles  
     PARAMETER    ( longcles = 20 )  
     REAL, intent(in):: clesphy0( longcles      )  
91    
92      ! Variables propres a la physique      REAL, intent(in):: qx(:, :, :) ! (klon, llm, nqmx)
93        ! (humidit\'e sp\'ecifique et fractions massiques des autres traceurs)
94    
95      INTEGER, save:: radpas      REAL, intent(in):: omega(:, :) ! (klon, llm) vitesse verticale en Pa / s
96      ! (Radiative transfer computations are made every "radpas" call to      REAL, intent(out):: d_u(:, :) ! (klon, llm) tendance physique de "u" (m s-2)
97      ! "physiq".)      REAL, intent(out):: d_v(:, :) ! (klon, llm) tendance physique de "v" (m s-2)
98        REAL, intent(out):: d_t(:, :) ! (klon, llm) tendance physique de "t" (K / s)
99    
100      REAL radsol(klon)      REAL, intent(out):: d_qx(:, :, :) ! (klon, llm, nqmx)
101      SAVE radsol               ! bilan radiatif au sol calcule par code radiatif      ! tendance physique de "qx" (s-1)
102    
103      INTEGER, SAVE:: itap ! number of calls to "physiq"      ! Local:
104    
105      REAL ftsol(klon, nbsrf)      LOGICAL:: firstcal = .true.
     SAVE ftsol                  ! temperature du sol  
106    
107      REAL ftsoil(klon, nsoilmx, nbsrf)      LOGICAL, PARAMETER:: ok_stratus = .FALSE.
108      SAVE ftsoil                 ! temperature dans le sol      ! Ajouter artificiellement les stratus
109    
110      REAL fevap(klon, nbsrf)      ! pour phystoke avec thermiques
111      SAVE fevap                 ! evaporation      REAL fm_therm(klon, llm + 1)
112      REAL fluxlat(klon, nbsrf)      REAL entr_therm(klon, llm)
113      SAVE fluxlat      real, save:: q2(klon, llm + 1, nbsrf)
114    
115        INTEGER, PARAMETER:: ivap = 1 ! indice de traceur pour vapeur d'eau
116        INTEGER, PARAMETER:: iliq = 2 ! indice de traceur pour eau liquide
117    
118      REAL fqsurf(klon, nbsrf)      REAL, save:: t_ancien(klon, llm), q_ancien(klon, llm)
119      SAVE fqsurf                 ! humidite de l'air au contact de la surface      LOGICAL, save:: ancien_ok
120    
121      REAL qsol(klon)      REAL d_t_dyn(klon, llm) ! tendance dynamique pour "t" (K / s)
122      SAVE qsol                  ! hauteur d'eau dans le sol      REAL d_q_dyn(klon, llm) ! tendance dynamique pour "q" (kg / kg / s)
123    
124      REAL fsnow(klon, nbsrf)      real da(klon, llm), phi(klon, llm, llm), mp(klon, llm)
     SAVE fsnow                  ! epaisseur neigeuse  
125    
126      REAL falbe(klon, nbsrf)      REAL, save:: swdn0(klon, llm + 1), swdn(klon, llm + 1)
127      SAVE falbe                  ! albedo par type de surface      REAL, save:: swup0(klon, llm + 1), swup(klon, llm + 1)
     REAL falblw(klon, nbsrf)  
     SAVE falblw                 ! albedo par type de surface  
128    
129      !  Parametres de l'Orographie a l'Echelle Sous-Maille (OESM):      REAL, save:: lwdn0(klon, llm + 1), lwdn(klon, llm + 1)
130        REAL, save:: lwup0(klon, llm + 1), lwup(klon, llm + 1)
131    
132      REAL zmea(klon)      ! prw: precipitable water
133      SAVE zmea                   ! orographie moyenne      real prw(klon)
134    
135      REAL zstd(klon)      ! flwp, fiwp = Liquid Water Path & Ice Water Path (kg / m2)
136      SAVE zstd                   ! deviation standard de l'OESM      ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg / kg)
137        REAL flwp(klon), fiwp(klon)
138        REAL flwc(klon, llm), fiwc(klon, llm)
139    
140      REAL zsig(klon)      ! Variables propres a la physique
     SAVE zsig                   ! pente de l'OESM  
141    
142      REAL zgam(klon)      INTEGER, save:: radpas
143      save zgam                   ! anisotropie de l'OESM      ! Radiative transfer computations are made every "radpas" call to
144        ! "physiq".
145    
146      REAL zthe(klon)      REAL, save:: radsol(klon) ! bilan radiatif au sol calcule par code radiatif
147      SAVE zthe                   ! orientation de l'OESM      REAL, save:: ftsol(klon, nbsrf) ! skin temperature of surface fraction
148    
149      REAL zpic(klon)      REAL, save:: ftsoil(klon, nsoilmx, nbsrf)
150      SAVE zpic                   ! Maximum de l'OESM      ! soil temperature of surface fraction
151    
152      REAL zval(klon)      REAL, save:: fevap(klon, nbsrf) ! evaporation
153      SAVE zval                   ! Minimum de l'OESM      REAL fluxlat(klon, nbsrf)
154    
155      REAL rugoro(klon)      REAL, save:: fqsurf(klon, nbsrf)
156      SAVE rugoro                 ! longueur de rugosite de l'OESM      ! humidite de l'air au contact de la surface
157    
158        REAL, save:: qsol(klon) ! column-density of water in soil, in kg m-2
159        REAL, save:: fsnow(klon, nbsrf) ! \'epaisseur neigeuse
160        REAL, save:: falbe(klon, nbsrf) ! albedo visible par type de surface
161    
162        ! Param\`etres de l'orographie \`a l'\'echelle sous-maille (OESM) :
163        REAL, save:: zmea(klon) ! orographie moyenne
164        REAL, save:: zstd(klon) ! deviation standard de l'OESM
165        REAL, save:: zsig(klon) ! pente de l'OESM
166        REAL, save:: zgam(klon) ! anisotropie de l'OESM
167        REAL, save:: zthe(klon) ! orientation de l'OESM
168        REAL, save:: zpic(klon) ! Maximum de l'OESM
169        REAL, save:: zval(klon) ! Minimum de l'OESM
170        REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM
171      REAL zulow(klon), zvlow(klon)      REAL zulow(klon), zvlow(klon)
172        INTEGER igwd, itest(klon)
173    
174      INTEGER igwd, idx(klon), itest(klon)      REAL, save:: agesno(klon, nbsrf) ! age de la neige
175        REAL, save:: run_off_lic_0(klon)
     REAL agesno(klon, nbsrf)  
     SAVE agesno                 ! age de la neige  
176    
177      REAL run_off_lic_0(klon)      ! Variables li\'ees \`a la convection d'Emanuel :
178      SAVE run_off_lic_0      REAL, save:: Ma(klon, llm) ! undilute upward mass flux
179      !KE43      REAL, save:: qcondc(klon, llm) ! in-cld water content from convect
180      ! Variables liees a la convection de K. Emanuel (sb):      REAL, save:: sig1(klon, llm), w01(klon, llm)
181    
182      REAL bas, top             ! cloud base and top levels      ! Variables pour la couche limite (Alain Lahellec) :
183      SAVE bas      REAL cdragh(klon) ! drag coefficient pour T and Q
184      SAVE top      REAL cdragm(klon) ! drag coefficient pour vent
185    
186      REAL Ma(klon, llm)        ! undilute upward mass flux      ! Pour phytrac :
187      SAVE Ma      REAL ycoefh(klon, llm) ! coef d'echange pour phytrac
188      REAL qcondc(klon, llm)    ! in-cld water content from convect      REAL yu1(klon) ! vents dans la premiere couche U
189      SAVE qcondc      REAL yv1(klon) ! vents dans la premiere couche V
190      REAL ema_work1(klon, llm), ema_work2(klon, llm)  
191      SAVE ema_work1, ema_work2      REAL, save:: ffonte(klon, nbsrf)
192        ! flux thermique utilise pour fondre la neige
193    
194        REAL, save:: fqcalving(klon, nbsrf)
195        ! flux d'eau "perdue" par la surface et necessaire pour limiter la
196        ! hauteur de neige, en kg / m2 / s
197    
198      REAL wd(klon) ! sb      REAL zxffonte(klon), zxfqcalving(klon)
     SAVE wd       ! sb  
199    
200      ! Variables locales pour la couche limite (al1):      REAL, save:: pfrac_impa(klon, llm)! Produits des coefs lessivage impaction
201        REAL, save:: pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation
202    
203      ! Variables locales:      REAL, save:: pfrac_1nucl(klon, llm)
204        ! Produits des coefs lessi nucl (alpha = 1)
205    
206      REAL cdragh(klon) ! drag coefficient pour T and Q      REAL frac_impa(klon, llm) ! fraction d'a\'erosols lessiv\'es (impaction)
207      REAL cdragm(klon) ! drag coefficient pour vent      REAL frac_nucl(klon, llm) ! idem (nucleation)
208    
209      !AA  Pour phytrac      REAL, save:: rain_fall(klon)
210      REAL ycoefh(klon, llm)    ! coef d'echange pour phytrac      ! liquid water mass flux (kg / m2 / s), positive down
     REAL yu1(klon)            ! vents dans la premiere couche U  
     REAL yv1(klon)            ! vents dans la premiere couche V  
     REAL ffonte(klon, nbsrf)    !Flux thermique utilise pour fondre la neige  
     REAL fqcalving(klon, nbsrf) !Flux d'eau "perdue" par la surface  
     !                               !et necessaire pour limiter la  
     !                               !hauteur de neige, en kg/m2/s  
     REAL zxffonte(klon), zxfqcalving(klon)  
211    
212      REAL pfrac_impa(klon, llm)! Produits des coefs lessivage impaction      REAL, save:: snow_fall(klon)
213      save pfrac_impa      ! solid water mass flux (kg / m2 / s), positive down
     REAL pfrac_nucl(klon, llm)! Produits des coefs lessivage nucleation  
     save pfrac_nucl  
     REAL pfrac_1nucl(klon, llm)! Produits des coefs lessi nucl (alpha = 1)  
     save pfrac_1nucl  
     REAL frac_impa(klon, llm) ! fractions d'aerosols lessivees (impaction)  
     REAL frac_nucl(klon, llm) ! idem (nucleation)  
214    
     !AA  
     REAL rain_fall(klon) ! pluie  
     REAL snow_fall(klon) ! neige  
     save snow_fall, rain_fall  
     !IM cf FH pour Tiedtke 080604  
215      REAL rain_tiedtke(klon), snow_tiedtke(klon)      REAL rain_tiedtke(klon), snow_tiedtke(klon)
216    
217      REAL total_rain(klon), nday_rain(klon)      REAL evap(klon) ! flux d'\'evaporation au sol
218      save nday_rain      real devap(klon) ! derivative of the evaporation flux at the surface
219        REAL sens(klon) ! flux de chaleur sensible au sol
220      REAL evap(klon), devap(klon) ! evaporation et sa derivee      real dsens(klon) ! derivee du flux de chaleur sensible au sol
221      REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee      REAL, save:: dlw(klon) ! derivative of infra-red flux
     REAL dlw(klon)    ! derivee infra rouge  
     SAVE dlw  
222      REAL bils(klon) ! bilan de chaleur au sol      REAL bils(klon) ! bilan de chaleur au sol
223      REAL fder(klon) ! Derive de flux (sensible et latente)      REAL fder(klon) ! Derive de flux (sensible et latente)
     save fder  
224      REAL ve(klon) ! integr. verticale du transport meri. de l'energie      REAL ve(klon) ! integr. verticale du transport meri. de l'energie
225      REAL vq(klon) ! integr. verticale du transport meri. de l'eau      REAL vq(klon) ! integr. verticale du transport meri. de l'eau
226      REAL ue(klon) ! integr. verticale du transport zonal de l'energie      REAL ue(klon) ! integr. verticale du transport zonal de l'energie
227      REAL uq(klon) ! integr. verticale du transport zonal de l'eau      REAL uq(klon) ! integr. verticale du transport zonal de l'eau
228    
229      REAL frugs(klon, nbsrf) ! longueur de rugosite      REAL, save:: frugs(klon, nbsrf) ! longueur de rugosite
     save frugs  
230      REAL zxrugs(klon) ! longueur de rugosite      REAL zxrugs(klon) ! longueur de rugosite
231    
232      ! Conditions aux limites      ! Conditions aux limites
233    
234      INTEGER julien      INTEGER julien
235        REAL, save:: pctsrf(klon, nbsrf) ! percentage of surface
236      INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day      REAL, save:: albsol(klon) ! albedo du sol total, visible, moyen par maille
237      REAL pctsrf(klon, nbsrf)      REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU
238      !IM      real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2
239      REAL pctsrf_new(klon, nbsrf) !pourcentage surfaces issus d'ORCHIDEE  
240        real, save:: clwcon(klon, llm), rnebcon(klon, llm)
241      SAVE pctsrf                 ! sous-fraction du sol      real, save:: clwcon0(klon, llm), rnebcon0(klon, llm)
242      REAL albsol(klon)  
243      SAVE albsol                 ! albedo du sol total      REAL rhcl(klon, llm) ! humiditi relative ciel clair
244      REAL albsollw(klon)      REAL dialiq(klon, llm) ! eau liquide nuageuse
245      SAVE albsollw                 ! albedo du sol total      REAL diafra(klon, llm) ! fraction nuageuse
246        REAL cldliq(klon, llm) ! eau liquide nuageuse
247      REAL, SAVE:: wo(klon, llm) ! ozone      REAL cldfra(klon, llm) ! fraction nuageuse
248        REAL cldtau(klon, llm) ! epaisseur optique
249      ! Declaration des procedures appelees      REAL cldemi(klon, llm) ! emissivite infrarouge
250    
251      EXTERNAL alboc     ! calculer l'albedo sur ocean      REAL flux_q(klon, nbsrf) ! flux turbulent d'humidite à la surface
252      EXTERNAL ajsec     ! ajustement sec      REAL flux_t(klon, nbsrf) ! flux turbulent de chaleur à la surface
253      EXTERNAL clmain    ! couche limite      REAL flux_u(klon, nbsrf) ! flux turbulent de vitesse u à la surface
254      !KE43      REAL flux_v(klon, nbsrf) ! flux turbulent de vitesse v à la surface
255      EXTERNAL conema3  ! convect4.3  
256      EXTERNAL fisrtilp  ! schema de condensation a grande echelle (pluie)      ! Le rayonnement n'est pas calcul\'e tous les pas, il faut donc que
257      EXTERNAL nuage     ! calculer les proprietes radiatives      ! les variables soient r\'emanentes.
258      EXTERNAL ozonecm   ! prescrire l'ozone      REAL, save:: heat(klon, llm) ! chauffage solaire
259      EXTERNAL phyredem  ! ecrire l'etat de redemarrage de la physique      REAL, save:: heat0(klon, llm) ! chauffage solaire ciel clair
260      EXTERNAL radlwsw   ! rayonnements solaire et infrarouge      REAL, save:: cool(klon, llm) ! refroidissement infrarouge
261      EXTERNAL transp    ! transport total de l'eau et de l'energie      REAL, save:: cool0(klon, llm) ! refroidissement infrarouge ciel clair
262        REAL, save:: topsw(klon), toplw(klon), solsw(klon)
263      EXTERNAL ini_undefSTD  !initialise a 0 une variable a 1 niveau de pression      REAL, save:: sollw(klon) ! rayonnement infrarouge montant \`a la surface
264        real, save:: sollwdown(klon) ! downward LW flux at surface
265      EXTERNAL undefSTD      REAL, save:: topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)
266      ! (somme les valeurs definies d'1 var a 1 niveau de pression)      REAL, save:: albpla(klon)
267        REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous-surface
268      ! Variables locales      REAL fsolsw(klon, nbsrf) ! flux solaire absorb\'e pour chaque sous-surface
269    
270      real clwcon(klon, llm), rnebcon(klon, llm)      REAL conv_q(klon, llm) ! convergence de l'humidite (kg / kg / s)
271      real clwcon0(klon, llm), rnebcon0(klon, llm)      REAL conv_t(klon, llm) ! convergence of temperature (K / s)
272    
273      save rnebcon, clwcon      REAL cldl(klon), cldm(klon), cldh(klon) ! nuages bas, moyen et haut
274        REAL cldt(klon), cldq(klon) ! nuage total, eau liquide integree
275      REAL rhcl(klon, llm)    ! humiditi relative ciel clair  
276      REAL dialiq(klon, llm)  ! eau liquide nuageuse      REAL zxfluxlat(klon)
277      REAL diafra(klon, llm)  ! fraction nuageuse      REAL dist, mu0(klon), fract(klon)
278      REAL cldliq(klon, llm)  ! eau liquide nuageuse      real longi
     REAL cldfra(klon, llm)  ! fraction nuageuse  
     REAL cldtau(klon, llm)  ! epaisseur optique  
     REAL cldemi(klon, llm)  ! emissivite infrarouge  
   
     REAL fluxq(klon, llm, nbsrf)   ! flux turbulent d'humidite  
     REAL fluxt(klon, llm, nbsrf)   ! flux turbulent de chaleur  
     REAL fluxu(klon, llm, nbsrf)   ! flux turbulent de vitesse u  
     REAL fluxv(klon, llm, nbsrf)   ! flux turbulent de vitesse v  
   
     REAL zxfluxt(klon, llm)  
     REAL zxfluxq(klon, llm)  
     REAL zxfluxu(klon, llm)  
     REAL zxfluxv(klon, llm)  
   
     REAL heat(klon, llm)    ! chauffage solaire  
     REAL heat0(klon, llm)   ! chauffage solaire ciel clair  
     REAL cool(klon, llm)    ! refroidissement infrarouge  
     REAL cool0(klon, llm)   ! refroidissement infrarouge ciel clair  
     REAL topsw(klon), toplw(klon), solsw(klon), sollw(klon)  
     real sollwdown(klon)    ! downward LW flux at surface  
     REAL topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon)  
     REAL albpla(klon)  
     REAL fsollw(klon, nbsrf)   ! bilan flux IR pour chaque sous surface  
     REAL fsolsw(klon, nbsrf)   ! flux solaire absorb. pour chaque sous surface  
     ! Le rayonnement n'est pas calcule tous les pas, il faut donc  
     !                      sauvegarder les sorties du rayonnement  
     SAVE  heat, cool, albpla, topsw, toplw, solsw, sollw, sollwdown  
     SAVE  topsw0, toplw0, solsw0, sollw0, heat0, cool0  
   
     INTEGER itaprad  
     SAVE itaprad  
   
     REAL conv_q(klon, llm) ! convergence de l'humidite (kg/kg/s)  
     REAL conv_t(klon, llm) ! convergence de la temperature(K/s)  
   
     REAL cldl(klon), cldm(klon), cldh(klon) !nuages bas, moyen et haut  
     REAL cldt(klon), cldq(klon) !nuage total, eau liquide integree  
   
     REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon)  
   
     REAL dist, rmu0(klon), fract(klon)  
     REAL zdtime ! pas de temps du rayonnement (s)  
     real zlongi  
   
279      REAL z_avant(klon), z_apres(klon), z_factor(klon)      REAL z_avant(klon), z_apres(klon), z_factor(klon)
280      LOGICAL zx_ajustq      REAL zb
281        REAL zx_t, zx_qs, zcor
     REAL za, zb  
     REAL zx_t, zx_qs, zdelta, zcor, zlvdcp, zlsdcp  
282      real zqsat(klon, llm)      real zqsat(klon, llm)
283      INTEGER i, k, iq, nsrf      INTEGER i, k, iq, nsrf
     REAL t_coup  
     PARAMETER (t_coup=234.0)  
   
284      REAL zphi(klon, llm)      REAL zphi(klon, llm)
285    
286      !IM cf. AM Variables locales pour la CLA (hbtm2)      ! cf. Anne Mathieu, variables pour la couche limite atmosphérique (hbtm)
287    
288      REAL pblh(klon, nbsrf)           ! Hauteur de couche limite      REAL, SAVE:: pblh(klon, nbsrf) ! Hauteur de couche limite
289      REAL plcl(klon, nbsrf)           ! Niveau de condensation de la CLA      REAL, SAVE:: plcl(klon, nbsrf) ! Niveau de condensation de la CLA
290      REAL capCL(klon, nbsrf)          ! CAPE de couche limite      REAL, SAVE:: capCL(klon, nbsrf) ! CAPE de couche limite
291      REAL oliqCL(klon, nbsrf)          ! eau_liqu integree de couche limite      REAL, SAVE:: oliqCL(klon, nbsrf) ! eau_liqu integree de couche limite
292      REAL cteiCL(klon, nbsrf)          ! cloud top instab. crit. couche limite      REAL, SAVE:: cteiCL(klon, nbsrf) ! cloud top instab. crit. couche limite
293      REAL pblt(klon, nbsrf)          ! T a la Hauteur de couche limite      REAL, SAVE:: pblt(klon, nbsrf) ! T \`a la hauteur de couche limite
294      REAL therm(klon, nbsrf)      REAL, SAVE:: therm(klon, nbsrf)
295      REAL trmb1(klon, nbsrf)          ! deep_cape      REAL, SAVE:: trmb1(klon, nbsrf) ! deep_cape
296      REAL trmb2(klon, nbsrf)          ! inhibition      REAL, SAVE:: trmb2(klon, nbsrf) ! inhibition
297      REAL trmb3(klon, nbsrf)          ! Point Omega      REAL, SAVE:: trmb3(klon, nbsrf) ! Point Omega
298      ! Grdeurs de sorties      ! Grandeurs de sorties
299      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)
300      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)
301      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)
302      REAL s_trmb3(klon)      REAL s_trmb3(klon)
303    
304      ! Variables locales pour la convection de K. Emanuel (sb):      ! Variables pour la convection de K. Emanuel :
305    
306      REAL upwd(klon, llm)      ! saturated updraft mass flux      REAL upwd(klon, llm) ! saturated updraft mass flux
307      REAL dnwd(klon, llm)      ! saturated downdraft mass flux      REAL dnwd(klon, llm) ! saturated downdraft mass flux
308      REAL dnwd0(klon, llm)     ! unsaturated downdraft mass flux      REAL, save:: cape(klon)
309      REAL tvp(klon, llm)       ! virtual temp of lifted parcel  
310      REAL cape(klon)           ! CAPE      INTEGER iflagctrl(klon) ! flag fonctionnement de convect
     SAVE cape  
   
     REAL pbase(klon)          ! cloud base pressure  
     SAVE pbase  
     REAL bbase(klon)          ! cloud base buoyancy  
     SAVE bbase  
     REAL rflag(klon)          ! flag fonctionnement de convect  
     INTEGER iflagctrl(klon)          ! flag fonctionnement de convect  
     ! -- convect43:  
     INTEGER ntra              ! nb traceurs pour convect4.3  
     REAL dtvpdt1(klon, llm), dtvpdq1(klon, llm)  
     REAL dplcldt(klon), dplcldr(klon)  
311    
312      ! Variables du changement      ! Variables du changement
313    
314      ! con: convection      ! con: convection
315      ! lsc: condensation a grande echelle (Large-Scale-Condensation)      ! lsc: large scale condensation
316      ! ajs: ajustement sec      ! ajs: ajustement sec
317      ! eva: evaporation de l'eau liquide nuageuse      ! eva: \'evaporation de l'eau liquide nuageuse
318      ! vdf: couche limite (Vertical DiFfusion)      ! vdf: vertical diffusion in boundary layer
319      REAL d_t_con(klon, llm), d_q_con(klon, llm)      REAL d_t_con(klon, llm), d_q_con(klon, llm)
320      REAL d_u_con(klon, llm), d_v_con(klon, llm)      REAL, save:: d_u_con(klon, llm), d_v_con(klon, llm)
321      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)      REAL d_t_lsc(klon, llm), d_q_lsc(klon, llm), d_ql_lsc(klon, llm)
322      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)      REAL d_t_ajs(klon, llm), d_q_ajs(klon, llm)
323      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)      REAL d_u_ajs(klon, llm), d_v_ajs(klon, llm)
324      REAL rneb(klon, llm)      REAL rneb(klon, llm)
325    
326      REAL pmfu(klon, llm), pmfd(klon, llm)      REAL mfu(klon, llm), mfd(klon, llm)
327      REAL pen_u(klon, llm), pen_d(klon, llm)      REAL pen_u(klon, llm), pen_d(klon, llm)
328      REAL pde_u(klon, llm), pde_d(klon, llm)      REAL pde_u(klon, llm), pde_d(klon, llm)
329      INTEGER kcbot(klon), kctop(klon), kdtop(klon)      INTEGER kcbot(klon), kctop(klon), kdtop(klon)
330      REAL pmflxr(klon, llm+1), pmflxs(klon, llm+1)      REAL pmflxr(klon, llm + 1), pmflxs(klon, llm + 1)
331      REAL prfl(klon, llm+1), psfl(klon, llm+1)      REAL prfl(klon, llm + 1), psfl(klon, llm + 1)
   
     INTEGER ibas_con(klon), itop_con(klon)  
332    
333      SAVE ibas_con, itop_con      INTEGER, save:: ibas_con(klon), itop_con(klon)
334        real ema_pct(klon) ! Emanuel pressure at cloud top, in Pa
335    
336      REAL rain_con(klon), rain_lsc(klon)      REAL, save:: rain_con(klon)
337      REAL snow_con(klon), snow_lsc(klon)      real rain_lsc(klon)
338      REAL d_ts(klon, nbsrf)      REAL, save:: snow_con(klon) ! neige (mm / s)
339        real snow_lsc(klon)
340        REAL d_ts(klon, nbsrf) ! variation of ftsol
341    
342      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)      REAL d_u_vdf(klon, llm), d_v_vdf(klon, llm)
343      REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)      REAL d_t_vdf(klon, llm), d_q_vdf(klon, llm)
# Line 639  contains Line 347  contains
347      REAL d_u_lif(klon, llm), d_v_lif(klon, llm)      REAL d_u_lif(klon, llm), d_v_lif(klon, llm)
348      REAL d_t_lif(klon, llm)      REAL d_t_lif(klon, llm)
349    
350      REAL ratqs(klon, llm), ratqss(klon, llm), ratqsc(klon, llm)      REAL, save:: ratqs(klon, llm)
351      real ratqsbas, ratqshaut      real ratqss(klon, llm), ratqsc(klon, llm)
352      save ratqsbas, ratqshaut, ratqs      real:: ratqsbas = 0.01, ratqshaut = 0.3
353    
354      ! Parametres lies au nouveau schema de nuages (SB, PDF)      ! Parametres lies au nouveau schema de nuages (SB, PDF)
355      real fact_cldcon      real:: fact_cldcon = 0.375
356      real facttemps      real:: facttemps = 1.e-4
357      logical ok_newmicro      logical:: ok_newmicro = .true.
     save ok_newmicro  
     save fact_cldcon, facttemps  
358      real facteur      real facteur
359    
360      integer iflag_cldcon      integer:: iflag_cldcon = 1
     save iflag_cldcon  
   
361      logical ptconv(klon, llm)      logical ptconv(klon, llm)
362    
363      ! Variables liees a l'ecriture de la bande histoire physique      ! Variables pour effectuer les appels en s\'erie :
   
     integer itau_w   ! pas de temps ecriture = itap + itau_phy  
   
     ! Variables locales pour effectuer les appels en serie  
364    
365      REAL t_seri(klon, llm), q_seri(klon, llm)      REAL t_seri(klon, llm), q_seri(klon, llm)
366      REAL ql_seri(klon, llm), qs_seri(klon, llm)      REAL ql_seri(klon, llm)
367      REAL u_seri(klon, llm), v_seri(klon, llm)      REAL u_seri(klon, llm), v_seri(klon, llm)
368        REAL tr_seri(klon, llm, nqmx - 2)
     REAL tr_seri(klon, llm, nbtr)  
     REAL d_tr(klon, llm, nbtr)  
369    
370      REAL zx_rh(klon, llm)      REAL zx_rh(klon, llm)
     INTEGER ndex2d(iim*(jjm + 1)), ndex3d(iim*(jjm + 1)*llm)  
371    
372      REAL zustrdr(klon), zvstrdr(klon)      REAL zustrdr(klon), zvstrdr(klon)
373      REAL zustrli(klon), zvstrli(klon)      REAL zustrli(klon), zvstrli(klon)
374      REAL zustrph(klon), zvstrph(klon)      REAL zustrph(klon), zvstrph(klon)
375      REAL aam, torsfc      REAL aam, torsfc
376    
     REAL dudyn(iim+1, jjm + 1, llm)  
   
     REAL zx_tmp_fi2d(klon)      ! variable temporaire grille physique  
     REAL zx_tmp_fi3d(klon, llm) ! variable temporaire pour champs 3D  
   
     REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm)  
   
     INTEGER nid_day, nid_ins  
     SAVE nid_day, nid_ins  
   
377      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.      REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert.
378      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.      REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert.
379      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.      REAL ue_lay(klon, llm) ! transport zonal de l'energie a chaque niveau vert.
380      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.      REAL uq_lay(klon, llm) ! transport zonal de l'eau a chaque niveau vert.
381    
     REAL zsto  
   
     character(len=20) modname  
     character(len=80) abort_message  
     logical ok_sync  
382      real date0      real date0
383        REAL tsol(klon)
384    
385      !     Variables liees au bilan d'energie et d'enthalpi      REAL d_t_ec(klon, llm)
386      REAL ztsol(klon)      ! tendance due \`a la conversion d'\'energie cin\'etique en
387      REAL      d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec      ! énergie thermique
     REAL      d_h_vcol_phy  
     REAL      fs_bound, fq_bound  
     SAVE      d_h_vcol_phy  
     REAL      zero_v(klon)  
     CHARACTER(LEN=15) ztit  
     INTEGER   ip_ebil  ! PRINT level for energy conserv. diag.  
     SAVE      ip_ebil  
     DATA      ip_ebil/0/  
     INTEGER   if_ebil ! level for energy conserv. dignostics  
     SAVE      if_ebil  
     !+jld ec_conser  
     REAL d_t_ec(klon, llm)    ! tendance du a la conersion Ec -> E thermique  
     REAL ZRCPD  
     !-jld ec_conser  
     !IM: t2m, q2m, u10m, v10m  
     REAL t2m(klon, nbsrf), q2m(klon, nbsrf)   !temperature, humidite a 2m  
     REAL u10m(klon, nbsrf), v10m(klon, nbsrf) !vents a 10m  
     REAL zt2m(klon), zq2m(klon)             !temp., hum. 2m moyenne s/ 1 maille  
     REAL zu10m(klon), zv10m(klon)           !vents a 10m moyennes s/1 maille  
     !jq   Aerosol effects (Johannes Quaas, 27/11/2003)  
     REAL sulfate(klon, llm) ! SO4 aerosol concentration [ug/m3]  
   
     REAL sulfate_pi(klon, llm)  
     ! (SO4 aerosol concentration [ug/m3] (pre-industrial value))  
     SAVE sulfate_pi  
   
     REAL cldtaupi(klon, llm)  
     ! (Cloud optical thickness for pre-industrial (pi) aerosols)  
   
     REAL re(klon, llm)       ! Cloud droplet effective radius  
     REAL fl(klon, llm)  ! denominator of re  
   
     ! Aerosol optical properties  
     REAL tau_ae(klon, llm, 2), piz_ae(klon, llm, 2)  
     REAL cg_ae(klon, llm, 2)  
   
     REAL topswad(klon), solswad(klon) ! Aerosol direct effect.  
     ! ok_ade=T -ADE=topswad-topsw  
   
     REAL topswai(klon), solswai(klon) ! Aerosol indirect effect.  
     ! ok_aie=T ->  
     !        ok_ade=T -AIE=topswai-topswad  
     !        ok_ade=F -AIE=topswai-topsw  
   
     REAL aerindex(klon)       ! POLDER aerosol index  
   
     ! Parameters  
     LOGICAL ok_ade, ok_aie    ! Apply aerosol (in)direct effects or not  
     REAL bl95_b0, bl95_b1   ! Parameter in Boucher and Lohmann (1995)  
   
     SAVE ok_ade, ok_aie, bl95_b0, bl95_b1  
     SAVE u10m  
     SAVE v10m  
     SAVE t2m  
     SAVE q2m  
     SAVE ffonte  
     SAVE fqcalving  
     SAVE piz_ae  
     SAVE tau_ae  
     SAVE cg_ae  
     SAVE rain_con  
     SAVE snow_con  
     SAVE topswai  
     SAVE topswad  
     SAVE solswai  
     SAVE solswad  
     SAVE d_u_con  
     SAVE d_v_con  
     SAVE rnebcon0  
     SAVE clwcon0  
     SAVE pblh  
     SAVE plcl  
     SAVE capCL  
     SAVE oliqCL  
     SAVE cteiCL  
     SAVE pblt  
     SAVE therm  
     SAVE trmb1  
     SAVE trmb2  
     SAVE trmb3  
388    
389      !----------------------------------------------------------------      REAL, save:: t2m(klon, nbsrf), q2m(klon, nbsrf)
390        ! temperature and humidity at 2 m
391    
392      modname = 'physiq'      REAL, save:: u10m(klon, nbsrf), v10m(klon, nbsrf) ! vents a 10 m
393      IF (if_ebil >= 1) THEN      REAL zt2m(klon), zq2m(klon) ! température, humidité 2 m moyenne sur 1 maille
394         DO i=1, klon      REAL zu10m(klon), zv10m(klon) ! vents a 10 m moyennes sur 1 maille
           zero_v(i)=0.  
        END DO  
     END IF  
     ok_sync=.TRUE.  
     IF (nq  <  2) THEN  
        abort_message = 'eaux vapeur et liquide sont indispensables'  
        CALL abort_gcm (modname, abort_message, 1)  
     ENDIF  
395    
396      test_firstcal: IF (firstcal) THEN      ! Aerosol effects:
        !  initialiser  
        u10m(:, :)=0.  
        v10m(:, :)=0.  
        t2m(:, :)=0.  
        q2m(:, :)=0.  
        ffonte(:, :)=0.  
        fqcalving(:, :)=0.  
        piz_ae(:, :, :)=0.  
        tau_ae(:, :, :)=0.  
        cg_ae(:, :, :)=0.  
        rain_con(:)=0.  
        snow_con(:)=0.  
        bl95_b0=0.  
        bl95_b1=0.  
        topswai(:)=0.  
        topswad(:)=0.  
        solswai(:)=0.  
        solswad(:)=0.  
   
        d_u_con(:, :) = 0.0  
        d_v_con(:, :) = 0.0  
        rnebcon0(:, :) = 0.0  
        clwcon0(:, :) = 0.0  
        rnebcon(:, :) = 0.0  
        clwcon(:, :) = 0.0  
   
        pblh(:, :)   =0.        ! Hauteur de couche limite  
        plcl(:, :)   =0.        ! Niveau de condensation de la CLA  
        capCL(:, :)  =0.        ! CAPE de couche limite  
        oliqCL(:, :) =0.        ! eau_liqu integree de couche limite  
        cteiCL(:, :) =0.        ! cloud top instab. crit. couche limite  
        pblt(:, :)   =0.        ! T a la Hauteur de couche limite  
        therm(:, :)  =0.  
        trmb1(:, :)  =0.        ! deep_cape  
        trmb2(:, :)  =0.        ! inhibition  
        trmb3(:, :)  =0.        ! Point Omega  
   
        IF (if_ebil >= 1) d_h_vcol_phy=0.  
   
        ! appel a la lecture du run.def physique  
   
        call conf_phys(ocean, ok_veget, ok_journe, ok_mensuel, &  
             ok_instan, fact_cldcon, facttemps, ok_newmicro, &  
             iflag_cldcon, ratqsbas, ratqshaut, if_ebil, &  
             ok_ade, ok_aie,  &  
             bl95_b0, bl95_b1, &  
             iflag_thermals, nsplit_thermals)  
   
        ! Initialiser les compteurs:  
   
        frugs = 0.  
        itap = 0  
        itaprad = 0  
        CALL phyetat0("startphy.nc", pctsrf, ftsol, ftsoil, ocean, tslab, &  
             seaice, fqsurf, qsol, fsnow, &  
             falbe, falblw, fevap, rain_fall, snow_fall, solsw, sollwdown, &  
             dlw, radsol, frugs, agesno, clesphy0, &  
             zmea, zstd, zsig, zgam, zthe, zpic, zval, rugoro, &  
             t_ancien, q_ancien, ancien_ok, rnebcon, ratqs, clwcon,  &  
             run_off_lic_0)  
   
        !   ATTENTION : il faudra a terme relire q2 dans l'etat initial  
        q2(:, :, :)=1.e-8  
397    
398         radpas = NINT( 86400. / pdtphys / nbapp_rad)      REAL, save:: topswad(klon), solswad(klon) ! aerosol direct effect
399        LOGICAL:: ok_ade = .false. ! apply aerosol direct effect
400    
401         ! on remet le calendrier a zero      REAL:: bl95_b0 = 2., bl95_b1 = 0.2
402        ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus
403        ! B). They link cloud droplet number concentration to aerosol mass
404        ! concentration.
405    
406         IF (raz_date == 1) THEN      real zmasse(klon, llm)
407            itau_phy = 0      ! (column-density of mass of air in a cell, in kg m-2)
        ENDIF  
408    
409         PRINT *, 'cycle_diurne = ', cycle_diurne      integer, save:: ncid_startphy
410    
411         IF(ocean.NE.'force ') THEN      namelist /physiq_nml/ fact_cldcon, facttemps, ok_newmicro, iflag_cldcon, &
412            ok_ocean=.TRUE.           ratqsbas, ratqshaut, ok_ade, bl95_b0, bl95_b1, iflag_thermals, &
413         ENDIF           nsplit_thermals
414    
415         CALL printflag(radpas, ok_ocean, ok_oasis, ok_journe, ok_instan, &      !----------------------------------------------------------------
             ok_region)  
416    
417         IF (pdtphys*REAL(radpas).GT.21600..AND.cycle_diurne) THEN      IF (nqmx < 2) CALL abort_gcm('physiq', &
418            print *,'Nbre d appels au rayonnement insuffisant'           'eaux vapeur et liquide sont indispensables')
           print *,"Au minimum 4 appels par jour si cycle diurne"  
           abort_message='Nbre d appels au rayonnement insuffisant'  
           call abort_gcm(modname, abort_message, 1)  
        ENDIF  
        print *,"Clef pour la convection, iflag_con=", iflag_con  
        print *,"Clef pour le driver de la convection, ok_cvl=", &  
             ok_cvl  
419    
420         ! Initialisation pour la convection de K.E. (sb):      test_firstcal: IF (firstcal) THEN
421         IF (iflag_con >= 3) THEN         ! initialiser
422           u10m = 0.
423           v10m = 0.
424           t2m = 0.
425           q2m = 0.
426           ffonte = 0.
427           fqcalving = 0.
428           rain_con = 0.
429           snow_con = 0.
430           d_u_con = 0.
431           d_v_con = 0.
432           rnebcon0 = 0.
433           clwcon0 = 0.
434           rnebcon = 0.
435           clwcon = 0.
436           pblh =0. ! Hauteur de couche limite
437           plcl =0. ! Niveau de condensation de la CLA
438           capCL =0. ! CAPE de couche limite
439           oliqCL =0. ! eau_liqu integree de couche limite
440           cteiCL =0. ! cloud top instab. crit. couche limite
441           pblt =0.
442           therm =0.
443           trmb1 =0. ! deep_cape
444           trmb2 =0. ! inhibition
445           trmb3 =0. ! Point Omega
446    
447           iflag_thermals = 0
448           nsplit_thermals = 1
449           print *, "Enter namelist 'physiq_nml'."
450           read(unit=*, nml=physiq_nml)
451           write(unit_nml, nml=physiq_nml)
452    
453            print *,"*** Convection de Kerry Emanuel 4.3  "         call conf_phys
454    
455            !IM15/11/02 rajout initialisation ibas_con, itop_con cf. SB =>BEG         ! Initialiser les compteurs:
           DO i = 1, klon  
              ibas_con(i) = 1  
              itop_con(i) = 1  
           ENDDO  
           !IM15/11/02 rajout initialisation ibas_con, itop_con cf. SB =>END  
456    
457           frugs = 0.
458           CALL phyetat0(pctsrf, ftsol, ftsoil, fqsurf, qsol, fsnow, falbe, &
459                fevap, rain_fall, snow_fall, solsw, sollw, dlw, radsol, frugs, &
460                agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, t_ancien, &
461                q_ancien, ancien_ok, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
462                w01, ncid_startphy)
463    
464           ! ATTENTION : il faudra a terme relire q2 dans l'etat initial
465           q2 = 1e-8
466    
467           radpas = lmt_pas / nbapp_rad
468           print *, "radpas = ", radpas
469    
470           ! Initialisation pour le sch\'ema de convection d'Emanuel :
471           IF (conv_emanuel) THEN
472              ibas_con = 1
473              itop_con = 1
474         ENDIF         ENDIF
475    
476         IF (ok_orodr) THEN         IF (ok_orodr) THEN
477            DO i=1, klon            rugoro = MAX(1e-5, zstd * zsig / 2)
478               rugoro(i) = MAX(1.0e-05, zstd(i)*zsig(i)/2.0)            CALL SUGWD(paprs, play)
479            ENDDO         else
480            CALL SUGWD(klon, llm, paprs, pplay)            rugoro = 0.
481         ENDIF         ENDIF
482    
483         lmt_pas = NINT(86400. / pdtphys)  ! tous les jours         ecrit_ins = NINT(ecrit_ins / dtphys)
        print *, 'Number of time steps of "physics" per day: ', lmt_pas  
484    
485         ecrit_ins = NINT(ecrit_ins/pdtphys)         ! Initialisation des sorties
        ecrit_hf = NINT(ecrit_hf/pdtphys)  
        ecrit_day = NINT(ecrit_day/pdtphys)  
        ecrit_mth = NINT(ecrit_mth/pdtphys)  
        ecrit_tra = NINT(86400.*ecrit_tra/pdtphys)  
        ecrit_reg = NINT(ecrit_reg/pdtphys)  
   
        ! Initialiser le couplage si necessaire  
   
        npas = 0  
        nexca = 0  
   
        print *,'AVANT HIST IFLAG_CON=', iflag_con  
   
        !   Initialisation des sorties  
   
        call ini_histhf(pdtphys, presnivs, nid_hf, nid_hf3d)  
        call ini_histday(pdtphys, presnivs, ok_journe, nid_day)  
        call ini_histins(pdtphys, presnivs, ok_instan, nid_ins)  
        CALL ymds2ju(annee_ref, 1, int(day_ref), 0., date0)  
        !XXXPB Positionner date0 pour initialisation de ORCHIDEE  
        WRITE(*, *) 'physiq date0 : ', date0  
     ENDIF test_firstcal  
   
     ! Mettre a zero des variables de sortie (pour securite)  
   
     DO i = 1, klon  
        d_ps(i) = 0.0  
     ENDDO  
     DO k = 1, llm  
        DO i = 1, klon  
           d_t(i, k) = 0.0  
           d_u(i, k) = 0.0  
           d_v(i, k) = 0.0  
        ENDDO  
     ENDDO  
     DO iq = 1, nq  
        DO k = 1, llm  
           DO i = 1, klon  
              d_qx(i, k, iq) = 0.0  
           ENDDO  
        ENDDO  
     ENDDO  
     da(:, :)=0.  
     mp(:, :)=0.  
     phi(:, :, :)=0.  
   
     ! Ne pas affecter les valeurs entrees de u, v, h, et q  
   
     DO k = 1, llm  
        DO i = 1, klon  
           t_seri(i, k)  = t(i, k)  
           u_seri(i, k)  = u(i, k)  
           v_seri(i, k)  = v(i, k)  
           q_seri(i, k)  = qx(i, k, ivap)  
           ql_seri(i, k) = qx(i, k, iliq)  
           qs_seri(i, k) = 0.  
        ENDDO  
     ENDDO  
     IF (nq >= 3) THEN  
        tr_seri(:, :, :nq-2) = qx(:, :, 3:nq)  
     ELSE  
        tr_seri(:, :, 1) = 0.  
     ENDIF  
486    
487      DO i = 1, klon         call ini_histins(dtphys, ok_newmicro)
488         ztsol(i) = 0.         CALL ymds2ju(annee_ref, 1, day_ref, 0., date0)
489      ENDDO         ! Positionner date0 pour initialisation de ORCHIDEE
490      DO nsrf = 1, nbsrf         print *, 'physiq date0: ', date0
491         DO i = 1, klon         CALL phyredem0
492            ztsol(i) = ztsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)      ENDIF test_firstcal
        ENDDO  
     ENDDO  
493    
494      IF (if_ebil >= 1) THEN      ! We will modify variables *_seri and we will not touch variables
495         ztit='after dynamic'      ! u, v, t, qx:
496         CALL diagetpq(airephy, ztit, ip_ebil, 1, 1, pdtphys &      t_seri = t
497              , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs &      u_seri = u
498              , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)      v_seri = v
499         !     Comme les tendances de la physique sont ajoute dans la dynamique,      q_seri = qx(:, :, ivap)
500         !     on devrait avoir que la variation d'entalpie par la dynamique      ql_seri = qx(:, :, iliq)
501         !     est egale a la variation de la physique au pas de temps precedent.      tr_seri = qx(:, :, 3:nqmx)
        !     Donc la somme de ces 2 variations devrait etre nulle.  
        call diagphy(airephy, ztit, ip_ebil &  
             , zero_v, zero_v, zero_v, zero_v, zero_v &  
             , zero_v, zero_v, zero_v, ztsol &  
             , d_h_vcol+d_h_vcol_phy, d_qt, 0. &  
             , fs_bound, fq_bound )  
     END IF  
502    
503      ! Diagnostiquer la tendance dynamique      tsol = sum(ftsol * pctsrf, dim = 2)
504    
505        ! Diagnostic de la tendance dynamique :
506      IF (ancien_ok) THEN      IF (ancien_ok) THEN
507         DO k = 1, llm         DO k = 1, llm
508            DO i = 1, klon            DO i = 1, klon
509               d_t_dyn(i, k) = (t_seri(i, k)-t_ancien(i, k))/pdtphys               d_t_dyn(i, k) = (t_seri(i, k) - t_ancien(i, k)) / dtphys
510               d_q_dyn(i, k) = (q_seri(i, k)-q_ancien(i, k))/pdtphys               d_q_dyn(i, k) = (q_seri(i, k) - q_ancien(i, k)) / dtphys
511            ENDDO            ENDDO
512         ENDDO         ENDDO
513      ELSE      ELSE
514         DO k = 1, llm         DO k = 1, llm
515            DO i = 1, klon            DO i = 1, klon
516               d_t_dyn(i, k) = 0.0               d_t_dyn(i, k) = 0.
517               d_q_dyn(i, k) = 0.0               d_q_dyn(i, k) = 0.
518            ENDDO            ENDDO
519         ENDDO         ENDDO
520         ancien_ok = .TRUE.         ancien_ok = .TRUE.
521      ENDIF      ENDIF
522    
523      ! Ajouter le geopotentiel du sol:      ! Ajouter le geopotentiel du sol:
   
524      DO k = 1, llm      DO k = 1, llm
525         DO i = 1, klon         DO i = 1, klon
526            zphi(i, k) = pphi(i, k) + pphis(i)            zphi(i, k) = pphi(i, k) + pphis(i)
527         ENDDO         ENDDO
528      ENDDO      ENDDO
529    
530      ! Verifier les temperatures      ! Check temperatures:
   
531      CALL hgardfou(t_seri, ftsol)      CALL hgardfou(t_seri, ftsol)
532    
533      ! Incrementer le compteur de la physique      call increment_itap
534        julien = MOD(dayvrai, 360)
     itap = itap + 1  
     julien = MOD(NINT(rdayvrai), 360)  
535      if (julien == 0) julien = 360      if (julien == 0) julien = 360
536    
537      ! Mettre en action les conditions aux limites (albedo, sst, etc.).      forall (k = 1: llm) zmasse(:, k) = (paprs(:, k) - paprs(:, k + 1)) / rg
     ! Prescrire l'ozone et calculer l'albedo sur l'ocean.  
   
     IF (MOD(itap - 1, lmt_pas) == 0) THEN  
        CALL ozonecm(REAL(julien), rlat, paprs, wo)  
     ENDIF  
538    
539      ! Re-evaporer l'eau liquide nuageuse      ! \'Evaporation de l'eau liquide nuageuse :
540        DO k = 1, llm
     DO k = 1, llm  ! re-evaporation de l'eau liquide nuageuse  
541         DO i = 1, klon         DO i = 1, klon
542            zlvdcp=RLVTT/RCPD/(1.0+RVTMP2*q_seri(i, k))            zb = MAX(0., ql_seri(i, k))
543            zlsdcp=RLVTT/RCPD/(1.0+RVTMP2*q_seri(i, k))            t_seri(i, k) = t_seri(i, k) &
544            zdelta = MAX(0., SIGN(1., RTT-t_seri(i, k)))                 - zb * RLVTT / RCPD / (1. + RVTMP2 * q_seri(i, k))
           zb = MAX(0.0, ql_seri(i, k))  
           za = - MAX(0.0, ql_seri(i, k)) &  
                * (zlvdcp*(1.-zdelta)+zlsdcp*zdelta)  
           t_seri(i, k) = t_seri(i, k) + za  
545            q_seri(i, k) = q_seri(i, k) + zb            q_seri(i, k) = q_seri(i, k) + zb
           ql_seri(i, k) = 0.0  
546         ENDDO         ENDDO
547      ENDDO      ENDDO
548        ql_seri = 0.
549    
550      IF (if_ebil >= 2) THEN      frugs = MAX(frugs, 0.000015)
551         ztit='after reevap'      zxrugs = sum(frugs * pctsrf, dim = 2)
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 1, pdtphys &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil &  
             , zero_v, zero_v, zero_v, zero_v, zero_v &  
             , zero_v, zero_v, zero_v, ztsol &  
             , d_h_vcol, d_qt, d_ec &  
             , fs_bound, fq_bound )  
552    
553      END IF      ! Calculs n\'ecessaires au calcul de l'albedo dans l'interface avec
554        ! la surface.
555    
556      ! Appeler la diffusion verticale (programme de couche limite)      CALL orbite(REAL(julien), longi, dist)
557        CALL zenang(longi, time, dtphys * radpas, mu0, fract)
558      DO i = 1, klon      albsol = sum(falbe * pctsrf, dim = 2)
559         zxrugs(i) = 0.0  
560      ENDDO      ! R\'epartition sous maille des flux longwave et shortwave
561      DO nsrf = 1, nbsrf      ! R\'epartition du longwave par sous-surface lin\'earis\'ee
562         DO i = 1, klon  
563            frugs(i, nsrf) = MAX(frugs(i, nsrf), 0.000015)      forall (nsrf = 1: nbsrf)
564         ENDDO         fsollw(:, nsrf) = sollw + 4. * RSIGMA * tsol**3 &
565      ENDDO              * (tsol - ftsol(:, nsrf))
566      DO nsrf = 1, nbsrf         fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol)
567         DO i = 1, klon      END forall
568            zxrugs(i) = zxrugs(i) + frugs(i, nsrf)*pctsrf(i, nsrf)  
569         ENDDO      CALL clmain(dtphys, pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, &
570      ENDDO           ftsol, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, &
571             paprs, play, fsnow, fqsurf, fevap, falbe, fluxlat, rain_fall, &
572      ! calculs necessaires au calcul de l'albedo dans l'interface           snow_fall, fsolsw, fsollw, frugs, agesno, rugoro, d_t_vdf, d_q_vdf, &
573             d_u_vdf, d_v_vdf, d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, &
574      CALL orbite(REAL(julien), zlongi, dist)           cdragm, q2, dsens, devap, ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, &
575      IF (cycle_diurne) THEN           pblh, capCL, oliqCL, cteiCL, pblT, therm, trmb1, trmb2, trmb3, plcl, &
576         zdtime = pdtphys * REAL(radpas)           fqcalving, ffonte, run_off_lic_0)
577         CALL zenang(zlongi, gmtime, zdtime, rmu0, fract)  
578      ELSE      ! Incr\'ementation des flux
579         rmu0 = -999.999  
580      ENDIF      sens = - sum(flux_t * pctsrf, dim = 2)
581        evap = - sum(flux_q * pctsrf, dim = 2)
582      !     Calcul de l'abedo moyen par maille      fder = dlw + dsens + devap
     albsol(:)=0.  
     albsollw(:)=0.  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           albsol(i) = albsol(i) + falbe(i, nsrf) * pctsrf(i, nsrf)  
           albsollw(i) = albsollw(i) + falblw(i, nsrf) * pctsrf(i, nsrf)  
        ENDDO  
     ENDDO  
   
     !     Repartition sous maille des flux LW et SW  
     ! Repartition du longwave par sous-surface linearisee  
   
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           fsollw(i, nsrf) = sollw(i) &  
                + 4.0*RSIGMA*ztsol(i)**3 * (ztsol(i)-ftsol(i, nsrf))  
           fsolsw(i, nsrf) = solsw(i)*(1.-falbe(i, nsrf))/(1.-albsol(i))  
        ENDDO  
     ENDDO  
   
     fder = dlw  
   
     CALL clmain(pdtphys, itap, date0, pctsrf, pctsrf_new, &  
          t_seri, q_seri, u_seri, v_seri, &  
          julien, rmu0, co2_ppm,  &  
          ok_veget, ocean, npas, nexca, ftsol, &  
          soil_model, cdmmax, cdhmax, &  
          ksta, ksta_ter, ok_kzmin, ftsoil, qsol,  &  
          paprs, pplay, fsnow, fqsurf, fevap, falbe, falblw, &  
          fluxlat, rain_fall, snow_fall, &  
          fsolsw, fsollw, sollwdown, fder, &  
          rlon, rlat, cuphy, cvphy, frugs, &  
          firstcal, lafin, agesno, rugoro, &  
          d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, &  
          fluxt, fluxq, fluxu, fluxv, cdragh, cdragm, &  
          q2, dsens, devap, &  
          ycoefh, yu1, yv1, t2m, q2m, u10m, v10m, &  
          pblh, capCL, oliqCL, cteiCL, pblT, &  
          therm, trmb1, trmb2, trmb3, plcl, &  
          fqcalving, ffonte, run_off_lic_0, &  
          fluxo, fluxg, tslab, seaice)  
   
     !XXX Incrementation des flux  
   
     zxfluxt=0.  
     zxfluxq=0.  
     zxfluxu=0.  
     zxfluxv=0.  
     DO nsrf = 1, nbsrf  
        DO k = 1, llm  
           DO i = 1, klon  
              zxfluxt(i, k) = zxfluxt(i, k) +  &  
                   fluxt(i, k, nsrf) * pctsrf( i, nsrf)  
              zxfluxq(i, k) = zxfluxq(i, k) +  &  
                   fluxq(i, k, nsrf) * pctsrf( i, nsrf)  
              zxfluxu(i, k) = zxfluxu(i, k) +  &  
                   fluxu(i, k, nsrf) * pctsrf( i, nsrf)  
              zxfluxv(i, k) = zxfluxv(i, k) +  &  
                   fluxv(i, k, nsrf) * pctsrf( i, nsrf)  
           END DO  
        END DO  
     END DO  
     DO i = 1, klon  
        sens(i) = - zxfluxt(i, 1) ! flux de chaleur sensible au sol  
        evap(i) = - zxfluxq(i, 1) ! flux d'evaporation au sol  
        fder(i) = dlw(i) + dsens(i) + devap(i)  
     ENDDO  
583    
584      DO k = 1, llm      DO k = 1, llm
585         DO i = 1, klon         DO i = 1, klon
# Line 1180  contains Line 590  contains
590         ENDDO         ENDDO
591      ENDDO      ENDDO
592    
593      IF (if_ebil >= 2) THEN      ! Update surface temperature:
        ztit='after clmain'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil &  
             , zero_v, zero_v, zero_v, zero_v, sens &  
             , evap, zero_v, zero_v, ztsol &  
             , d_h_vcol, d_qt, d_ec &  
             , fs_bound, fq_bound )  
     END IF  
594    
595      ! Incrementer la temperature du sol      call assert(abs(sum(pctsrf, dim = 2) - 1.) <= EPSFRA, 'physiq: pctsrf')
596        ftsol = ftsol + d_ts
597        tsol = sum(ftsol * pctsrf, dim = 2)
598        zxfluxlat = sum(fluxlat * pctsrf, dim = 2)
599        zt2m = sum(t2m * pctsrf, dim = 2)
600        zq2m = sum(q2m * pctsrf, dim = 2)
601        zu10m = sum(u10m * pctsrf, dim = 2)
602        zv10m = sum(v10m * pctsrf, dim = 2)
603        zxffonte = sum(ffonte * pctsrf, dim = 2)
604        zxfqcalving = sum(fqcalving * pctsrf, dim = 2)
605        s_pblh = sum(pblh * pctsrf, dim = 2)
606        s_lcl = sum(plcl * pctsrf, dim = 2)
607        s_capCL = sum(capCL * pctsrf, dim = 2)
608        s_oliqCL = sum(oliqCL * pctsrf, dim = 2)
609        s_cteiCL = sum(cteiCL * pctsrf, dim = 2)
610        s_pblT = sum(pblT * pctsrf, dim = 2)
611        s_therm = sum(therm * pctsrf, dim = 2)
612        s_trmb1 = sum(trmb1 * pctsrf, dim = 2)
613        s_trmb2 = sum(trmb2 * pctsrf, dim = 2)
614        s_trmb3 = sum(trmb3 * pctsrf, dim = 2)
615    
616      DO i = 1, klon      ! Si une sous-fraction n'existe pas, elle prend la valeur moyenne :
        zxtsol(i) = 0.0  
        zxfluxlat(i) = 0.0  
   
        zt2m(i) = 0.0  
        zq2m(i) = 0.0  
        zu10m(i) = 0.0  
        zv10m(i) = 0.0  
        zxffonte(i) = 0.0  
        zxfqcalving(i) = 0.0  
   
        s_pblh(i) = 0.0  
        s_lcl(i) = 0.0  
        s_capCL(i) = 0.0  
        s_oliqCL(i) = 0.0  
        s_cteiCL(i) = 0.0  
        s_pblT(i) = 0.0  
        s_therm(i) = 0.0  
        s_trmb1(i) = 0.0  
        s_trmb2(i) = 0.0  
        s_trmb3(i) = 0.0  
   
        IF ( abs( pctsrf(i, is_ter) + pctsrf(i, is_lic) +  &  
             pctsrf(i, is_oce) + pctsrf(i, is_sic)  - 1.) .GT. EPSFRA)  &  
             THEN  
           WRITE(*, *) 'physiq : pb sous surface au point ', i,  &  
                pctsrf(i, 1 : nbsrf)  
        ENDIF  
     ENDDO  
617      DO nsrf = 1, nbsrf      DO nsrf = 1, nbsrf
618         DO i = 1, klon         DO i = 1, klon
619            ftsol(i, nsrf) = ftsol(i, nsrf) + d_ts(i, nsrf)            IF (pctsrf(i, nsrf) < epsfra) then
620            zxtsol(i) = zxtsol(i) + ftsol(i, nsrf)*pctsrf(i, nsrf)               ftsol(i, nsrf) = tsol(i)
621            zxfluxlat(i) = zxfluxlat(i) + fluxlat(i, nsrf)*pctsrf(i, nsrf)               t2m(i, nsrf) = zt2m(i)
622                 q2m(i, nsrf) = zq2m(i)
623            zt2m(i) = zt2m(i) + t2m(i, nsrf)*pctsrf(i, nsrf)               u10m(i, nsrf) = zu10m(i)
624            zq2m(i) = zq2m(i) + q2m(i, nsrf)*pctsrf(i, nsrf)               v10m(i, nsrf) = zv10m(i)
625            zu10m(i) = zu10m(i) + u10m(i, nsrf)*pctsrf(i, nsrf)               ffonte(i, nsrf) = zxffonte(i)
626            zv10m(i) = zv10m(i) + v10m(i, nsrf)*pctsrf(i, nsrf)               fqcalving(i, nsrf) = zxfqcalving(i)
627            zxffonte(i) = zxffonte(i) + ffonte(i, nsrf)*pctsrf(i, nsrf)               pblh(i, nsrf) = s_pblh(i)
628            zxfqcalving(i) = zxfqcalving(i) +  &               plcl(i, nsrf) = s_lcl(i)
629                 fqcalving(i, nsrf)*pctsrf(i, nsrf)               capCL(i, nsrf) = s_capCL(i)
630            s_pblh(i) = s_pblh(i) + pblh(i, nsrf)*pctsrf(i, nsrf)               oliqCL(i, nsrf) = s_oliqCL(i)
631            s_lcl(i) = s_lcl(i) + plcl(i, nsrf)*pctsrf(i, nsrf)               cteiCL(i, nsrf) = s_cteiCL(i)
632            s_capCL(i) = s_capCL(i) + capCL(i, nsrf) *pctsrf(i, nsrf)               pblT(i, nsrf) = s_pblT(i)
633            s_oliqCL(i) = s_oliqCL(i) + oliqCL(i, nsrf) *pctsrf(i, nsrf)               therm(i, nsrf) = s_therm(i)
634            s_cteiCL(i) = s_cteiCL(i) + cteiCL(i, nsrf) *pctsrf(i, nsrf)               trmb1(i, nsrf) = s_trmb1(i)
635            s_pblT(i) = s_pblT(i) + pblT(i, nsrf) *pctsrf(i, nsrf)               trmb2(i, nsrf) = s_trmb2(i)
636            s_therm(i) = s_therm(i) + therm(i, nsrf) *pctsrf(i, nsrf)               trmb3(i, nsrf) = s_trmb3(i)
637            s_trmb1(i) = s_trmb1(i) + trmb1(i, nsrf) *pctsrf(i, nsrf)            end IF
           s_trmb2(i) = s_trmb2(i) + trmb2(i, nsrf) *pctsrf(i, nsrf)  
           s_trmb3(i) = s_trmb3(i) + trmb3(i, nsrf) *pctsrf(i, nsrf)  
638         ENDDO         ENDDO
639      ENDDO      ENDDO
640    
641      ! Si une sous-fraction n'existe pas, elle prend la temp. moyenne      dlw = - 4. * RSIGMA * tsol**3
642    
643      DO nsrf = 1, nbsrf      ! Appeler la convection
644         DO i = 1, klon  
645            IF (pctsrf(i, nsrf)  <  epsfra) ftsol(i, nsrf) = zxtsol(i)      if (conv_emanuel) then
646           CALL concvl(paprs, play, t_seri, q_seri, u_seri, v_seri, sig1, w01, &
647            IF (pctsrf(i, nsrf)  <  epsfra) t2m(i, nsrf) = zt2m(i)              d_t_con, d_q_con, d_u_con, d_v_con, rain_con, ibas_con, itop_con, &
648            IF (pctsrf(i, nsrf)  <  epsfra) q2m(i, nsrf) = zq2m(i)              upwd, dnwd, Ma, cape, iflagctrl, qcondc, pmflxr, da, phi, mp)
649            IF (pctsrf(i, nsrf)  <  epsfra) u10m(i, nsrf) = zu10m(i)         snow_con = 0.
650            IF (pctsrf(i, nsrf)  <  epsfra) v10m(i, nsrf) = zv10m(i)         clwcon0 = qcondc
651            IF (pctsrf(i, nsrf)  <  epsfra) ffonte(i, nsrf) = zxffonte(i)         mfu = upwd + dnwd
652            IF (pctsrf(i, nsrf)  <  epsfra)  &  
653                 fqcalving(i, nsrf) = zxfqcalving(i)         zqsat = MIN(0.5, r2es * FOEEW(t_seri, rtt >= t_seri) / play)
654            IF (pctsrf(i, nsrf)  <  epsfra) pblh(i, nsrf)=s_pblh(i)         zqsat = zqsat / (1. - retv * zqsat)
655            IF (pctsrf(i, nsrf)  <  epsfra) plcl(i, nsrf)=s_lcl(i)  
656            IF (pctsrf(i, nsrf)  <  epsfra) capCL(i, nsrf)=s_capCL(i)         ! Properties of convective clouds
657            IF (pctsrf(i, nsrf)  <  epsfra) oliqCL(i, nsrf)=s_oliqCL(i)         clwcon0 = fact_cldcon * clwcon0
658            IF (pctsrf(i, nsrf)  <  epsfra) cteiCL(i, nsrf)=s_cteiCL(i)         call clouds_gno(klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, &
659            IF (pctsrf(i, nsrf)  <  epsfra) pblT(i, nsrf)=s_pblT(i)              rnebcon0)
660            IF (pctsrf(i, nsrf)  <  epsfra) therm(i, nsrf)=s_therm(i)  
661            IF (pctsrf(i, nsrf)  <  epsfra) trmb1(i, nsrf)=s_trmb1(i)         forall (i = 1:klon) ema_pct(i) = paprs(i, itop_con(i) + 1)
662            IF (pctsrf(i, nsrf)  <  epsfra) trmb2(i, nsrf)=s_trmb2(i)         mfd = 0.
663            IF (pctsrf(i, nsrf)  <  epsfra) trmb3(i, nsrf)=s_trmb3(i)         pen_u = 0.
664         ENDDO         pen_d = 0.
665      ENDDO         pde_d = 0.
666           pde_u = 0.
667      ! Calculer la derive du flux infrarouge      else
668           conv_q = d_q_dyn + d_q_vdf / dtphys
669      DO i = 1, klon         conv_t = d_t_dyn + d_t_vdf / dtphys
670         dlw(i) = - 4.0*RSIGMA*zxtsol(i)**3         z_avant = sum((q_seri + ql_seri) * zmasse, dim=2)
671      ENDDO         CALL conflx(dtphys, paprs, play, t_seri(:, llm:1:- 1), &
672                q_seri(:, llm:1:- 1), conv_t, conv_q, - evap, omega, &
673      ! Appeler la convection (au choix)              d_t_con, d_q_con, rain_con, snow_con, mfu(:, llm:1:- 1), &
674                mfd(:, llm:1:- 1), pen_u, pde_u, pen_d, pde_d, kcbot, kctop, &
675      DO k = 1, llm              kdtop, pmflxr, pmflxs)
        DO i = 1, klon  
           conv_q(i, k) = d_q_dyn(i, k)  &  
                + d_q_vdf(i, k)/pdtphys  
           conv_t(i, k) = d_t_dyn(i, k)  &  
                + d_t_vdf(i, k)/pdtphys  
        ENDDO  
     ENDDO  
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        print *, "avantcon=", za  
     ENDIF  
     zx_ajustq = .FALSE.  
     IF (iflag_con == 2) zx_ajustq=.TRUE.  
     IF (zx_ajustq) THEN  
        DO i = 1, klon  
           z_avant(i) = 0.0  
        ENDDO  
        DO k = 1, llm  
           DO i = 1, klon  
              z_avant(i) = z_avant(i) + (q_seri(i, k)+ql_seri(i, k)) &  
                   *(paprs(i, k)-paprs(i, k+1))/RG  
           ENDDO  
        ENDDO  
     ENDIF  
     IF (iflag_con == 1) THEN  
        stop 'reactiver le call conlmd dans physiq.F'  
     ELSE IF (iflag_con == 2) THEN  
        CALL conflx(pdtphys, paprs, pplay, t_seri, q_seri, &  
             conv_t, conv_q, zxfluxq(1, 1), omega, &  
             d_t_con, d_q_con, rain_con, snow_con, &  
             pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, &  
             kcbot, kctop, kdtop, pmflxr, pmflxs)  
676         WHERE (rain_con < 0.) rain_con = 0.         WHERE (rain_con < 0.) rain_con = 0.
677         WHERE (snow_con < 0.) snow_con = 0.         WHERE (snow_con < 0.) snow_con = 0.
678         DO i = 1, klon         ibas_con = llm + 1 - kcbot
679            ibas_con(i) = llm+1 - kcbot(i)         itop_con = llm + 1 - kctop
680            itop_con(i) = llm+1 - kctop(i)      END if
        ENDDO  
     ELSE IF (iflag_con >= 3) THEN  
        ! nb of tracers for the KE convection:  
        ! MAF la partie traceurs est faite dans phytrac  
        ! on met ntra=1 pour limiter les appels mais on peut  
        ! supprimer les calculs / ftra.  
        ntra = 1  
        ! Schema de convection modularise et vectorise:  
        ! (driver commun aux versions 3 et 4)  
   
        IF (ok_cvl) THEN ! new driver for convectL  
   
           CALL concvl (iflag_con, &  
                pdtphys, paprs, pplay, t_seri, q_seri, &  
                u_seri, v_seri, tr_seri, ntra, &  
                ema_work1, ema_work2, &  
                d_t_con, d_q_con, d_u_con, d_v_con, d_tr, &  
                rain_con, snow_con, ibas_con, itop_con, &  
                upwd, dnwd, dnwd0, &  
                Ma, cape, tvp, iflagctrl, &  
                pbase, bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr, qcondc, wd, &  
                pmflxr, pmflxs, &  
                da, phi, mp)  
   
           clwcon0=qcondc  
           pmfu(:, :)=upwd(:, :)+dnwd(:, :)  
   
        ELSE ! ok_cvl  
           ! MAF conema3 ne contient pas les traceurs  
           CALL conema3 (pdtphys, &  
                paprs, pplay, t_seri, q_seri, &  
                u_seri, v_seri, tr_seri, ntra, &  
                ema_work1, ema_work2, &  
                d_t_con, d_q_con, d_u_con, d_v_con, d_tr, &  
                rain_con, snow_con, ibas_con, itop_con, &  
                upwd, dnwd, dnwd0, bas, top, &  
                Ma, cape, tvp, rflag, &  
                pbase &  
                , bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr &  
                , clwcon0)  
   
        ENDIF ! ok_cvl  
   
        IF (.NOT. ok_gust) THEN  
           do i = 1, klon  
              wd(i)=0.0  
           enddo  
        ENDIF  
   
        ! Calcul des proprietes des nuages convectifs  
   
        DO k = 1, llm  
           DO i = 1, klon  
              zx_t = t_seri(i, k)  
              IF (thermcep) THEN  
                 zdelta = MAX(0., SIGN(1., rtt-zx_t))  
                 zx_qs  = r2es * FOEEW(zx_t, zdelta)/pplay(i, k)  
                 zx_qs  = MIN(0.5, zx_qs)  
                 zcor   = 1./(1.-retv*zx_qs)  
                 zx_qs  = zx_qs*zcor  
              ELSE  
                 IF (zx_t < t_coup) THEN  
                    zx_qs = qsats(zx_t)/pplay(i, k)  
                 ELSE  
                    zx_qs = qsatl(zx_t)/pplay(i, k)  
                 ENDIF  
              ENDIF  
              zqsat(i, k)=zx_qs  
           ENDDO  
        ENDDO  
   
        !   calcul des proprietes des nuages convectifs  
        clwcon0(:, :)=fact_cldcon*clwcon0(:, :)  
        call clouds_gno &  
             (klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, rnebcon0)  
     ELSE  
        print *, "iflag_con non-prevu", iflag_con  
        stop 1  
     ENDIF  
681    
682      DO k = 1, llm      DO k = 1, llm
683         DO i = 1, klon         DO i = 1, klon
# Line 1410  contains Line 688  contains
688         ENDDO         ENDDO
689      ENDDO      ENDDO
690    
691      IF (if_ebil >= 2) THEN      IF (.not. conv_emanuel) THEN
692         ztit='after convect'         z_apres = sum((q_seri + ql_seri) * zmasse, dim=2)
693         CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys &         z_factor = (z_avant - (rain_con + snow_con) * dtphys) / z_apres
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil &  
             , zero_v, zero_v, zero_v, zero_v, zero_v &  
             , zero_v, rain_con, snow_con, ztsol &  
             , d_h_vcol, d_qt, d_ec &  
             , fs_bound, fq_bound )  
     END IF  
   
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        print *,"aprescon=", za  
        zx_t = 0.0  
        za = 0.0  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_con(i)+ &  
                snow_con(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*pdtphys  
        print *,"Precip=", zx_t  
     ENDIF  
     IF (zx_ajustq) THEN  
        DO i = 1, klon  
           z_apres(i) = 0.0  
        ENDDO  
        DO k = 1, llm  
           DO i = 1, klon  
              z_apres(i) = z_apres(i) + (q_seri(i, k)+ql_seri(i, k)) &  
                   *(paprs(i, k)-paprs(i, k+1))/RG  
           ENDDO  
        ENDDO  
        DO i = 1, klon  
           z_factor(i) = (z_avant(i)-(rain_con(i)+snow_con(i))*pdtphys) &  
                /z_apres(i)  
        ENDDO  
694         DO k = 1, llm         DO k = 1, llm
695            DO i = 1, klon            DO i = 1, klon
696               IF (z_factor(i).GT.(1.0+1.0E-08) .OR. &               IF (z_factor(i) > 1. + 1E-8 .OR. z_factor(i) < 1. - 1E-8) THEN
                   z_factor(i) < (1.0-1.0E-08)) THEN  
697                  q_seri(i, k) = q_seri(i, k) * z_factor(i)                  q_seri(i, k) = q_seri(i, k) * z_factor(i)
698               ENDIF               ENDIF
699            ENDDO            ENDDO
700         ENDDO         ENDDO
701      ENDIF      ENDIF
     zx_ajustq=.FALSE.  
702    
703      ! Convection seche (thermiques ou ajustement)      ! Convection s\`eche (thermiques ou ajustement)
704    
705      d_t_ajs(:, :)=0.      d_t_ajs = 0.
706      d_u_ajs(:, :)=0.      d_u_ajs = 0.
707      d_v_ajs(:, :)=0.      d_v_ajs = 0.
708      d_q_ajs(:, :)=0.      d_q_ajs = 0.
709      fm_therm(:, :)=0.      fm_therm = 0.
710      entr_therm(:, :)=0.      entr_therm = 0.
711    
712      IF(prt_level>9)print *, &      if (iflag_thermals == 0) then
713           'AVANT LA CONVECTION SECHE, iflag_thermals=' &         ! Ajustement sec
714           , iflag_thermals, '   nsplit_thermals=', nsplit_thermals         CALL ajsec(paprs, play, t_seri, q_seri, d_t_ajs, d_q_ajs)
715      if(iflag_thermals < 0) then         t_seri = t_seri + d_t_ajs
716         !  Rien         q_seri = q_seri + d_q_ajs
        IF(prt_level>9)print *,'pas de convection'  
     else if(iflag_thermals == 0) then  
        !  Ajustement sec  
        IF(prt_level>9)print *,'ajsec'  
        CALL ajsec(paprs, pplay, t_seri, q_seri, d_t_ajs, d_q_ajs)  
        t_seri(:, :) = t_seri(:, :) + d_t_ajs(:, :)  
        q_seri(:, :) = q_seri(:, :) + d_q_ajs(:, :)  
717      else      else
718         !  Thermiques         call calltherm(dtphys, play, paprs, pphi, u_seri, v_seri, t_seri, &
719         IF(prt_level>9)print *,'JUSTE AVANT, iflag_thermals=' &              q_seri, d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs, fm_therm, entr_therm)
             , iflag_thermals, '   nsplit_thermals=', nsplit_thermals  
        call calltherm(pdtphys &  
             , pplay, paprs, pphi &  
             , u_seri, v_seri, t_seri, q_seri &  
             , d_u_ajs, d_v_ajs, d_t_ajs, d_q_ajs &  
             , fm_therm, entr_therm)  
720      endif      endif
721    
722      IF (if_ebil >= 2) THEN      ! Caclul des ratqs
        ztit='after dry_adjust'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
     END IF  
   
     !  Caclul des ratqs  
723    
724      !   ratqs convectifs a l'ancienne en fonction de q(z=0)-q / q      ! ratqs convectifs \`a l'ancienne en fonction de (q(z = 0) - q) / q
725      !   on ecrase le tableau ratqsc calcule par clouds_gno      ! on \'ecrase le tableau ratqsc calcul\'e par clouds_gno
726      if (iflag_cldcon == 1) then      if (iflag_cldcon == 1) then
727         do k=1, llm         do k = 1, llm
728            do i=1, klon            do i = 1, klon
729               if(ptconv(i, k)) then               if(ptconv(i, k)) then
730                  ratqsc(i, k)=ratqsbas &                  ratqsc(i, k) = ratqsbas + fact_cldcon &
731                       +fact_cldcon*(q_seri(i, 1)-q_seri(i, k))/q_seri(i, k)                       * (q_seri(i, 1) - q_seri(i, k)) / q_seri(i, k)
732               else               else
733                  ratqsc(i, k)=0.                  ratqsc(i, k) = 0.
734               endif               endif
735            enddo            enddo
736         enddo         enddo
737      endif      endif
738    
739      !   ratqs stables      ! ratqs stables
740      do k=1, llm      do k = 1, llm
741         do i=1, klon         do i = 1, klon
742            ratqss(i, k)=ratqsbas+(ratqshaut-ratqsbas)* &            ratqss(i, k) = ratqsbas + (ratqshaut - ratqsbas) &
743                 min((paprs(i, 1)-pplay(i, k))/(paprs(i, 1)-30000.), 1.)                 * min((paprs(i, 1) - play(i, k)) / (paprs(i, 1) - 3e4), 1.)
744         enddo         enddo
745      enddo      enddo
746    
747      !  ratqs final      ! ratqs final
748      if (iflag_cldcon == 1 .or.iflag_cldcon == 2) then      if (iflag_cldcon == 1 .or. iflag_cldcon == 2) then
749         !   les ratqs sont une conbinaison de ratqss et ratqsc         ! les ratqs sont une conbinaison de ratqss et ratqsc
750         !   ratqs final         ! ratqs final
751         !   1e4 (en gros 3 heures), en dur pour le moment, est le temps de         ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de
752         !   relaxation des ratqs         ! relaxation des ratqs
753         facteur=exp(-pdtphys*facttemps)         ratqs = max(ratqs * exp(- dtphys * facttemps), ratqss)
754         ratqs(:, :)=max(ratqs(:, :)*facteur, ratqss(:, :))         ratqs = max(ratqs, ratqsc)
        ratqs(:, :)=max(ratqs(:, :), ratqsc(:, :))  
755      else      else
756         !   on ne prend que le ratqs stable pour fisrtilp         ! on ne prend que le ratqs stable pour fisrtilp
757         ratqs(:, :)=ratqss(:, :)         ratqs = ratqss
758      endif      endif
759    
760      ! Appeler le processus de condensation a grande echelle      CALL fisrtilp(dtphys, paprs, play, t_seri, q_seri, ptconv, ratqs, &
761      ! et le processus de precipitation           d_t_lsc, d_q_lsc, d_ql_lsc, rneb, cldliq, rain_lsc, snow_lsc, &
762      CALL fisrtilp(pdtphys, paprs, pplay, &           pfrac_impa, pfrac_nucl, pfrac_1nucl, frac_impa, frac_nucl, prfl, &
763           t_seri, q_seri, ptconv, ratqs, &           psfl, rhcl)
          d_t_lsc, d_q_lsc, d_ql_lsc, rneb, cldliq, &  
          rain_lsc, snow_lsc, &  
          pfrac_impa, pfrac_nucl, pfrac_1nucl, &  
          frac_impa, frac_nucl, &  
          prfl, psfl, rhcl)  
764    
765      WHERE (rain_lsc < 0) rain_lsc = 0.      WHERE (rain_lsc < 0) rain_lsc = 0.
766      WHERE (snow_lsc < 0) snow_lsc = 0.      WHERE (snow_lsc < 0) snow_lsc = 0.
# Line 1559  contains Line 773  contains
773            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)            IF (.NOT.new_oliq) cldliq(i, k) = ql_seri(i, k)
774         ENDDO         ENDDO
775      ENDDO      ENDDO
     IF (check) THEN  
        za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy)  
        print *,"apresilp=", za  
        zx_t = 0.0  
        za = 0.0  
        DO i = 1, klon  
           za = za + airephy(i)/REAL(klon)  
           zx_t = zx_t + (rain_lsc(i) &  
                + snow_lsc(i))*airephy(i)/REAL(klon)  
        ENDDO  
        zx_t = zx_t/za*pdtphys  
        print *,"Precip=", zx_t  
     ENDIF  
776    
777      IF (if_ebil >= 2) THEN      ! PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
        ztit='after fisrt'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil &  
             , zero_v, zero_v, zero_v, zero_v, zero_v &  
             , zero_v, rain_lsc, snow_lsc, ztsol &  
             , d_h_vcol, d_qt, d_ec &  
             , fs_bound, fq_bound )  
     END IF  
   
     !  PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT  
778    
779      ! 1. NUAGES CONVECTIFS      ! 1. NUAGES CONVECTIFS
780    
781      IF (iflag_cldcon.le.-1) THEN ! seulement pour Tiedtke      IF (iflag_cldcon <= - 1) THEN
782         snow_tiedtke=0.         ! seulement pour Tiedtke
783         if (iflag_cldcon == -1) then         snow_tiedtke = 0.
784            rain_tiedtke=rain_con         if (iflag_cldcon == - 1) then
785              rain_tiedtke = rain_con
786         else         else
787            rain_tiedtke=0.            rain_tiedtke = 0.
788            do k=1, llm            do k = 1, llm
789               do i=1, klon               do i = 1, klon
790                  if (d_q_con(i, k) < 0.) then                  if (d_q_con(i, k) < 0.) then
791                     rain_tiedtke(i)=rain_tiedtke(i)-d_q_con(i, k)/pdtphys &                     rain_tiedtke(i) = rain_tiedtke(i) - d_q_con(i, k) / dtphys &
792                          *(paprs(i, k)-paprs(i, k+1))/rg                          * zmasse(i, k)
793                  endif                  endif
794               enddo               enddo
795            enddo            enddo
796         endif         endif
797    
798         ! Nuages diagnostiques pour Tiedtke         ! Nuages diagnostiques pour Tiedtke
799         CALL diagcld1(paprs, pplay, &         CALL diagcld1(paprs, play, rain_tiedtke, snow_tiedtke, ibas_con, &
800              rain_tiedtke, snow_tiedtke, ibas_con, itop_con, &              itop_con, diafra, dialiq)
             diafra, dialiq)  
801         DO k = 1, llm         DO k = 1, llm
802            DO i = 1, klon            DO i = 1, klon
803               IF (diafra(i, k).GT.cldfra(i, k)) THEN               IF (diafra(i, k) > cldfra(i, k)) THEN
804                  cldliq(i, k) = dialiq(i, k)                  cldliq(i, k) = dialiq(i, k)
805                  cldfra(i, k) = diafra(i, k)                  cldfra(i, k) = diafra(i, k)
806               ENDIF               ENDIF
807            ENDDO            ENDDO
808         ENDDO         ENDDO
   
809      ELSE IF (iflag_cldcon == 3) THEN      ELSE IF (iflag_cldcon == 3) THEN
810         ! On prend pour les nuages convectifs le max du calcul de la         ! On prend pour les nuages convectifs le maximum du calcul de
811         ! convection et du calcul du pas de temps précédent diminué d'un facteur         ! la convection et du calcul du pas de temps pr\'ec\'edent diminu\'e
812         ! facttemps         ! d'un facteur facttemps.
813         facteur = pdtphys *facttemps         facteur = dtphys * facttemps
814         do k=1, llm         do k = 1, llm
815            do i=1, klon            do i = 1, klon
816               rnebcon(i, k)=rnebcon(i, k)*facteur               rnebcon(i, k) = rnebcon(i, k) * facteur
817               if (rnebcon0(i, k)*clwcon0(i, k).gt.rnebcon(i, k)*clwcon(i, k)) &               if (rnebcon0(i, k) * clwcon0(i, k) &
818                    then                    > rnebcon(i, k) * clwcon(i, k)) then
819                  rnebcon(i, k)=rnebcon0(i, k)                  rnebcon(i, k) = rnebcon0(i, k)
820                  clwcon(i, k)=clwcon0(i, k)                  clwcon(i, k) = clwcon0(i, k)
821               endif               endif
822            enddo            enddo
823         enddo         enddo
824    
825         !   On prend la somme des fractions nuageuses et des contenus en eau         ! On prend la somme des fractions nuageuses et des contenus en eau
826         cldfra(:, :)=min(max(cldfra(:, :), rnebcon(:, :)), 1.)         cldfra = min(max(cldfra, rnebcon), 1.)
827         cldliq(:, :)=cldliq(:, :)+rnebcon(:, :)*clwcon(:, :)         cldliq = cldliq + rnebcon * clwcon
   
828      ENDIF      ENDIF
829    
830      ! 2. NUAGES STARTIFORMES      ! 2. Nuages stratiformes
831    
832      IF (ok_stratus) THEN      IF (ok_stratus) THEN
833         CALL diagcld2(paprs, pplay, t_seri, q_seri, diafra, dialiq)         CALL diagcld2(paprs, play, t_seri, q_seri, diafra, dialiq)
834         DO k = 1, llm         DO k = 1, llm
835            DO i = 1, klon            DO i = 1, klon
836               IF (diafra(i, k).GT.cldfra(i, k)) THEN               IF (diafra(i, k) > cldfra(i, k)) THEN
837                  cldliq(i, k) = dialiq(i, k)                  cldliq(i, k) = dialiq(i, k)
838                  cldfra(i, k) = diafra(i, k)                  cldfra(i, k) = diafra(i, k)
839               ENDIF               ENDIF
# Line 1655  contains Line 842  contains
842      ENDIF      ENDIF
843    
844      ! Precipitation totale      ! Precipitation totale
   
845      DO i = 1, klon      DO i = 1, klon
846         rain_fall(i) = rain_con(i) + rain_lsc(i)         rain_fall(i) = rain_con(i) + rain_lsc(i)
847         snow_fall(i) = snow_con(i) + snow_lsc(i)         snow_fall(i) = snow_con(i) + snow_lsc(i)
848      ENDDO      ENDDO
849    
850      IF (if_ebil >= 2) THEN      ! Humidit\'e relative pour diagnostic :
        ztit="after diagcld"  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
     END IF  
   
     ! Calculer l'humidite relative pour diagnostique  
   
851      DO k = 1, llm      DO k = 1, llm
852         DO i = 1, klon         DO i = 1, klon
853            zx_t = t_seri(i, k)            zx_t = t_seri(i, k)
854            IF (thermcep) THEN            zx_qs = r2es * FOEEW(zx_t, rtt >= zx_t) / play(i, k)
855               zdelta = MAX(0., SIGN(1., rtt-zx_t))            zx_qs = MIN(0.5, zx_qs)
856               zx_qs  = r2es * FOEEW(zx_t, zdelta)/pplay(i, k)            zcor = 1. / (1. - retv * zx_qs)
857               zx_qs  = MIN(0.5, zx_qs)            zx_qs = zx_qs * zcor
858               zcor   = 1./(1.-retv*zx_qs)            zx_rh(i, k) = q_seri(i, k) / zx_qs
859               zx_qs  = zx_qs*zcor            zqsat(i, k) = zx_qs
           ELSE  
              IF (zx_t < t_coup) THEN  
                 zx_qs = qsats(zx_t)/pplay(i, k)  
              ELSE  
                 zx_qs = qsatl(zx_t)/pplay(i, k)  
              ENDIF  
           ENDIF  
           zx_rh(i, k) = q_seri(i, k)/zx_qs  
           zqsat(i, k)=zx_qs  
860         ENDDO         ENDDO
861      ENDDO      ENDDO
     !jq - introduce the aerosol direct and first indirect radiative forcings  
     !jq - Johannes Quaas, 27/11/2003 (quaas@lmd.jussieu.fr)  
     IF (ok_ade.OR.ok_aie) THEN  
        ! Get sulfate aerosol distribution  
        CALL readsulfate(rdayvrai, firstcal, sulfate)  
        CALL readsulfate_preind(rdayvrai, firstcal, sulfate_pi)  
   
        ! Calculate aerosol optical properties (Olivier Boucher)  
        CALL aeropt(pplay, paprs, t_seri, sulfate, rhcl, &  
             tau_ae, piz_ae, cg_ae, aerindex)  
     ELSE  
        tau_ae(:, :, :)=0.0  
        piz_ae(:, :, :)=0.0  
        cg_ae(:, :, :)=0.0  
     ENDIF  
   
     ! Calculer les parametres optiques des nuages et quelques  
     ! parametres pour diagnostiques:  
862    
863        ! Param\`etres optiques des nuages et quelques param\`etres pour
864        ! diagnostics :
865      if (ok_newmicro) then      if (ok_newmicro) then
866         CALL newmicro (paprs, pplay, ok_newmicro, &         CALL newmicro(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, &
867              t_seri, cldliq, cldfra, cldtau, cldemi, &              cldh, cldl, cldm, cldt, cldq, flwp, fiwp, flwc, fiwc)
             cldh, cldl, cldm, cldt, cldq, &  
             flwp, fiwp, flwc, fiwc, &  
             ok_aie, &  
             sulfate, sulfate_pi, &  
             bl95_b0, bl95_b1, &  
             cldtaupi, re, fl)  
868      else      else
869         CALL nuage (paprs, pplay, &         CALL nuage(paprs, play, t_seri, cldliq, cldfra, cldtau, cldemi, cldh, &
870              t_seri, cldliq, cldfra, cldtau, cldemi, &              cldl, cldm, cldt, cldq)
             cldh, cldl, cldm, cldt, cldq, &  
             ok_aie, &  
             sulfate, sulfate_pi, &  
             bl95_b0, bl95_b1, &  
             cldtaupi, re, fl)  
   
871      endif      endif
872    
873      ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.      IF (MOD(itap - 1, radpas) == 0) THEN
874           wo = ozonecm(REAL(julien), paprs)
875      IF (MOD(itaprad, radpas) == 0) THEN         albsol = sum(falbe * pctsrf, dim = 2)
876         DO i = 1, klon         CALL radlwsw(dist, mu0, fract, paprs, play, tsol, albsol, t_seri, &
877            albsol(i) = falbe(i, is_oce) * pctsrf(i, is_oce) &              q_seri, wo, cldfra, cldemi, cldtau, heat, heat0, cool, cool0, &
878                 + falbe(i, is_lic) * pctsrf(i, is_lic) &              radsol, albpla, topsw, toplw, solsw, sollw, sollwdown, topsw0, &
879                 + falbe(i, is_ter) * pctsrf(i, is_ter) &              toplw0, solsw0, sollw0, lwdn0, lwdn, lwup0, lwup, swdn0, swdn, &
880                 + falbe(i, is_sic) * pctsrf(i, is_sic)              swup0, swup, ok_ade, topswad, solswad)
           albsollw(i) = falblw(i, is_oce) * pctsrf(i, is_oce) &  
                + falblw(i, is_lic) * pctsrf(i, is_lic) &  
                + falblw(i, is_ter) * pctsrf(i, is_ter) &  
                + falblw(i, is_sic) * pctsrf(i, is_sic)  
        ENDDO  
        ! nouveau rayonnement (compatible Arpege-IFS):  
        CALL radlwsw(dist, rmu0, fract,  &  
             paprs, pplay, zxtsol, albsol, albsollw, t_seri, q_seri, &  
             wo, &  
             cldfra, cldemi, cldtau, &  
             heat, heat0, cool, cool0, radsol, albpla, &  
             topsw, toplw, solsw, sollw, &  
             sollwdown, &  
             topsw0, toplw0, solsw0, sollw0, &  
             lwdn0, lwdn, lwup0, lwup,  &  
             swdn0, swdn, swup0, swup, &  
             ok_ade, ok_aie, & ! new for aerosol radiative effects  
             tau_ae, piz_ae, cg_ae, &  
             topswad, solswad, &  
             cldtaupi, &  
             topswai, solswai)  
        itaprad = 0  
881      ENDIF      ENDIF
     itaprad = itaprad + 1  
882    
883      ! Ajouter la tendance des rayonnements (tous les pas)      ! Ajouter la tendance des rayonnements (tous les pas)
   
884      DO k = 1, llm      DO k = 1, llm
885         DO i = 1, klon         DO i = 1, klon
886            t_seri(i, k) = t_seri(i, k) &            t_seri(i, k) = t_seri(i, k) + (heat(i, k) - cool(i, k)) * dtphys &
887                 + (heat(i, k)-cool(i, k)) * pdtphys/86400.                 / 86400.
        ENDDO  
     ENDDO  
   
     IF (if_ebil >= 2) THEN  
        ztit='after rad'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
        call diagphy(airephy, ztit, ip_ebil &  
             , topsw, toplw, solsw, sollw, zero_v &  
             , zero_v, zero_v, zero_v, ztsol &  
             , d_h_vcol, d_qt, d_ec &  
             , fs_bound, fq_bound )  
     END IF  
   
     ! Calculer l'hydrologie de la surface  
   
     DO i = 1, klon  
        zxqsurf(i) = 0.0  
        zxsnow(i) = 0.0  
     ENDDO  
     DO nsrf = 1, nbsrf  
        DO i = 1, klon  
           zxqsurf(i) = zxqsurf(i) + fqsurf(i, nsrf)*pctsrf(i, nsrf)  
           zxsnow(i) = zxsnow(i) + fsnow(i, nsrf)*pctsrf(i, nsrf)  
888         ENDDO         ENDDO
889      ENDDO      ENDDO
890    
891      ! Calculer le bilan du sol et la derive de temperature (couplage)      ! Calculer le bilan du sol et la d\'erive de temp\'erature (couplage)
   
892      DO i = 1, klon      DO i = 1, klon
893         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)
894      ENDDO      ENDDO
895    
896      !moddeblott(jan95)      ! Param\'etrisation de l'orographie \`a l'\'echelle sous-maille :
     ! Appeler le programme de parametrisation de l'orographie  
     ! a l'echelle sous-maille:  
897    
898      IF (ok_orodr) THEN      IF (ok_orodr) THEN
899           ! S\'election des points pour lesquels le sch\'ema est actif :
900         !  selection des points pour lesquels le shema est actif:         igwd = 0
901         igwd=0         DO i = 1, klon
902         DO i=1, klon            itest(i) = 0
903            itest(i)=0            IF (zpic(i) - zmea(i) > 100. .AND. zstd(i) > 10.) THEN
904            IF (((zpic(i)-zmea(i)).GT.100.).AND.(zstd(i).GT.10.0)) THEN               itest(i) = 1
905               itest(i)=1               igwd = igwd + 1
              igwd=igwd+1  
              idx(igwd)=i  
906            ENDIF            ENDIF
907         ENDDO         ENDDO
908    
909         CALL drag_noro(klon, llm, pdtphys, paprs, pplay, &         CALL drag_noro(klon, llm, dtphys, paprs, play, zmea, zstd, zsig, zgam, &
910              zmea, zstd, zsig, zgam, zthe, zpic, zval, &              zthe, zpic, zval, itest, t_seri, u_seri, v_seri, zulow, zvlow, &
911              igwd, idx, itest, &              zustrdr, zvstrdr, d_t_oro, d_u_oro, d_v_oro)
             t_seri, u_seri, v_seri, &  
             zulow, zvlow, zustrdr, zvstrdr, &  
             d_t_oro, d_u_oro, d_v_oro)  
912    
913         !  ajout des tendances         ! ajout des tendances
914         DO k = 1, llm         DO k = 1, llm
915            DO i = 1, klon            DO i = 1, klon
916               t_seri(i, k) = t_seri(i, k) + d_t_oro(i, k)               t_seri(i, k) = t_seri(i, k) + d_t_oro(i, k)
# Line 1834  contains Line 918  contains
918               v_seri(i, k) = v_seri(i, k) + d_v_oro(i, k)               v_seri(i, k) = v_seri(i, k) + d_v_oro(i, k)
919            ENDDO            ENDDO
920         ENDDO         ENDDO
921        ENDIF
     ENDIF ! fin de test sur ok_orodr  
922    
923      IF (ok_orolf) THEN      IF (ok_orolf) THEN
924           ! S\'election des points pour lesquels le sch\'ema est actif :
925         !  selection des points pour lesquels le shema est actif:         igwd = 0
926         igwd=0         DO i = 1, klon
927         DO i=1, klon            itest(i) = 0
928            itest(i)=0            IF (zpic(i) - zmea(i) > 100.) THEN
929            IF ((zpic(i)-zmea(i)).GT.100.) THEN               itest(i) = 1
930               itest(i)=1               igwd = igwd + 1
              igwd=igwd+1  
              idx(igwd)=i  
931            ENDIF            ENDIF
932         ENDDO         ENDDO
933    
934         CALL lift_noro(klon, llm, pdtphys, paprs, pplay, &         CALL lift_noro(klon, llm, dtphys, paprs, play, rlat, zmea, zstd, zpic, &
935              rlat, zmea, zstd, zpic, &              itest, t_seri, u_seri, v_seri, zulow, zvlow, zustrli, zvstrli, &
             itest, &  
             t_seri, u_seri, v_seri, &  
             zulow, zvlow, zustrli, zvstrli, &  
936              d_t_lif, d_u_lif, d_v_lif)              d_t_lif, d_u_lif, d_v_lif)
937    
938         !  ajout des tendances         ! Ajout des tendances :
939         DO k = 1, llm         DO k = 1, llm
940            DO i = 1, klon            DO i = 1, klon
941               t_seri(i, k) = t_seri(i, k) + d_t_lif(i, k)               t_seri(i, k) = t_seri(i, k) + d_t_lif(i, k)
# Line 1865  contains Line 943  contains
943               v_seri(i, k) = v_seri(i, k) + d_v_lif(i, k)               v_seri(i, k) = v_seri(i, k) + d_v_lif(i, k)
944            ENDDO            ENDDO
945         ENDDO         ENDDO
946        ENDIF
947    
948      ENDIF ! fin de test sur ok_orolf      ! Stress n\'ecessaires : toute la physique
   
     ! STRESS NECESSAIRES: TOUTE LA PHYSIQUE  
949    
950      DO i = 1, klon      DO i = 1, klon
951         zustrph(i)=0.         zustrph(i) = 0.
952         zvstrph(i)=0.         zvstrph(i) = 0.
953      ENDDO      ENDDO
954      DO k = 1, llm      DO k = 1, llm
955         DO i = 1, klon         DO i = 1, klon
956            zustrph(i)=zustrph(i)+(u_seri(i, k)-u(i, k))/pdtphys* &            zustrph(i) = zustrph(i) + (u_seri(i, k) - u(i, k)) / dtphys &
957                 (paprs(i, k)-paprs(i, k+1))/rg                 * zmasse(i, k)
958            zvstrph(i)=zvstrph(i)+(v_seri(i, k)-v(i, k))/pdtphys* &            zvstrph(i) = zvstrph(i) + (v_seri(i, k) - v(i, k)) / dtphys &
959                 (paprs(i, k)-paprs(i, k+1))/rg                 * zmasse(i, k)
960         ENDDO         ENDDO
961      ENDDO      ENDDO
962    
963      !IM calcul composantes axiales du moment angulaire et couple des montagnes      CALL aaam_bud(rg, romega, rlat, rlon, pphis, zustrdr, zustrli, zustrph, &
964             zvstrdr, zvstrli, zvstrph, paprs, u, v, aam, torsfc)
     CALL aaam_bud (27, klon, llm, gmtime, &  
          ra, rg, romega, &  
          rlat, rlon, pphis, &  
          zustrdr, zustrli, zustrph, &  
          zvstrdr, zvstrli, zvstrph, &  
          paprs, u, v, &  
          aam, torsfc)  
   
     IF (if_ebil >= 2) THEN  
        ztit='after orography'  
        CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
     END IF  
   
     !AA Installation de l'interface online-offline pour traceurs  
   
     !   Calcul  des tendances traceurs  
   
     call phytrac(rnpb, itap, lmt_pas, julien,  gmtime, firstcal, lafin, nq-2, &  
          pdtphys, u, v, t, paprs, pplay, pmfu,  pmfd,  pen_u,  pde_u,  pen_d, &  
          pde_d, ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, pctsrf, &  
          frac_impa,  frac_nucl, presnivs, pphis, pphi, albsol, rhcl, cldfra, &  
          rneb,  diafra,  cldliq, itop_con, ibas_con, pmflxr, pmflxs, prfl, &  
          psfl, da, phi, mp, upwd, dnwd, tr_seri)  
   
     IF (offline) THEN  
   
        print*, 'Attention on met a 0 les thermiques pour phystoke'  
        call phystokenc(pdtphys, rlon, rlat, &  
             t, pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, &  
             fm_therm, entr_therm, &  
             ycoefh, yu1, yv1, ftsol, pctsrf, &  
             frac_impa, frac_nucl, &  
             pphis, airephy, pdtphys, itap)  
965    
966      ENDIF      ! Calcul des tendances traceurs
967        call phytrac(julien, time, firstcal, lafin, dtphys, t, paprs, play, mfu, &
968             mfd, pde_u, pen_d, ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, &
969             pctsrf, frac_impa, frac_nucl, da, phi, mp, upwd, dnwd, tr_seri, &
970             zmasse, ncid_startphy)
971    
972      ! Calculer le transport de l'eau et de l'energie (diagnostique)      ! Calculer le transport de l'eau et de l'energie (diagnostique)
973        CALL transp(paprs, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, ue, uq)
974    
975      CALL transp (paprs, zxtsol, &      ! diag. bilKP
          t_seri, q_seri, u_seri, v_seri, zphi, &  
          ve, vq, ue, uq)  
976    
977      !IM diag. bilKP      CALL transp_lay(paprs, t_seri, q_seri, u_seri, v_seri, zphi, &
   
     CALL transp_lay (paprs, zxtsol, &  
          t_seri, q_seri, u_seri, v_seri, zphi, &  
978           ve_lay, vq_lay, ue_lay, uq_lay)           ve_lay, vq_lay, ue_lay, uq_lay)
979    
980      ! Accumuler les variables a stocker dans les fichiers histoire:      ! Accumuler les variables a stocker dans les fichiers histoire:
981    
982      !+jld ec_conser      ! conversion Ec en énergie thermique
983      DO k = 1, llm      DO k = 1, llm
984         DO i = 1, klon         DO i = 1, klon
985            ZRCPD = RCPD*(1.0+RVTMP2*q_seri(i, k))            d_t_ec(i, k) = 0.5 / (RCPD * (1. + RVTMP2 * q_seri(i, k))) &
986            d_t_ec(i, k)=0.5/ZRCPD &                 * (u(i, k)**2 + v(i, k)**2 - u_seri(i, k)**2 - v_seri(i, k)**2)
987                 *(u(i, k)**2+v(i, k)**2-u_seri(i, k)**2-v_seri(i, k)**2)            t_seri(i, k) = t_seri(i, k) + d_t_ec(i, k)
988            t_seri(i, k)=t_seri(i, k)+d_t_ec(i, k)            d_t_ec(i, k) = d_t_ec(i, k) / dtphys
           d_t_ec(i, k) = d_t_ec(i, k)/pdtphys  
989         END DO         END DO
990      END DO      END DO
     !-jld ec_conser  
     IF (if_ebil >= 1) THEN  
        ztit='after physic'  
        CALL diagetpq(airephy, ztit, ip_ebil, 1, 1, pdtphys &  
             , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs &  
             , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)  
        !     Comme les tendances de la physique sont ajoute dans la dynamique,  
        !     on devrait avoir que la variation d'entalpie par la dynamique  
        !     est egale a la variation de la physique au pas de temps precedent.  
        !     Donc la somme de ces 2 variations devrait etre nulle.  
        call diagphy(airephy, ztit, ip_ebil &  
             , topsw, toplw, solsw, sollw, sens &  
             , evap, rain_fall, snow_fall, ztsol &  
             , d_h_vcol, d_qt, d_ec &  
             , fs_bound, fq_bound )  
   
        d_h_vcol_phy=d_h_vcol  
   
     END IF  
991    
992      !   SORTIES      ! SORTIES
993    
994      !IM Interpolation sur les niveaux de pression du NMC      ! prw = eau precipitable
     call calcul_STDlev  
   
     !cc prw = eau precipitable  
995      DO i = 1, klon      DO i = 1, klon
996         prw(i) = 0.         prw(i) = 0.
997         DO k = 1, llm         DO k = 1, llm
998            prw(i) = prw(i) + &            prw(i) = prw(i) + q_seri(i, k) * zmasse(i, k)
                q_seri(i, k)*(paprs(i, k)-paprs(i, k+1))/RG  
999         ENDDO         ENDDO
1000      ENDDO      ENDDO
1001    
     !IM initialisation + calculs divers diag AMIP2  
     call calcul_divers  
   
1002      ! Convertir les incrementations en tendances      ! Convertir les incrementations en tendances
1003    
1004      DO k = 1, llm      DO k = 1, llm
1005         DO i = 1, klon         DO i = 1, klon
1006            d_u(i, k) = ( u_seri(i, k) - u(i, k) ) / pdtphys            d_u(i, k) = (u_seri(i, k) - u(i, k)) / dtphys
1007            d_v(i, k) = ( v_seri(i, k) - v(i, k) ) / pdtphys            d_v(i, k) = (v_seri(i, k) - v(i, k)) / dtphys
1008            d_t(i, k) = ( t_seri(i, k)-t(i, k) ) / pdtphys            d_t(i, k) = (t_seri(i, k) - t(i, k)) / dtphys
1009            d_qx(i, k, ivap) = ( q_seri(i, k) - qx(i, k, ivap) ) / pdtphys            d_qx(i, k, ivap) = (q_seri(i, k) - qx(i, k, ivap)) / dtphys
1010            d_qx(i, k, iliq) = ( ql_seri(i, k) - qx(i, k, iliq) ) / pdtphys            d_qx(i, k, iliq) = (ql_seri(i, k) - qx(i, k, iliq)) / dtphys
1011         ENDDO         ENDDO
1012      ENDDO      ENDDO
1013    
1014      IF (nq >= 3) THEN      DO iq = 3, nqmx
1015         DO iq = 3, nq         DO k = 1, llm
1016            DO  k = 1, llm            DO i = 1, klon
1017               DO  i = 1, klon               d_qx(i, k, iq) = (tr_seri(i, k, iq - 2) - qx(i, k, iq)) / dtphys
                 d_qx(i, k, iq) = ( tr_seri(i, k, iq-2) - qx(i, k, iq) ) / pdtphys  
              ENDDO  
1018            ENDDO            ENDDO
1019         ENDDO         ENDDO
1020      ENDIF      ENDDO
1021    
1022      ! Sauvegarder les valeurs de t et q a la fin de la physique:      ! Sauvegarder les valeurs de t et q a la fin de la physique:
   
1023      DO k = 1, llm      DO k = 1, llm
1024         DO i = 1, klon         DO i = 1, klon
1025            t_ancien(i, k) = t_seri(i, k)            t_ancien(i, k) = t_seri(i, k)
# Line 2015  contains Line 1027  contains
1027         ENDDO         ENDDO
1028      ENDDO      ENDDO
1029    
1030      !   Ecriture des sorties      CALL histwrite_phy("phis", pphis)
1031        CALL histwrite_phy("aire", airephy)
1032      call write_histhf      CALL histwrite_phy("psol", paprs(:, 1))
1033      call write_histday      CALL histwrite_phy("precip", rain_fall + snow_fall)
1034      call write_histins      CALL histwrite_phy("plul", rain_lsc + snow_lsc)
1035        CALL histwrite_phy("pluc", rain_con + snow_con)
1036      ! Si c'est la fin, il faut conserver l'etat de redemarrage      CALL histwrite_phy("tsol", tsol)
1037        CALL histwrite_phy("t2m", zt2m)
1038      IF (lafin) THEN      CALL histwrite_phy("q2m", zq2m)
1039         itau_phy = itau_phy + itap      CALL histwrite_phy("u10m", zu10m)
1040         CALL phyredem ("restartphy.nc", radpas, rlat, rlon, pctsrf, ftsol, &      CALL histwrite_phy("v10m", zv10m)
1041              ftsoil, tslab, seaice, fqsurf, qsol, &      CALL histwrite_phy("snow", snow_fall)
1042              fsnow, falbe, falblw, fevap, rain_fall, snow_fall, &      CALL histwrite_phy("cdrm", cdragm)
1043              solsw, sollwdown, dlw, &      CALL histwrite_phy("cdrh", cdragh)
1044              radsol, frugs, agesno, &      CALL histwrite_phy("topl", toplw)
1045              zmea, zstd, zsig, zgam, zthe, zpic, zval, rugoro, &      CALL histwrite_phy("evap", evap)
1046              t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0)      CALL histwrite_phy("sols", solsw)
1047      ENDIF      CALL histwrite_phy("soll", sollw)
1048        CALL histwrite_phy("solldown", sollwdown)
1049    contains      CALL histwrite_phy("bils", bils)
1050        CALL histwrite_phy("sens", - sens)
1051      subroutine calcul_STDlev      CALL histwrite_phy("fder", fder)
1052        CALL histwrite_phy("dtsvdfo", d_ts(:, is_oce))
1053        !     From phylmd/calcul_STDlev.h, v 1.1 2005/05/25 13:10:09      CALL histwrite_phy("dtsvdft", d_ts(:, is_ter))
1054        CALL histwrite_phy("dtsvdfg", d_ts(:, is_lic))
1055        CALL histwrite_phy("dtsvdfi", d_ts(:, is_sic))
1056    
1057        !IM on initialise les champs en debut du jour ou du mois      DO nsrf = 1, nbsrf
1058           CALL histwrite_phy("pourc_"//clnsurf(nsrf), pctsrf(:, nsrf) * 100.)
1059           CALL histwrite_phy("fract_"//clnsurf(nsrf), pctsrf(:, nsrf))
1060           CALL histwrite_phy("sens_"//clnsurf(nsrf), flux_t(:, nsrf))
1061           CALL histwrite_phy("lat_"//clnsurf(nsrf), fluxlat(:, nsrf))
1062           CALL histwrite_phy("tsol_"//clnsurf(nsrf), ftsol(:, nsrf))
1063           CALL histwrite_phy("taux_"//clnsurf(nsrf), flux_u(:, nsrf))
1064           CALL histwrite_phy("tauy_"//clnsurf(nsrf), flux_v(:, nsrf))
1065           CALL histwrite_phy("rugs_"//clnsurf(nsrf), frugs(:, nsrf))
1066           CALL histwrite_phy("albe_"//clnsurf(nsrf), falbe(:, nsrf))
1067        END DO
1068    
1069        CALL ini_undefSTD(nlevSTD, itap, &      CALL histwrite_phy("albs", albsol)
1070             ecrit_day, ecrit_mth, &      CALL histwrite_phy("tro3", wo * dobson_u * 1e3 / zmasse / rmo3 * md)
1071             tnondef, tsumSTD)      CALL histwrite_phy("rugs", zxrugs)
1072        CALL ini_undefSTD(nlevSTD, itap, &      CALL histwrite_phy("s_pblh", s_pblh)
1073             ecrit_day, ecrit_mth, &      CALL histwrite_phy("s_pblt", s_pblt)
1074             tnondef, usumSTD)      CALL histwrite_phy("s_lcl", s_lcl)
1075        CALL ini_undefSTD(nlevSTD, itap, &      CALL histwrite_phy("s_capCL", s_capCL)
1076             ecrit_day, ecrit_mth, &      CALL histwrite_phy("s_oliqCL", s_oliqCL)
1077             tnondef, vsumSTD)      CALL histwrite_phy("s_cteiCL", s_cteiCL)
1078        CALL ini_undefSTD(nlevSTD, itap, &      CALL histwrite_phy("s_therm", s_therm)
1079             ecrit_day, ecrit_mth, &      CALL histwrite_phy("s_trmb1", s_trmb1)
1080             tnondef, wsumSTD)      CALL histwrite_phy("s_trmb2", s_trmb2)
1081        CALL ini_undefSTD(nlevSTD, itap, &      CALL histwrite_phy("s_trmb3", s_trmb3)
1082             ecrit_day, ecrit_mth, &  
1083             tnondef, phisumSTD)      if (conv_emanuel) then
1084        CALL ini_undefSTD(nlevSTD, itap, &         CALL histwrite_phy("ptop", ema_pct)
1085             ecrit_day, ecrit_mth, &         CALL histwrite_phy("dnwd0", - mp)
1086             tnondef, qsumSTD)      end if
1087        CALL ini_undefSTD(nlevSTD, itap, &  
1088             ecrit_day, ecrit_mth, &      CALL histwrite_phy("temp", t_seri)
1089             tnondef, rhsumSTD)      CALL histwrite_phy("vitu", u_seri)
1090        CALL ini_undefSTD(nlevSTD, itap, &      CALL histwrite_phy("vitv", v_seri)
1091             ecrit_day, ecrit_mth, &      CALL histwrite_phy("geop", zphi)
1092             tnondef, uvsumSTD)      CALL histwrite_phy("pres", play)
1093        CALL ini_undefSTD(nlevSTD, itap, &      CALL histwrite_phy("dtvdf", d_t_vdf)
1094             ecrit_day, ecrit_mth, &      CALL histwrite_phy("dqvdf", d_q_vdf)
1095             tnondef, vqsumSTD)      CALL histwrite_phy("rhum", zx_rh)
1096        CALL ini_undefSTD(nlevSTD, itap, &      CALL histwrite_phy("d_t_ec", d_t_ec)
1097             ecrit_day, ecrit_mth, &      CALL histwrite_phy("dtsw0", heat0 / 86400.)
1098             tnondef, vTsumSTD)      CALL histwrite_phy("dtlw0", - cool0 / 86400.)
1099        CALL ini_undefSTD(nlevSTD, itap, &      CALL histwrite_phy("msnow", sum(fsnow * pctsrf, dim = 2))
1100             ecrit_day, ecrit_mth, &      call histwrite_phy("qsurf", sum(fqsurf * pctsrf, dim = 2))
1101             tnondef, wqsumSTD)  
1102        CALL ini_undefSTD(nlevSTD, itap, &      if (ok_instan) call histsync(nid_ins)
1103             ecrit_day, ecrit_mth, &  
1104             tnondef, vphisumSTD)      IF (lafin) then
1105        CALL ini_undefSTD(nlevSTD, itap, &         call NF95_CLOSE(ncid_startphy)
1106             ecrit_day, ecrit_mth, &         CALL phyredem(pctsrf, ftsol, ftsoil, fqsurf, qsol, &
1107             tnondef, wTsumSTD)              fsnow, falbe, fevap, rain_fall, snow_fall, solsw, sollw, dlw, &
1108        CALL ini_undefSTD(nlevSTD, itap, &              radsol, frugs, agesno, zmea, zstd, zsig, zgam, zthe, zpic, zval, &
1109             ecrit_day, ecrit_mth, &              t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0, sig1, &
1110             tnondef, u2sumSTD)              w01)
1111        CALL ini_undefSTD(nlevSTD, itap, &      end IF
            ecrit_day, ecrit_mth, &  
            tnondef, v2sumSTD)  
       CALL ini_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, &  
            tnondef, T2sumSTD)  
   
       !IM on interpole sur les niveaux STD de pression a chaque pas de  
       !temps de la physique  
   
       DO k=1, nlevSTD  
   
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               t_seri, tlevSTD(:, k))  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               u_seri, ulevSTD(:, k))  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               v_seri, vlevSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=paprs(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., zx_tmp_fi3d, rlevSTD(k), &  
               omega, wlevSTD(:, k))  
   
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zphi/RG, philevSTD(:, k))  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               qx(:, :, ivap), qlevSTD(:, k))  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_rh*100., rhlevSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=u_seri(i, l)*v_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, uvSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=v_seri(i, l)*q_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, vqSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=v_seri(i, l)*t_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, vTSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=omega(i, l)*qx(i, l, ivap)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, wqSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=v_seri(i, l)*zphi(i, l)/RG  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, vphiSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=omega(i, l)*t_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, wTSTD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=u_seri(i, l)*u_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, u2STD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=v_seri(i, l)*v_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, v2STD(:, k))  
   
          DO l=1, llm  
             DO i=1, klon  
                zx_tmp_fi3d(i, l)=t_seri(i, l)*t_seri(i, l)  
             ENDDO !i  
          ENDDO !l  
          CALL plevel(klon, llm, .true., pplay, rlevSTD(k), &  
               zx_tmp_fi3d, T2STD(:, k))  
   
       ENDDO !k=1, nlevSTD  
   
       !IM on somme les valeurs definies a chaque pas de temps de la  
       ! physique ou toutes les 6 heures  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.TRUE.  
       CALL undefSTD(nlevSTD, itap, tlevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, tsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, ulevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, usumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, vlevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, vsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, wlevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, wsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, philevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, phisumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, qlevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, qsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, rhlevSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, rhsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, uvSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, uvsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, vqSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, vqsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, vTSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, vTsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, wqSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, wqsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, vphiSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, vphisumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, wTSTD, &  
            ecrit_hf, &  
            oknondef, tnondef, wTsumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, u2STD, &  
            ecrit_hf, &  
            oknondef, tnondef, u2sumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, v2STD, &  
            ecrit_hf, &  
            oknondef, tnondef, v2sumSTD)  
   
       oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE.  
       CALL undefSTD(nlevSTD, itap, T2STD, &  
            ecrit_hf, &  
            oknondef, tnondef, T2sumSTD)  
   
       !IM on moyenne a la fin du jour ou du mois  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, tsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, usumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, vsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, wsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, phisumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, qsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, rhsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, uvsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, vqsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, vTsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, wqsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, vphisumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, wTsumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, u2sumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, v2sumSTD)  
   
       CALL moy_undefSTD(nlevSTD, itap, &  
            ecrit_day, ecrit_mth, ecrit_hf2mth, &  
            tnondef, T2sumSTD)  
   
       !IM interpolation a chaque pas de temps du SWup(clr) et  
       !SWdn(clr) a 200 hPa  
   
       CALL plevel(klon, klevp1, .true., paprs, 20000., &  
            swdn0, SWdn200clr)  
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            swdn, SWdn200)  
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            swup0, SWup200clr)  
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            swup, SWup200)  
   
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            lwdn0, LWdn200clr)  
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            lwdn, LWdn200)  
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            lwup0, LWup200clr)  
       CALL plevel(klon, klevp1, .false., paprs, 20000., &  
            lwup, LWup200)  
   
     end SUBROUTINE calcul_STDlev  
   
     !****************************************************  
   
     SUBROUTINE calcul_divers  
   
       ! From phylmd/calcul_divers.h, v 1.1 2005/05/25 13:10:09  
   
       ! initialisations diverses au "debut" du mois  
   
       IF(MOD(itap, ecrit_mth) == 1) THEN  
          DO i=1, klon  
             nday_rain(i)=0.  
          ENDDO  
       ENDIF  
   
       IF(MOD(itap, ecrit_day) == 0) THEN  
          !IM calcul total_rain, nday_rain  
          DO i = 1, klon  
             total_rain(i)=rain_fall(i)+snow_fall(i)    
             IF(total_rain(i).GT.0.) nday_rain(i)=nday_rain(i)+1.  
          ENDDO  
       ENDIF  
   
     End SUBROUTINE calcul_divers  
   
     !***********************************************  
   
     subroutine write_histday  
   
       !     From phylmd/write_histday.h, v 1.3 2005/05/25 13:10:09  
   
       if (ok_journe) THEN  
   
          ndex2d = 0  
          ndex3d = 0  
   
          ! Champs 2D:  
   
          itau_w = itau_phy + itap  
   
          !   FIN ECRITURE DES CHAMPS 3D  
   
          if (ok_sync) then  
             call histsync(nid_day)  
          endif  
   
       ENDIF  
   
     End subroutine write_histday  
   
     !****************************  
   
     subroutine write_histhf  
   
       ! From phylmd/write_histhf.h, v 1.5 2005/05/25 13:10:09  
   
       ndex2d = 0  
       ndex3d = 0  
   
       itau_w = itau_phy + itap  
   
       call write_histhf3d  
   
       IF (ok_sync) THEN  
          call histsync(nid_hf)  
       ENDIF  
   
     end subroutine write_histhf  
   
     !***************************************************************  
   
     subroutine write_histins  
   
       ! From phylmd/write_histins.h, v 1.2 2005/05/25 13:10:09  
   
       real zout  
   
       !--------------------------------------------------  
   
       IF (ok_instan) THEN  
   
          ndex2d = 0  
          ndex3d = 0  
   
          ! Champs 2D:  
   
          zsto = pdtphys * ecrit_ins  
          zout = pdtphys * ecrit_ins  
          itau_w = itau_phy + itap  
   
          i = NINT(zout/zsto)  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), pphis, zx_tmp_2d)  
          CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          i = NINT(zout/zsto)  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), airephy, zx_tmp_2d)  
          CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = paprs(i, 1)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "psol", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_fall(i) + snow_fall(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "precip", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_lsc(i) + snow_lsc(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "plul", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          DO i = 1, klon  
             zx_tmp_fi2d(i) = rain_con(i) + snow_con(i)  
          ENDDO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "pluc", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zxtsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "tsol", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
          !ccIM  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zt2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "t2m", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zq2m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "q2m", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zu10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "u10m", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zv10m, zx_tmp_2d)  
          CALL histwrite(nid_ins, "v10m", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), snow_fall, zx_tmp_2d)  
          CALL histwrite(nid_ins, "snow", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), cdragm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrm", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), cdragh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "cdrh", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), toplw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "topl", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), evap, zx_tmp_2d)  
          CALL histwrite(nid_ins, "evap", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), solsw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sols", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "soll", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sollwdown, zx_tmp_2d)  
          CALL histwrite(nid_ins, "solldown", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), bils, zx_tmp_2d)  
          CALL histwrite(nid_ins, "bils", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          zx_tmp_fi2d(1:klon)=-1*sens(1:klon)  
          !     CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sens, zx_tmp_2d)  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
          CALL histwrite(nid_ins, "sens", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), fder, zx_tmp_2d)  
          CALL histwrite(nid_ins, "fder", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_oce), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfo", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_ter), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdft", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_lic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfg", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_sic), zx_tmp_2d)  
          CALL histwrite(nid_ins, "dtsvdfi", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          DO nsrf = 1, nbsrf  
             !XXX  
             zx_tmp_fi2d(1 : klon) = pctsrf( 1 : klon, nsrf)*100.  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "pourc_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = pctsrf( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "fract_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxt( 1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "sens_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxlat( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "lat_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = ftsol( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tsol_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxu( 1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "taux_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = fluxv( 1 : klon, 1, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "tauy_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = frugs( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "rugs_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
             zx_tmp_fi2d(1 : klon) = falbe( 1 : klon, nsrf)  
             CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d)  
             CALL histwrite(nid_ins, "albe_"//clnsurf(nsrf), itau_w, &  
                  zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          END DO  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), albsol, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albs", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), albsollw, zx_tmp_2d)  
          CALL histwrite(nid_ins, "albslw", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zxrugs, zx_tmp_2d)  
          CALL histwrite(nid_ins, "rugs", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          !IM cf. AM 081204 BEG  
   
          !HBTM2  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_pblh, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblh", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_pblt, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_pblt", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_lcl, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_lcl", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_capCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_capCL", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_oliqCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_oliqCL", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_cteiCL, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_cteiCL", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_therm, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_therm", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb1, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb1", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb2, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb2", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb3, zx_tmp_2d)  
          CALL histwrite(nid_ins, "s_trmb3", itau_w, zx_tmp_2d, iim*(jjm + 1), &  
               ndex2d)  
   
          !IM cf. AM 081204 END  
   
          ! Champs 3D:  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), t_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "temp", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), u_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitu", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), v_seri, zx_tmp_3d)  
          CALL histwrite(nid_ins, "vitv", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), zphi, zx_tmp_3d)  
          CALL histwrite(nid_ins, "geop", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), pplay, zx_tmp_3d)  
          CALL histwrite(nid_ins, "pres", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), d_t_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dtvdf", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), d_q_vdf, zx_tmp_3d)  
          CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d, &  
               iim*(jjm + 1)*llm, ndex3d)  
   
          if (ok_sync) then  
             call histsync(nid_ins)  
          endif  
       ENDIF  
   
     end subroutine write_histins  
   
     !****************************************************  
   
     subroutine write_histhf3d  
   
       ! From phylmd/write_histhf3d.h, v 1.2 2005/05/25 13:10:09  
   
       ndex2d = 0  
       ndex3d = 0  
   
       itau_w = itau_phy + itap  
   
       ! Champs 3D:  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), t_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "temp", itau_w, zx_tmp_3d, &  
            iim*(jjm + 1)*llm, ndex3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), qx(1, 1, ivap), zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "ovap", itau_w, zx_tmp_3d, &  
            iim*(jjm + 1)*llm, ndex3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), u_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitu", itau_w, zx_tmp_3d, &  
            iim*(jjm + 1)*llm, ndex3d)  
   
       CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), v_seri, zx_tmp_3d)  
       CALL histwrite(nid_hf3d, "vitv", itau_w, zx_tmp_3d, &  
            iim*(jjm + 1)*llm, ndex3d)  
   
       if (nbtr >= 3) then  
          CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), tr_seri(1, 1, 3), &  
               zx_tmp_3d)  
          CALL histwrite(nid_hf3d, "O3", itau_w, zx_tmp_3d, iim*(jjm + 1)*llm, &  
               ndex3d)  
       end if  
   
       if (ok_sync) then  
          call histsync(nid_hf3d)  
       endif  
1112    
1113      end subroutine write_histhf3d      firstcal = .FALSE.
1114    
1115    END SUBROUTINE physiq    END SUBROUTINE physiq
1116    
   !****************************************************  
   
   FUNCTION qcheck(klon, klev, paprs, q, ql, aire)  
   
     ! From phylmd/physiq.F, v 1.22 2006/02/20 09:38:28  
   
     use YOMCST  
     IMPLICIT none  
   
     ! Calculer et imprimer l'eau totale. A utiliser pour verifier  
     ! la conservation de l'eau  
   
     INTEGER klon, klev  
     REAL, intent(in):: paprs(klon, klev+1)  
     real q(klon, klev), ql(klon, klev)  
     REAL aire(klon)  
     REAL qtotal, zx, qcheck  
     INTEGER i, k  
   
     zx = 0.0  
     DO i = 1, klon  
        zx = zx + aire(i)  
     ENDDO  
     qtotal = 0.0  
     DO k = 1, klev  
        DO i = 1, klon  
           qtotal = qtotal + (q(i, k)+ql(i, k)) * aire(i) &  
                *(paprs(i, k)-paprs(i, k+1))/RG  
        ENDDO  
     ENDDO  
   
     qcheck = qtotal/zx  
   
   END FUNCTION qcheck  
   
1117  end module physiq_m  end module physiq_m

Legend:
Removed from v.12  
changed lines
  Added in v.224

  ViewVC Help
Powered by ViewVC 1.1.21